
 

 

Piotr Fryzlewicz and Hernando Ombao 
Consistent classification of non-stationary 
time series using stochastic wavelet 
representations 
 
Article (Accepted version) 
(Refereed) 

Original citation: 
Fryzlewicz, Piotr and Ombao, Hernando (2009) Consistent classification of non-stationary time 
series using stochastic wavelet representations. Journal of the American Statistical Association, 
104 (485). pp. 299-312. 
DOI: 10.1198/jasa.2009.0110
 
© 2009 The American Statistical Association
 
This version available at: http://eprints.lse.ac.uk/25162/
Available in LSE Research Online: September 2009 
 
LSE has developed LSE Research Online so that users may access research output of the 
School. Copyright © and Moral Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download and/or print one copy of any 
article(s) in LSE Research Online to facilitate their private study or for non-commercial research. 
You may not engage in further distribution of the material or use it for any profit-making activities 
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE 
Research Online website.  
 
This document is the author’s final manuscript accepted version of the journal article, 
incorporating any revisions agreed during the peer review process.  Some differences between 
this version and the published version may remain.  You are advised to consult the publisher’s 
version if you wish to cite from it. 

http://www2.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=fryzlewi@lse.ac.uk
http://www.amstat.org/publications/jasa.cfm
http://dx.doi.org/10.1198/jasa.2009.0110
http://www.amstat.org/
http://eprints.lse.ac.uk/25162/


Consistent classification of non-stationary time series
using stochastic wavelet representations

Piotr Fryzlewicz1 and Hernando Ombao2

December 23, 2007

Abstract

A method is proposed for classifying an observed non-stationary time series using a
bias-corrected non-decimated wavelet transform. Wavelets are ideal for identifying
highly discriminant local time and scale features. We view the observed signals as
realizations of locally stationary wavelet (LSW) processes. The LSW model provides a
time-scale decomposition of the signals under which we can define and rigorously esti-
mate the evolutionary wavelet spectrum. The evolutionary spectrum, which contains
the second-moment information on the signals, is used as the classification signature.
For each time series to be classified, we compute the empirical wavelet spectrum and
the divergence from the wavelet spectrum of each group. It is then assigned it to the
group to which it is the least dissimilar. Under the LSW framework, we rigorously
demonstrate that the classification procedure is consistent, i.e., misclassification prob-
ability goes to zero at the rate that is proportional to divergence between the true
spectra. The method is illustrated using seismic signals and is demonstrated to work
very well in simulation studies.

Keywords: Non-decimated wavelet transform, discrimination, locally stationary wavelet

processes, evolutionary wavelet spectrum, seismic data.

1Corresponding author. Department of Mathematics, University of Bristol, University Walk, Bristol BS8
1TW, UK. Email: p.z.fryzlewicz@bristol.ac.uk

2Center for Statistical Sciences, Brown University, 121 South Main Street, Providence, Rhode Island,
02912, USA. Email: ombao@stat.brown.edu

1



1 Introduction

In many applied sciences, it is often of interest to be able to classify an observed time series

into one of two or more groups. Examples include underwater acoustics [Huynh et al. (1998)],

speech recognition [Mesagarani et al. (2006)], the analysis of EEG signals [Pfurtscheller et al.

(2006)], or the analysis of geophone recordings to detect and identify passing animals [Wood

et al. (2005)]. The problem of discriminating between earthquake and mining explosion

recordings is described in Shumway and Stoffer (2006). It is of importance as it serves as

a “proxy” for discriminating between earthquakes and nuclear explosions: a task which is

critical in monitoring nuclear non-proliferation. Plots of seismic signals are displayed in

Figure 1.

We highlight the primary contributions of our paper. We develop a new procedure

for classification of non-stationary time series. Our method uses the (bias-corrected) non-

decimated wavelet transform and thus is ideal for identifying localized time-scale features.

We view the observed signals as realizations of locally stationary wavelet (LSW) processes.

The LSW model provides a time-scale decomposition of the signals under which we can define

and rigorously estimate the evolutionary wavelet spectrum. The evolutionary spectrum,

which contains the second-moment information on the signals, is used as the classification

signature. The procedure is described as follows. For each time series that is to be classified,

we compute the empirical wavelet spectrum and the divergence from the wavelet spectrum

of each group. It is then assigned it to the group to which it is the least dissimilar. Under the

LSW framework, we rigorously demonstrate that the classification procedure is consistent,

i.e., the misclassification probability goes to zero at the rate that is proportional to divergence

between the true spectra. The method is illustrated using seismic signals and is demonstrated

to work well in simulation studies. The remainder of this section motivates our approach

and places it in the context of previous work.

