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Abstract 
 
 

The central limit theorem for nonparametric kernel estimates of a smooth trend, 
with linearly-generated errors, indicates asymptotic independence and 
homoscedasticity across fixed points, irrespective of whether disturbances have 
short memory, long memory, or antipersistence. However, the asymptotic variance 
depends on the kernel function in a way that varies across these three 
circumstances, and in the latter two involves a double integral that cannot 
necessarily be evaluated in closed form. For a particular class of kernels, we 
obtain analytic formulae. We discuss extensions to more general settings, 
including ones involving possible cross-sectional or spatial dependence. 
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1 Introduction

Deterministic trend estimation for time series and panel data can be carried out
in numerous ways. With macroeconomic time series, use of a polynomial-in-time
trend, even a linear trend, is still very common. Classically, polynomial order
can be very simply and exactly (in �nite samples) tested when the model is ex-
pressed in terms of orthogonal polynomials, and disturbances are independent,
identically distributed and Gaussian, while on the other hand, least squares esti-
mates of the coe¢ cients are asymptotically e¢ cient (in the Gauss-Markov sense)
even in the presence of general short-range dependence in possibly non-Gaussian
stationary disturbances, the technical requirement being that the disturbance
spectral density is continuous and positive at zero frequency. Polynomial time
trends are also frequently associated with investigation of unit root behaviour
of the stochastic component. They are also convenient in panel data, especially
when the time dimension is not long.
Use of a polynomial, or any parametric function, is inevitably subject to

the consequences of misspeci�cation: typically, large-sample rules of statistical
inference are rendered invalid. Moreover, viewed as approximations to general
functions of unbounded support, polynomials do not have very good properties.
Given a long time series, an attractive alternative to a high-degree polynomial,
and one that is no less ad hoc, is kernel smoothing. Here, the trend is viewed
as a smooth, nonparametric function of time.
When the focus is on estimation of the trend, rather than its removal, there

is also interest in attaching a measure of variation. If one is prepared to consider
estimates at a number of time points that is small, in the sense of remaining
�xed as series length T increases, we need only approximate a �nite-dimensional
joint distribution. Moreover, the normal approximation, as T !1, to the limit
distribution can be not only multivariate normal but spherical, in other words,
having covariance matrix proportional to the identity. Thus interval estimation
promises to be computationally convenient. Moreover, these kind of properties
can hold not only when disturbances are independent or short range dependent,
but even when they have stationary long memory or antipersistence.
To �x ideas, consider the scalar observable sequence yt, t = 1; 2; :::; T , de-

scribed by

yt = r

�
t

T

�
+ xt; t = 1; :::; T; (1.1)

where r is a smooth function on the unit interval (0; 1], and xt is a zero-mean
covariance stationary process. Of course yt also depends on T , and so the
yt, t = 1; :::; T , form a triangular array as T increases, but as is common our
notation ignores this. The dependence of the trend r(t=T ) on T is required in
order to produce a useful asymptotic theory for locally-smoothed estimates of
r.
For a �xed point � , consider the kernel estimate

r̂(�) =
1

Tq

TX
t=1

k

�
T� � t
T q

�
yt; (1.2)

for some � 2 (0; 1), where q = qT is a positive, user-chosen, bandwidth sequence,
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and k is a kernel function satisfying at leastZ 1

�1
k(u)du = 1: (1.3)

We consider r̂(� s), s = 1; :::; S, where the � s are distinct values in (0; 1) that
remain �xed as T !1, as does S.
The r̂(� s), after centring at r(� s) and suitable normalization, can be shown

to be asymptotically independently and normally distributed under regularity
conditions that, so far as second-order structure of xt is concerned, involve only
the local-to-zero character of its spectral density, f(�). We assume, following
Assumption 1 of Robinson (1997), that it has form

f(�) = g(�)h(�); � � < � � �; (1.4)

where g is an even, nonnegative function that is continuous at � = 0, and h is
an integrable function such that

�j =

Z �

��
h(�) cos(j�)d� (1.5)

satis�es, for some d 2
�
� 1
2 ;

1
2

�
;

�j � �(d)j2d�1; as j !1; if 0 < jdj < 1

2
; (1.6)

= 2��j0; if d = 0; (1.7)

where �j0 is the Kronecker delta (so �00 = 1, �j0 = 0 for j 6= 0), and

�(d) = 2�(1� 2d) sin (�d) ; (1.8)

h(0) = 0; if d 2 (�1
2
; 0): (1.9)

