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Haar-Fisz estimation of evolutionary wavelet spec-
tra

Piotr Fryzlewicz and Guy P. Nason

University of Bristol, UK

[March 21, 2006]

Summary. We propose a new “Haar-Fisz” technique for estimating the time-varying, piecewise

constant local variance of a locally stationary Gaussian time series. We apply our technique to the

estimation of the spectral structure in the Locally Stationary Wavelet model. Our method combines

Haar wavelets and the variance stabilizing Fisz transform. The resulting estimator is mean-square

consistent, rapidly computable, easy to implement, and performs well in practice. We also intro-

duce the “Haar-Fisz transform”, a device for stabilizing the variance of scaled chi-square data and

bringing their distribution close to Gaussianity.

Keywords: heteroscedasticity, log transform, thresholding estimators, wavelet periodogram, wavelet spectrum.

1 Introduction

Time series whose spectral properties vary over time arise in several fields, e.g. finance
(Kim (1998), Fryzlewicz (2005)), biomedical statistics (Nason et al. (2000)) or geophysics
(Sakiyama (2002)). Estimating the time-varying second-order stucture is essential for un-
derstanding the data and forecasting the series.

Models for processes with an evolutionary spectral structure are often modifications
of the following classical Cramér representation for stationary processes: all zero-mean
discrete-time stationary processes Xt can be represented as

Xt =

∫

(−π,π]
A(ω) exp(iωt)dZ(ω), t ∈ Z, (1)

whereA(ω) is the amplitude, and Z(ω) is a process with orthonormal increments. Dahlhaus
(1996) introduces a class of locally stationary processes which permit a “slow” evolution of
the transfer function A(ω) over time. Other approaches stemming from (1) include Priestley
(1965), Battaglia (1979), Mélard and Herteleer-De Schutter (1989), Mallat et al. (1998),
Swift (2000) and Ombao et al. (2002).

Being localised both in time and in frequency, wavelets provide a natural alternative to
the Fourier-based approach for modelling phenomena whose spectral characteristics evolve
over time (see Vidakovic (1999) for an introduction to wavelets and their statistical applica-
tions). Nason et al. (2000) introduce the class of locally stationary wavelet (LSW) processes
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which uses non-decimated wavelets, rather than Fourier exponentials, as building blocks.
The LSW model enables a time-scale decomposition of the process and permits a rigorous
estimation of the evolutionary wavelet spectrum and the local autocovariance. The LSW
class is well-suited for modelling processes believed to have an inherent multiscale struc-
ture, such as financial log-returns (see Calvet and Fisher (2001)), and offers the user freedom
in choosing the underlying wavelet family. Wavelet-based estimators of the second-order
structure of LSW processes are naturally localised and can be computed efficiently.

The estimator of the evolutionary wavelet spectrum proposed in Nason et al. (2000)
arises as a linear combination of smoothed wavelet periodograms, which can be loosely
defined as sequences of squared wavelet coefficients of the process. (Note that Chiann and
Morettin (1999) consider a different kind of wavelet periodogram, based on the orthonormal
wavelet transform, for stationary processes.) To achieve the smoothing of spatially inho-
mogeneous wavelet periodograms of Gaussian processes, Nason et al. (2000) recommend
using wavelet shrinkage adapted to scaled χ2 data, or alternatively, applying the variance-
stabilizing logarithmic transformation and then proceeding with the smoothing. Neither of
these approaches is perfect: for the wavelet shrinkage, a pilot estimate of the local vari-
ance is required. On the other hand, the log transform “flattens” the data, often obscuring
interesting features, such as peaks or troughs.

The prime objective of this paper is to propose a new technique for estimating the evo-
lutionary wavelet spectrum in the Gaussian LSW model with piecewise constant wavelet
spectra. The core of our approach is a new multiscale method for smoothing the wavelet
periodogram, powerfully combining Haar wavelets and the variance-stabilizing Fisz trans-
form. To achieve the main objective, we take the following steps:

Section 2. We modify the LSW model by imposing a piecewise constant smoothness con-
straint on the evolutionary wavelet spectrum. This is a natural requirement as the
proposed estimator of the evolutionary wavelet spectrum is based on the piecewise
constant Haar wavelets. On the other hand, this approach offers the appealing pos-
sibility of modelling processes whose second-order structure evolves over time in a
discontinuous fashion.

Section 3. The problem of smoothing the wavelet periodogram in the LSW model can be
viewed as the problem of estimating a (piecewise constant) local variance of a zero-
mean Gaussian process. With this in mind, we propose a new multiscale technique
for estimating the piecewise constant local variance of a zero-mean Gaussian process.
The new technique combines Haar wavelet thresholding and the variance-stabilizing
Fisz transform; hence we label it the Haar-Fisz (HF) method. We prove the mean-
square consistency of the HF estimator in this general setting.

Section 4. We propose a new estimator of the evolutionary wavelet spectrum of a Gaussian
LSW process, based on the Haar-Fisz-smoothed wavelet periodogram. We prove the
mean-square consistency of the proposed estimator.

Section 5. We discuss a data-driven method for selecting the parameter of our estimation
procedure, and provide a simulated example.
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Additionally, in Section 6, we introduce and discuss the Haar-Fisz transform, which brings
the distribution of scaled χ2 data closer to normality and stabilizes their variance. We
remark that our estimation procedure introduced in Section 3 can be carried out in three
steps, the first and last of which are the Haar-Fisz and the inverse Haar-Fisz transform,
respectively. The proofs are deferred to the Appendix.

2 The LSW model

2.1 Definition

We start by defining the LSW model for locally stationary time series.

Definition 2.1 A triangular stochastic array {Xt,T }T−1
t=0 , for T = 1, 2, . . ., is in the class

of LSW processes if there exists a mean-square representation

Xt,T =

−1
∑

j=−∞

∞
∑

k=−∞

Wj(k/T )ψj,t−kξj,k, (2)

where j ∈ {−1,−2, . . .} and k ∈ Z are, respectively, scale and location parameters, ψj =
(ψj,0, . . . , ψj,Lj ) are discrete, real-valued, compactly supported, non-decimated wavelet
vectors, and ξj,k are zero-mean orthonormal identically distributed random variables. Also,
for each j ≤ −1, Wj(z) : [0, 1] → R is a real-valued, piecewise constant function with
a finite (but unknown) number of jumps. Let Lj denote the total magnitude of jumps in
W 2

j (z). The functions Wj(z) satisfy

• ∑−1
j=−∞W 2

j (z) <∞ uniformly in z,

• ∑−1
j=−∞ 2−jLj <∞.

In formula (2), the parameters Wj(k/T ) can be thought of as a scale- and location-
dependent transfer function, while the non-decimated wavelet vectors ψj can be thought of
as building blocks analogous to the Fourier exponentials in (1). Throughout the paper, we
work with Gaussian LSW processes, i.e. our ξj,k are distributed as N(0, 1).

Haar wavelets are the simplest example of a wavelet system which can be used in for-
mula (2). Denote IA(k) = 1 when k is in A and zero otherwise. Haar wavelets are defined
by

ψj,k = 2j/2
I{0,...,2−j−1−1}(k) − 2j/2

I{2−j−1 ,...,2−j−1}(k),

for j ∈ {−1,−2, . . .} and k ∈ Z, where j = −1 corresponds to the finest scale. Other
Daubechies’ compactly supported wavelets (Daubechies (1992)) can also be used.

The main quantity of interest in the LSW framework is the evolutionary wavelet spec-
trum Sj(z) := W 2

j (z), j = −1,−2, . . ., defined on the rescaled-time interval z ∈ [0, 1].
The main objective of this paper is to propose a new, mean-square consistent estimator of
Sj(z). Due to the rescaled time concept, the estimation of Sj(z) is analogous to the estima-
tion of a regression function.
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From Definition 2.1, it is immediate that EXt,T = 0 and indeed, throughout the paper,
we work with zero-mean processes. Such processes arise, for example, when the trend has
been removed from the data, see e.g. von Sachs and MacGibbon (2000) for a wavelet-based
technique for detrending locally stationary processes.

Our definition of an LSW process is a modification of the definition from Nason et al.
(2000): we have replaced the Lipschitz-continuity constraint on Wj(z) by the piecewise
constant constraint, which enables the modelling of processes whose second-order structure
evolves over time in a discontinuous (piecewise constant) manner. This regularity constraint
is natural given that we base our estimation theory in the LSW model on Haar wavelets
which are also piecewise constant. It is unclear to us whether and how the model can be
extended to include processes with spectra from other smoothness classes but approximable
by piecewise constant functions. The main technical difficulty in doing so stems from the
fact that we simultaneously estimate an ensemble of functions {Sj(z)}j .

For an extensive discussion of the philosophy and several aspects of LSW modelling
the reader is referred to Nason et al. (2000). Estimation in the LSW framework is also
considered in Van Bellegem and von Sachs (2003), who propose an adaptive technique for
the pointwise estimation of the evolutionary wavelet spectrum, which is postulated to be
of bounded total variation as a function of time and to satisfy a number of extra technical
assumptions. The estimator is a local average of the “raw" spectrum, where the window
length is chosen adaptively via iterative hypothesis testing until the largest interval of near-
homogeneity has been found.