A large number of heuristic methods for discriminating and classifying time series data

have been proposed in the engineering and applied sciences literature. To quote but one

example, an interesting attempt at collecting articles and datasets related to time series
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data mining is the “University of California Time Series Data Mining Archive”, available at

http://www.cs.ucr.edu/~eamonn/TSDMA/.

In this work, we are concerned with methodology based on more rigorous statistical mod-

elling, existing instances of which fall into two broad categories: those based on stationary,

and non-stationary time series modelling. Literature on discrimination and classification de-

rived from stationary time series modelling is substantial, includes both time- and frequency-

domain approaches, and is reviewed in detail in Shumway and Stoffer (2006). In practice,

however, many observed time series cannot be modelled accurately as stationary. The im-

portant class of non-stationary time series includes, for example, time series measured in a

changing environment or those describing an evolving phenomenon, such as a speech signal

or some seismic activity.

The majority of statistically rigorous approaches to modelling non-stationary time series

are derived from the following Cramér-Fourier representation of stationary processes: all

zero-mean discrete-time second-order stationary processes Xt can be represented as

Xt =

∫

(−π,π]

A(ω) exp(iωt)dZ(ω), t ∈ Z, (1.1)

where A(ω) is the transfer function, and Z(ω) is a random process with zero mean and

orthonormal increments. Priestley (1965) introduced an analogous representation for non-

stationary processes, where the transfer function A(ω) was permitted to vary over time. How-

ever, this approach did not offer a rigorous framework for asymptotic inference. Dahlhaus

(1997) introduced the locally stationary modelling philosophy whereby the time-dependent

transfer function was defined on a compact interval representing “rescaled time”, to enable

asymptotic considerations of consistency and inference. Other recent approaches stemming

from (1.1) include Mallat, Papanicolau and Zhang (1998) and Swift (2000). Ombao et al.

(2001, 2002) proposed the SLEX methodology, in which a locally stationary time series was

segmented into dyadic, approximately stationary pieces, each of which was modelled simi-

larly to (1.1), the main difference being that the Fourier harmonics exp(iωt) were replaced

by their more localized modifications.

The idea of local stationarity permits asymptotic considerations also in discrimination
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and classification problems. Recognizing this, Sakiyama and Taniguchi (2004) proposed a

classification technique for Dahlhaus’ multivariate locally stationary processes, based on an

approximation to the Gaussian Kullback-Leibler divergence. A discussion of some practical

aspects of this procedure appeared in Shumway (2003). Huang, Ombao and Stoffer (2004)

proposed a discrimination and classification technique for locally stationary time series in

the SLEX model. Their method consisted of a best dyadic basis selection step followed by

computing a discriminant statistic related to the Kullback-Leibler distance in the chosen ba-

sis. Chandler and Polonik (2006) proposed a discrimination procedure for locally stationary

AR processes (with a time-varying variance function) which was not based on a distance

measure but instead used the shape of the variance function as the discriminant criterion. A

Fourier-based procedure, in the context of functional classification where the functions were

assumed to lie in a Hilbert space, was proposed by Biau, Bunea and Wegkamp (2005).

Being localized both in time and in frequency, wavelets provide a natural alternative to

the Fourier-based approach for modelling non-stationary phenomena whose spectral charac-

teristics evolve over time. See Vidakovic (1999) for an introduction to wavelets and their

use in statistics. With this in mind, Nason, von Sachs and Kroisandt (2000) proposed the

Locally Stationary Wavelet (LSW) time series model, which uses non-decimated wavelets,

rather than Fourier exponentials, as building blocks. The LSW model provides a time-scale

decomposition of the process and permits rigorous estimation of the evolutionary wavelet

spectrum and the local autocovariance, offering the user freedom in choosing the underlying

wavelet family. Wavelet-based estimators of the second-order structure of LSW processes are

naturally localized and can typically be computed more efficiently than the corresponding

statistics based on the local periodogram in the Dahlhaus model. Also, unlike the SLEX

model, the LSW model does not suffer from the constraint of dyadic segmentation.

