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Developments in the Analysis of Spatial Data

P. M. Robinson�

London School of Economics

August 31, 2007

Abstract

Disregarding spatial dependence can invalidate methods for analyzing
cross-sectional and panel data. We discuss ongoing work on developing
methods that allow for, test for, or estimate, spatial dependence. Much
of the stress is on nonparametric and semiparametric methods.

1 Introduction

Issues of spatial dependence have arisen in several areas of research, such as the
environmental sciences, economics and sociology, but may be more generally
relevant in circumstances in which cross-sectional or panel data are collected.
Book-length descriptions statistical methods of analyzing spatial data include
Cli¤ and Ord (1981), Anselin (1988), Haining, R. (1990), Cressie (1993), Guyon
(1995), Stein (1999), Arbia (2006). The present paper discusses some recent
and ongoing developments, mainly from a semiparametric or nonparametric
viewpoint.
It is helpful for the purposes of this introductory section to �x ideas by

discussing a conventional setting of scalar (for simplicity) observations yi, i =
1; :::; n, having representation

yi = f(xi) + "i; i = 1; :::; n; (1)

where xi is a p� 1 vector observation that can be deterministically or stochas-
tically generated, f is a parametric, semiparametric or nonparametric function,
and the unobservable zero-mean random variable "i is uncorrelated with f(xi).
Particular issues arise in connection with the regression component f(xi), but
these are partly due to the properties of the error "i and it is the modelling
of the "i, and its implications for rules of statistical inference, that are central
from our perspective.
The estimation of f or parameters that describe it which incorrectly assume

independence across the "i are well understood in the wider statistical and
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econometric literatures, and have been discussed in a speci�cally spatial context
by numerous authors. The index i can be thought of as ranging over a cross-
section or a panel, or indeed a time series and/or geographical space. In a cross-
sectional setting, independence of the "i is often assumed, and can be extended
to random-e¤ects models which introduce within-group correlation. The cross-
section dimension of a panel data set is often treated similarly, with dependence
structure across the time dimension typically described by a dynamic model
such as an autoregression (AR) (see e.g. Hsiao (2003)). Here we are concerned
with the possibility that data collected like a cross-section or panel, or across
geographical space, may have widespread dependence, that varies with some
notion of relative location of, or distance between, observations, this might be
due to omission of variables.
A basic question is the modelling of the dependence in such a way as to en-

able justi�cation of rules of large sample inference on aspects of interest. This
requires that information accumulate as n ! 1 - at a modest rate for con-
sistency to be achieved, faster for the central limit theorem; neither property
can hold if the "i have a constant non-zero correlation. Su¢ cient conditions
for such properties in case of time series observations, and observations on d-
dimensional space with d > 1 (as random �elds), have been developed. For
stationary "i, asymptotic theory for parameters describing f in (1), or the au-
tocovariance structure of the "i; is possible under a variety of weak dependence
conditions, such as mixing with a suitable rate, or linear �lters of independent
innovations with summable coe¢ cients, or even under long range dependence.
To some degree the extension of theory for the time series case d = 1 to d > 1 is
straightforward but particular features cause di¢ culty: for multilateral models,
least squares (LS) tends to be inconsistent and use of a likelihood approximation
is important, as �rst noted by Whittle (1954); the "edge-e¤ect" is a source of
bias in the central limit theorem when d � 2, and methods of overcoming it are
discussed in Guyon (1982), Dahlhaus and Künsch (1987), Robinson and Vidal
Sanz (2004). Under long range dependence, limit distributional behaviour may
be nonstandard, without weighting of a type used more generally to achieve
e¢ ciency (see e.g., Fox and Taqqu (1986), Hidalgo and Robinson (2002)).
Such theory crucially regards the locations, si, of the "i, as diverging without

bound as i!1, so that, say, the distance between s1 and sn tends to in�nity,
as n!1, and correspondingly "1 and "n approach independence. This kind of
setup is commonly accepted in time series research. It can also seem plausible
in some spatial applications in, say, environmental science or astronomy, or
even �eld experiments, but less so when the domain of possible observation is
bounded, for physical, historical or administrative reasons. This may not be
of major concern in that the practitioner is typically faced with a given, �xed
sample, useful asymptotic theory is motivated by approximation rather than
extrapolation, and there is an element of arti�ciality in any regime that caters
for an arbitrarily large sample size.
In economics, geographical distance can also be relevant in modelling de-