2.2 The wavelet periodogram in the LSW model

The basic statistic used by Nason et al. (2000) to estimate the evolutionary wavelet spectrum
Sj(z) is the wavelet periodogram, which also forms the basis of our estimation theory. The
definition follows.

Definition 2.2 Let Xt,T be an LSW process constructed using the wavelet system ψ. The
triangular stochastic array

I
(j)
t,T =

∣

∣

∣

∣

∣

∑

s

Xs,Tψj,s−t

∣

∣

∣

∣

∣

2

is called the wavelet periodogram of Xt,T at scale j.

Throughout the paper, we assume that the reader is familiar with the fast Discrete
Wavelet Transform (DWT; see Mallat (1989)), as well as with the fast Non-decimated DWT
(NDWT; see Nason and Silverman (1995)). In practice, we only observe a single row of the
triangular array Xt,T . The wavelet periodogram is not computed separately for each scale
j but instead, we compute the full NDWT transform of the observed row of Xt,T (e.g. with

periodic boundary conditions), and then square the wavelet coefficients to obtain I (j)
t,T for

t = 0, . . . , T − 1 and j = −1, . . . ,−J(T ), where J(T ) ≤ log2 T .
It is convenient to recall two further definitions from Nason et al. (2000) at this point:

the autocorrelation wavelets Ψj(τ) =
∑∞

k=−∞ ψj,kψj,k+τ and the autocorrelation wavelet
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inner product matrix Ai,j =
∑

τ Ψi(τ)Ψj(τ). We also define the cross-scale autocorrela-
tion wavelets as Ψi,j(τ) =

∑∞
k=−∞ ψi,kψj,k+τ . Note that as Ai,j =

∑

τ Ψ2
i,j(τ), it follows

that Ai,j > 0 for all i, j.

In the Lipschitz-continuous setting of Nason et al. (2000), I (j)
bzT c,T is an asymptotically

unbiased estimator of the quantity

βj(z) :=

−1
∑

i=−∞

Si(z)Ai,j . (3)

In other words, the expectation of the wavelet periodogram, computed at a rescaled-time
location z, converges pointwise to a linear combination of wavelet spectra at location z.
Naturally enough, in our piecewise-constant setup, no such pointwise convergence occurs
at or around the discontinuities; however, we are able to show that the integrated squared
bias converges to zero. For this result to hold, it is convenient to introduce the following
assumption.

Assumption 2.1 The set of those locations z where (possibly infinitely many) functions
Sj(z) contain a jump, is finite. In other words, let B := {z : ∃ j limu→z− Sj(u) 6=
limu→z+ Sj(u)}. We assume B := #B <∞.

The result follows.

Proposition 2.1 Let I (j)
t,T be the wavelet periodogram at a fixed scale j. We have

E I
(j)
t,T =

−1
∑

i=−∞

∞
∑

k=−∞

Si(k/T )Ψ2
i,j(k − t).

Also, if Assumption 2.1 is satisfied, we have

T−1
T−1
∑

t=0

∣

∣

∣
E I

(j)
t,T − βj(t/T )

∣

∣

∣

2
= O(T−12−j) + bj,T , (4)

where bj,T depends on the sequence {Lj}j . For example, if Lj = O(aj) for a > 2 then

bj,T = O
(

T
1

2 log2 a−1
−1
)

, which implies, in particular, that the rate of convergence in (4)

is O

{

T
−min

�
1− 1

2 log2 a−1
,1−ε � }

uniformly over j = −1, . . . ,−ε log2 T .

We now briefly study the behaviour of the limiting function βj(z). Before we state the
result, we specify two other useful assumptions.

Assumption 2.2 There exists a positive constant C1 such that for all j, Sj(z) ≤ C12
j .

Note that, in particular, Assumption 2.2 is satisfied if Xt,T is the standard white noise pro-
cess, for which Sj(z) = Sj = 2j (see Fryzlewicz et al. (2003)).

5



Assumption 2.3 βj(z) is bounded away from zero for all j.

By (3), and given that Ai,j > 0, βj(z) ≡ 0 on a subinterval of [0, 1] would imply all
Si(z) ≡ 0 on that subinterval; thus the resulting process would be locally deterministic and
equal to zero.

The following proposition describes the behaviour of βj(z).

Proposition 2.2 For each j, the function βj(z) is finite for all z. Further, if Assumption 2.1
holds, then each βj(z) is a piecewise constant function with at most B jumps, each of which
occurs in the set B. Additionally, if Assumption 2.2 holds, then for all j, βj(z) ≤ C1.

Proposition 2.1 implies, in particular, the uniqueness of the functions βj(z) in the L2

sense. Thus, by Proposition 2.2 and in view of the invertibility of the operator A (see Nason
et al. (2000)), formula (3) also implies the uniqueness of the functions Sj(z) in the L2 sense.

Suppose that we knew how to estimate each βj(z). Formula (3) suggests that estimates
of Sj(z) could then be constructed by taking an appropriate linear combination of the es-
timated βj’s. This is in fact exactly the route we follow: loosely speaking, we first obtain
estimates β̂j(z) and then estimate Sj(z) by Ŝj(z) =

∑

i β̂i(z)(A
−1)i,j (see Theorem 4.1

for the exact range of i in the above sum).
Since each wavelet periodogram ordinate is simply a squared wavelet coefficient of a

zero-mean Gaussian time series, asymptotically centred (in the sense of Proposition 2.1) on
βj(z), its distribution is that of a scaled χ2

1 variable. This means that it is an inconsistent
estimator of βj(z) and needs to be smoothed to achieve consistency. Note that a similar
phenomenon also arises in the case of the classical Fourier periodogram for stationary time
series, see e.g. Priestley (1981).

Smoothing the wavelet periodogram is by no means an easy task, due to the fact that
the variance of the “noise” depends on the level of the signal (as argued directly above),
to the low signal-to-noise ratio (we have E I

(j)
t,T /{var(I(j)

t,T )}1/2 = 2−1/2), as well as to the

fact that I(j)
t,T is typically a correlated sequence, which can be demonstrated using the same

techniques as in the proof of Proposition 2.1.
Figure 1 shows the Haar wavelet spectrum of the “concatenated Haar process” also

considered in Nason et al. (2000), a sample path of length 1024 generated from it (with
Gaussian innovations ξj,k), and the Haar periodograms of the simulated sample path at
scales −1 and −2.

To summarise, we are faced with the following statistical problem: our set of observa-
tions are I(j)

t,T = (E I
(j)
t,T )Z2

t , where Zt are correlated N(0, 1) variables; our initial aim is to
estimate βj(t/T ) using Haar wavelets (which are the natural choice in this setting as the true
βj(z)’s are piecewise constant). Neumann and von Sachs (1995) used a nonlinear wavelet
estimation technique in a setting similar to the above. However, their method involved find-
ing a pre-estimate of the local variance of the observations (in our case: 2(E I

(j)
t,T )2). This is

an obvious drawback of the estimation procedure and can hamper the practical performance
of the method, see e.g. Fryzlewicz (2005).

In order to avoid having to find a pre-estimate of the local variance, an obvious step
would be to take logarithms to transform the model from multiplicative to additive and
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Figure 1: Top left: spectrum of the concatenated Haar process, top right: sample path
generated from it, bottom left: wavelet periodogram of the sample path at scale −1, bottom
right: wavelet periodogram of the sample path at scale −2.
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stabilize the variance. If there was no correlation in Zt, the resulting model would be
similar to the representation of the log-periodogram of a second-order stationary process
proposed by Wahba (1980). Several authors proposed wavelet techniques for the estimation
of the log-periodogram (see e.g. Moulin (1994), Gao (1997), Walden et al. (1998), Pensky
and Vidakovic (2004)), and we conjecture that some of those techniques could be adapted
to our framework. However, any wavelet estimator in the logged model would possess two
undesirable properties:

• It would be an estimate of log βj(t/T ) (and not βj(t/T ) itself). Exponentiating this
estimate would yield an estimate of βj(t/T ); however, statistical properties of the
latter, such as mean-square consistency, would not be easy to establish.

• It would suffer from a bias of order E logZ2
t .

Also, the log transform “flattens” the data, thus obscuring potentially interesting features,
such as peaks or troughs. In contrast to these unwelcome characteristics, the Haar-Fisz
estimation technique which we propose below enjoys the following properties:

• It uses a “multiscale” variance-stablizing step, which eliminates the need for a local
variance pre-estimation;

• It yields an asymptotically unbiased, mean-square consistent estimate of βj(t/T ) (as
opposed to log βj(t/T )), which removes the need for a bias correction factor.

