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Unbalanced Haar technique for nonparametric

function estimation

Piotr Fryzlewicz∗

May 23, 2007

Abstract

The discrete Unbalanced Haar (UH) transform is a decomposition of one-
dimensional data with respect to an orthonormal Haar-like basis where jumps
in the basis vectors do not necessarily occur in the middle of their support. We
introduce a multiscale procedure for estimation in Gaussian noise which consists
of three steps: a UH transform, thresholding of the decomposition coefficients,
and the inverse UH transform. We show that our estimator is mean-square
consistent with near-optimal rates for a wide range of functions, uniformly over
UH bases which are not “too unbalanced”. A vital ingredient of our approach is
basis selection. We choose each basis vector so that it best matches the data at
a specific scale and location, where the latter parameters are determined by the
“parent” basis vector. Our estimator is computable in O(n log n) operations.

A simulation study demonstrates the good performance of our estimator in
comparison with state-of-the-art competitors. We apply our method to the es-
timation of the mean intensity of the time series of earthquake counts occurring
in Northern California. We discuss extensions to image data, and to smoother
wavelets.

Keywords: adaptive smooting, CART, binary segmentation, matching
pursuit, piecewise-constant estimators, wavelets.

1 Introduction

A fundamental problem in non-parametric regression is the estimation of a one-
dimensional function f : [0, 1] 7→ R from noisy measurements Xi observed on an
equispaced grid:

Xi = f(i/n) + εi, i = 1, . . . , n, (1)
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where εi’s are random variables with E(εi) = 0. Various subclasses of the problem can
be identified, depending on the joint distribution of (εi)

n
i=1 and on the smoothness of f .

In particular, substantial research effort has been and is being expended on developing
denoising techniques under the assumption that (εi)

n
i=1 ∼ N(0, σ2I). In this paper,

we also investigate the iid Gaussian case. We note that the simple 1D Gaussian iid
model serves as a useful proxy for many other settings (such as various time series
contexts, regression problems with other noise distributions, or regression problems in
more than one dimension) in the sense that the success of an estimation methodology
in the Gaussian model is often an informative test of its potential usefulness in those
other, typically more challenging, contexts.

The idea of estimating f by means of piecewise constant estimators received much
attention in the recent literature. The reasons for this are at least threefold. Firstly,
the class of piecewise constant functions is “flexible” in the sense that it is capable of
approximating a wide range of function spaces well, see e.g. DeVore (1998). Secondly,
piecewise constant estimates are cheap to store as the number of jumps is typically
significantly less than n. Thirdly, they are easy to interpret: jumps in the estimate
can be viewed as “significant” changes in the mean level of the data, whereas constant
intervals represent periods where the mean of the data remains “approximately” the
same.

Of particular interest to us are non-linear estimators, which are well known to offer su-
perior theoretical and practical performance to linear estimators when the underlying
function f is spatially inhomogeneous. Two recent examples of non-linear methods
which produce piecewise constant reconstructions are those by Polzehl and Spokoiny
(2000) and Davies and Kovac (2001). The former one uses local averaging where the
local neighbourhood is chosen in a data-driven way, while the principle behind the
latter one is to control the number of local extremes.

Wavelet thresholding estimators, first proposed in a seminal work by Donoho and
Johnstone (1994), perform well, and, for some threshold choices, are tractable the-
oretically. Their use with Haar wavelets yields piecewise constant estimates. The
CART methodology of Breiman et al. (1983) is based on the idea of adaptive recur-
sive partitioning and produces a piecewise constant reconstruction where the pieces
are terminal nodes of the partition. Donoho (1997) shows the equivalence of dyadic
CART and a particular type of nonlinear Haar wavelet estimation. An advantage of
Haar thresholding estimators is their extremely rapid computability (provided that
the threshold choice is fast). One disadvantage is that due to their construction,
jumps always occur at dyadic locations, even if it is not justified by the data. By the
above equivalence, the same criticism applies to the dyadic CART methodology. The
full non-dyadic CART avoids this restriction but its theoretical properties are still not
well understood, although Gey and Nedelec (2005) provide some partial consistency
results.

Girardi and Sweldens (1997) introduce the unbalanced Haar wavelet basis where,
unlike traditional Haar wavelets, jumps in the basis functions do not necessarily
occur in the middle of their support. As such, they are potentially useful as building
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blocks for piecewise constant estimators which avoid the restriction of jumps occuring
at dyadic locations. Indeed, Kolaczyk and Nowak (2004) mention in passing that
their complexity-penalised recursive partitioning estimator is “linked” to unbalanced
Haar wavelets, as it is piecewise constant, multiscale in nature and avoids the dyadic
restriction. They proceed to demonstrate its good theoretical risk properties and
show that its computational complexity is of order O(n3).

In this paper, we explore more fully the possibility of using unbalanced Haar wavelets
to construct piecewise constant estimators which avoid the dyadic restriction. We
propose an unbalanced Haar wavelet thresholding estimator of f with respect to any
choice of the unbalanced Haar basis, and show its mean-square consistency over a
large class of function spaces. We show that the consistency holds in a uniform sense
over the family of unbalanced Haar bases, provided that they are not “too unbal-
anced”. We propose a computational procedure for choosing a suitable basis, and
discuss similarities and differences between our method and the binary segmentation
scheme of Venkatraman (1993) in the special case of piecewise constant target func-
tions. The final estimator is mean-square consistent for a large class of functions, and
its computational complexity is of order O(n log n). We demonstrate its very good
finite-sample performance in a comparative simulation study. We apply our method
to the estimation of the mean intensity of the time series of earthquake counts occur-
ring in Northern California. Our study appears to confirm the previous observation
that seismicity rates increase after major earthquakes in sites which are located not
necessarily close to the examined area.

The paper concludes with a brief discussion of the extension of the UH technique to
image data, and to other smoother unbalanced wavelet bases. As a prelude to this
discussion, we introduce the so-called bottom-up UH transform, which serves as a
starting point for both of these extensions.

We also note that Neumann (1996) shows how to adapt a standard “balanced” wavelet
technique for iid Gaussian data to the (very general) set-up where the noise is a locally
stationary time series. Although our technique is in many ways different to classical
balanced wavelets, the fact that it is derived from Haar wavelets means that a similar
route to that shown by Neumann (1996) is likely to be successful in extending it to
this setting.

The main algorithm of the paper has been implemented in the R package unbalhaar,
available from http://cran.r-project.org/.