pendence, but a more general and relevant notion is "economic distance" (see
e.g., Conley and Dupor (2003)). Here, unit (economic agent) i is endowed with
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a vector of characteristics zi (which may overlap with xi in (1)). The eco-
nomic distance between agents i and j is de�ned by the distance between zi
and zj , such as the Euclidean norm kzi � zjk (where there are advantages to
parsimonious modelling in assuming isotropy). If zi has in�nite support, so
do such distances. Conley (1999) approximated the locations zi by regularly-
spaced (lattice) points and applied mixing conditions in deriving asymptotic
theory for certain estimates in a random �elds setting (see e.g. also Pinkse,
Shen and Slade, 2004). Conley (1999), Conley and Molinari (2004) also exam-
ined robustness to stationary point process errors in the lattice approximation.
However this kind of assumption on the locations implies a degree of regular-
ity that might not always be plausible. For example, if the zi are identically
distributed the density will be small in tail regions so observations at remote lo-
cations will be insu¢ cient to take advantage of weak dependence conditions on
"i. In spatio-temporal settings where spatial size remains �xed while temporal
length increases (for econometric examples see e.g., Chen and Conley (2001),
Giacomini and Granger (2004)) this is not a problem because weak dependence
conditions over time do the work. However, the time series may be short or
non-existent.
In some of the spatial statistics literature, "in�ll asymptotics" has been de-

veloped, assuming increasingly �ne observations over a bounded domain as n
increases (see e.g. Stein (1991), Cressie (1993), Lahiri (1996)). Typically, a con-
tinuous model for dependence across the domain is assumed, but observations
form a triangular array when, say, the observations are on a lattice whose mesh
decreases as n increases. However, due to the �xed dependence, non-classical
asymptotic properties tend to result, e.g. inconsistency due to convergence to
a non-degenerate random variable. While these sort of �ndings are interest-
ing, they are not of much practical use. Useful, standard, asymptotic theory
has resulted from analyses in many cross-sectional, panel data and time series
problems, and we cannot see persuasive grounds for pursuing a theory under
cross-sectional dependence in spatial data that loses this. It seems di¢ cult in
general to model the falling o¤ of dependence as n ! 1 in a way that will
produce useful asymptotics without a triangular array prescription "i = "i;n,
1 � i � n, with "i (even for small i), and thence all elements of the covariance
matrix of "(n) = ("1; :::; "n)0, changing subtly as n increases. Such devices aimed
at producing useful distributional approximations are familiar, e.g. in Pitman
e¢ ciency theory, structural change modelling, �xed-design nonparametric re-
gression, and local-to-unit roots.
Our discussion of recent and ongoing work on developing statistical methods

that allow for, or estimate, spatial dependence, principally in a semiparametric
setting, will avoid technical details. Section 2 describes spatial autoregres-
sive (SAR) models, that have become a major feature of spatial statistics and
econometrics. Section 3 discusses adaptive estimation of such models, where
e¢ cient estimation is possible despite lack of knowledge of innovation distribu-
tional form. Section 4 considers nonparametric regression, where f in (1) is of
unknown form. Section 5 discusses the testing of spatial independence in data
or unobservable errors.
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2 Spatial autoregressive models

A very familiar parametric model for spatial data, due to Cli¤ and Ord (1968),
and extensively applied since, is the SAR model. Introduce an n � n matrix
Wn with non-negative elements, where diagonal ones are zero. Strategies for
specifying Wn have been discussed in the literature, e.g. its (i; j)-th element
wij;n might be formed as cij=

Pn
k=1 cik, where cij is inversely proportional to

some measure of distance between si and sj (perhaps depending on zi and zj),
though Wn need not be symmetric. A consequence of the ratio speci�cation
just introduced is that rows of Wn all sum to 1: This has the advantage of
securing a stability property, analogous to that familiar in stationary AR time
series models, in the SAR model