Moreover, as we demonstrate below, it is conceptually simple, fast, easy to code, and per-
forms well in practice. Since our estimator is piecewise constant, we also mention here
some other recent estimation techniques for non-stationary time series which yield piece-
wise constant estimators of their second-order structure (albeit in different models). Apart
from the above-mentioned Van Bellegem and von Sachs (2003), we also draw the reader’s
attention to Davis et al. (2006) and Dahlhaus and Polonik (2006). The former work aims
at finding structural breaks in piecewise-stationary time series by use of the Minimum De-
scription Length principle and a computer-intensive genetic algorithm. Although our ob-
jectives are different in that we aim at minimising the Mean-Square Error and provide an
estimation methodology which is fast, the common denominator is that we also operate in
the class of piecewise-stationary processes. Dahlhaus and Polonik (2006) consider, in par-
ticular, sieve estimation in the Gaussian autoregressive model with constant coefficients and
a monotonically increasing variance function. The resulting variance estimate is piecewise
constant.

3 Haar-Fisz estimation of local means of scaled χ
2
1 data

As stated in Section 1, our first objective is to propose a new multiscale technique for
smoothing the wavelet periodogram in the LSW model. However, we feel that it is of inde-
pendent interest to introduce and study our methodology in the broader context of estimat-
ing the local means of scaled χ2

1 data, which do not necessarily need to represent wavelet
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periodograms. We formulate our generic problem as follows: we observe

Y 2
t,T = σ2

t,TZ
2
t,T , t = 0, . . . , T − 1, (5)

where

• σ2
t,T is deterministic and “close” to a piecewise constant function σ2(z) in the sense

that T−1
∑T−1

t=0 |σ2
t,T − σ2(t/T )|2 =: aT = oT (log−1 T ); further, σ2(z) is bounded

from above and away from zero, with a finite but unknown number of jumps (the
number of jumps is denoted by B);

• the vector {Zt,T }T−1
t=0 is multivariate normal with mean zero and variance one, and

asymptotically, its autocorrelation sequence is absolutely summable; that is the func-
tion ρ(τ) := supi,T |cor(Zi,T , Zi+τ,T )| satisfies ρ1

∞ < ∞, where ρp
∞ :=

∑

τ ρ
p(τ).

(A simple example of Zt,T satisfying this requirement is a short-memory stationary
process with mean zero and variance one, for which ρ(τ) = |cor(Zi,T , Zi+τ,T )|; the
process Yt,T is then a time-modulated stationary process.)

In the above model, our aim is to estimate σ2(z). Later, we will apply our proposed general

estimation method to the wavelet periodogram, by taking Y 2
t,T = I

(j)
t,T , σ2(z) = βj(z) and

σ2
t,T = E I

(j)
t,T .

Our Haar-Fisz estimator uses the principle of nonlinear (Haar) wavelet shrinkage, thus
being potentially well-suited for the estimation of σ2(z) even if it is spatially inhomoge-
neous, i.e. if its regularity varies from one region to another. Note that Fryzlewicz et al.
(2006) propose and study Haar-Fisz estimation in a multiplicative model related to (5), in
which the variables Zt,T are independent (but not necessarily Gaussian) and σt,T = σ(t/T ).
These differences mean that distinct proof techniques are needed in our case.

We now outline our Haar-Fisz estimation algorithm. The input to the estimation al-
gorithm is the vector {Y 2

t,T }T−1
t=0 : here, we assume that T is an integer power of two. To

simplify the notation, we drop the subscript T and consider the sequence Y 2
t := Y 2

t,T . We
denote M = log2 T . The algorithm proceeds as follows:

1. Compute the Haar decomposition of Y 2
t using the following algorithm:

(a) Let sM,n := Y 2
n , n = 0, . . . , 2M − 1.

(b) For each m = M − 1,M − 2, . . . , 0, recursively form vectors sm, dm and fm

with elements:

sm,n =
sm+1,2n + sm+1,2n+1√

2

dm,n =
sm+1,2n − sm+1,2n+1√

2

fm,n =
dm,n

sm,n
,

where n = 0, . . . , 2m − 1.
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2. Let µm,n denote the true Haar detail coefficient of σ2(z) at scale m, location n (i.e.
a quantity computed like the dm,n in point 1.(b) above but with σ2(t/T ) as the input
vector in point 1.(a)). For most levels m (in a sense to be made precise later), estimate
µm,n by

µ̂m,n = sm,n sgn(fm,n) (|fm,n| − tm)+ (soft thresholding), (6)

where I(·) and sgn(·) are the indicator and signum functions, respectively, and (x)+ =
max(0, x). In other words, our estimator returns zero if and only if the corresponding
Haar-Fisz coefficient fm,n does not exceed (in absolute value) a certain threshold tm
(to be specified later). Note that this is different to classical wavelet thresholding in
that the thresholded quantity sm,n sgn(fm,n) and the “thresholding statistic” fm,n are
different.

As is typically done in classical wavelet thresholding, we leave the coarsest-scale
smooth coefficient s0,0 intact, i.e. no thresholding is performed on it.

3. Invert the Haar decomposition in the usual way to obtain an estimate of σ2(t/T ) at
time points t = 0, . . . , T − 1. Call the resulting estimate σ̂2(t/T ).

Asymptotic Gaussianity and variance stabilization for certain random variables of the
form (U − V )/(U + V ), where U, V are nonnegative, independent random variables, were
studied by Fisz (1955): hence we label fm,n the “Haar-Fisz coefficients”, and the division
of dm,n by sm,n — the “Fisz transform”. The main heuristic idea here is that the variance
of fm,n (for most m,n) does not depend on σ2(z). Consider the following example: σ2

t,T =

σ2(t/T ), m = M − 1, n = 0. The Haar-Fisz coefficient fM−1,0 has the form:

fM−1,0 =
Y 2

0 − Y 2
1

Y 2
0 + Y 2

1

=
σ2(0/T )Z2

0 − σ2(1/T )Z2
1

σ2(0/T )Z2
0 + σ2(1/T )Z2

1

.

Suppose now that σ2(0/T ) = σ2(1/T ) (this is likely as σ2(z) is piecewise constant). We
then have fM−1,0 = (Z2

0 −Z2
1)/(Z2

0 +Z2
1 ), and the variance of fM−1,0 does not depend on

σ2(z). Thus, the thresholds tm in (6) also do not need to depend on σ2(z), and can therefore
be selected more easily.
The following theorem demonstrates the mean-square consistency of σ̂2(z).

Theorem 3.1 Suppose that Yt,T follows model (5). Construct the estimator σ̂2(z) as fol-
lows: fix δ ∈ (0, 1). For each T = 2M , define the set

IT = {(m,n) : m < M ∗},

with 2M∗

= O
(

T 1−δ
)

. Define

µ̂m,n =

{

sm,n sgn(fm,n) (|fm,n| − tm)+ (m,n) ∈ IT ,

0 (m,n) 6∈ IT ,
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where
tm = c 2−

M−m−1
2

√

2 log(T ). (7)

Define aT = T−1
∑T−1

t=0 |σ2
t,T − σ2(t/T )|2 and assume aT = oT (log−1 T ). We have

T−1
T−1
∑

t=0

E
{

σ̂2(t/T ) − σ2(t/T )
}2

=

O

(

aT c
2 log T + sup

z
σ4(z)

{

T
− c2(1−δ)

2ρ2
∞ log T +BT−1c2 log2 Tρ2

∞ +BT δ−1

})

.

Note that we only use non-trivial estimators of µm,n in the set IT , which includes an
increasing number of coarsest scales m ∈ {0, . . . ,M ∗ − 1} and excludes an increasing
number of finest scales m ∈ {M ∗, . . . ,M − 1}. This is done to guarantee the uniform
convergence of the thresholds tm to zero at a certain rate, which occurs over the set IT , but
not over Ic

T . The uniform convergence tm → 0 is essential for proving the consistency of
our estimator: see the proof of Theorem 3.1 and, in particular, the discussion underneath
formula (14).

It is impossible to set δ = 0 as then IT would include “too many" finest scales m and
thus no uniform convergence tm → 0 at a desired rate would occur. Thus, in view of the
term T 1−δ in the mean-square error rate above, δ should be chosen “as small as possible"
but positive.

4 Haar-Fisz estimation of the wavelet spectrum

In this section, we apply the result of Section 3 to study consistency properties of our es-
timator of the evolutionary wavelet spectrum. Because the true Sl(z) can be expressed as
Sl(z) =

∑

j βj(z)(A
−1)l,j (see formula 3), we estimate Sl(z) as Ŝl(z) =

∑

j β̂j(z)(A
−1)l,j ,

where β̂j(z) are estimates of βj(z) obtained by applying the algorithm of Section 3 to I (j)
t,T .

See Theorem 4.1 for the exact range of j in the above sum. Consistency of Ŝl will follow
from the consistency of β̂j , the latter being implied by Theorem 3.1.

Note that in this section, we use wavelets at three stages of our modelling+estimation
procedure. First, a wavelet family ψ is used to construct the LSW process Xt,T . Then, the

same family ψ is used to compute the wavelet periodogram I
(j)
t,T . Finally, each periodogram

sequence is smoothed using Haar wavelets (and the Fisz transform) to obtain the estimates
β̂j(z). For the results of this section to hold, two further assumptions are required.