Wavelets and wavelet packets have been utilized in supervised learning (discrimination

and classification) and unsupervised learning (clustering). Using a Kullback-Leibler crite-

rion, Meyer and Chinrungrueng (2003) developed a procedure for clustering signals based

on their wavelet packet coefficients. In a related work, Vannucci, Sha and Brown (2005)

proposed a Bayesian method for selecting wavelet packet features for clustering. The em-
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phasis of our work is different in that we combine the use of wavelets with rigorous stochastic

non-stationary time series modelling. Our LSW-based approach permits us to analyze the

asymptotic behavior and establish consistency of our classifiers and also leads to algorithms

which are different to those proposed by the above authors.

The article is organized as follows. In Section 2, we discuss the locally stationary wavelet

(LSW) model and estimation of the wavelet spectrum. The LSW classification method is

discussed in Section 3 along with the main result on consistency. In Section 4, we analyze the

seismic data set and demonstrate that our method works very well via simulation studies.

2 The LSW model

2.1 Definition

We start by defining the LSW model for locally stationary time series. The defnition is as

in Fryzlewicz and Nason (2006).

Definition 2.1. A triangular stochastic array {Xt,T}T−1
t=0 , for T = 1, 2, . . ., is in the class of

LSW processes if there exists a mean-square representation

Xt,T =
−1∑

j=−∞

∞∑

k=−∞
Wj(k/T )ψj,t−kξj,k, (2.1)

where j ∈ {−1,−2, . . .} and k ∈ Z are, respectively, scale and location parameters, ψj =

(ψj,0, . . . , ψj,Lj
) are discrete, real-valued, compactly supported, non-decimated wavelet vectors

normalised to one in the l2 norm, and ξj,k are zero-mean orthonormal identically distributed

random variables. Also, for each j ≤ −1, Wj(z) : [0, 1] → R is a real-valued, piecewise

constant function with a finite (but unknown) number of jumps. Let Lj denote the total

magnitude of jumps in W 2
j (z). The functions Wj(z) satisfy

• ∑−1
j=−∞ W 2

j (z) < ∞ uniformly in z,

• ∑−1
j=−∞ 2−jLj < ∞.

In formula (2.1), the parameters Wj(k/T ) can be thought of as a scale- and location-

dependent transfer function, while the non-decimated wavelet vectors ψj can be thought of
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as building blocks analogous to the Fourier exponentials in (1.1). Throughout the paper,

we work with Gaussian LSW processes, i.e. our ξj,k are distributed as N(0, 1). This is

merely for technical convenience and, in principle, our approach could be extended to other

distributions.

Haar wavelets are the simplest example of a wavelet system which can be used in formula

(2.1). Denote IA(k) = 1 when k is in A and zero otherwise. Haar wavelets are defined by

ψj,k = 2j/2I{0,...,2−j−1−1}(k)− 2j/2I{2−j−1,...,2−j−1}(k),

for j ∈ {−1,−2, . . .} and k ∈ Z, where j = −1 corresponds to the finest scale. Other

Daubechies’ compactly supported wavelets [Daubechies (1992)] can also be used.

The main quantity of interest in the LSW framework is the evolutionary wavelet spectrum

Sj(z) := W 2
j (z), j = −1,−2, . . ., defined on the rescaled-time interval z ∈ [0, 1]. Indeed,

the (empirical) evolutionary wavelet spectrum is the core concept in the classification rule

proposed in Section 3. The rescaled-time formulation is as in nonparametric regression and

is done to enable rigorous asymptotic considerations.

From Definition 2.1, it is immediate that EXt,T = 0 and indeed, throughout the paper,

we work with zero-mean processes. Such processes arise, for example, when the trend has

been removed from the data, see e.g. von Sachs and MacGibbon(2000) for a wavelet-based

technique for detrending locally stationary processes. The primary interest is in the second

order structure of the process (i.e., covariance, correlation, spectrum) and the goal is to

identify specific time-frequency or time-scale components that most effectively discriminate

the groups.

The piecewise constant constraint on Wj(z) enables the modelling of processes whose

second-order structure evolves over time in a discontinuous (piecewise constant) manner,

but is also convenient for processes which can be well approximated as piecewise stationary.

We note that unlike the SLEX model, we do not require that breaks in the spectrum occur

at dyadic locations.