2 Unbalanced Haar wavelets

Traditional wavelet thresholding estimation (Donoho and Johnstone, 1994) proceeds
as follows: take the discrete wavelet transform of {Xi}

n
i=1, set to zero those coefficients

which fall below a certain threshold, and then take the inverse wavelet transform of
the thresholded coefficients to yield an estimate of f . Estimates of this type have
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been studied by several authors: see Vidakovic (1999) for an overview.

Our estimation procedure can be summarised as follows: instead of the traditional
wavelet transform, we first take a transform of the data with respect to an Unbalanced
Haar (UH) basis. We then threshold the coefficients, and take the inverse transform
to obtain an estimate of f . An important ingredient of our approach is basis selection.
We will discuss all the ingredients in turn. This section sets the scene by describing
the UH vectors and the discrete UH transform.

UH wavelets were introduced by Girardi and Sweldens (1997) and applied in a non-
parametric stochastic regression context by Delouille et al. (2001). In their work, the
“unbalancedness” was introduced to handle the fact that the design was stochastic
and thus nonequispaced: hence the need for basis functions with different support
lengths and jump locations. By contrast, we consider the case of fixed equidistant
design, and introduce the unbalancedness to capture important features of the data
Xi, as opposed to the design. Below, we introduce the UH vectors and the discrete
UH transform for equispaced data.

2.1 Unbalanced Haar vectors

We first give a description of the construction of the UH vectors. Suppose that our
domain is indexed by i = 1, . . . , n, as is the case in (1), and that n ≥ 2. We first
construct a vector ψ0,1, which is constant and positive for i = 1, . . . , b0,1, and constant
and negative for i = b0,1 + 1, . . . , n. The breakpoint b0,1 < n is to be chosen by the
analyst. The positive and negative values taken by ψ0,1 are chosen in such a way that
(a) the elements of ψ0,1 sum to zero, and (b) the squared elements of ψ0,1 sum to one.

We then recursively repeat this construction on the two parts of the domain deter-
mined by ψ0,1: that is, provided that b0,1 ≥ 2, we construct (in a similar fashion)
a vector ψ1,1 supported on i = 1, . . . , b0,1, with a breakpoint b1,1. Also, provided
that n − b0,1 ≥ 2, we construct a vector ψ1,2 supported on i = b0,1 + 1, . . . , n with
a breakpoint b1,2. The recursion then continues in the same manner for as long as
feasible, with each vector ψj,k having at most two “children” vectors ψj+1,2k−1 and
ψj+1,2k. For each vector ψj,k, their start, breakpoint and end indices are denoted by
sj,k, bj,k and ej,k, respectively. Additionally, we define a vector ψ−1,1 with elements
ψ−1,1(l) = n−1/2

I(1 ≤ l ≤ n), where I(·) is the indicator function. Note that to shorten
notation, we do not explicitly emphasise the dependence of ψj,k on (sj,k, bj,k, ej,k). The
indices j, k are scale and location parameters, respectively. Small (large) values of j
can be thought of as corresponding to “coarse” (“fine”) scales, like in the classical
wavelet theory, see e.g. Mallat (1989b).

Example. We consider an example of a set of UH vectors for n = 6. The rows of the
matrix W defined below contain (from top to bottom) vectors ψ−1,1, ψ0,1, ψ1,2, ψ2,3,
ψ2,4 and ψ3,7 determined by the following set of breakpoints: (b0,1, b1,2, b2,3, b2,4, b3,7) =
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(1, 3, 2, 5, 4).

W =

















6−1/2 6−1/2 6−1/2 6−1/2 6−1/2 6−1/2

{5/6}1/2 −30−1/2 −30−1/2 −30−1/2 −30−1/2 −30−1/2

0 {3/10}1/2 {3/10}1/2 −{2/15}1/2 −{2/15}1/2 −{2/15}1/2

0 2−1/2 −2−1/2 0 0 0
0 0 0 6−1/2 6−1/2 −{2/3}1/2

0 0 0 2−1/2 −2−1/2 0

















In the above example, it is not possible to create further vectors ψj,k. There are
n = 6 of them, and they are orthonormal. Thus, they form an orthonormal basis of
R

6. This is not a coincidence: the following general results holds.

Proposition 2.1 The collection of vectors {ψj,k}j,k is an orthonormal basis of R
n.

As is clear from the example, a UH basis is determined by the set of breakpoints
b = {bj,k}j,k, which is a permutation of the set {1, . . . , n−1}. On the other hand, not
every permutation of {1, . . . , n−1} defines a UH basis. For example, by construction,
if b0,1 = 2, then we must have b1,1 = 1. Thus the number of UH bases is strictly less
than (n− 1)! for n ≥ 4. The issue of basis selection will be covered in Sections 4 and
7.

Note that classical Haar vectors are a special case of the above construction with
bj,k = (sj,k + ej,k − 1)/2. This special case requires that n should be a power of
two. Our general construction naturally avoids this restriction, in the sense that it is
always possible to find a UH basis for any n ≥ 1.

2.2 Discrete Unbalanced Haar transform

The Discrete UH Transform (DUHT) of an input vector X = {Xi}
n
i=1 is simply the

vector of inner products between X and ψj,k, for all j and k. We denote

DUHT(X)j,k = 〈X, ψj,k〉,

where 〈·, ·〉 is the inner product, and call DUHT(X)j,k the UH coefficients of X. In the
classical Haar case, the discrete Haar transform is typically performed via a fast O(n)
“pyramid” algorithm proposed by Mallat (1989a), and a similar pyramid algorithm
could be devised for the general DUHT. Such a fast algorithm would require that the
finest scale UH coefficients (i.e. those with the largest value of j) be computed first.

However, our basis selection algorithm, detailed in Section 4, requires that the UH
coefficients DUHT(X)j,k be computed from coarsest to finest scales. In other words,
we first require DUHT(X)0,1, then DUHT(X)1,1 and DUHT(X)1,2, and so forth. With
this requirement, no fast pyramid algorithm is possible, and to obtain the cofficients,
we calculate the inner products via direct computation.
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As there are n vectors ψj,k, this could potentially be an O(n2) operation, which would
be undesirable. We now describe a mild assumption on the UH basis which ensures
that the computational complexity of the direct DUHT is of order O(n log n), which
is acceptable.

We first note that the supports of the UH vectors ψj,k at any one fixed scale j are
disjoint. Therefore, the computation of all coefficients {DUHT(X)j,k}k at any single
scale j is an O(n) operation. If we could ensure that the total number of scales,
denoted by J(n), was logarithmic in n, the overall complexity of the DUHT would
then be O(n log n). Note that this requirement is automatically satisfied for the
classical Haar transform for which J(n) = log2 n.

