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Introduction

Time series analysis is used extensively in neuroscience in order to study the interdependence
between two simultaneously recorded signals [Pereda et al. (2005)]. Neurophysiological time series
are inherently non-stationary and so the covariance structure between the series may vary with time
[Lachaux et al. (2002)]. The detection of these changes is very important as they reflect changes in
the functional connectivity of the system and therefore allow us to make inferences on how segregated
areas of the brain are interacting [Salinas & Sejnowski (2001)]. Our aim is to develop a method of
localised coherence in order to analyse simultaneous recordings of neural activity taken from two areas
of a rat’s brain: the hippocampus and the prefrontal cortex, as in the experimental set-up of Jones &
Wilson (2005).

While the cross-correlation function provides a natural estimate of the relationship between two series
in the time domain, the cross-spectral density function, defined as the Fourier transform of the cross-
covariance function, can be used similarly in the spectral domain [Brillinger (1975)]. The coherence
function is derived from the normalisation of the cross-spectrum by the individual spectra and, roughly
speaking, measures the correlation between the signals as a function of frequency. The main problem
with this approach is that it assumes stationarity of the series and, therefore, is of limited relevance
to our problem. An extension to Fourier analysis, to allow for non-stationarity, is windowed Fourier
analysis which splits the signal into (possibly overlapping) sections [Daubechies (1992)] . Although
this overcomes the assumption of global stationarity, it still requires stationarity within each segment.

Since wavelets are localised in both time and scale, they provide a natural approach to the mod-
elling of series with time varying spectral characteristics (see Vidakovic (1999) for an introduction
to wavelets). Unlike time resolved Fourier coherence which employs a constant window width for all
frequencies, the wavelet transform uses shorter windows for higher frequencies, which leads to more
“natural” localisation (see Daubechies (1992) for more on this topic). Wavelet coherence is an in-
creasingly popular method in neuroscience, see for example Lachaux et al. (2002). In this paper we
propose a new measure of wavelet coherence termed ‘locally stationary wavelet coherence’. This is
derived from the Locally Stationary Wavelet time series model of Nason et al. (2000). Following the
work of Dahlhaus (1996), the model adopts the rescaled time principle, replacing the Fourier basis
representation by a system of non-decimated wavelets. Due to the particular bias correction implied by
the model, our new statistic differs significantly from wavelet coherence measures proposed previously.



Wavelet coherence using the LSW model

Definition 1. The bivariate LSW process (X(1)
t,T , X

(2)
t,T )t=0,...,T−1, for T = 2j ≥ 1 is a triangular

stochastic array with mean-square representation

X
(1)
t,T =

−1∑
j=−∞

∞∑
k=−∞

W
(1)
j (k/T )ψj,t−kξ

(1)
j,k(1)

X
(2)
t,T =

−1∑
j=−∞

∞∑
k=−∞

W
(2)
j (k/T )ψj,t−kξ

(2)
j,k(2)

where {ψk,t} are discrete, real valued, compactly supported, non-decimated wavelet vectors with scale
and location parameters j ∈ {−1,−2, ...} and k ∈ Z, respectively. For each j < −1, the functions
W

(i)
j (k/T ) and ρj(k/T ) are assumed to be Lipschitz continuous, and are defined on rescaled time

z = k/T ∈ [0, 1] which enables asymptotic estimation. Also, ξ(i)j,k are zero mean orthonormal identically
distributed random variables with the following properties

• cov(ξ(i)j,k, ξ
(i)
j′,k′) = δj,j′δk,k′

• cov(ξ(1)
j,k , ξ

(2)
j′,k′) = δj,j′δk,k′ρj(k/T )

where δi,j is the Kronecker delta function, giving δi,j = 1 for i = j and 0 otherwise.

The parameters W (i)
j (k/T ) can be thought of as time and scale dependent transfer functions

while the non-decimated wavelet vectors, ψj , can be thought of as building blocks analogous to Fourier
exponentials in a spectral domain representation. Here the notation j = −1 denotes the finest scale
wavelet, j = −2 the next finest scale and so forth.

This formulation parallels the univariate case of Nason et al. (2000), but in extending this to the
bivariate setting we must allow for a potential correlation structure between the two series, given by
ρj(k/T ). It is this quantity that we wish to estimate, with the functional sequence {ρj(k/T )}−1

j=−∞

providing a multiscale decomposition of the cross-correlation structure between X(1)
t,T and X(2)

t,T .