When d = 0 we deduce that h(�) = 1, �� < � � �, and thus f(�) = g(�),
so that f(�) satis�es a mild form of short memory condition. More generally,
we can relate the assumptions to the property

h(�) � ��2d; as �! 0+; (1.10)

which implies
f(�) � G��2d; as �! 0+; (1.11)

denoting
G = g(0): (1.12)

When d 2 (0; 12 ), (1.10) is equivalent to (1.6) if the �j are quasi-monotonically
convergent to zero (Yong, 1974, Theorem III-16). Here, f(�) diverges at � = 0,
and xt is said to have long memory. For d 2

�
� 1
2 ; 0
�
, (1.8) and(1.9) together

imply (1.10) (Yong, 1974, Theorem III-31). Here, f(0) = 0 and xt is said to
have negative memory, or antipersistence.
These prescriptions do not entail any parametric assumption on the second-

order properties of xt, in similar spirit to our nonparametric treatment of trend.
Moreover, not only are we likely to be ignorant of the precise value of d, but
in case it is non-zero we may not even know whether it is positive or negative.
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Thus there is advantage in an asymptotic distribution theory which assumes
only that d lies in the stationary and invertible region

�
� 1
2 ;

1
2

�
.

Robinson (1997) developed such a theory, under the following additional
conditions. First r(u) satis�es a Lipschitz condition of degree , 0 <  � 1, or
r(u) is di¤erentiable with derivative satisfying a Lipschitz condition of degree
 � 1, 1 <  � 2. Next, xt = �1j=�1cj"t�j ; �

1
j=�1c

2
j < 1, for t = 0;�1; :::;

where the "2t are uniformly integrable and E ("t jFt�1 ) = 0, E
�
"2t jFt�1

�
= 1,

a.s., t = 0;�1; :::, where Ft is the �-�eld of events generated by f"s; s � tg.
Next, k(u) is even, eventually monotonically nonincreasing, almost everywhere
di¤erentiable, and in addition to (1.3), satis�es k(u) = O

�
(1 + u2)�1

�
, k0(u) =

O
�
(1 + juj1+�)�1

�
for some � > 0, k0(u) denoting the derivative of k(u) where

it exists. Finally, (Tq)�1 + T
1
2�dq

1
2�d+ ! 0, as T ! 0.

The linear process assumption on xt might be replaced by a suitable mixing
condition when d = 0 (see e.g. Roussas, Tran and Ioannides (1992)), while for
d 2 (0; 12 ) xt might instead be represented as a nonlinear function of a Gaussian
long memory process (cf. Fox and Taqqu, 1985). However, the linearity as-
sumption conveniently covers simultaneously short memory, long memory, and
antipersistence.
Under the above conditions, Theorem 1 of Robinson (1997) states that the

(Tq)
1
2�d fr̂(� s)� r(� s)g ; s = 1; :::; S; (1.13)

converge in distribution to independent identically distributed N (0; G (d)) ran-
dom variables, where

 (0) = 2��(0); (1.14)

 (d) = �(d)�(d); 0 < jdj < 1

2
; (1.15)

in which

�(d) =

Z 1

�1

Z 1

�1
k(v) fk(w)� k(v)g jv � wj2d�1 dvdw; � 1

2
< d < 0;(1.16)

�(0) =

Z 1

�1
k(v)2dv; (1.17)

�(d) =

Z 1

�1

Z 1

�1
k(v)k(w) jv � wj2d�1 dvdw; 0 < d <

1

2
: (1.18)

The varianceG (d) in the limit distribution is desirably constant over the � s.
This is in contrast to the outcome with kernel estimates of random-design non-
parametric regression. Indeed, in that setting, with long memory the desirable
independence in the limit distribution may also be lost, the limiting covariance
matrix possibly even having only unit rank (see Robinson, 2007). Other as-
ymptotic properties of kernel �xed-design nonparametric regression with long
memory disturbances are discussed by Hall and Hart (1990), Csorgo and Miel-
niczuk (1995).
Application of the central limit theorem in statistical inference requires es-

timation of G and d. Robinson (1997) justi�ed local Whittle estimates of G
and d, based on residuals from the nonparametric regression, to the extent that
replacing G and d by the estimates produces asymptotically valid inferences.
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This outcome relies also on the continuity of  (d), demonstrated in Robinson
(1997). The estimate of d is simply substituted for d in �(d), while the version
(1.16)-(1.18) of �(:) used will automatically re�ect the sign of the estimate of d.
Calculation of �(d) is not discussed by Robinson (1997). For d 6= 0 a