"(n) = �Wn"(n) + �(n), (2)

where � is an unknown scalar in (�1; 1) and �(n) = (�1; :::; �n)
0 is a vector

of independent and identically distributed random variables. This has been
considered in a linear regression setting, where (1) becomes

y(n) = Xn� + "(n); (3)

with y(n) = (y1; ::; yn)0, Xn = (x1; :::; xn)0, and � an unknown p � 1 vector. A
related model that has also been extensively studied, analogous to the dynamic
regression model of time series econometrics, is

y(n) = �Wny(n) +Xn� + �(n); (4)

for unknown scalar � 2 (�1; 1).
Asymptotic properties of various estimates of the parameters �, � and � in

(2)-(4) have been developed. In particular as noted by e.g. Anselin (1988),
under some asymptotic (as n ! 1) conditions on Wn, least squares (LS )
estimates of � and � in (4) are inconsistent, for similar reasons as found by
Whittle (1954) in the �xed lattice case. Kelejian and Prucha (1998, 1999) and
Lee (2003, 2004) showed other estimates such as instrumental variables (IV)
and (Gaussian) maximum likelihood (ML) to be consistent and asymptotically
normal, under (2), (4) and a generalized model. On the other hand, under
certain other asymptotic conditions on Wn; Lee (2002) showed that LS can be
consistent in (4). Panel data versions of these models have also been studied
(e.g., Baltagi, Song and Koh (2003), Case, Rosen and Hines (1993)).
Under Gaussianity, (2) can principally be viewed as a model for the covari-

ance matrix of "(n), i.e. (In � �Wn)
�1
(In � �Wn)

�10 ; where In is the n � n
identity matrix and 
 is the unknown covariance matrix of �(n): Viewed in
this light, (2) appears very arbirary, because any number of alternative positive
de�nite parametric matrices could serve as a model for the covariance matrix of
"(n). On the other hand, the stress on (2) is understandable due to the intuitive
appeal of a "lag" structure analogous to that in representions of time series.
Stationary time series imply a Toeplitz matrix, whence standard asymptotics
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tend to result if the eigenvalues are bounded and bounded away from zero and
in�nity for large n. Though (In � �Wn)

�1
(In � �Wn)
�10 is not generally

Toeplitz, it can share the same kind of eigenvalue property, and lead to sim-
ilarly nice asymptotics. Moreover (2) is very parsimonious, an advantage in
smallish samples, and is a convenient basis for testing the null hypothesis of
cross-sectional independence (see e.g. Baltagi and Dong Li (2001). A major
feature of (2) and (4) is the speci�cation of Wn , to which parameter estimates
will of course be sensitive. As an earlier remark implies, this rests upon a
satisfactory determination of "distance" measures between each pair of loca-
tions. One can consider related models to (2) and (4), such as a spatial moving
average, or an extension of (2) with �Wn replaced by

Pr
i=1 �iWin for r > 1,Pr

i=1Win = Wn, and unknown �i, as may be plausible when the sample can
be naturally split between sub-samples. Of course the Win must at least be
distinct for the �i to be identi�able (see e.g. Anselin (2001)).
An alternative approach to the introduction of weak dependence that leads

to standard asymptotics is essentially nonparametric, involving mixing condi-
tions, which have been popular in time series asymptotic theory for many years,
and they have been employed in the random �elds probabilistic literature, as
well as in some spatial econometric settings. They desirably avoid parametric
descriptions of dependence, and permit a degree of non-trending heterogeneity,
and can be imposed, say, on "(n) in (3) in order to establish asymptotic normality
of LS and other estimates of �: In the time series literature, mixing conditions,
which deliver asymptotic normality, have sometimes featured alongside consis-
tent estimates of the limiting covariance matrix (of parameter estimates, such
as regression coe¢ cients) which are analogous to smoothed nonparametrc es-
timates of the spectral density of a stationary process at frequency zero (see
e.g. Hannan (1957), Brillinger (1979) and many subsequent econometric refer-
ences). Analogous estimates have also been developed in spatial settings, see
e.g. Kelejian and Prucha (2006). However, mixing conditions require some
sort of ordering of the data, and in moderate sample sizes the essentially non-
parametric covariance matrix estimates can be imprecise, while heterogeneity
can still cause a problem in �nite samples because the inference rules used were
originally developed for stationary data.