Assumption 4.1 The constants Lj (see Definition 2.1) satisfy Lj = O(aj), for some a > 2.

This is a technical assumption which guarantees that the rate of approximation (in the l2
norm) of βj by I(j)

t,T is as specified in Proposition 2.1.

Let e(j)t,T denote the wavelet coefficients of the process Xt,T at scale j, ie. e
(j)
t,T =

11



∑

sXs,Tψj,s−t (note that I(j)
t,T = (e

(j)
t,T )2). Define ρj(τ) := supt,T |cor(et,T , et+τ,T )|. (Ob-

serve that since ρj ≤ 1, we obviously have
∑

τ ρ
2
j(τ) ≤

∑

τ ρj(τ).)

Assumption 4.2 Functions ρj(τ) satisfy
∑

τ ρj(τ) ≤ C32
−j .

The above rate is typical for short-memory LSW processes. As a heuristic motivation, con-
sider a stationary process Xt,T with an absolutely summable correlation function c(l). Sim-
ple algebra reveals that

∑

τ ρj(τ) ≤ ∑

l |c(l)|
∑

l |Ψj(l)|, which is in line with the above
assumption due to the fact that

∑

l |Ψj(l)| = O(2−j) for compactly supported wavelets.
Our estimation algorithm proceeds as follows: for each j = −1, . . . ,−J ∗ (J∗ will

be specified later), we estimate βj by applying the estimation algorithm of Section 3 with

Y 2
t,T = I

(j)
t,T , σ2

t,T = EI
(j)
t,T and σ2(t/T ) = βj(t/T ). For technical reasons, at each scale

j, we use the same parameter δ ∈ (0, 1) (see Theorem 3.1) and thresholds tm of the form

γ2−j/22−
M−m−1

2
√

2 log T with γ > 0 (in other words, at each scale j, we set c = γ2−j/2).
At the remaining scales j < −J ∗, we simply estimate βj by zero. Let β̂j denote an estimate
obtained in this way. The following proposition prepares the ground for our result on the
consistency of Ŝj .

Proposition 4.1 Let J ∗ be such that J∗ ≤ ε log2 T for T ≥ T0, where ε < δ. If Assump-
tions 2.1, 2.2, 2.3, 4.1 and 4.2 hold, then

22j

T

T−1
∑

t=0

E(β̂j(t/T ) − βj(t/T ))2 = O(T−θ(a,γ,C3,δ) log2(T ))

uniformly over j = −1, . . . ,−J ∗, where θ(a, γ, C3, δ) = min
(

1 − 1
2 log2 a−1 ,

γ2(1−δ)
2C3

, 1 − δ
)

.

We are now in a position to demonstrate the consistency of our estimator of the evolutionary
wavelet spectrum.

Theorem 4.1 Let Ŝl(t/T ) =
∑−1

j=−J∗ β̂j(t/T )(A−1)l,j , where for large T , J ∗ = bε log2 T c
with ε = θ(a, γ, C3, δ)/3 and θ(a, γ, C3, δ) < 3δ. Further, let the wavelets ψ in Definition
2.1 be Haar wavelets. If Assumptions 2.1, 2.2, 2.3, 4.1 and 4.2 hold, then

1

T

T−1
∑

t=0

E(Ŝl(t/T ) − Sl(t/T ))2 = O(2lT− 2
3
θ(a,γ,C3,δ) log3(T )).

A few remarks are in order.

1. Other wavelets. Reasoning as in Nason et al. (2000), proof of Theorem 2.15, we
conjecture that the same or faster rate of convergence as in Theorem 4.1 is attained if
ψ are compactly supported Daubechies’ wavelets other than Haar.

2. Discussion of the convergence rate. Theorem 4.1 gives the optimal rate of conver-
gence, which in practice cannot be attained as a and C3 are unknown so it is not

12



possible to set J∗ = b1
3θ(a, γ, C3, δ) log2 T c (for T large enough). However, it is

clear from the proof that our estimator is also consistent (albeit with a slightly slower
rate) for J∗ = bε log2 T c with any ε < δ, provided that δ < θ(a, γ, C3, δ).

3. Choice of γ and δ. Theorem 4.1 provides some clues as to the choice of γ and δ
although they are of a mainly theoretical nature. Consider the requirement that

θ(a, γ, C3, δ) < 3δ. (8)

If γ was chosen to be “large enough”, then condition (8) would simply become

min
(

1 − 1
2 log2 a−1 , 1 − δ

)

< 3δ. Suppose that a (which is a characteristic of the

process and cannot be manipulated by the user) was such that 1 − 1
2 log2 a−1 ≥ 1 − δ.

This would further simplify (8) to 1−δ < 3δ or δ > 1/4. On the other hand, recalling
the form of θ, the smaller the value of δ, the higher the rate of convergence, which
means that in this particular example, δ should be chosen “close” to 1/4.

In the next section, we propose a practical procedure for selecting J ∗, δ (or alternatively
M∗) and γ (or alternatively c) from the data.

5 Choice of parameters and a simulated example

The results of the previous section offer some insight into how the parameters J ∗, δ (or alter-
natively M ∗) and γ (or alternatively c) should be selected in the asymptotic limit T → ∞.
This section complements that theory by describing a practical well-performing procedure
for selecting the parameter values in finite samples.

Given each periodogram sequence I (j)
t,T for j = −1, . . . ,−J∗, we select the constant c

in formula (7) using the following observation: note that I (j)
t,T /βj(t/T ) is (approximately)

a sequence of correlated χ2
1 variables. Therefore, we would expect var(I (j)

t,T /βj(t/T )) to
be close to 2. Thus, we examine a grid of equispaced values of c, and choose the one
for which the variance of the empirical residuals I (j)

t,T /β̂j(t/T ) is the closest to 2. It is

easily seen that if c = 0, then β̂j(t/T ) = I
(j)
t,T and var(I(j)

t,T /β̂j(t/T )) = 0. On the other

hand, if c = ∞, then β̂j(t/T ) = sample mean(I
(j)
t,T ), and then var(I (j)

t,T /β̂j(t/T )) > 2
unless βj(z) is constant with respect to z. Empirically, we have found that choosing the

(intermediate) value of c which corresponds to var(I (j)
t,T /β̂j(t/T )) ∼ 2 is a reliable way

of ensuring the “right” amount of smoothness in β̂j . In the example below, c is selected
over the grid 1/20, 2/20, . . . , 1. The procedure is still fast as our estimation algorithm is of
linear computational complexity.

We now describe the choice of M ∗. From the definition of µ̂m,n in Theorem 3.1 it is
obvious that µ̂m,n = 0 if tm > 1 (as |fm,n| is always bounded by 1). On the other hand,
µ̂m,n = 0 if m ≥ M ∗. Thus, in practice, it is natural to set M ∗ to be the lowest integer for
which tm > 1.
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To enable a fair comparison with Nason et al. (2000), we follow them in taking J ∗ =
log2 T . Please note that this is not in conflict with the theory, which assumes that J ∗ ≤
ε log2 T , but only for large T .

We have found the procedure described above to have a very good finite sample perfor-
mance. To illustrate this, consider again the concatenated Haar process. Let Xt denote its
sample path shown in the top right plot of Figure 1. Figure 2 shows reconstructions of the
Haar spectrum of Xt obtained using: our method [HF]; the translation-invariant version of
our method for comparison with Nason et al. (2000) [HF-TI]; and the translation-invariant
method of Nason et al. (2000) based on the log transform, also with Haar wavelets, with a
manual choice of the “primary resolution” level (see the paper for details) to guarantee op-
timal performance [NvsK]. While there is still a slight amount of leakage, HF does remark-
ably well. The reconstruction HF-TI, although not piecewise constant, has an appearance
which is “closer” to piecewise constant than the bumpy reconstruction NvSK. The bumps
is NvSK are due to the fact that any, even small, oscillations in the smoothed log-spectrum
are significantly magnified after exponentiating the estimate.

6 The Haar-Fisz transform

In this section, we describe a multiscale variance-stabilizing transform which implicitly
arises in our generic Haar-Fisz estimation procedure of Section 3. Note that it is possible to
decompose our estimation algorithm of Section 3 into the following three steps:

1. The Haar-Fisz transform.

(a) Let M = log2 T and let sM,n := Y 2
n , n = 0, . . . , 2M − 1.

(b) For each m = M − 1,M − 2, . . . , 0, recursively form vectors sm, dm and fm

with elements:

sm,n =
sm+1,2n + sm+1,2n+1

2

fm,n =
sm+1,2n − sm+1,2n+1

2sm,n
, (9)

where n = 0, . . . , 2m − 1.

(c) For each m = 0, 1, . . . ,M − 1, recursively modify the vectors sm+1:

sm+1,2n = sm,n + fm,n

sm+1,2n+1 = sm,n − fm,n,

where n = 0, . . . , 2m − 1.