double integral is involved, which for general k(u) cannot be obtained an-
alytically. Moreover, some additional care is needed when d < 0, in that
k(v)k(w) jv � wj2d�1 and k(v)2 jv � wj2d�1 are not integrable individually though
their di¤erence is.
The present paper �lls a gap by deducing analytic formulae for �(d) for a

particular class of k(u), namely (even) polynomials of arbitrary �nite degree
on (�1; 1). This class includes the uniform kernel, the "optimal" Epanechnikov
kernel, and also covers bias-reducing higher-order kernels of arbitrary degree.
(In an empirical example, Robinson (1997) employed an alternative speci�c -
cosine-bell - k(u) which is not a member of this class and is not a higher-order
kernel, and had to approximate �(d) numerically.) The results are presented in
the following section, with proofs relegated to Section 4, these employing some
lemmas established in Section 5. Section 3 illustrates the results, and discusses
relevance to more general settings.

2 Formulae for �(d)

We focus on k(u) of form

k(u) =

pX
j=0

aju
2j ; juj < 1; = 0; juj � 1; (2.1)

for prescribed p � 0. When p = 0, k(u) is �at, and (1.3) implies a0 = 1
2 .

When p = 1, (1.3) implies 2a0+2a1=3 = 1, an important special case being the
Epanechnikov mean-squared-error optimal kernel in which a0 = 3

4 , a1 = � 3
4 .

When p � 1; higher-order kernels are a possibility, for example satisfying the
constraints Z 1

�1
uik(u)du = 0; 1 � i � 2p:

Thus, under (2.1), (2.2) we require

pX
j=0

aj

Z 1

�1
u2j+idu = 0; 1 � i � 2p; (2.2)

that is
pX
j=0

aj
2j + 2`+ 1

= 0; 1 � ` � p:

Thus, imposing also (1.3), the vector a = (a0; :::; ap)0 is given by

a = B�1b;
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where the (p+ 1)� (p+ 1) matrix B has (i; j)th element

Bij =
1

2(i� 1) + 2(j � 1) + 1 ;

and b is the (p + 1) � 1 vector whose �rst element is 2 and whose remaining
elements are 0: For example if p = 1; then a0 = 9=8; a1 = �15=8. For p > 1; we
can generalize (2.2) by replacing p there by q 2 [1; p] : Of course, (2.1) excludes
a number of popularly-used kernels, but except for the issue of kernel order the
actual choice of kernel is often believed to be of secondary importance.

Theorem 1 For d = 0 ; and k(u) given by (2 :1 );

�(d) = 2
pP
i=0

pP
j=0

aiaj
2i+ 2j + 1

: (2.3)

De�ne, for b 2 (�1; 0) and even r; s,

I(r; s; b) = 2r!s!� (b+ 1)
rP̀
=0

sP
m=0

(�1)`+m2`+m+b+2
(r � `)! (s�m)!�(`+m+ b+ 3) : (2.4)

Theorem 2 For d 2 (0 ; 0 :5 ); and k(u) given by (2 :1 );

�(d) =
pP
i=0

pP
j=0

aiajI(2i; 2j; 2d� 1): (2.5)

De�ne, for b 2 (�2;�1); even r and even s � 2,

J(r; s; b) =
s�1X
n=0

(�1)nI(r + n; s� 1� n; b+ 1); (2.6)

K(r; b) = �2r!�(b+ 1)
rP̀
=0

(�1)`
(r � `)!�(`+ b+ 3)2

`+b+2: (2.7)

Theorem 3 For d 2 (�0 :5 ; 0 ); and k(u) given by (2 :1 );

�(d) =
pP
i=0

pP
j=1

aiajJ(2i; 2j; 2d�1))1(p > 0)�
pP
i=0

pP
j=0

aiajK(2i+2j; 2d�1): (2.8)

3 Discussion

We illustrate the formulae �rst with p = 0, whence a0 = 1
2 . From (2.3)

 (0) = 2��(0) = 2� � 2a20 = �:

From (2.4)

I(0; 0; 2d� 1) = 22d+2

2d(2d+ 1)
:
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Thus from (2.5)

 (d) = 2�(1� 2d) sin (�d) a20I(0; 0; 2d� 1)

=
1

2
�(1� 2d) sin (�d) 22d+2

2d(2d+ 1)

= �(1� 2d) sin (�d) 22d

d(2d+ 1)
; 0 < d <

1

2
;

and from (2.8)