3 Adaptive estimation

Most work on models such as (2)-(4) has been motivated by Gaussianity, not
in the sense that it is really needed for basic asymptotic theory for estimates of
�, �, �; but in that estimates are based on second moment statistics and may
be asymptotically e¢ cient under Gaussianity. On the other hand they are not
asymptotically e¢ cient for non-Gaussian populations, and if n is not very large
it is desirable to try to improve precision.
The representations in (2) and (4) introduce a useful whitening of the data

y(n), and it is possible to establish desirable properties (n1=2�consistency and
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asymptotic normality) of ML estimates for some speci�ed non-normal paramet-
ric distribution of the elements of �(n). But if this is misspeci�ed the estimates
might be less e¢ cient than "Gaussian-based" ones, and may even be inconsis-
tent. There is thus interest in "adaptive" semiparametric estimates, that achieve
the same asymptotic e¢ ciency as ML but without knowing the distribution, and
also lead to more powerful tests, for example for the hypothesis of cross-sectional
independence. In other settings, the nonparametric method most often used to
estimate the distribution (or more precisely its score function) has been kernels.
An attractive alternative is series estimates, which have de�nite advantages, in
terms of the regularity conditions on the model for asymptotic theory that they
entail. They have been developed by Beran (1976), Newey (1988), Robinson
(2005). (Series estimation has also been used for di¤erent purposes in a spatial
context by Chen and Conley (2001), Pinkse, Slade and Brett (2002).)
Robinson (2006a) developed series adaptive estimates of � and � in (4), and

justi�ed them under conditions on Wn similar to those found by Lee (2002) to
allow consistency and asymptotic normality of LS (where all wij;n at least tend
to zero as n increases). A simple example satisfying such conditions (see Case,
1992) considers n1 districts, each of which has n2 farmers (n = n1n2) and there is
uniform weighting within districts and zero-weighting across; Lee (2002) lets n1
and n2 both diverge as n!1. (Robinson (2006a) also established analogous
results for the fully parametric case, where a parametric distribution of the
elements of �(n) is correctly speci�ed.)

4 Nonparametric regression

Modern practice with cross-sectional and time series data leads us to question
the standard linear regression setting of (3) or (4). If these are misspeci�ed,
invalid inferences are liable to result. Nonparametric regression has become
a standard statistical tool, at least in large data sets, due to a recognition that
there can be little con�dence that the functional form is linear (as in (3) or
(4)), or of a speci�c nonlinear type. Thus we revert to the model (1) with f a
nonparametric, albeit smooth, function.
Estimates of the nonparametric regression function f are typically obtained

at several �xed points by some method of smoothing. The most popular smoothed
nonparametric regression estimate, when xi is stochastically generated, is per-
haps still the Nadaraya-Watson kernel estimate. When the errors "i and the
regressors xi in (1) are independent and identically distributed, under additional
conditions this estimate is consistent, and moreover under further conditions it
is asymptotically normally distributed with asymptotic variance of simple form,
and indeed estimates of f at distinct �xed points are desirably asymptotically
independent. Corresponding properties are enjoyed by the kernel estimate of
the probability density of xi .
Kernel regression and density estimates were originally motivated by inde-

pendent and identically distributed observations, but their asymptotic statistical
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behaviour has long been studied in the presence of stationary time series depen-
dence. Predictably, they remain consistent in the presence of even quite strong
forms of dependence. More surprisingly, under forms of (mixing or linear) weak
dependence, it has been found that not only do the kernel estimates retain their
basic consistency property, but they have the same limit distributional proper-
ties as just referred to under independence (see, e.g. Roussas (1969), Rosenblatt
(1971, Robinson (1983)). This �nding contrasts with that in parametric forms
of the regression model (1), where dependence in errors "i generally changes the
asymptotic variance, and causes a loss in e¢ ciency of estimates such as least
squares.
With long range dependence, however, asymptotic distributional properties

of kernel estimates are liable to be a¤ected. For the kernel probability density
estimate, Robinson (1991) found that while under some conditions asymptotic
joint normality of a vector of estimates at distinct �xed points may still obtain,
the asymptotic variance matrix, far from being diagonal as in the previous cir-
cumstances mentioned, is is singular, of rank 1. In other circumstances the limit
distribution can be nonstandard. In the �xed-design nonparametric regression
form of (1), where the xi are nonstochastic and, for example, equally-spaced on
the unit interval (so they get closer as n increases) Hall and Hart (1990), Robin-
son (1997) found that long range dependence in "i a¤ects the rate of convergence
of estimates of f; though asymptotic normality can still hold.
Robinson (2007) establishes consistency and asymptotic distribution theory