(d) Let Un := sM,n, n = 0, . . . , 2M − 1.

We denote Un = FY 2
n . The nonlinear, invertible operator F is called the Haar-Fisz

operator, and its action — the Haar-Fisz transform.
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Figure 2: Top left: spectrum of the concatenated Haar process. Reconstruction using: our
method (top right); translation-invariant version of our method (bottom left); the method of
Nason et al. (2000) (bottom right).
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Figure 3: Left: the Haar-Fisz transform of the wavelet periodogram sequence from the
bottom right plot of Figure 1; right: its log transform.

2. Smoothing of Un using a classical wavelet thresholding estimator suitable for
homoscedastic Gaussian data, based on Haar wavelets and soft thresholding with a
universal-type threshold, see e.g. Donoho and Johnstone (1994). As the focus of this
section is on the Haar-Fisz transform (point 1 above), we deliberately avoid giving
more details here.

3. The inverse Haar-Fisz transform.

As argued in Section 3, if σ2
t,T = σ2(t/T ) and σ2(z) is piecewise constant, the division

by sm,n in (9) stabilizes the variance of fm,n for “most” m,n. Thus, F stabilizes the vari-
ance of Y 2

n (this property will be formalised later), but unlike the log transform, operates in
the wavelet (Haar) domain instead of the time domain. Figure 3 compares the Haar-Fisz and
log transforms of the wavelet periodogram sequence at scale −2 of the concatenated Haar
process. Clearly, the noise in the Haar-Fisz-transformed sequence appears more symmetric
and closer to homoscedastic Gaussian. Also, the shape of the underlying “signal” seems to
be brought out more clearly.
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For the reader’s convenience, we now write out the explicit formula for U = FY 2 in
the case 2M = 8. For a vector v, let v denote its sample mean. We have

U0 = Y 2 +

∑3
n=0 Y

2
n −∑7

n=4 Y
2
n

∑7
n=0 Y

2
n

+
Y 2

0 + Y 2
1 − Y 2

2 − Y 2
3

∑3
n=0 Y

2
n

+
Y 2

0 − Y 2
1

Y 2
0 + Y 2

1

U1 = Y 2 +

∑3
n=0 Y

2
n −∑7

n=4 Y
2
n

∑7
n=0 Y

2
n

+
Y 2

0 + Y 2
1 − Y 2

2 − Y 2
3

∑3
n=0 Y

2
n

− Y 2
0 − Y 2

1

Y 2
0 + Y 2

1

U2 = Y 2 +

∑3
n=0 Y

2
n −∑7

n=4 Y
2
n

∑7
n=0 Y

2
n

− Y 2
0 + Y 2

1 − Y 2
2 − Y 2

3
∑3

n=0 Y
2
n

+
Y 2

2 − Y 2
3

Y 2
2 + Y 2

3

U3 = Y 2 +

∑3
n=0 Y

2
n −∑7

n=4 Y
2
n

∑7
n=0 Y

2
n

− Y 2
0 + Y 2

1 − Y 2
2 − Y 2

3
∑3

n=0 Y
2
n

− Y 2
2 − Y 2

3

Y 2
2 + Y 2

3

U4 = Y 2 −
∑3

n=0 Y
2
n −∑7

n=4 Y
2
n

∑7
n=0 Y

2
n

+
Y 2

4 + Y 2
5 − Y 2

6 − Y 2
7

∑7
n=4 Y

2
n

+
Y 2

4 − Y 2
5

Y 2
4 + Y 2

5

U5 = Y 2 −
∑3

n=0 Y
2
n −∑7

n=4 Y
2
n

∑7
n=0 Y

2
n

+
Y 2

4 + Y 2
5 − Y 2

6 − Y 2
7

∑7
n=4 Y

2
n

− Y 2
4 − Y 2

5

Y 2
4 + Y 2

5

U6 = Y 2 −
∑3

n=0 Y
2
n −∑7

n=4 Y
2
n

∑7
n=0 Y

2
n

− Y 2
4 + Y 2

5 − Y 2
6 − Y 2

7
∑7

n=4 Y
2
n

+
Y 2

6 − Y 2
7

Y 2
6 + Y 2

7

U7 = Y 2 −
∑3

n=0 Y
2
n −∑7

n=4 Y
2
n

∑7
n=0 Y

2
n

− Y 2
4 + Y 2

5 − Y 2
6 − Y 2

7
∑7

n=4 Y
2
n

− Y 2
6 − Y 2

7

Y 2
6 + Y 2

7

.

Note that U = Y 2. We also define a “truncated” Haar-Fisz transform U
(M∗)
n = F (M∗)Y 2

n :=

sM∗,n, where M ∗ < M . As an example, we quote the formula for U (M∗)
n in the case n = 0,

M∗ = 2 (note that the length of the vector U (M∗) is 2M∗

= 4).

U
(2)
0 = Y 2 +

∑3
n=0 Y

2
n −∑7

n=4 Y
2
n

∑7
n=0 Y

2
n

+
Y 2

0 + Y 2
1 − Y 2

2 − Y 2
3

∑3
n=0 Y

2
n

.

We now formalise the variance-stabilizing and “Gaussianising” properties of the Haar-
Fisz transform, albeit in a simplified setup. Consider the following model:

Y 2
t,T = σ2(t/T )Z2

t,T , t = 0, . . . , T − 1, (10)

where

• σ2(z) is a piecewise constant function, bounded from above and away from zero,
with a finite but unknown number of jumps (the number of jumps is denoted by B);

• the variables {Zt,T }T−1
t=0 are i.i.d. normal with mean zero and variance one.

The above model is a special case of (5). For the remainder of this section, let f v
m,n denote

the Haar-Fisz coefficient of v at scale m, location n. The following proposition holds.
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Proposition 6.1 Let Y 2
t,T follow model (10). The following statements are true:

1. (Beta distribution.) fZ2

m,n is distributed as 2β(2M−m−2, 2M−m−2) − 1 and thus

(2M−m−1 + 1)−1/2 fZ2

m,n → N(0, 1) as M → ∞, m ≤ (1 − δ)M , δ ∈ (0, 1).

2. (Log-like property of F .) We have

T−1
T−1
∑

t=0

E{(FY 2
t,T −Y 2)− (Fσ2(t/T )−σ2)− (FZ2

t,T −Z2)}2 = O(T−1 log2 T ).

(11)

3. (Variance stabilization.) We have

var(FZ2
t,T ) =

M−1
∑

l=0

(2l + 1)−1 + 21−M →
∞
∑

l=0

(2l + 1)−1

for all t.

4. (Asymptotic normality.) For any t,

(

M−1
∑

l=M−M∗

(2l + 1)−1 + 21−M

)−1/2

F (M∗)Z2
t,T

d→ N(0, 1),

as M → ∞, M ∗ = b(1 − δ)Mc, δ ∈ (0, 1).

5. (Lack of spurious correlation.) For any t1, t2,

(

M−1
∑

l=M−M∗

(2l + 1)−1 + 21−M

)−1

cov(F (M∗)Z2
t1,T ,F (M∗)Z2

t2,T ) → 0,

as M → ∞, M ∗ = b(1 − δ)Mc, δ ∈ (0, 1).

Note that formula (11) can be interpreted as

FY 2
t,T − Y 2 ≈ (Fσ2(t/T ) − σ2) + (FZ2

t,T − Z2),

which is reminiscent of the log property log Y 2
t,T = log σ2(t/T ) + logZ2

t,T (except that
we need to subtract the means). This means that the Haar-Fisz transform “approximately”
transforms the model from multiplicative to additive: Fσ2(t/T ) can be viewed as “signal”
and FZ2

t,T as “noise”. The variance stabilization property 3. means that the variance of
the “noise” FZ2

t,T is constant over time. The asymptotic normality property 4. means
that as long as we stay away from the finest scales, the “noise” is asymptotically standard
normal. The lack of spurious correlation property 5. means that the Haar-Fisz transform
asymptotically does not induce any spurious correlation in the “noise” FZ 2

t,T (note that the
original noise Z2

t,T was uncorrelated).
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We also observe that we do need to stay away from the finest scales (i.e. consider
the “truncated” Haar-Fisz transform) to obtain asymptotic normality. Although FZ 2

t,T is a
symmetric random variable and, from empirical observation, “close” to Gaussian (certainly
closer than logZ2

t,T ), it is not true that FZ2
t,T → Gaussian as M → ∞. To see this,

note that by the “beta distribution” property 1., FZ 2
t,T is, asymptotically, an infinite sum

of random variables whose variances decay approximately geometrically. Thus the form of
the distribution of FZ2

t,T is decided by the summands with the largest variances, which are
far from Gaussian (e.g. the finest scale summand, fM−1,n, which has a largest variance, has
a bimodal distribution).