 (d) = �2�(1� 2d) sin (�d) a20K(0; 2d� 1)
= 2�(1� 2d) sin (�d) a20I(0; 0; 2d� 1)

= �(1� 2d) sin (�d) 22d

d(2d+ 1)
;�1
2
< d < 0:

Notice that as d! 0+; and d! 0�;  (d)!  (0):
Now take p = 1: We have

�(0) = 2a20 +
4a0a1
3

+
2a21
5
;

so

 (0) = 2�

�
2a20 +

4a0a1
3

+
2a21
5

�
:

Because the formulae become complicated we �nally consider  (d) for 0 < d <
1=2 only: Write

I(r; s; b) = 2r!s!� (b+ 1)M(r; s; b):

M(r; s; b) =
rP̀
=0

sP
m=0

(�1)`+m2b+2+`+m
(r � `)! (s�m)!�(`+m+ b+ 3) :

Then

M(2; 0; b) =
2b+1

�(b+ 3)
� 2b+3

�(b+ 4)
+

2b+4

�(b+ 5)

=
2b+1

�(b+ 5)
f(b+ 3)(b+ 4)� 4(b+ 4) + 8g

=
2b+1(b2 + 3b+ 4)

�(b+ 5)
;

so

I(2; 0; 2d� 1) = 22d+2(2d2 + d+ 1)

(2d+ 3)(2d+ 2)(2d+ 1)d
:

Next
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M(2; 2; b) =
M(2; 0; b)

2
+

2P̀
=0

(�1)`+12b+3+`
(2� `)!�(`+ b+ 4) +

2P̀
=0

(�1)`+22b+4+`
(2� `)!�(`+ b+ 5)

=
2b

�(b+ 3)
� 2b+2

�(b+ 4)
+

2b+3

�(b+ 5)

� 2b+2

�(b+ 4)
+

2b+4

�(b+ 5)
� 2b+5

�(b+ 6)

+
2b+3

�(b+ 5)
� 2b+5

�(b+ 6)
+

2b+6

�(b+ 7)

= 2b
�

1

�(b+ 3)
� 23

�(b+ 4)
+

25

�(b+ 5)
� 26

�(b+ 6)
+

26

�(b+ 7)

�
:

Thus

I(2; 2; 2d� 1) = 8�(2d)

�
22d�1

�(2d+ 2)
� 22d+2

�(2d+ 3)
+

22d+4

�(2d+ 4)

� 22d+5

�(2d+ 5)
+

22d+5

�(2d+ 6)

�
:

It follows that

�(d) = a20I(0; 0; 2d� 1) + 2a0a1I(2; 0; 2d� 1) + a21I(2; 2; 2d� 1)

= a20
22d+2

2d(2d+ 1)
+ 2a0a1

22d+2(2d2 + d+ 1)

(2d+ 3)(2d+ 2)(2d+ 1)d

+a218�(2d)

�
22d�1

�(2d+ 2)
� 22d+2

�(2d+ 3)
+

22d+4

�(2d+ 4)
� 22d+5

�(2d+ 5)
+

22d+5

�(2d+ 6)

�
:

Our results are relevant to more general models than (1.1). For example,
we might consider an N � 1 vector of observations Yt satisfying

Yt = R

�
t

T

�
+Xt; t = 1; :::; T; (3.1)

where R is an N�1 vector of smooth functions, and Xt is a vector of zero-mean
jointly covariance stationary processes. We can estimate each element of R(� s);
s = 1; :::; S; as in (1.2), and deduce from Robinson (1997) N S-dimensional
central limit theorems. We can also consider a joint, SN -dimensional, central
limit theorem for all the estimates, under suitable conditions onXt. For each � s;
the asymptotic covariance matrix of the estimate of R(� s) will not be diagonal
unless the elements of Xt are incoherent. However, it will have scalar factor
�(d); as above.
With panel data, where N might be large, there is interest in a more parsi-

monious structure than (3.1). One example concerns a panel whose members
share the same-shaped nonparametric regression function, but its location and
magnitude can vary across individuals. Consider

Yt = �+ �r(t=T ) +Xt; t = 1; :::; T;

where � and � are N � 1 vectors, such that � 6= � and � 6= 0; and Xt possibly
exhibits spatial or other cross-sectional correlation. Because the location and
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scale of r are unrestricted, we can, with no loss of generality, take 10� = 0,
10� = 1, where 1 is the N�1 vector of ones. Thus the cross-sectional aggregates
10Yt satisfy

10Yt = r(t=T ) + 10Xt:

Thus, taking yt = 1
0Yt, xt = 10Xt, we revert to the model (1.1). With respect

to the cross-sectional properties of the elements of Xt, these may or may not
have identical memory parameters. If they do, then d is the common value,
unless certain cointegration is present. If they do not, then generally the largest
of them is d. When the memory parameters di¤er, this can in�uence the "local
smoothness parameter" of f(�), but this is not of concern in our central limit
theorem for the r̂(� s), though it is relevant to asymptotic theory for estimates
of d (see Robinson, 1997).