The locally stationary wavelet coherence, ρj(z), can be represented as ρj(z) = Cj(z)q
S

(1)
j (z)S

(2)
j (z)

where

Cj(z) is the locally stationary wavelet cross-spectrum Cj(z) = W
(1)
j (z)W (2)

j (z)ρj(z), and S(1)
j (z), S(2)

j (z)

are the evolutionary wavelet spectra defined as S(i)
j (z) = (W (i)

j (z))2 as in Nason et al. (2000). The
locally stationary wavelet coherence, ρj(z), ranges from -1, indicating complete negative correlation,
to +1 indicating complete correlation. A value of close to zero indicates a lack of correlation between
the two series at the given scale and location.

Estimation Theory

Definition 2. For the LSW processes X(i)
t,T for i = 1, 2, constructed using the wavelet system ψ, the

empirical non decimated wavelet coefficients are given by

d
(i)
j,t,T =

∑
s

X
(i)
s,Tψj,s−t(3)

Although the use of other types of wavelets is possible, we use Haar wavelets for our estimator,
following the theory of Nason et al. (2000). The wavelet coefficients are used to construct the cross-
wavelet periodogram and wavelet periodogram, defined as follows.



Definition 3. The wavelet periodograms for the LSW processes X(i)
t,T , for i = 1, 2, are given by

I
(i)
j,t,T = |d(i)

j,t,T |
2(4)

The wavelet cross-periodograms is given by

I
(1,2)
j,t,T = d

(1)
j,t,Td

(2)
j,t,T(5)

Proposition 1. The expectation of the cross-periodogram, I(1,2)
j,t,T , is given by

EI(1,2)
j,t,T =

−1∑
i=−∞

W
(1)
i (t/T )W (2)

i (t/T )ρi(t/T )Aij +O(T−12−j)(6)

Also, the variance is given by

V arI
(1,2)
j,t,T =

−1∑
i=−∞

S
(1)
i (t/T )Ai,j

−1∑
i=−∞

S
(2)
i (t/T )Ai,j

+
( −1∑

i=−∞
W

(1)
i (t/T )W (2)

i (t/T )ρi(t/T )Ai,j

)2
+O(2−2jT−1)

where Ai,j is the autocorrelation wavelet inner product matrix Ai,j =
∑

τ Ψi(τ)Ψj(τ).

We can see from Proposition 1 that the expectation of the wavelet cross-periodogram is com-
posed of the sum of wavelet cross-spectra, Cj(z). The cross-periodogram is therefore a natural es-
timator of the wavelet cross-spectrum, but we first need to correct for the bias incurred by the ma-
trix Ai,j . Also, since the cross-periodogram has non-vanishing variance, it needs to be smoothed
to obtain consistency. For this we use simple moving average smoothing. Other, more advanced
smoothing techniques (see for example Nason et al. (2000)) are potentially viable and will be
considered in future work. The estimator is therefore constructed by first smoothing the peri-
odogram to give Ĩ

(1,2)
j,t,T = 1

2M+1

∑M
m=−M I

(1,2)
j,t+m,T , and then correcting the smoothed periodogram

using Ĉl(t/T ) =
∑−1

j=−J∗ Ĩ
(1,2)
j,t,T A

−1
l,j for some J∗ < log2(T ) to be specified later, chosen to ensure the

consistency of Ĉl(z).

Proposition 2. Let J∗ = α log2(T ) where α ∈ (0, 1). The estimator Ĉl(t/T ) converges in probability
to W (1)

l (t/T )W (2)
l (t/T )ρl(t/T ) provided that MTα−1 → 0 as T →∞ and M →∞ for each fixed scale

l.

The wavelet periodograms, I(i)
j,t,T for i = 1, 2 are smoothed and corrected similarly to give

Ĩ
(i)
j,t,T = 1

2M+1

∑M
m=−M I

(i)
j,t+m,T , and Ŝl(t/T ) =

∑−1
j=−J∗ Ĩ

(i)
j,t,TA

−1
l,j .

Proposition 3. Let J∗ = α log2(T ) where α ∈ (0, 1). Then Ŝ
(i)
l (t/T ) converges in probability to

S
(i)
l (t/T ) provided that MTα−1 → 0 as T →∞ and M →∞ for each fixed scale l.

Given estimates of the cross-spectrum, Ĉl(t/T ), and individual spectra, Ŝ(i)
l (t/T ) of each process

and provided that S(1)
l (t/T ) > 0 and S

(1)
2 (t/T ) > 0 the estimator of the locally stationary wavelet

coherence given by

ρ̂l(t/T ) =
Ĉj(t/T )√

Ŝ
(1)
j (t/T )Ŝ(2)

j (t/T )
(7)



converges in probability to ρl(t/T ) by Slutsky’s theorem [Davidson (1994)].

Having demonstrated how to estimate ρl(t/T ), the result provides us with a multiscale decompo-
sition of the local dependence structure between the two series. The decomposition allows us to
distinguish between fine-scale and coarse-scale dependence.
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