Extension to correlated innovations Z2
t,T . We conjecture that the log-like “separation” for-

mula (11) also holds in the case when Z2
t,T are correlated. As can be seen from the proof of

property 2., the key to proving this conjecture is the availability of bounds on moments of
ratios of quadratic forms in non-iid normal variables. Exact formulae for them are available,
see for example Jones (1987) (note that Ghazal (1994) only treats the iid case), but they in-
volve special functions and are notably complicated so we do not pursue it further here.
Once (11) has been established, we conjecture that asymptotic normality of F (M∗)Z2

t,T can

be demonstrated using CLT-type arguments as asymptotically, F (M∗)Z2
t,T is an infinite sum

of random variables, each of which converges to Gaussianity. Obviously, if the correlation
structure of Z2

t,T changes over time, then we cannot expect the variance of FZ 2
t,T to be

stabilized exactly. However, ample empirical evidence suggests that often the degree of
variance stabilization in FZ2

t,T is remarkable, even in the correlated time-varying case (see
eg Figure 3).

We close with a few final remarks:

1. From the computational point of view, the smoothing of the Haar-Fisz transformed
vector Un can be carried out using any smoothing technique suitable for homoscedas-
tic Gaussian data.

2. The representation of our estimator of Section 3 as “the variance-stabilizing Haar-Fisz
transform + Gaussian smoothing + the inverse Haar-Fisz transform” follows the same
pattern as “the variance-stabilizing log transform + removing homoscedastic noise
+ exponentiating the estimate”. However, note that our estimator is asymptotically
unbiased (as it is mean-square consistent by Theorem 3.1). This is in contrast to
log-based estimators which require a bias correction involving the Euler-Mascheroni
constant.

3. The software implementing our estimators and the Haar-Fisz transform is available
on request from the first author.
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A Proofs

Proof of Proposition 2.1

E

∣

∣

∣

∣

∣

∑

s

Xs,Tψj,s−t

∣

∣

∣

∣

∣

2

= E

∣

∣

∣

∣

∣

∑

s

−1
∑

i=−∞

∞
∑

k=−∞

Wi(k/T )ψi,s−kξi,kψj,s−t

∣

∣

∣

∣

∣

2

=

E

∣

∣

∣

∣

∣

−1
∑

i=−∞

∞
∑

k=−∞

Wi(k/T )Ψi,j(k − t)ξi,k

∣

∣

∣

∣

∣

2

=

−1
∑

i=−∞

∞
∑

k=−∞

Si(k/T )Ψ2
i,j(k − t),

using the orthonormality of ξi,k. Also, noting that Ai,j =
∑

τ Ψ2
i,j(τ),

T−1
T−1
∑

t=0

∣

∣

∣

∣

∣

−1
∑

i=−∞

(

∞
∑

k=−∞

Si(k/T )Ψ2
i,j(k − t) − Si(t/T )Ai,j

)∣

∣

∣

∣

∣

2

=

T−1
T−1
∑

t=0

∣

∣

∣

∣

∣

−1
∑

i=−∞

∞
∑

k=−∞

(Si(k/T ) − Si(t/T )) Ψ2
i,j(k − t)

∣

∣

∣

∣

∣

2

≤

2T−1
T−1
∑

t=0

∣

∣

∣

∣

∣

∣

−1
∑

i=−IT

∞
∑

k=−∞

(Si(k/T ) − Si(t/T )) Ψ2
i,j(k − t)

∣

∣

∣

∣

∣

∣

2

+

2T−1
T−1
∑

t=0

∣

∣

∣

∣

∣

−IT
∑

i=−∞

∞
∑

k=−∞

(Si(k/T ) − Si(t/T )) Ψ2
i,j(k − t)

∣

∣

∣

∣

∣

2

=: I + II,

where the cut-off index IT < log2 T will be specified later. We first consider I . For
all −1 ≤ i ≤ −IT , the length of the support of Ψi,j(·) can (comfortably) be bounded
by M(2−j + 2IT ), where M is a constant. Thus, for all t which are not within the dis-
tance of M(2−j + 2IT ) or less from a breakpoint, we have |∑−1

i=−IT

∑∞
k=−∞(Si(k/T ) −
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Si(t/T ))Ψ2
i,j(k − t)|2 = 0. It follows that we can bound I by

4T−1BM(2−j + 2IT )

∣

∣

∣

∣

∣

∣

−1
∑

i=−IT

∞
∑

k=−∞

LiΨ
2
i,j(k)

∣

∣

∣

∣

∣

∣

2

=

4T−1BM(2−j + 2IT )

∣

∣

∣

∣

∣

∣

−1
∑

i=−IT

LiAi,j

∣

∣

∣

∣

∣

∣

2

≤

4T−1BM(2−j + 2IT )

∣

∣

∣

∣

∣

∣

−1
∑

i=−IT

Li2
−i
∑

l

2lAl,j

∣

∣

∣

∣

∣

∣

2

= O(T−1(2−j + 2IT )),

using the property
∑

l 2
lAl,j = 1 from Fryzlewicz et al. (2003). Similarly, we bound II by

2T−1
T−1
∑

t=0

∣

∣

∣

∣

∣

−IT
∑

i=−∞

LiAi,j

∣

∣

∣

∣

∣

2

≤ 2

∣

∣

∣

∣

∣

−IT
∑

i=−∞

Li2
−i

∣

∣

∣

∣

∣

2

.

Setting IT such that limT IT = ∞ and IT = o(log2 T ), we get I + II = oT (1). Further,
if Li = O(ai) for a > 2, then II = O((2/a)2IT ). Equating the rates for I and II ,
T−12IT = (2/a)2IT , we obtain the optimal IT = log2 T/(2 log2 a−1), which leads to the

rate of convergence of T
1

2 log2 a−1
−1

. �

Proof of Proposition 2.2. Using the same technique as in the proof of Proposition 2.1, we
have

βj(z) =
∑

i

Si(z)Ai,j ≤
∑

i

Si(z)2
−j ,

which is uniformly bounded by a multiple of 2−j by Definition 2.1. If Assumption 2.1
holds, then the jumps of any of the functions {Sj(z)}j are in B. It then follows that each
βj(z) must be piecewise constant, and its jumps must also be contained in B. Finally, if
Assumption 2.2 holds, then

βj(z) =
∑

i

Si(z)Ai,j ≤ C1

∑

i

2iAi,j = C1,

again using Fryzlewicz et al. (2003). �

Proof of Theorem 3.1. We introduce the auxiliary process (which in fact we do not observe)

Ỹ 2
t,T = σ2(t/T )Z2

t,T .

Let ˜̂σ2(t/T ) denote the soft thresholding estimate of σ2(t/T ) constructed from Ỹ 2
t,T , and

let s̃m,n, d̃m,n, f̃m,n and ˜̂µm,n denote quantities constructed from Ỹ 2
t,T in the same way as
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the quantities sm,n, dm,n, fm,n and µ̂m,n (respectively) constructed from Y 2
t,T . We have

T−1
T−1
∑

t=0

E
{

σ̂2(t/T ) − σ2(t/T )
}2 ≤ 2T−1

T−1
∑

t=0

E

{

σ̂2(t/T ) − ˜̂σ2(t/T )
}2

+ 2T−1
T−1
∑

t=0

E

{

˜̂σ2(t/T ) − σ2(t/T )
}2

=: I + II.

We first concentrate on I . Using Parseval identity and some elementary properties of the
thresholding function h(x) = sgn(x)(|x| − t)+, we obtain

I =
2

T
E{s0,0 − s̃0,0}2 +

2

T

M∗−1
∑

m=0

2m−1
∑

n=0

E{µ̂m,n − ˜̂µm,n}2 ≤ 2

T
E{s0,0 − s̃0,0}2

+
2

T

M−1
∑

m=0

2m−1
∑

n=0

E{sgn(dm,n)(|dm,n| − sm,ntm)+ − sgn(d̃m,n)(|d̃m,n| − s̃m,ntm)+}2

≤ 2

T
E{s0,0 − s̃0,0}2 +

4

T

M−1
∑

m=0

2m−1
∑

n=0

E{dm,n − d̃m,n}2 + t2mE{sm,n − s̃m,n}2

≤ 4

T

T−1
∑

t=0

E{(σ2
t,T − σ2(t/T ))Z2

t,T }2 +
4

T

M−1
∑

m=0

2m−1
∑

n=0

t2mE{sm,n − s̃m,n}2 =: III + IV

III is of order aT . To bound IV , we use the explicit form of tm, sm,n and s̃m,n as well as
the Cauchy-Schwarz inequality:

IV =
8c2 log T

T

M−1
∑

m=0

2m−1
∑

n=0

2−M+m+12m−M
E







2M−n(n+1)−1
∑

s=2M−jn

(σ2
s,T − σ2(s/T ))Z2

s,T







2

≤ 8c2 log T

T

M−1
∑

m=0

2m−1
∑

n=0

2−M+m+1
E(Z4

·,T )

2M−n(n+1)−1
∑

s=2M−jn

(σ2
s,T − σ2(s/T ))2

=
48 c2 log T

T

T−1
∑

t=0

E{σ2
t,T − σ2(t/T )}2.