4 Proofs of Theorems

Proof of Theorem 1 Straightforward.

Proof of Theorem 2 The result is clearly true by substitution if we can
show that for even r; s and for b = 2d� 1,Z 1

�1

Z 1

�1
vrws jv � wjb dvdw = I(r; s; b):

The left side isZ 1

0

Z 1

0

vrws jv � wjb dvdw +
Z 1

0

Z 0

�1
vrws jv � wjb dvdw

+

Z 0

�1

Z 1

0

vrws jv � wjb dvdw +
Z 0

�1

Z 0

�1
vrws jv � wjb dvdw

= 2

Z 1

0

Z 1

0

vrws jv � wjb dvdw + 2
Z 1

0

Z 0

�1
vrws jv � wjb dvdw

= 2

Z 1

0

ws fF (w; r; b) +G(w; r; b) +H(w; r; b)g dw; (4.1)

where

F (w; r; b) =

Z w

0

vr (w � v)b dv; G(w; r; b) =
Z 1

w

vr (v � w)b dv; H(w; r; b) =
Z 1

0

vr (w + v)
b
dv:
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From Lemmas 1-3, and Corollary 3, (4.1) is

2

Z 1

0

ws
�
B(r + 1; b+ 1)wr+b+1 + r!

rP̀
=0

1

(`+ b+ 1) (r � `)!`!w
r�`(1� w)`+b+1

+ r!� (b+ 1)
rP̀
=0

(�1)`
(r � `)!�(`+ b+ 2) (w + 1)

`+b+1 �B(r + 1; b+ 1)wr+b+1
�
dw

= 2r!

�
rP̀
=0

1

(`+ b+ 1) (r � `)!`!

Z 1

0

wr+s�`(1� w)`+b+1dw

+� (b+ 1)
rP̀
=0

(�1)`
(r � `)!�(`+ b+ 2)H(1; s; `+ b+ 1)

�
= 2r!

rP̀
=0

B(r + s� `+ 1; `+ b+ 2)
(r � `)! (`+ b+ 1) `! + 2r!� (b+ 1)

rP̀
=0

(�1)`
(r � `)!�(`+ b+ 2)

�
�
s!�(`+ b+ 2)

sP
m=0

(�1)m
(s�m)!�(`+m+ b+ 3)2

`+m+b+2 �B(s+ 1; `+ b+ 2)
�
:

=
2

� (r + s+ b+ 3)

rP̀
=0

�(r + s� `+ 1)�(`+ b+ 1)
(r � `)!`! + 2r!s!� (b+ 1)

rP̀
=0

(�1)`
(r � `)!

�
�

sP
m=0

(�1)m
(s�m)!�(`+m+ b+ 3)2

`+m+b+2 � 1

� (`+ s+ b+ 3)

�
for even s: Using a combinatorial identity (Knuth, 1968, p. 57, formula 18)

rP̀
=0

(�1)`� (r + s+ b+ 3)
(r � `)!� (`+ s+ b+ 3) =

rP̀
=0

(�1)`� (r + s+ b+ 3)
`!� (r + s� `+ b+ 3)

= (�1)r � (r + s+ b+ 2)
r!� (s+ b+ 2)

=
� (r + s+ b+ 2)

r!� (s+ b+ 2)
;

for even r. Using another combinatorial identity (Knuth, 1968, p. 58, formula
26, with t = �1):

rP̀
=0

�(r + s� `+ 1)�(`+ b+ 1)
(r � `)!`! =

s!�(b+ 1)� (r + s+ b+ 2)

r!�(s+ b+ 2)
:

Then (2.4) follows by substitution.