The following assumption specifies a sufficient condition which ensures that the total
number of scales J(n) produced by a UH transform is logarithmic in n.

Assumption 2.1 Let |ψj,k|, |ψj,k|+ and |ψj,k|− denote the number of non-zero, pos-
itive and negative components of the vector ψj,k, respectively. There exists a fixed
constant p ∈ [1/2, 1) such that for all n, we have

max

{

|ψj,k|+

|ψj,k|
,
|ψj,k|−

|ψj,k|

}

≤ p, (2)

uniformly over j ≥ 0 and k.

The condition that both ratios should both be bounded away from 1 can be interpreted
as the requirement that the UH basis should not be “too unbalanced”.

Proposition 2.2 Let b = {bj,k}j,k be a set of breakpoints which determines a UH
basis defined on {1, . . . , n}. Let the total number of scales j in b be denoted by J(n).
If Assumption 2.1 holds, then J(n) ≤ dlog1/p ne.

Let the ith component of the vector ψj,k be denoted by ψj,k(i). The inverse DUHT
is performed via direct multiplication and addition, using the Parseval identity

Xi =
∑

j,k

DUHT(X)j,k ψj,k(i). (3)

By the same argument as above, the single-scale operation
∑

k DUHT(X)j,k ψj,k has
computational order O(n), for each j. Hence, if Assumption 2.1 holds and thus the
number of scales j is logarithmic in n, then the inverse DUHT, defined by formula
(3), can be computed in O(n log n) operations.
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3 Function estimation via Unbalanced Haar thresh-

olding

3.1 The estimation algorithm

Our aim in this section is to use the DUHT to estimate f from the regression problem
(1). The estimation algorithm proceeds as follows.

1. Fix p0 ∈ [1/2, 1) independent of n. Choose a set of breakpoints b which de-
termines a UH basis defined on {1, . . . , n} such that b satisfies Assumption 2.1
with p = p0. (The issue of basis selection is covered in detail in Sections 4 and
7).

2. Perform the DUHT of the vector X = {Xi}
n
i=1 with respect to the basis b. Let

Yj,k = DUHT(X)j,k. After the transformation, the regression problem (1) can
be rewritten as

Yj,k = dj,k + εj,k,

where dj,k = DUHT(f)j,k with f = {f(i/n)}n
i=1 and εj,k = DUHT(ε)j,k with

ε = {εi}
n
i=1. The dj,k’s are the true UH coefficients of f which are unknown

and need to be estimated. The εj,k’s are again iid N(0, σ2) because of the
orthonormality of the DUHT.

3. Estimate each dj,k by means of a suitable “universal” shrinkage rule

d̂j,k = h(Yj,k, λ),

where the function h has the property that h(y, λ) = 0 if and only if |y| ≤ λ, and
the “threshold” parameter λ is set equal to σ(2 log n)1/2. Our specific choice of
the shrinkage rule h is non-standard and is described and motivated in Section
3.2. The only exception is the coefficient d−1,1, which is estimated by d̂−1,1 =
Y−1,1. The rationale for using shrinkage estimators is as in classical wavelet
shrinkage, see e.g. Donoho and Johnstone (1994). In short, for a large class of
functions f , namely those that are “well approximated” by piecewise-constant
functions, the sequence dj,k is often sparse, with most dj,k’s close or equal to zero.
Thus, the hope is that an appropriate threshold will be able to preserve those
Yj,k that correspond to “significant” coefficients dj,k, whilst setting to zero those
that correspond to small values of dj,k and thus carry mostly noise εj,k. This
operation ensures that a large proportion of noise εj,k gets removed. The choice
λ = σ(2 log n)1/2 is motivated by certain properties of the normal distribution
and is discussed in detail in Donoho and Johnstone (1994). In practice the
standard deviation parameter σ is unknown but can easily be estimated using
the Median Absolute Deviation estimator on the sequence 2−1/2|Xi+1 −Xi|

n−1
i=1 .

4. Our estimator f̂b

n (z) of f(z) arises as a result of the inverse DUHT of the
coefficients d̂j,k with respect to the basis b.
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Note that, assuming that the basis b is given in advance, the total computational
complexity of the above algorithm is O(n log n). In Section 4, we demonstrate that
our basis selection procedure is also of the same computational complexity.

3.2 Mean-square risk theory

Of interest to us in this section are three distinct smoothness classes for f . Let S[0, 1]
be the space of piecewise constant functions on [0, 1] with a finite number of jumps.
Let PHα[0, 1] be the space of piecewise Hölder-continuous functions on [0, 1] with
Hölder exponent α ∈ (0, 1] and with a finite number of breakpoints. Finally, let
BV [0, 1] be the space of functions on [0, 1] of finite total variation.

Intuitively, we expect our algorithm to perform well if f ∈ S[0, 1], as the basis
vectors ψj,k in the Unbalanced Haar transform are also piecewise constant. Thus,
the performance of our algorithm for functions f which are not in S[0, 1] will de-
pend on how “well” f can be approximated by functions from S[0, 1]. For q ≥ 1,

denote ‖f‖q = (
∫ 1

0
|f |q)1/q, with the extension ‖f‖∞ = sup |f |. For a function

s ∈ S[0, 1], we denote its number of breakpoints by B(s). Assume that f is square-
integrable and bounded. By standard results in approximation theory (see e.g. De-
Vore, 1998), if f ∈ PHα[0, 1] then an s ∈ S[0, 1] can be found such that B(s) ≤ m
and ‖f − s‖2

2 = O(m−2α). Similarly, if f ∈ BV [0, 1] then there exists an s ∈ S[0, 1]
such that such that B(s) ≤ m and ‖f − s‖2

2 = O(m−2).

We now describe our specific choice of the shrinkage rules h used in this and later
sections. For motivation behind this choice, see the discussion underneath Theorem
3.1.

� h(y, λ) = hH(y, λ) := y I(|y| > λ), which yields the classical hard thresholding
estimator.

�

h(y, λ) = hC
L (y, λ) :=















0 |y| ≤ λ
L(y + λ) y ∈ [−λL/(L− 1),−λ)
L(y − λ) y ∈ (λ, λL/(L− 1)]
y |y| > λL/(L− 1),

where L > 1.

The following theorem establishes the mean-square behaviour of our estimator.

Theorem 3.1 Let f̂b

n be our estimator of f in the regression problem (1), computed
with respect to any UH basis b satisfying Assumption 2.1 with p = p0. Let f be
square-integrable and bounded.