For an extensive discussion of the philosophy and several aspects of LSW modelling the

reader is referred to Nason, von Sachs and Kroisandt (2000). Estimation in the LSW frame-
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work is also considered in Fryzlewicz and Nason (2006), who use the Haar-Fisz methodology,

and by Van Bellegem and von Sachs (2007), who consider pointwise estimation based on the

idea of adaptive intervals of near-homogeneity.

2.2 Empirical wavelet spectrum

In this section, we construct a “pre-estimator” of the evolutionary wavelet spectrum Sj(z),

which will form the basis of of classification rule of Section 3. A starting point for this

discussion is the definition of the wavelet periodogram, which follows.

Definition 2.2. Let Xt,T be an LSW process constructed using the wavelet system ψ. The

triangular stochastic array

I
(j)
t,T =

∣∣∣∣∣
∑

s

Xs,T ψj,s−t

∣∣∣∣∣

2

is called the wavelet periodogram of Xt,T at scale j.

Throughout the paper, we assume that the reader is familiar with the fast Discrete

Wavelet Transform [DWT; Mallat (1989)], as well as with the fast Non-decimated DWT

[NDWT; see Nason and Silverman (1995)]. In practice, we only observe a single row of the

triangular array Xt,T . The wavelet periodogram is not computed separately for each scale j

but instead, we compute the full NDWT transform of the observed row of Xt,T (e.g. with

periodic boundary conditions), and then square the wavelet coefficients to obtain I
(j)
t,T for

t = 0, . . . , T − 1 and j = −1, . . . ,−J(T ), where J(T ) ≤ log2 T .

It is convenient to recall two further definitions from Nason, von Sachs and Kroisandt

(2000) at this point: the autocorrelation wavelets Ψj(τ) =
∑∞

k=−∞ ψj,kψj,k+τ and the invert-

ible autocorrelation wavelet inner product matrix Ai,j =
∑

τ Ψi(τ)Ψj(τ), whose entries are

all positive.

Without the need to make this statement more precise at the moment, we mention that

the wavelet periodogram is, in a certain sense, an asymptotically unbiased estimator of the

quantity

βj(z) :=
−1∑

i=−∞
Si(z)Ai,j. (2.2)
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For the above result to hold in the sense of Proposition 2.1 from Fryzlewicz and Nason

(2006), we require the following assumption.

Assumption 2.1. The set of those locations z where (possibly infinitely many) functions

Sj(z) contain a jump, is finite. In other words, let B := {z : ∃ j limu→z− Sj(u) 6=
limu→z+ Sj(u)}. We assume B := #B < ∞.

In addition to Assumption 2.1, the following assumption guarantees the uniqueness of the

evolutionary wavelet spectrum Sj(z) in the L2 sense, as discussed in Fryzlewicz and Nason

(2006).

Assumption 2.2. There exists a positive constant C1 such that for all j, Sj(z) ≤ C12
j.

We note that, in particular, Assumption 2.2 is satisfied if Xt,T is the standard white noise

process, for which Sj(z) = Sj = 2j [see Fryzlewicz, Van Bellegem and von Sachs (2003)].

Formula (2.2) suggests that the natural pre-estimator of Sj(k/T ) is the empirical wavelet

spectrum, given by

L
(j)
k,T =

−J∗∑
i=−1

(A−1)i,jI
(i)
k,T , (2.3)

where the clip-off scale −J∗ will be specified later. Indeed, the theory of Section 3 demon-

strates that our classification rule, based on L
(j)
k,T , is asymptotically consistent.

3 Classification method

In this section, we propose a classification rule which assigns an LSW process Xt,T to one

of C ≥ 2 groups Π1, . . . , ΠC with evolutionary wavelet spectra S
(1)
j (z), . . . , S

(C)
j (z). For

simplicity of exposition, as in Huang, Ombao and Stoffer (2004), we only consider the case

C = 2, although our method is applicable to the general case C ≥ 2.

We first outline the generic algorithm, and then discuss its various important aspects.

The classification algorithm proceeds as follows.

1. For a (suitably selected) subset M of scale and location indices (j, k), where M ⊆
{−1, . . . ,− log2 T} × {0, . . . , T − 1}, compute the empirical wavelet spectrum L

(j)
k,T of

Xt,T .
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2. Compute the squared quadratic distances between the empirical wavelet spectrum and

the evolutionary wavelet spectra of each of the groups

Dg =
∑

(j,k)∈M
{L(j)

k,T − S
(g)
j (k/T )}2,

for group g = 1, 2.