Proof of Theorem 3 Clearly �(d) isZ 1

�1

Z 1

�1

pP
i=0

aiv
2i

(
pP
j=0

aj(w
2j1(jwj < 1)� v2j)

)
jv � wj2d�1 dvdw

=

Z 1

�1

Z 1

�1

pP
i=0

pP
j=1

aiajv
2i
�
w2j � v2j

�
jv � wj2d�1 dvdw1(p > 0)

�2
Z 1

1

Z 1

�1

 
pP
j=0

ajv
2j

!2
(w � v)2d�1dvdw;
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with 1(:) denoting the indicator function. This can be written as (2.8) with, for
b < �1, r � 0; s � 1;

J(r; s; b) =

Z 1

�1

Z 1

�1
vr(ws � vs) jv � wjb dvdw;

K(r; b) = 2

Z 1

1

Z 1

�1
vr(w � v)bdvdw;

whence it remains to show that de�nitions (2.6) and (2.7) hold.
For even r; s; with s � 2;

J(r; s; b) =

Z 1

0

Z 1

0

vr(ws � vs) jv � wjb dvdw +
Z 1

0

Z 0

�1
vr(ws � vs) jv � wjb dvdw

+

Z 0

�1

Z 1

0

vr(ws � vs) jv � wjb dvdw +
Z 0

�1

Z 0

�1
vr(ws � vs) jv � wjb dvdw

= 2

Z 1

0

Z 1

0

vr(ws � vs) jv � wjb dvdw + 2
Z 1

0

Z 0

�1
vr(ws � vs) (w � v)b dvdw:

NowZ 1

0

Z 1

0

vr(ws � vs) jv � wjb dvdw =

Z 1

0

Z 1

0

vr
s�1P
n=0

vnws�n�1(w � v) jv � wjb dvdw

=
s�1P
n=0

Z 1

0

ws�n�1 fF (w; r + n; b+ 1)�G(w; r + n; b+ 1)g dw:

From Lemma 1,

F (w; r + n; b+ 1) = wr+n+b+2B(r + n+ 1; b+ 2):

From Lemma 2,

G(w; r + n; b+ 1) = (r + n)!
r+nP̀
=0

1

(`+ b+ 2) (r + n� `)!`!w
r+n�`(1� w)`+b+2:

Thus Z 1

0

ws�1�n fF (w; r + n; b+ 1)�G(w; r + n; b+ 1)g dw

is

B(r + n+ 1; b+ 2)

Z 1

0

wr+s+b+1dw

�(r + n)!
r+nP̀
=0

1

(`+ b+ 2) (r + n� `)!`!

Z 1

0

wr+s�`�1(1� w)b+`+2dw

=
B(r + n+ 1; b+ 2)

r + s+ b+ 2
� (r + n)!

r+nP̀
=0

B(r + s� `; `+ b+ 3)
(`+ b+ 2) (r + n� `)!`!

=
B(r + n+ 1; b+ 2)

r + s+ b+ 2
� (r + n)!

�(r + s+ b+ 3)

r+nP̀
=0

�(r + s� `)�(`+ b+ 2)
(r + n� `)!`! :

(4.2)
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Using again (Knuth, 1968, p. 58, formula 26, with t = �1)
r+nP̀
=0

�(r + s� `)�(`+ b+ 2)
(r + n� `)!`! =

�(b+ 2)� (r + s+ b+ 2) (s� n� 1)!
(r + n)!�(s� n+ b+ 2) ;

so (4.2) is

B(r + n+ 1; b+ 2)

r + s+ b+ 2
� �(b+ 2)(s� n� 1)!
(r + s+ b+ 2)�(s� n+ b+ 2)

=
B(r + n+ 1; b+ 2)�B(s� n; b+ 2)

r + s+ b+ 2
:

Thus

s�1P
n=0

Z 1

0

ws�1�n fF (w; r + n; b+ 1)�G(w; r + n; b+ 1g dw

=
1

r + s+ b+ 2

s�1P
n=0

fB(r + n+ 1; b+ 2)�B(s� n; b+ 2)g : (4.3)

NextZ 1

0

Z 0

�1
vr(ws � vs) (w � v)b dvdw =

Z 1

0

Z 1

0

vr(ws � vs) (w + v)b dvdw

: =

Z 1

0

Z 1

0

vr
s�1X
n=0

(�v)nws�n�1(w + v)b+1dvdw

=

s�1X
n=0

(�1)n
Z 1

0

Z 1

0

vr+nws�n�1(w + v)b+1dvdw

=
s�1X
n=0

(�1)n
Z 1

0

ws�n�1H(w; r + n; b+ 1)dw:

From Lemma 3,

H(w; r + n; b+ 1) = (r + n)!�(b+ 2)
r+nX
`=0

(�1)`
(r + n� `)!�(`+ b+ 3)(w + 1)

`+b+2

�(�1)r+nB(r + n+ 1; b+ 2)wr+n+b+2;

so since r is even the integral is

(r + n)!�(b+ 2)
r+nX
`=0

(�1)`
(r + n� `)!�(`+ b+ 3)H(1; s� n� 1; `+ b+ 2)

�(�1)nB(r + n+ 1; b+ 2)
Z 1

0

wr+s+b+1dw:

From Corollary 3,

H(1; s� n� 1; `+ b+ 2) = (s� n� 1)!�(b+ 3 + `)
s�n�1X
m=0

(�1)m
(s� n� 1)!�(`+m+ b+ 4)2

`+m+b+3

�(�1)s�n�1B(s� n; b+ 3 + `):
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Thus

r+nX
`=0

(�1)`
(r + n� `)!�(`+ b+ 3)H(1; s� n� 1; `+ b+ 2)

= (s� n� 1)!
r+nX
`=0

(�1)`
(r + n� `)!

s�n�1X
m=0

(�1)m2`+m+b+3
(s� n�m� 1)!�(`+m+ b+ 4)

�
r+nX
`=0

(�1)`+s�n�1
(r + n� `)!�(`+ b+ 3)B(s� n; `+ b+ 3);

and so

(r + n)!�(b+ 2)
r+nX
`=0

(�1)`
(r + n� `)!�(`+ b+ 3)H(1; s� n� 1; `+ b+ 2)

= �(b+ 2)(r + n)!(s� n� 1)!
r+nX
`=0

s�n�1X
m=0

(�1)`+m2`+m+b+3
(r + n� `)!(s� n�m� 1)!�(`+m+ b+ 4)

��(b+ 2)(r + n)!
r+nX
`=0

(�1)`+s�n�1
(r + n� `)!�(`+ b+ 3)B(s� n; `+ b+ 3)

=
1

2
I(r + n; s� n� 1; b+ 1)� �(b+ 2)(r + n)!

r+nX
`=0

(�1)`+s�n�1�(s� n)
(r + n� `)!�(`+ s� n+ b+ 3) :

From Knuth (1968, p.57, formula 18) again,

r+nX
`=0

(�1)`�(r + s+ b+ 3)
(r + n� `)!�(`+ s� n+ b+ 3) =

r+nX
`=0

(�1)r+n�`�(r + s+ b+ 3)
`!�(r + s� `+ b+ 3)

=
(�1)r+n�(r + s+ b+ 2)
(r + n)!�(s� n+ b+ 2) ;

so

�(b+ 2)(r + n)!�(s� n)
r+nX
`=0

(�1)`+s�n�1
(r + n� `)!�(`+ s� n+ b+ 3)

= �(b+ 2)
(r + n)!�(s� n)(�1)s�n�1
(r + n)!�(s� n+ b+ 2)

�(r + s+ b+ 2)

�(r + s+ b+ 3)

= � (�1)n�(b+ 2)�(s� n)
�(s� n+ b+ 2)(r + s+ b+ 2) = �(�1)

nB(s� n; b+ 2)
r + s+ b+ 2

;

since s is even. Also

B(r + n+ 1; b+ 2)

Z 1

0

wr+s+b+1dv =
B(r + n+ 1; b+ 2)

r + s+ b+ 2
:

It follows thatZ 1

0

ws�n�1H(w; r + n; b+ 1)dw =
1

2
I(r + n; s� n� 1; b+ 1)

+(�1)nB(s� n; b+ 2)�B(r + n+ 1; b+ 2)
r + s+ b+ 2

:
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Then from (4.3)

J(r; s; b) =
2

r + s+ b+ 2

s�1X
n=0

fB(r + n+ 1; b+ 2)�B(s� n; b+ 2)g

+
s�1X
n=0

(�1)nI(r + n; s� n� 1; b+ 1)

+
2

r + s+ b+ 2

s�1X
n=0

(�1)2n fB(s� n; b+ 2)�B(r + n+ 1; b+ 2)g

=
s�1X
n=0

(�1)nI(r + n; s� n� 1; b+ 1);

giving (2.6). Next, for even r and b < �1,

K(r; b) = 2

Z 1

�1
vr
�Z 1

1

(w � v)bdw
�
dv

= 2

Z 1

�1
vr

"
(w � v)b+1

b+ 1

#1
1

dv

= � 2

b+ 1

Z 1

�1
vr (1� v)b+1 dv

= � 2

b+ 1

Z 1

0

vr (1� v)b+1 dv � 2

b+ 1
H(1; r; b+ 1)

= � 2

b+ 1
B(r + 1; b+ 2)

� 2

b+ 1

�
r!�(b+ 2)

rP
m=0

(�1)m
(r �m)!�(m+ b+ 3)2

m+b+2 �B(r + 1; b+ 2)
�

= �2r!�(b+ 1)
rP

m=0

(�1)m
(r �m)!�(m+ b+ 3)2

m+b+2; (4.4)

using Corollary 3, to prove (2.7).