1. If f ∈ PHα[0, 1] or f ∈ BV [0, 1], and h = hC
L , then

E

∫ 1

0

{

f̂b

n (z) − f(z)
}2

dz ≤ Cf,σ,p0,h n
−2α/(1+2α) log2

1/p0
n,
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where α = 1 if f ∈ BV [0, 1], and Cf,σ,p0,h is a constant depending only on f , σ,
p0 and h.

2. If f ∈ S[0, 1] with B(f) ≤ m and h = hH or h = hC
L , then

E

∫ 1

0

{

f̂b

n (z) − f(z)
}2

dz ≤ Cf,σ,p0,hmn
−1 log2

1/p0
n,

where the rates are uniform over all bases b which satisfy Assumption 2.1 with p = p0.

The hard thresholding rule hH performs well in practice (see Section 5) and, by the
above theorem, is mean-square consistent when the target function f is piecewise
constant. However, when f is in a richer function class, then a Lipschitz-continuous
shrinkage rule, such as that defined by hC

L , must be used. The intuitive argument for
this, formalised in the proof of Theorem 3.1, is that (Unbalanced) Haar wavelets are
not “smooth enough” for non-piecewise-constant functions f ; however, this can be
remedied by using a Lipschitz-continuous shrinkage rule. Note that as the Lipschitz
constant L approaches infinity, hC

L converges pointwise to hH . Also, as L approaches
one, hC

L converges pointwise to the standard soft thresholding rule. We do not consider
the latter in this paper, due to its inferior practical performance.

We also emphasise that the above result holds uniformly over all bases satisfying
Assumption 2.1, and hence does not address the improvement of adapting the basis
(see Section 4 for our basis selection algorithm) over the classical “balanced” Haar
basis. However, on the other hand, this means that the result of Theorem 3.1 is
flexible enough to accommodate any basis selection procedure, not only that described
in Section 4. In particular, it can be used to demonstrate consistency of the UH
estimation algorithm combined with the “bottom-up” basis selection described in
Section 7.1.

4 Basis selection

The consistency result of Theorem 3.1 is uniform over all bases satisfying Assumption
2.1. Thus, our algorithm combined with any basis selection rule which respects this
assumption, will still be consistent.

The basis selection rule which we propose is related to the matching pursuit algorithm.
Despite a large amount of literature on matching pursuit (first proposed by Mallat
and Zhang (1993); see also the more recent work of Donoho et al. (2006) and the
numerous references therein), we are unaware of any existing work which combines
the matching pursuit idea with Unbalanced Haar wavelets. In our view, this is an
oversight: UH wavelets are naturally suited to the use of matching pursuit as their
particular form permits an extremely fast algorithm for selecting a suitable basis.
This is in contrast to typical matching pursuit implementations which, inevitably,
suffer from slow speed.

9



We now describe the algorithm in detail. We first define the Unbalanced Haar mother
vector ψs,b,e (where the “s”, “b” and “e” stand for “start”, “breakpoint” and “end”,
respectively) with elements ψs,b,e(l) defined by

ψs,b,e(l) =

{

1

b− s+ 1
−

1

e− s+ 1

}1/2

I(s ≤ l ≤ b)−

{

1

e− b
−

1

e− s+ 1

}1/2

I(b+1 ≤ l ≤ e).

Choosing a UH basis amounts to choosing breakpoints bj,k for each vector ψj,k. As
before, our input vector is denoted by X = {Xi}

n
i=1. We fix p0 ∈ [1/2, 1) independent

of n.

� We choose the breakpoint b0,1 such that the inner product between X and
ψ1,b0,1,n is maximised in absolute value. More formally, b0,1 = argmaxb|〈X, ψ1,b,n〉|,
where the range of b is such that Assumption 2.1 holds with p = p0.

To effect this, we need to compute the inner products 〈X, ψ1,b,n〉 for all b. If done
by “brute force”, this could be anO(n2) operation. However, the particular form
of the UH vectors ψ1,b,n means that the inner products can easily be computed
iteratively in computational time O(n) (much in the same way as cumulative
means of a vector of length n can be computed in time O(n)).

� Similarly, we choose bj+1,l = argmaxb|〈X, ψsj+1,l,b,ej+1,l〉|, where l = 2k − 1, 2k
and, again, the range of b is such that Assumption 2.1 holds with p = p0.

For any fixed scale j, the supports of the vectors {ψj,k}k are disjoint and their joint
length is at most n. Thus, if the above-mentioned iterative technique for computing
the inner products is used, all breakpoints {bj,k}k at scale j can be found in total
computational time O(n). As Assumption 2.1 ensures that the total number of scales
is logarithmic in n, the overall computational cost of our basis selection procedure is
O(n log n).

The motivation for our basis selection procedure can be outlined as follows: it is well
known that wavelet thresholding is the most successful when the representation of
the signal in the wavelet domain is sparse, see e.g. Donoho et al. (1995). In our set-
up, this would require that only a few UH coefficients DUHT(X)j,k were “large” in
magnitude, whilst most were “small” and thus carried mainly noise. Typically, when
performing transforms with the standard balanced Haar basis, it is often observed that
large Haar coefficients are mostly concentrated at coarser scales. Our basis selection
procedure renders this “concentration of power” even more extreme: it attempts to
concentrate as much as possible of the signal power at coarser scales, in the hope that
this would further improve the sparsity of representation.

As mentioned in the Introduction, there are links between our procedure and CART,
which based on “growing” a partition tree via recursive partitioning and then “prun-
ing” it to eliminate spurious splits, where the amount of pruning is controlled via a
suitable complexity penalty. The fact that we formulate our procedure in the lan-
guage of wavelets permits us to use simple universal thresholding schemes to select
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the (hopefully) significant splits and eliminate spurious ones (and thus reduce com-
plexity). Therefore, in our context, the choice of the “right” complexity penalty is not
an issue. The other benefit of using wavelets is that complete consistency results are
easy to obtain (partly thanks to Assumption 2.1), which is in contrast to the CART
case, where Gey and Nedelec (2005) acknowledge that “obtaining an upper bound for
the complete risk” is “an open question”.