3. If D1 < D2, then classify Xt,T to Π1. Otherwise, classify it to Π2.

In this section, we discuss some remarks on the implementation and state our main result

on the consistency of our classification procedure.

3.1 Remarks on the methodology and implementation

Case C > 2. The theory and practice of our classification methodology extends naturally

to the case where there are more than two groups. In that case, we classify the time series

Xt,T under consideration to the group for which the squared quadratic distance between

the wavelet spectrum of the group and the empirical wavelet spectrum of Xt,T is the small-

est. Extending the result of Theorem 3.1 to this case is straightforward but notationally

burdensome, so we omit it.

Obtaining S
(g)
j (z) in practice. Obviously, in practice the true wavelet spectra S

(g)
j (z) are

unknown, and are replaced by the empirical wavelet spectra, averaged across time series

replicates. Suppose that there are Ng independent time series from class Πg for g = 1, 2, and

denote the empirical wavelet periodogram for n-th series in this group by L
(j),g,n
k,T . Then we

replace S
(g)
j (k/T ) by its estimate

Ŝ
(g)
j (k/T ) =

1

Ng

Ng∑
n=1

L
(j),g,n
k,T .

In cases where Ng is small, extra smoothing over k, e.g. via kernels, may be required. In our

implementation, kernel smoothing with the Gaussian kernel is applied.

Choice of the discriminating set M. In Theorem 3.1, we assume that the set M is “arbitrary

but fixed” and that it satisfies certain technical conditions. Each time-scale coefficient is a
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potential candidate for membership in the set M. For each time-scale index (j, k), we

compute a divergence index

∆(j, k) =
[
S

(1)
j (k/T )− S

(2)
j (k/T )

]2

which measures their ability to separate the groups. Then we order these divergence values

and choose only the top pre-specified proportion of the coefficients. Variants of our approach

to choosing this proportion are discussed at the end of this section.

3.2 Main result

Theorem 3.1. Suppose that Assumptions 2.1 and 2.2 hold, and that the constants Lj from

Definition 2.1 decay as O(aj) for a > 2. Let S
(1)
j (z) and S

(2)
j (z) be two non-identical wavelet

spectra from processes satisfying the short-memory assumption supt

∑
ρ |corr(Xt, Xt+ρ)| <

∞. Let I
(j)
k,T be the wavelet periodogram constructed from a process with spectrum S(1)(z),

and let L
(j)
k,T be the corresponding bias-corrected periodogram (see formula (2.3)), with J∗ =

log2 T . Let the set M satisfy

∑

(j,k)∈M
{S(1)

j (k/T )− S
(2)
j (k/T )}2 = O(T ). (3.1)

The probability of misclassifying L
(j)
k,T as coming from a process with spectrum S

(2)
j (z) can be

bounded as follows.

P (D1 > D2) = O(T−1 log3
2 T + T 1/{2 log2(a)−1}−1 log2

2 T ).

3.3 Other variations of the method

Choice of a divergence index. The discrepancy measures of choice for classification in

Dahlhaus’ locally stationary model [Shumway (2003)] and in the SLEX model [Huang, Om-

bao and Stoffer (2004)] are certain approximations to the likelihood ratios, which both sets

of authors show to be linked to the Kullback-Leibler divergence. However, there are good

reasons for us to depart from this convention and use the simple squared quadratic distance

instead. We briefly summarize them below.
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• Unlike, for example, the SLEX model, in which the SLEX periodogram is asymp-

totically distributed as a collection of independent scaled exponentials, the empirical

wavelet spectrum L
(j)
k,T is a collection of random variables which neither are indepen-

dent, nor is their (joint or marginal) distribution easy to determine. Thus following

the likelihood ratio route is not an attractive option for us.

• L
(j)
k,T is a sum of a (typically logarithmic) number of terms, see formula (2.3), which,

by a CLT-type mechanism, brings it closer to Gaussianity than the plain wavelet

periodogram I
(j)
k,T , which is distributed as a scaled χ2

1. The proximity of L
(j)
k,T to Gaussian

suggests that the use of the quadratic distance might be an appealing option.

• As a matter of fact, the quadratic distance is closely linked to the likelihood ratio

for an exponential random variable (the latter occurring in SLEX classification, as

described above). We briefly illustrate it now. For the purpose of this paragraph, let

X denote an exponential variable which we wish to classify as having mean λ1 or λ2.