Thus IV is of order c2aT log T . We now turn to II . First consider the MSE of ˜̂µm,n for
m < M∗. For notational clarity, denote d̃1,m,n = s̃m+1,2n/

√
2 and d̃2,m,n = s̃m+1,2n+1/

√
2,

so that d̃m,n = d̃1,m,n − d̃2,m,n and s̃m,n = d̃1,m,n + d̃2,m,n. Denote further µi,m,n =
E d̃i,m,n for i = 1, 2 (note that µm,n = µ1,m,n−µ2,m,n). Finally denote wi,m,n = var d̃i,m,n

for i = 1, 2, and wm,n = var d̃m,n. We consider two cases.
1. Case σ2(t/T ) = constant =: σ2 for t = 2M−mn, . . . , 2M−m(n + 1) − 1 (so that
µ1,m,n = µ2,m,n). Without loss of generality, suppose n = 0 to shorten notation. Using a
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simple property of h(x), then Cauchy-Schwarz and then Hölder’s inequality, we have

E(˜̂µm,0 − µm,0)
2 = E ˜̂µ2

m,0 = E

(

s̃m,0 sgn(f̃m,0)(|f̃m,0| − tm)+

)2
≤

E

(

d̃m,0I(|f̃m,0| > tm)
)2

=

2m−Mσ4
E











2M−m−1−1
∑

i=0

Z2
i,T − Z2

i+2M−m−1 ,T





2

I(|f̃m,0| > tm)







≤

σ4
2M−m−1
∑

i=0

E

{

Z4
i,T I(|f̃m,0| > tm)

}

≤ 2M−mσ4{EZ4r
·,T}1/r

P(|f̃m,0| > tm)1−1/r.(12)

Note that Cr := {EZ4r
·,T}1/r is a constant depending only on r. We now consider the

probability term. We have

P(|f̃m,0| > tm) ≤ P(f̃m,0 > tm) + P(f̃m,0 < −tm) =: V + V I.

Without loss of generality we may assume that V ≥ V I (the proof is identical if V I ≥ V
and leads to the same bounds) so we bound the above sum of probabilities by 2V :

2V = 2P(d̃1,m,0 − d̃2,m,0 > tm(d̃1,m,0 + d̃2,m,0))

= 2P





2M−m−1−1
∑

i=0

Z2
i,T (1 − tm) −

2M−m−1
∑

i=2M−m−1

Z2
i,T (1 + tm) > 0



 ,

which, by standard results (see e.g. Johnson and Kotz (1970), p. 151), can be represented

as 2P(
∑2M−m−1

i=0 λiU
2
i > 0), where {Ui}2M−m−1

i=0 are i.i.d. standard normal, and λi are the
eigenvalues of V D, where V is a 2M−m × 2M−m matrix such that Vi,l = cor(Zi,T , Zl,T )
and D is a 2M−m × 2M−m diagonal matrix for which

Di,i =

{

1 − tm i ≤ 2M−m−1 − 1
−1 − tm i ≥ 2M−m−1.

Noting that
∑2M−m−1

i=0 λi = tr(V D) = −tm2M−m, we rewrite 2V as 2P(
∑2M−m−1

i=0 λi(U
2
i −

1) > tm2M−m). We bound this tail probability using Bernstein’s inequality (Bosq (1998),
p. 24). The conditions for the latter are satisfied as, by simple properties of normal vari-
ables, there exists a C2 such that, for all i = 0, . . . , 2M−m − 1 and k ≥ 3, we have
E|λi(U

2
i − 1)|k ≤ (C2 maxl |λl|)k−2k!E|λi(U

2
i − 1)|2. Thus, by Bernstein’s inequality, we

have the bound

2V ≤ 4 exp

(

− t2m22M−2m

8
∑2M−m−1

i=0 λ2
i + 2maxi |λi|C2tm2M−m

)

. (13)
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It remains to assess
∑2M−m−1

i=0 λ2
i and maxi |λi|. By standard results, we have

∑2M−m−1
i=0 λ2

i =
tr(V D)2, which by direct verification can be bounded from above by 2M−m(1 + t2m)ρ2

∞.
To bound the largest eigenvalue, let ‖ · ‖ denote the spectral norm of a matrix. By standard
results, we have maxi |λi| ≤ (1 + tm)‖V ‖. Using that V is nonnegative definite (being a
correlation matrix), it is easily seen that ‖V ‖ ≤ ρ1

∞. Using these results and the explicit
form of tm, we can bound (13) from above by

4 exp

(

− 2c2 log T

4(1 + t2m)ρ2
∞ + ρ1

∞C2tm(1 + tm)

)

=

4T
− 2c2

4(1+t2m)ρ2
∞

+ρ1
∞

C2tm(1+tm) = O(T
− c2

2ρ2
∞ ), (14)

where the last equality follows from the fact that tm < tM∗ = O(T−δ/2
√

log T ) uniformly
on IT . Plugging it into (12), we obtain the final bound for the risk as

2M−m sup
z
σ4(z)C̃rT

− c2(1−1/r)

2ρ2
∞ . (15)

2. Case σ2(t/T ) 6= constant for t = 2M−mn, . . . , 2M−m(n + 1) − 1 (so that pos-

sibly µ1,m,n 6= µ2,m,n). Again suppose n = 0 to shorten notation. Denote ˜̂µ
(h)
m,0 =

d̃m,0I(|f̃m,0| > tm). We have

E(˜̂µm,0 − µm,0)
2 ≤ 2E(˜̂µm,0 − ˜̂µ

(h)
m,0)

2 + 2E(˜̂µ
(h)
m,0 − µm,0)

2 =: V II + V III.

Using the representation ˜̂µ
(h)
m,0 = s̃m,0f̃m,0I(|f̃m,0| > tm), it is easily seen that | ˜̂µm,0 −

˜̂µ
(h)
m,0| ≤ s̃m,0tm, which leads to V II ≤ 2t2mE s̃2m,0 = 2t2m(var s̃m,0 + (E s̃m,0)

2). Us-
ing an explicit formula for s̃m,0, we bound var s̃m,0 ≤ 2 supz σ

4(z)ρ2
∞ and E s̃m,0 ≤

2
M−m

2 supz σ
2(z), which, using the explicit form of tm, finally leads to

V II ≤ 8c2 sup
z
σ4(z) log T (2ρ2

∞ + 1).

We bound V III as follows:

V III = 2E(d̃m,0I(|f̃m,0| > tm) − µm,0)
2 ≤ 4E((d̃m,0 − µm,0)I(|f̃m,0| > tm))2

+ 4µ2
m,0P(|f̃m,0| < tm) ≤ 4wm,0 + 4µ2

m,0P(|f̃m,0| < tm). (16)

Note wm,0 ≤ 2 supz σ
4(z)ρ2

∞. If µm,0 = 0, then the second summand disappears. Assume
w.l.o.g. that µm,0 > 0. Using Markov’s inequality and the fact that (A + B + C)2 ≤
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3(A2 +B2 + C2), we bound (16) by

8 sup
z
σ4(z)ρ2

∞ + 4µ2
m,0P(f̃m,0 < tm) ≤

8 sup
z
σ4(z)ρ2

∞ + 4µ2
m,0P((d̃1,m,0 − µ1,m,0)(tm − 1) + (d̃2,m,0 − µ2,m,0)(tm + 1) +

+2µ1,m,0tm > (1 + tm)µm,0) ≤ [Markov’s inequality]

8 sup
z
σ4(z)ρ2

∞ + 12(1 + tm)−2((1 − tm)2w1,m,0 + (1 + tm)2w2,m,0 + 4µ2
1,m,0t

2
m) ≤

16 sup
z
σ4(z)(2ρ2

∞ + 3c2 log T ).

We are now in a position to bound II . Using Parseval’s equality, we have

II ≤ 2T−1
E

(

s̃0,0 − T−1/2
T−1
∑

t=0

σ2(t/T )

)2

+ 2T−1
M−1
∑

m=0

2m−1
∑

n=0

E(˜̂µm,n − µm,n)2.

Using the Gaussianity of Zt,T , the first term above, labelled II1, is bounded as follows.

II1 = 2T−2
E

(

T−1
∑

t=0

σ2(t/T )(Z2
t,T − 1)

)2

≤ 2T−2 sup
z
σ4(z)

T−1
∑

t=0

T−1
∑

s=0

cov(Z2
t,T , Z

2
s,T )

= 4T−2 sup
z
σ4(z)

T−1
∑

t=0

T−1
∑

s=0

(cor(Zt,T , Zs,T ))2 ≤ 4T−1 sup
z
σ4(z)ρ2

∞.