4.1 Link to change point detection

In the special case when f ∈ S[0, 1], our basis selection and thresholding procedure
is related to the binary segmentation procedure for change point detection, proposed
by Sen and Srivastava (1975), and analysed theoretically by Vostrikova (1981) and
Venkatraman (1993) (see also the review paper Chen and Gupta (2001), or Braun
and Müller (1998) and Olshen et al. (2004) who describe the application of the pro-
cedure to DNA data). In the version described by Vostrikova (1981) (and trans-
lated to our setting) the procedure proceeds as follows: in the first step, compare
the observed value of maxb|〈X, ψ1,b,n〉| with the “critical value” of this random vari-
able under the null hypothesis of no jumps. If the hypothesis is rejected, choose
b0,1 = argmaxb|〈X, ψ1,b,n〉| as the estimate of a jump, and proceed recursively in the
same fashion on the two parts of the data separated by the previously estimated
jump. Otherwise, stop. Vostrikova demonstrates consistency in probability of the
resulting jump location estimators. It is worth noting that at each stage of the pro-
cedure, the observed quantity maxb|〈X, ψsj,l,b,ej,l〉| is compared to the critical value of
its own distribution under the null, which is difficult to compute in practice due to
the stochasticity in the (previously selected) sj,l, ej,l. In a slightly more general set-
ting, Venkatraman (1993), Chapter 2, proposes a conservative comparison threshold
of magnitude which is a power of n and thus, albeit resulting in consistent estimators,
is likely to underestimate the number of jumps in practice.

By contrast, in our approach, we compare each maxb|〈X, ψsj,l,b,ej,l〉| to the much lower
universal threshold σ(2 log n)1/2, which is essential for the procedure to work for target
functions which may or may not be piecewise constant. Also, binary segmentation
uses p = 1, which is technically not allowed by our procedure (see Assumption 2.1).
Another difference is that, in our case, the transform continues right to the bottom of
the UH “tree” regardless of the magnitude of the coefficients. Only after the complete
transform has been performed, are the coefficients thresholded, which gives the UH
method a better chance of detecting “fine-scale” features of the signal which may not
apparent in coarse-scale coefficients. Finally, unlike binary segmentation, our method
yields a complete invertible representation of the data with respect to the selected
UH wavelet basis.

Despite these differences, the similarities between our method and binary segmenta-
tion mean that asymptotically and for p large enough, jumps estimated by the UH
estimator are a superset of the set of jumps detected by the binary segmentation
procedure in the version proposed by Venkatraman (1993). Thus, locally constant
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stretches of our estimator asymptotically guarantee that the true signal is also lo-
cally constant, which makes our estimator easy to interpret. This is unlike most of
the classical “balanced” wavelet thresholding methods, where the often “arbitrary”
wavelet shapes produce spurious artefacts in the output (which look like the wavelets
themselves and are thus difficult to interpret), or even methods based on the bal-
anced Haar wavelets, where jumps tend to appear at dyadic locations, which spoils
the interpretability.

5 Simulation study

The aim of this section is to compare the empirical performance of our Unbalanced
Haar estimation technique to the state-of-the-art competitors mentioned in the In-
troduction: the Taut String (TS) method due to Davies and Kovac (2001) and the
Adaptive Weight Smooting (AWS) technique of Polzehl and Spokoiny (2000). The
comparison is straightforward to effect as both techniques have been implemented and
thoroughly documented in the R packages ftnonpar and aws, respectively. For com-
parison, we also investigate the performance of the classical thresholding technique
based on suitably selected “balanced” wavelet bases.

Our test functions are Donoho and Johnstone’s “blocks” and “bumps”, sampled at
2048 equispaced points, scaled to have a variance of 3.659 and 0.443, respectively. For
the blocks function, it is of interest to detect the jumps in the signal, of which there
are 11. Similarly, for the bumps function, it is of interest to detect the 11 peaks. The
signals are shown in the top left plots of Figures 1 and 2, respectively.

We are particularly interested in (very) low signal-to-noise-ratio regimes (i.e. very
noisy signals), where the human eye is not of much help in estimating the true signal
and a reliable automatic statistical technique becomes indispensable. We contaminate
both signals with iid Gaussian noise with mean zero and standard deviation σ. For
the blocks signal, σ = 2.5, so that the root signal-to-noise ratio is 0.765. For the
bumps signal, σ = 0.6 and the root signal-to-noise ratio is 1.109. The values of σ
were chosen so that the estimation problem is challenging to the human eye, but
hopefully not impossible to solve accurately by means of a good statistical technique.
Two simulated sample paths for the blocks and bumps signal are shown in the top
right plots of Figures 1 and 2, respectively. The standard deviation of the noise
is unknown to all estimation procedures and is estimated via the Median Absolute
Deviation algorithm as described in Section 3.1.

With all estimation methods, we always use default parameter values; that is, to
compute the TS estimate we use the pmreg function of the ftnonpar package with
default parameters, and to compute the AWS estimate we use the awsuni function
of the aws package, also with default parameters. For comparison, we also use the
classical “Balanced” Haar (BH) method for both signals, and a method based on
the non-decimated wavelet decomposition with the (balanced) Daubechies Extremal
Phase wavelet with one vanishing moment (BD2) for the bumps signal, which yields
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blocks bumps
10 11 12 IQR 10 11 12 IQR

AWS 44 68 73 13–19 3 5 25 17–23
TS 3 8 11 16–21 497 277 2 10–11
UH 228 461 174 11–12 376 518 62 10–11
BH 0 0 0 21–25 18 102 288 12–14
BD2 • • • • 0 0 0 38–44

Table 1: Blocks signal, 1st three columns: number of sample paths (out of the 1000
simulated ones) yielding estimates with 10, 11, 12 jumps (respectively). Fourth col-
umn: the IQR of the estimated number of jumps. Bumps function: analogous results
but concerning the number of peaks. The correct number of jumps (for blocks) and
peaks (for bumps) is 11.

continuous reconstructions and is thought to perform particularly well for this signal.
For the two balanced wavelet methods and our UH technique we use universal hard
thresholding (h = hH) with all scales thresholded. For the UH method, we could
also have used the Lipschitz-continuous hC

L shrinkage rule but we noticed that the
empirical results were very similar to hH if a large L was used. The “unbalancedness”
parameter p, described in Assumption 2.1, was set to the default value of p = 0.99.

The results in Table 1 clearly illustrate that the UH is by far the most effective
detector of jumps (for the blocks signal) and peaks (for the bumps signal). For the
blocks signal, sample reconstructions are shown in the two bottom rows of Figure
1. The TS estimate ignores the first “dip” and displays a spurious jump at time
1024, which is probably an artefact of the dyadic multiscale stopping criterion used
by the TS algorithm (although the algorithm itself is not dyadic). The AWS estimate
gets the jump locations right, but tends to estimate various disconnected parts of
the signal at the same level (which is natural given how the AWS algorithm works),
and also exhibits a few extra small spurious jumps (which are not clearly visible in
the figure). This results in a large overall bias. The BH method is by far the least
accurate. On the other hand, our new technique UH yields the best reconstruction
by a wide margin.