The log-likelihood ratio is

log(λ2/λ1) + X(1/λ2 − 1/λ1), (3.2)

where we classify to λ1 if (3.2) is positive. However, Taylor-expanding (3.2) around

(λ1, λ2) = (X,X) up to the quadratic term, we obtain

1

2X2

{
(λ2 −X)2 − (λ1 −X)2

}
,

which is a scaled version of the squared quadratic distance which we use, where the

scaling is by the factor of 1/(2X2). Our classification procedure also uses the idea of

scaling, albeit from a slightly different perspective: namely, prior to the classification,

we always rescale all processes to have the sample variance of one. This corresponds

to the theoretical assumption that
∫ 1

0

∑
j S

(g)
j (z)dz is constant for all groups g. The

approach of classifying the time across series according to the relative decomposition

of its variance, rather than absolute variance, is taken in Shumway (2003) and Huang,

Ombao and Stoffer (2004).
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• Last but not least, the squared quadratic distance offers very good practical perfor-

mance (see Section 4), and is relatively easy to analyze theoretically.

Objective criteria for obtaining M. The non-decimated wavelet transform provides a family

of time-scale features that could be used for classification. In particular, the wavelet spectra

is defined on a time-scale grid which consists of T log2 T coefficients. However, some of these

features are unable to separate groups. For example, if we were to consider the distribution

of the empirical wavelet spectra at a particular (j∗, k∗), the histogram plots of the two groups

may share a large overlap and thus fail to distinguish between groups. Such features are

typically not good for classification. The goal of this paper is not to propose a feature

extraction procedure. Rather, our primary contribution is a classification procedure which is

rigorously demonstrated to be consistent under well-separated spectra of groups. However,

to complete our discussion, we point out that this particular problem of feature selection

can be cast under the general framework of variable selection for a large number of potential

variables. This is an extremely active area of statistical research. One objective approach to

choosing the features is to perform multiple tests of hypothesis (with a suitable correction

procedure). We may test the null hypothesis that S
(1)
j∗ (k∗/T ) = S

(2)
j∗ (k∗/T ) for each index

(j∗, k∗) using non-parametric procedures such as the Wilcoxon test and the permutation

test if we are unwilling to make strong parametric assumptions. Recent discussions on the

subject of variable selection and multiple hypothesis testing are discussed in Bunea (2007),

Bunea, Wegkamp and Auguste (2006), Genovese, Roeder and Wasserman (2006), Jin and

Cai (2006), Sun and Cai (2007) and Wasserman and Roeder (2007), among many others.

Another objective approach is to choose, from a pre-selected grid on the interval (0, 1), the

optimal proportion which minimizes the classification error. This may entail performing

a leave-one-out cross validation or some k−fold cross validation which is popular in the

machine learning literature. This approach is computationally intensive but is attractive

because it is tied directly to the goal of minimizing prediction or classification error. We

note that in the seismic data example of Section 4.2, the discriminatory coefficients were

selected automatically from the data via leave-one-out cross-validation.
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4 Applications of the method

4.1 Simulation studies

The goals of the simulation studies were twofold. First, we examined how well the procedure

selected time-scale features that were good discriminators. Second, we investigated how well

the classification scheme worked for finite samples. Two types of processes were considered.

The first consisted of piecewise auto-regressive processes while the second consisted of auto-

regressive processes with slowly evolving parameters.

We generated 100 training data sets, each of which consisted of N = 8 time series for each

of the two groups. To evaluate the classification error, a testing data set (one time series for

each of the two groups) is generated for each training data set. The testing data sets were

independent of the training data. Time-scale coefficients were selected according to how well

they separated the two training groups according to the L2 criterion. Test time series were

classified according to the top p = 10%, 25% and 50% of the time-scale coefficients. We note

that in the seismic data example of Section 4.2, the optimal proportion p was selected from

the data via cross-validation.

The performance of the proposed LSW method is compared with the SLEX method in

Huang, Ombao and Stoffer (2004), which is the current state-of-the-art among statistically

rigorous procedures. Though there are other classification procedures for non-stationary

time series, the SLEX, which has been demonstrated to do very well in practice, is its most

comparable competitor in terms of over-all structure and philosophy.