We now bound the second term. Denote NT = {(m,n) : σ2(t/T ) = const, for t =
2M−mn, . . . , 2M−m(n + 1) − 1}. At each scale m, at most B indices (m,n) are in N c

T .
We have

2T−1
M−1
∑

m=0

2m−1
∑

n=0

E(˜̂µm,n − µm,n)2 =

2T−1







∑

(m,n)∈IT ∩NT

E ˜̂µ2
m,n +

∑

(m,n)∈IT ∩N c
T

E(˜̂µm,n − µm,n)2 +
∑

(m,n)∈Ic
T

µ2
m,n







≤

2T−1
∑

(m,n)∈IT ∩NT

2M−m sup
z
σ4(z)C̃rT

− c2(1−1/r)

2ρ2
∞ +

+16BM∗T−1 sup
z
σ4(z)(2ρ2

∞(c2 log T + 2) + 7c2 log T ) +

+2BT−1
M−1
∑

m=M∗

2M−m−2 sup
z
σ4(z) =

O

(

sup
z
σ4(z)

{

T
− c2(1−1/r)

2ρ2
∞ log T +BT−1c2 log2 Tρ2

∞ +BT δ−1

})

.
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Upon setting r = 1/δ and combining I and II , the result follows. �

Proof of Proposition 4.1.

1. Assumptions 2.1 and 4.1 together with the specific form of the constant c, imply that

the term I in the proof of Theorem 3.1 is of order (T −12−j+T
1

2 log2 a−1
−1

)γ22−j log T .

2. Thresholds tm are of order 2−j/22−
M−m

2 log1/2 T ≤ T (ε−δ)/2 log1/2 T (as J∗ ≤
ε log2 T ), and therefore tm → 0 uniformly over j = −1, . . . ,−J ∗ (as ε < δ).
Thus the equality (14) holds uniformly over j. By Proposition 2.2 and Assumption

4.2, the risk bound in formula (15) is at most 2M−mC2
1 C̃rT

− γ2(1−δ)
2C3 uniformly over

j = −1, . . . , J∗. This implies that the term II in the proof of Theorem 3.1 is of order

C2
1 (T

− γ2(1−δ)
2C3 log T +BT−1γ22−2jC3 log2 T +BT δ−1).

Combining I and II , the risk is easily found to be at most of the order 2−2jT−θ(a,γ,C3,δ) log2 T ,
where

θ(a, γ, C3, δ) = min

(

1 − 1

2 log2 a− 1
,
γ2(1 − δ)

2C3
, 1 − δ

)

,

which leads to the result. �

Proof of Theorem 4.1. We have

1

T

T−1
∑

t=0

E(Ŝl(t/T ) − Sl(t/T ))2 ≤

2

T

T−1
∑

t=0

E





−1
∑

j=−J∗

(β̂j(t/T ) − βj(t/T ))(A−1)l,j





2

+
2

T

T−1
∑

t=0





−J∗−1
∑

j=−∞

βj(t/T )(A−1)l,j





2

=: I + II.

From the proof of Theorem 2.15 in Nason et al. (2000), we know that for Haar wavelets,
(A−1)l,j ≤ C42

l/22j/2. Using this, applying the Cauchy-Schwarz inequality to the sum
over j, and then using Proposition 4.1, we obtain

I ≤ 2

T

T−1
∑

t=0

log T

−1
∑

j=−J∗

(A−1)2l,jE(β̂j(t/T ) − βj(t/T ))2 ≤ 4C2
42lT−θ(a,γ,C3,δ)+ε log3 T.

Using Proposition 2.2 and the above-mentioned property of A−1, II can easily be shown
to be bounded by 22l+1C2

1C
2
4T

−2ε. Equating the powers of T in the bounds for I and II ,
we obtain the “optimal” ε as ε = θ(a, γ, C3, δ)/3. Note that Proposition 4.1 requires that
ε < δ: this is satisfied as by assumption, θ(a, γ, C3, δ)/3 < δ. The result follows. �

Proof of Proposition 6.1.
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1. (Beta distribution.) Proof easy once one notes that fZ2

m,n = (U − V )/(U + V ) where
U, V are independent χ2

2M−m−1 variables; the desired density is then obtained by

computing P (fZ2

m,n < t) in terms of the cdf of an appropriate F distribution and then
differentiating with respect to t.

2. (Log-like property of F .) Let T = 2M and let dY 2

m,n (dσ2

m,n, dZ2

m,n) denote the Haar

coefficients of FY 2
t,T − Y 2 (Fσ2(t/T ) − σ2, FZ2

t,T − Z2), for m = 0, . . . ,M − 1

and n = 0, . . . , 2m − 1. Further, let fY 2

m,n (fσ2

m,n, fZ2

m,n) denote the Haar-Fisz coeffi-

cients of Y 2 (σ2, Z2). Note that d·m,n = 2
M−m

2 f ·m,n. To prove (11), note that the l2
distance between two vectors in the time domain is equal to their l2 distance in the
Haar domain, due to Parseval identity. Thus

T−1
T−1
∑

t=0

E{(FY 2
t,T − Y 2) − (Fσ2(t/T ) − σ2) − (FZ2

t,T − Z2)}2 =

T−1
M−1
∑

m=0

2m−1
∑

n=0

E{dY 2

m,n − dσ2

m,n − dZ2

m,n}2 =

T−1
M−1
∑

m=0

2m−1
∑

n=0

2M−m
E{fY 2

m,n − fσ2

m,n − fZ2

m,n}2. (17)

We now consider two cases:

(A) Case σ2(t/T ) = constant =: σ2 for t = 2M−mn, . . . , 2M−m(n+ 1) − 1. We
then have fσ2

m,n = 0 and fY 2

m,n = fZ2

m,n so that 2M−m
E{fY 2

m,n − fσ2

m,n − fZ2

m,n}2 = 0.

(B) Case σ2(t/T ) 6= constant for t = 2M−mn, . . . , 2M−m(n + 1) − 1. Suppose
n = 0 to shorten notation; bounds for n 6= 0 are identical. We have

fY 2

m,n − fσ2

m,n − fZ2

m,n =

∑2M−m−1−1
i=0 σ2(i/T )Z2

i,T −∑2M−m−1
i=2M−m−1 σ

2(i/T )Z2
i,T

∑2M−m−1−1
i=0 σ2(i/T )Z2

i,T +
∑2M−m−1

i=2M−m−1 σ2(i/T )Z2
i,T

−

∑2M−m−1−1
i=0 σ2(i/T ) −∑2M−m−1

i=2M−m−1 σ
2(i/T )

∑2M−m−1−1
i=0 σ2(i/T ) +

∑2M−m−1
i=2M−m−1 σ2(i/T )

−

∑2M−m−1−1
i=0 Z2

i,T −∑2M−m−1
i=2M−m−1 Z

2
i,T

∑2M−m−1−1
i=0 Z2

i,T +
∑2M−m−1

i=2M−m−1 Z2
i,T

=:
A1 −A2

A1 +A2
− B1 −B2

B1 +B2
− C1 − C2

C1 + C2
=

C1 − C2

C1 + C2

{

(A1 −A2)(B1 −B2) − 2(A1B1 +A2B2)

(A1 +A2)(B1 +B2)

}

+

2
A1B2 −A2B1

(A1 +A2)(B1 +B2)
≤ 3

|C1 − C2|
C1 + C2

+ 2
|A1B2 −A2B1|

(A1 +A2)(B1 +B2)
. (18)

By the “beta distribution” property, (C1−C2)/(C1+C2) is distributed as 2β(2M−m−2, 2M−m−2)−
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1 and thus
E{|C1 − C2|/(C1 + C2)}2 = (2M−m−1 + 1)−1. (19)

Further, note that

|A1B2 −A2B1|
(A1 +A2)(B1 +B2)

≤ |A1B2 −A2B1|
minz σ2(z)(C1 + C2)(B1 +B2)

,

and the ratio of quadratic forms in normal variables (A1B2 − A2B1)/(C1 + C2)
satisfies the assumptions of Corollary 1 in Ghazal (1994), and so

E{(A1B2 −A2B1)/(C1 +C2)}2 =

B2
2

∑2M−m−1−1
i=0 σ4(i/T ) +B2

1

∑2M−m−1
i=2M−m−1 σ

4(i/T )

2M−m−1(2M−m + 2)
≤ maxz σ

4(z)(B2
1 +B2

2)

2M−m + 2
(20)

Using (19) and (20) in (18), we obtain

E(fY 2

m,n − fσ2

m,n − fZ2

m,n)2 ≤ (2M−m−1 + 1)−1

{

18 +
4maxz σ

4(z)

minz σ4(z)

}

(21)

Observe that at each scale m, at mostB indices n fall into category (B) above. There-
fore, using (21), we bound (17) from above by

BT−1
M−1
∑

m=0

2M−m(2M−m−1+1)−1

{

18 +
4maxz σ

4(z)

minz σ4(z)

}

≤ log2 T

T
2B

{

18 +
4maxz σ

4(z)

minz σ4(z)

}

,

which completes the proof.

Techniques for proving the following properties: 3. (variance stabilization), 4. (asymp-
totic normality) and 5. (lack of spurious correlation) are the same as those used in the
proofs of Propositions 1 and 2 in Fryzlewicz and Nason (2004). We omit the details.
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