Similar comments also apply to the bumps reconstruction (see the two bottom rows of
Figure 2). The TS method ignores one of the spikes, and the AWS method estimates
disconnected parts of the signal at the same level, as well as exhibiting a number
of small spurious extra peaks. In the BH reconstruction, the Gibbs phenomenon is
noticeable. Our UH technique yields the most convincing estimate.

Table 2 shows the Mean Integrated Squared Errors (MISE) for the above simulation
set-up, averaged over 1000 simulated sample paths. For the blocks signal, UH is
clearly the best method, outperforming the second best technique (AWS) by 26%.
It is also the best for the bumps signal, where it is marginally better than the AWS
method. We mention that the BD2 technique is by far the best for the bumps signal in

13



TS AWS BH UH
blocks 437 264 622 195
bumps 734 672 857 670

Table 2: MISEs for the competing methods, averaged over 1000 simulated sample
paths, then multiplied by 103 (blocks) or 104 (bumps) and rounded.

terms of the MISE, which is not surprising given that it produces continuous estimates
(note that the bumps signal is continuous). However, as suggested by Table 1, it is
an extremely poor peak detector for this signal.

Computation was almost instantaneous for all methods tested in this section.

6 Application to earthquake data

In this section, we analyse Northern California earthquake count data, available from
http://www.ncedc.org. We analyse the time series Nk, k = 1, . . . , 1024, where Nk

is the number of earthquakes of magnitude 3.0 or more which occurred in the kth
week, the last week being 29 Nov – 05 Dec 2000. Since Nk is count data, we first
apply the Anscombe (1948) transformation Ak = 2{Nk + 3/8}1/2, which brings the
distribution of Poisson data closer to Gaussianity with constant variance. The series
Ak is plotted in the top left plot of Figure 3.

The top right plot of Figure 3 shows the UH estimate of the mean level of Ak. Our
technique identifies 17 “spikes” in the mean intensity. It is fascinating to observe that
for the majority of them (13 out of 17), the mean intensity just after the spike returns
to a level which is higher than the mean intensity just before the spike.

Note that this feature is not immediately easy to pick up from the classical “balanced”
Haar estimate plotted in the middle left plot, or from the estimate based on the non-
decimated wavelet decomposition with the (balanced) Daubechies Extremal Phase
wavelet with one vanishing moment, plotted in the middle right plot. This is due to
a number of (possibly) spurious downward spikes, which impair the picture.

A possible explanation for the “fast-rise-slow-decay” phenomenon is the often-observed
increase in seismicity rates following a large event at a possibly remote location, de-
scribed in detail in Ziv (2006). For example, on 16 October 1999, the “Hector Mine”
earthquake of magnitude 7.1 occurred in California, and a significant increase in seis-
micity rates has been observed at locations throughout the state following this event.
Although the event itself is not included in the Northern California database (as it
occurred too far to the south), it is interesting to note that our UH estimate displays
a “spike” corresponding to weeks numbered 965 to 969, starting 13 October and end-
ing 16 November 1999 (it is the last spike shown in the bottom plot of Figure 3).
Furthermore, just after the spike, the estimated mean intensity is larger than just
before the spike. One cannot help but wonder if this sudden increase and subsequent
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Figure 1: Top row: the blocks signal (left) and a simulated sample path (right).
Middle row: reconstruction using the TS (left) and AWS methods (right). Bottom
row: reconstruction using the BH (left) and UH methods (right).
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Figure 2: Top row: the bumps signal (left) and a simulated sample path (right).
Middle row: reconstruction using the TS (left) and AWS methods (right). Bottom
row: reconstruction using the BH (left) and UH methods (right).
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slow decline in the seismicity rate in Northern California might have been triggered
by the major “Hector Mine” event in the southern part of the state.

7 Modifications and extensions

In this section, we briefly discuss how the UH wavelet methodology can be extended
to other smoother unbalanced wavelet bases, and to image data. Both extensions will
utilise the idea of bottom-up UH transforms, which we introduce next.

7.1 Bottom-up Unbalanced Haar transforms

The main idea of our basis selection algorithm of Section 4 can be summarised as
follows: using a greedy algorithm, attempt to concentrate as much power of the
signal as possible at coarse scales. As the algorithm proceeds from the coarsest to
finest scale, it will be referred to later as the top-down UH basis selection algorithm.

An interesting alternative would be to proceed from the finest to coarsest scale, at-
tempting to concentrate as little power as possible at fine scales, which would hopefully
produce a similar effect: concentrate the bulk of the power of the signal at coarse
scales (this strategy can be termed a generous, as opposed to “greedy”, algorithm).
Later in this section, we will argue that such a bottom-up UH basis selection algorithm
is a natural starting point for the meaningful extension of the UH idea to smoother
wavelet bases and to image data.

We now outline the skeleton of the bottom-up UH basis selection algorithm:

1. As in classical discrete wavelet transforms, assign the initial “smooth” coeffi-
cients to be the data: s = (s1,1, s2,2, . . . , sn,n) := (X1, X2, . . . , Xn). The two
subscripts in sp,q denote the initial (p) and final (q) index of the subset of the
data which corresponds to sp,q. For example, initially, s1,1 corresponds to X1.

2. Search the vector s for the finest-scale detail coefficient which is the lowest in
magnitude. To be more precise, proceed as follows: for each pair of neighbours
(sp,q, sq+1,r), construct a “detail” filter (ap,q,−bq+1,r), where ap,q, bq+1,r > 0, in
the following way.

(a) As with the classical balanced Haar transform and the top-down UH trans-
form, we desire that the bottom-up UH transform should annihilate con-
stants. Thus, one requirement on (ap,q,−bq+1,r) is that if (Xp, . . . , Xr)
is a constant vector, the detail coefficient, defined by dp,r := ap,qsp,q −
bq+1,rsq+1,r, should be zero.

(b) To preserve the orthonormality of the transform, another requirement on
(ap,q,−bq+1,r) is a2

p,q + b2q+1,r = 1.
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Figure 3: The Ak series (top left); its mean estimated via UH (top right), BH (middle
left), BD2 (middle right), and two methods described in Section 7: BU-UH (bottom
left) and UW1 (bottom right). See text for discussion.
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blocks bumps
10 11 12 IQR 10 11 12 IQR

BU-UH 226 431 85 11–13 182 729 79 11–11

Table 3: Results as in Table 1, for the BU-UH method.