Piecewise AR processes. The n-th time series from group g, denoted X
(g)
n,t , is generated

from the piecewise first order auto-regressive process defined by

X
(g)
n,t =

{
φ

(g)
1 X

(g)
n,t−1 + ε

(g)
n,t, t = 1, . . . , T1

φ
(g)
2 X

(g)
n,t−1 + ε

(g)
n,t, t = T1 + 1, . . . , T1 + T2

where T = T1 + T2; ε
(g)
n,t is iid Gaussian with mean 0 and variance σ2.

In the ensuing illustration, we used the following simulation parameters. G = 2 is the

total number of groups; N = 8 is the total number of subjects in each group; T1 = 100 is
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the length of the first block of time series; T2 = 156 is the length of the second block of

time series. The noise variance is σ2 = 1. The AR model parameters are as follows. For

group 1, φ
(1)
1 = −0.05 and φ

(1)
2 = 0.10. For group 2, φ

(2)
1 = −0.05 and φ

(2)
2 = −0.10. In

the remainder of this section, we use the Daubechies’ Extremal Phase wavelet no. 10 from

the wavethresh software package for R, although any wavelet system could in principle be

used: see Section 5 for a discussion of this issue. Representative time series plots from each

group and the estimated wavelet spectra are shown in Figure 2. The squared divergence

between the wavelet spectra and the best discriminant features selected are displayed in

Figure 3. The SLEX method when applied with either finest level J = 3 or J = 4 gave

a correct classification rate of 54 − 58%. The proposed LSW method gave the following

correct classification rates: 75%, 83% and 87% when the top p = 0.10, 0.25 and p = 0.50,

respectively, of the coefficients were selected.

Slowly-varying AR processes. We considered AR(2) processes with slowly-varying coef-

ficients defined by

Y
(g)
n,t = φ

(g)
1 (t)Y

(g)
n,t−1 + φ

(g)
2 (t)Y

(g)
n,t−2 + ε

(g)
n,t

where the AR parameters are

φ
(g)
1 (t) = −0.8

[
1− α(g) cos(πt/T )

]

φ
(g)
2 (t) = −0.81.

The α parameters are α(1) = 0.7 for group 1 and α(2) = 0.1 for group 2. Representative

signals from each group and an estimate of the wavelet spectra are plotted in Figure 4. The

squared difference in the average wavelet spectra and the most highly discriminant time-scale

features are given in Figure 5. The SLEX method gave the correct classification rates of 62%

and 71% for J = 3 and J = 4 respectively. The LSW method gave correct rates of 94%,

88% and 90% when using the top proportions p = 0.10, 0.25, 0.50 respectively.

The simulation studies provide empirical evidence that the LSW method works very well

even for time series data of length T = 256 and a relatively small training dataset of N = 8.

Moreover, it overcomes the inherent weaknesses of the SLEX approach. It does not suffer
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from the dyadic restrictions and it is superior both for processes with slowly-varying, and

for processes with piecewise-constant, parameters.

4.2 Seismic signals

In the monitoring a comprehensive test ban treaty, it is critical to develop methods for dis-

criminating between nuclear explosions and earthquakes. We applied the proposed LSW

methodology for classifying a time series as either an explosion or earthquake. The pro-

liferation of nuclear explosions are monitored in regional distances of 100 − 2000 km and

thus the data of mining explosions can serve as a reasonable proxy. A data set constructed

by Blandford (1993) which are regional (100− 2000 km) recordings of several typical Scan-

dinavian earthquakes and mining explosions measured by stations in Scandinavia are used

in this study. The data set, consisting of eight earthquakes and eight explosions and an

event of uncertain origin located in the Novaya Zemlya region of Russia (called the NZ

event), are given in Kakizawa, Shumway and Taniuguchi (1998). The problem is discussed

in detail in Shumway and Stoffer (2006, Chapter 7). and the data are available online from

http://lib.stat.cmu.edu/general/tsa2/. Using a leave-one-out cross validation proce-

dure to choose the proportion p (by examining different values of p over a pre-specified grid,

in this case p = 0.1 k, k = 1, . . . , 10), 14 out of the 16 seismic signals were correctly classified.

Moreover, the NZ event is classified as an explosion which is consistent with the findings

in Shumway (2003) and Huang, Ombao and Stoffer (2004). Figure 6 further illustrates our

analysis of this data set.

5 Discussion

In summary, we developed a procedure for classifying non-stationary time series using the

locally stationary wavelet (LSW) processes. The LSW model provides a time-scale decom-

position of the signals under which we can define and rigorously estimate the evolutionary

wavelet spectrum. Under the LSW framework, we rigorously demonstrated that the classifi-

cation procedure is consistent, i.e., misclassification probability goes to zero at the rate that
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is proportional to divergence between the true spectra. The method was demonstrated to

work well in simulation studies and in the seismic data example. In this section, we discuss

those aspects of our work which we believe open up interesting avenues for further research.