5 Technical Lemmas

We state and prove three lemmas.

Lemma 1 For real b > �1; r > �1 and w 2 (0; 1);

F (w; r; b) = wr+b+1B(r + 1; b+ 1):

Proof Follows from the de�nition of the Beta function after change of
variable.

Lemma 2 For real b � 0; integer r and w 2 (0; 1);

G(w; r; b) = r!
rP̀
=0

1

(`+ b+ 1) (r � `)!w
r�`(1� w)`+b+1:
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Proof We have

G(w; r; b) =

Z 1�w

0

(u+w)rubdu = wr(1�w)b+1B(1; b+1)2F1(�r; b+1; b+2; (w�1)=w);

from Gradshteyn and Ryzhik (1994, p.335, formula 8), the last factor being the
hypergeometric series

2F1(�r; b+ 1; b+ 2; (w � 1)=w)) =
�(b+ 2)

�(�r)�(b+ 1)
1P
j=0

�(j � r)�(j + b+ 1)
�(j + b+ 2)

f(w � 1)=wgj

j!

= 1� r(b+ 1)

b+ 2

�
w � 1
w

�
� r (1� r) (b+ 1) (b+ 2)

2(b+ 2) (b+ 3)

�
w � 1
w

�2
�r (1� r) (2� r) (b+ 1) (b+ 2) (b+ 3)

2� 3(b+ 2) (b+ 3) (b+ 4)

�
w � 1
w

�3
� :::

�r (1� r) (2� r) ::: (r � 1� r) (b+ 1)
2� 3� :::� r (r + b+ 1)

�
w � 1
w

�r
= (b+ 1)r!

rP̀
=0

1

(`+ b+ 1) `! (r � `)!

�
1� w
w

�`
;

see Gradshteyn and Ryzhik (1994, p.1065), whence the result follows from
B(1; b+ 1) = (b+ 1)�1:

Lemma 3 For real b > �1;integer r and w 2 (0; 1);

H(w; r; b) = r!� (b+ 1)
rP̀
=0

(�1)`
(r � `)!�(`+ b+ 2) (w + 1)

`+b+1�(�1)rB(r+1; b+1)wr+b+1:

Proof Successively integrating by parts,

H(w; r; b) =

"
vr
(w + v)

b+1

b+ 1

#1
0

� r

b+ 1

Z 1

0

vr�1 (w + v)
b+1

dv

=
(w + 1)

b+1 � wb+11(r = 0)
b+ 1

� r

b+ 1

"
vr�1

(w + v)
b+2

b+ 2

#1
0

+
r (r � 1)

(b+ 1) (b+ 2)

Z 1

0

vr�2 (w + v)
b+2

dv

=
(w + 1)

b+1 � wb+11(r = 0)
b+ 1

�
r
n
(w + 1)

b+2 � wb+21(r = 1)
o

(b+ 1) (b+ 2)

+
r (r � 1)

(b+ 1) (b+ 2)

"
vr�2

(w + v)
b+3

b+ 3

#1
0

� r (r � 1) (r � 2)
(b+ 1) (b+ 2) (b+ 3)

Z 1

0

vr�3 (w + v)
b+3

dv

=
(w + 1)

b+1 � wb+11(r = 0)
b+ 1

�
r
n
(w + 1)

b+2 � wb+21(r = 1)
o

(b+ 1) (b+ 2)

+
r (r � 1)

n
(w + 1)

b+3 � wb+31(r = 2)
o

(b+ 1) (b+ 2) (b+ 3)
� :::;
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giving the result.

The following corollary is also used.

Corollary 3 For real b > �1 and integer r;

H(1; r; b) = r!�(b+ 1)
rP̀
=0

(�1)`
(r � `)!�(`+ b+ 2)2

`+b+1 � (�1)rB(r + 1; b+ 1):
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