The two requirements (a) and (b) above determine (ap,q,−bq+1,r).

3. Select (p0, r0) = argmin(p,r)|dp,r| and denote by q0 the corresponding q. Using
the filter (bq0+1,r0

, ap0,q0
), which is orthogonal to (ap0,q0

,−bq0+1,r0
), produce the

corresponding “smooth” coefficient sp0,r0
= bq0+1,r0

sp0,q0
+ ap0,q0

sq0+1,r0
.

4. Store the detail coefficient dp0,r0
in the array of wavelet coefficients. Replace

the pair of neighbours (sp0,q0
, sq0+1,r0

) with the new smooth coefficient sp0,r0
.

5. Go to 2., unless (p0, r0) = (1, n).

Table 3 illustrates the performance of our UH denoising algorithm where the top-down
basis selection procedure of Section 4 has been replaced by the bottom-up procedure
described above. The bottom-up UH algorithm (BU-UH) does marginally worse than
the top-down one at detecting the jumps in the blocks signal, but does significantly
better at detecting the peaks in the bumps signal. It also results in slightly inferior
MISE: 220 for blocks, and 776 for bumps.

The bottom left plot of Figure 3 shows the estimate of the earthquake intensity
for the BU-UH method. Note that despite the overall visual similarity to the BU
reconstruction, the numbers of detected peaks differ for the two methods: BU detects
17 peaks, and BU-UH – 18.

We close this section by noting that the difference between the above bottom-up
algorithm and the “lifting one coefficient at a time” paradigm of Jansen et al. (2006)
is that in the latter work, the order of the detail coefficients to be computed depends
only on the (irregular) design of the data. In our work, the design is regular, and the
order of the detail coefficients to be computed depends on the values of the data, as
highlighted in point 3. of the algorithm above.

7.2 Extension to image data

As with the classical balanced Haar transform, an image denoising technique based
on the top-down UH transform (where the best-fitting 2D UH wavelets were selected
from the coarsest to finest scale) would result in unwelcome “blocky” artefacts in the
reconstructed image due to the particular form of the basis functions. To prevent
this, a more desirable option is to use the bottom-up UH transform.

The bottom-up UH transform for images proceeds in complete analogy to the 1D
case, except that it uses a different definition of two pixels, or clusters of pixels, being

19



“neighbours”. We define two pixels to be neighbours if one adjoins the other from one
of the four directions: W, N, E, S. Two clusters of pixels are said to be neighbours if
one contains a pixel which is a neighbour of a pixel from the other cluster. At each
stage of the algorithm, all pairs of neighbours are searched for the smallest detail
coefficient as in the 1D case.

Rapid implementation of the algorithm is possible, but non-trivial, partly because it
involves manipulation of graph-like data structures. It is currently the topic of our
investigation, and will be reported elsewhere.

7.3 Extension to smoother unbalanced wavelet bases

The bottom-up 1D UH transform is also a convenient starting point for the exten-
sion of the methodology to “smoother” unbalanced wavelet bases, i.e. bases which
annihilate not only local constants but also local polynomials of higher degrees. In
this section, we briefly introduce the idea using the example of an unbalanced wavelet
transform with annihilates local linear functions. We note that there is no obvious
way of effecting this extension using the top-down approach.

The transform, denoted UW1, proceeds like the bottom-up UH transform for 1D
data, except we now look at each triple of neighbours (sp,q, sq+1,r, sr+1,u). For each
triple, we construct a detail filter (−ap,q, bq+1,r,−cr+1,u), where ap,q, bq+1,r, cr+1,u > 0,
by requiring that the filter should annihilate constants and linear functions, and sum
to one in the l2 norm. Having chosen the triple which produces the smallest detail
coefficient in absolute value, we store the detail coefficient in the array of wavelet
coefficients, and replace the triple by two new smooth coefficients, created by applying
two filters orthonormal to the corresponding detail filter and to each other. We then
proceed recursively for as long as feasible.

The corresponding smoothing method, also denoted UW1, proceeds like the UH
method but replaces the UH transform with the UW1 transform. We briefly illustrate
it by applying it to the earthquake data of Section 6. The reconstruction, shown in
the bottom right plot of Figure 3, is continuous and seems to display fewer spurious
downward spikes than the BD2 estimate.

Proofs

Proof of Proposition 2.1. We first show that there are n − 1 vectors ψj,k with
j ≥ 0. This is clearly true for n = 1, as in this case it is not possible to split the
domain at all and thus no vectors ψj,k with j ≥ 0 are created. Let us assume
that the statement holds for n = 1, . . . , m − 1. We will show that it holds for
n = m (m ≥ 2). In the case n = m, we start with a vector ψ0,1 with a breakpoint
b0,1 ∈ {1, . . . , m−1}. By the inductive assumption, we create an extra b0,1−1 vectors
ψj,k supported on the left subinterval {1, . . . , b0,1}, and an extra m− b0,1 − 1 vectors
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ψj,k supported on the right subinterval {b0,1 +1, . . . , m}. Altogether, we have created
1+(b0,1−1)+(m−b0,1 −1) = m−1 = n−1 vectors ψj,k with j ≥ 0, which completes
the first part of the proof.

Including the extra vector ψ−1,1, we obtain the total of n vectors ψj,k. It remains to
be shown that they are orthonormal.

By construction, any two vectors either have disjoint supports, or the support of one
vector is contained in the interval where the other one is constant. Thus {ψj,k}j,k are
orthogonal. Given that the l2 norm of each ψj,k is one, they are also orthonormal.

As we have n orthonormal vectors ψj,k defined on {1, . . . , n}, they form an orthonor-
mal basis for R

n. �

Proof of Proposition 2.2. The total number J(n) of scales is maximised when
for all j and k, the ratio of the length of support of the positive part of ψj,k to the
length of support of its negative part is as close as possible to p. Thus, to obtain an
upper bound on J(n), it suffices to consider this “extremely unbalanced” case. The
following recursive inequality holds:

J(n) ≤ 1 + J(bnpc) ≤ . . . ≤ l + J(bnplc). (4)

Taking l = dlogp 1/ne, we get bnplc = bnpdlogp 1/nec ≤ bnplogp 1/nc = 1. Thus, by (4),
J(n) ≤ dlogp 1/ne + J(1) = dlogp 1/ne, which completes the proof. �

Proof of Theorem 3.1. We first prove Case 1. C denotes a generic positive
constant. Let fm be an approximation of f in S[0, 1] such that B(fm) ≤ m and
‖fm −f‖2