for the Nadaraya-Watson kernel regression estimate in a framework that applies
to various kinds of spatial data. The general triangular array setting covers,
for example, stationary "i on a lattice of arbitrary dimension, and "i generated
by a spatial autoregression. Unlike in the bulk of the time series literature
mixing conditions are not employed. Instead, a linear (in independent random
variables) process representation for "i is assumed, covering both weak depen-
dence and long range dependence. Moreover, the "i can be conditionally (on
xi) heteroscedastic. A mild falling-o¤ of dependence in the xi is imposed, but
unusually for the kernel literature, they are not necessarily assumed identically
distributed, but satisfy a milder kind of homogeneity condition. Asymptotic
normality of the Nadaraya-Watson kernel regression estimate is established,
where the limit distribution is the same as under independence in case of weak
dependence in "i; but not under long range dependence. The implications of
the conditions are examined in various spatial settings. A consistency result for
the kernel probability density estimate is established, under di¤erent conditons
from those previously employed by Hallin, Lu, and Tran (2004). As always with
smoothed nonparametric regression there is a curse-of-dimensionality problem
if xi is vector-valued; a semiparametric approach is considered by Gao, Lu and
Tjostheim (2006), is designed to alleviate this.
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5 Testing for spatial independence

Previous sections have heavily emphasized the in�uence of spatial dependence.
Spatial dependence can invalidate inferences based on parametric models, and is
likely to impair �nite-sample properties in inference on nonparametric models.
Moreover, developing procedures that take account of spatial dependence, in
observations or disturbances, can be very complicated, the procedures can be
computationally onerous, and derivation of asymptotic statistical properties of
such procedures under comprehensible conditions can be problematic. For
example this is liable to be the case when observations are irregularly-spaced,
as experience fom the time series literature suggests.
Cressie (1993) has suggested that much spatial data can often be satisfacto-

rily modelled in terms of the conditional mean, in the sense that little correlation
in errors will remain. This desirable outcome cannot be taken for granted, how-
ever, but it is often desirable to commence analysis of spatial data by a test for
independence of observations or unobservable errors. If the evidence for inde-
pendence is strong then simple rules of inference on the parameters of interest
have validity.
Testing for independence has been a major, long-standing theme of the spa-

tial literature. By "independence" here we really mean "lack-of-correlation",
though these concepts are generally identical only under Gaussianity. A key
early contribution is Moran (1950), which indeed preceded the bulk of the time
series literature on independence testing. The literature hs been further devel-
oped by Cli¤ and Ord (1968, 1972), Anselin (2001), Baltagi and Dong Li (2001),
Baltagi, Song and Koh. (2003), Pinkse (2004), though settings have been fairly
speci�c.
Robinson (2006b) presents a general approach which can be applied in a

variety of spatial circumstances. As with the earlier work of Moran (1950) and
others, the tests are based on quadratic functions, in particular of least squares
residuals in linear regeessions. A general class of statistics is developed that
has a chi-square limit distribution under the null hypothesis of independence
of errors. It is found that special cases of the statistic can be interpreted as
Lagrange multiplier statistics directed against speci�ed alternatives, where they
should have good power. Indeed the Lagrange multiplier tests maximize local
power, as expected. Under Gaussianity, modi�ed versions of the statistics are
developed which exactly have the mean of the relevant chi-square distribution,
and even both the mean and the variance, and should thus have better �nite-
sample properties. The principal focus takes homoscedasticity of errors for
granted, but the tests are also robusti�ed to nonparametric heteroscedasticity,
in the sense that a valid null asymptotic (chi-square) distribution.results. The
conditions are illustrated in tests in speci�c spatial settings, including lattice,
SAR and irregularly-spaced ones. With respect to pure, distrbution-free, in-
dependence, as distinct from "lack-of-correlation", various existing tests can in
principal be applied to spatial data, and Brett and Pinkse (1997) provided a
speci�c test in a spatial context.
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