2 = O(m−2α). Note that since ‖f‖∞ <∞, also ‖fm‖ <∞. Let fm
n denote a

function created by translating each breakpoint of fm to the nearest multiple of 1/n.
As ‖fm‖ <∞, we have ‖fm

n − fm‖2
2 = O(m/n). We have

E(‖f̂b

n − f‖2
2) ≤ C‖fm − f‖2

2 + C‖fm
n − fm‖2

2 + C E(‖f̂b

n − fm
n ‖2

2). (5)

We now focus on the last term above. Consider an (unobserved) regression problem

X̃i = fm
n (i/n) + εi, i = 1, . . . , n. (6)

After the DUHT with basis b, (6) becomes Ỹj,k = d̃j,k +εj,k, and we estimate each d̃j,k

by means of our UH estimator ˆ̃dj,k = hC
L (Ỹj,k, σ(2 log n)1/2), except d̃−1,1 which we

estimate by
ˆ̃
d−1,1 = Ỹ−1,1. We then take the inverse DUHT to obtain the estimate f̂m,b

n

of fm
n . We have E(‖f̂b

n −fm
n ‖2

2) ≤ C(E(‖f̂b

n −f̂m,b
n ‖2

2)+E(‖f̂m,b
n −fm

n ‖2
2)) =: C(I+II).

We first consider I. Using the fact that both f̂b

n and f̂m,b
n are piecewise constant with

possible jumps only at multiples of 1/n, the Parseval identity, and the Lipschitzness
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of hC
L , we obtain

I =
1

n

n
∑

i=1

E

{

f̂b

n (i/n) − f̂m,b
n (i/n)

}2

=
1

n

∑

j,k

E

{

d̂j,k −
ˆ̃dj,k

}2

=
1

n
E{Y−1,1 − Ỹ−1,1}

2

+
1

n

∑

(j,k)6=(−1,1)

E

{

hC
L (Yj,k, σ(2 log n)1/2) − hC

L(Ỹj,k, σ(2 log n)1/2)
}2

≤
L2

n

∑

j,k

E

{

Yj,k − Ỹj,k

}2

=
L2

n

∑

j,k

(dj,k − d̃j,k)
2 =

L2

n

n
∑

i=1

{f(i/n) − fm
n (i/n)}2

= O(m−2α +m/n),

where the last rate follows by the same arguments as in the first paragraph of the
proof. We now turn to II. Take any d̃j,k for (j, k) 6= (−1, 1).

Case (a): fm
n is constant over the support of ψj,k, which implies d̃j,k = 0. We have

E

{

ˆ̃dj,k − d̃j,k

}2

= E

{

hC
L(Ỹj,k, σ(2 log n)1/2)

}2

≤ E

{

hH(Ỹj,k, σ(2 log n)1/2)
}2

= σ2
√

2/π

∫ ∞

(2 log n)1/2

x2 exp(−x2/2)dx

≤
√

2/π
σ2

n

{

(2 log n)1/2 + (2 log n)−1/2
}

= O(n−1(log n)1/2),

where the last inequality follows by noting that 1−Φ(x) ≤ φ(x)/x, where φ(x) (Φ(x))
denotes the pdf (cdf) of standard normal.

Case (b): fm
n is not constant over the support of ψj,k, which implies that, possibly,

d̃j,k 6= 0. W.l.o.g., assume d̃j,k > 0. We have

E{ ˆ̃dj,k−d̃j,k}
2 ≤ 2E{ ˆ̃dj,k−h

H(Ỹj,k, σ(2 log n)1/2)}2+2E{hH(Ỹj,k, σ(2 log n)1/2)−d̃j,k}
2.

(7)

Since |
ˆ̃
dj,k − hH(Ỹj,k, σ(2 log n)1/2)| ≤ σ(2 log n)1/2, the first term above is bounded

by 4σ2 log n. We bound the second term as follows.

2E{hH(Ỹj,k, σ(2 log n)1/2) − d̃j,k}
2 ≤ 4E{(Ỹj,k − d̃j,k)I(|Ỹj,k| > σ(2 log n)1/2)}2

+4E{d̃j,kI(|Ỹj,k| < σ(2 log n)1/2)}2 ≤ 4σ2 + 4d̃2
j,kP(|Ỹj,k| < σ(2 log n)1/2).

Using Markov’s inequality, we bound

P(|Ỹj,k| < σ(2 log n)1/2) ≤ P(Ỹj,k < σ(2 log n)1/2) = P(σ(2 log n)1/2 + d̃j,k − Ỹj,k ≥ d̃j,k)

≤ E{σ(2 log n)1/2 + d̃j,k − Ỹj,k}
2d̃−2

j,k ≤ (4σ2 log n+ 2σ2)d̃−2
j,k.

Putting together the above, we bound (7) by 4σ2(5 log n+ 3).

We are now ready to evaluate II. The function fm
n has at most m jumps. Since

Assumption 2.1 holds, the total number J(n) of scales is bounded by dlog1/p0
ne by
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Proposition 2.2. As the vectors ψj,k within each scale j have non-overlapping supports,
the maximum number of non-zero coefficients d̃j,k within each scale j is m. Thus, the
total number of coefficients d̃j,k 6= 0 is bounded by mdlog1/p0

ne.

Using the fact that both f̂m,b
n and fm

n are are piecewise constant with possible jumps
only at multiples of 1/n, and the Parseval identity, we have

II =
1

n

n
∑

i=1

E

{

f̂m,b
n (i/n) − fm

n (i/n)
}2

=
1

n

∑

j,k

E

{

ˆ̃
dj,k − d̃j,k

}2

=
σ2

n
+

1

n

∑

(j,k)6=(−1,1),d̃j,k 6=0

E

{

ˆ̃
dj,k − d̃j,k

}2

+
1

n

∑

(j,k)6=(−1,1),d̃j,k=0

E

{

ˆ̃
dj,k − d̃j,k

}2

≤
σ2

n
+
m

n
dlog1/p0

ne4σ2(5 log n+ 3) +
1

n
nn−1(log n)1/2 = O(mn−1 log2

1/p0
n).

Putting these results together, we obtain the final rate for (5) asO(m−2α+mn−1 log2
1/p0

n).

Equating m−2α and m/n, we get the “optimal” m = n1/(1+2α), which yields the rate
of O(n−2α/(1+2α) log2

1/p0
n) as advertised. This completes the proof of Case 1.

The proof for Case 2 proceeds almost exactly like the proof of the bound for the
quantity II above, yielding the rate of O(mn−1 log2

1/p0
n) as required. �
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