1. In the selection of the subset M, we select those coefficients which differ the most in

terms of their quadratic distance from their counterparts in the other group. We chose

the quadratic selection distance for “consistency” with our L2 classification distance

but we note that any other Lp selection distance would obviously lead to the same M
as functions f(x) = xp are order-preserving. A more interesting option would be to try

other procedures for selecting M such as that based on maximising the Fisz distance

|S(1)
j (k/T ) − S

(2)
j (k/T )|/{|S(1)

j (k/T )| + |S(2)
j (k/T )|} (which measures the relative dis-

crepancy between the spectra; see Fryzlewicz and Nason (2006) for a discussion of the

Fisz transform) or that based on choosing those (j, k) for which, for example, as many

as possible empirical S
(1)
j (k/T )’s for the first group lie above (or below) all S

(2)
j (k/T )’s

for the second group. We mention again that regardless of how M was selected, the

consistency theory still holds as long as M satisfies (3.1), or even a weaker version of

(3.1) where we simply require that the two spectra are identifiably different (however,

this weakening would then affect the consistency rate).

2. Although Sj(z) typically decays exponentially as j → −∞ (e.g. Sj(z) = 2j for standard

white noise), it was our deliberate choice not to assign higher weights to the selection

distance for coarser scales. This was because, typically, empirical wavelet spectra

are less accurate (as estimators of Sj(z)) at coarser scales, so downweighting those

less accurate quantities would not necessarily be detrimental to the quality of the

classification procedure. However, some way of up-weighting those coefficients for

processes with non-negligible low-frequency components would be desirable: we note

that none of our examples throughout the paper had prominent low-frequency features.

We leave this interesting issue for future research.

3. The wavelet system used is a parameter of our procedure which can be optimized over:

ideally, we would envisage the use of the wavelet which, given a data set, provides
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the best classification results for those series which are known to lie in either group.

However, in simulations, we found that our method was fairly robust to the choice of the

wavelet, as long as the wavelet was non-adaptive. We have experimented with the use of

some adaptive wavelet transforms, such as the Unbalanced Haar transform [Fryzlewicz

(2007)], and obtained encouraging preliminary results which will be reported elsewhere.

Appendix. Proof of Theorem 3.1

We write

D1 −D2 = −2
∑

(j,k)∈M
{L(j)

k,T − S
(1)
j (k/T )}{S(1)

j (k/T )− S
(2)
j (k/T )}

−
∑

(j,k)∈M
{S(1)

j (k/T )− S
(2)
j (k/T )}2 =: X − t

and use the Chebyshev inequality to bound

P (X − t > 0) ≤ E(X2)/t2. (5.1)

Instead of bounding E(X2), we bound E(X̃2), where

X̃ = −2

−J0∑
j=−1

T∑

k=1

{L(j)
k,T − S

(1)
j (k/T )}{S(1)

j (k/T )− S
(2)
j (k/T )}.

Since M ⊂ {−1, . . . ,−J0} × {1, . . . , T}, the bound for E(X2) is found similarly and does

not exceed the bound for E(X̃2). We have

E(X̃2) = 4E

{ −J0∑
j=−1

T∑

k=1

{ −J∗∑
i=−1

A−1
i,j I

(i)
k,T −

−∞∑
i=−1

A−1
i,j β

(1)
i (k/T )

}
{S(1)

j (k/T )− S
(2)
j (k/T )}

}2

=

4E

{ −J0∑
j=−1

T∑

k=1

{ −J∗∑
i=−1

A−1
i,j [I

(i)
k,T − β

(1)
i (k/T )]−

−∞∑
i=−J∗−1

A−1
i,j β

(1)
i (k/T )

}
{S(1)

j (k/T )− S
(2)
j (k/T )}

}2

≤ 8E

{ −J0∑
j=−1

T∑

k=1

−J∗∑
i=−1

A−1
i,j {I(i)

k,T − β
(1)
i (k/T )}{S(1)

j (k/T )− S
(2)
j (k/T )}

}2

+

+8E

{ −J0∑
j=−1

T∑

k=1

−∞∑
i=−J∗−1

A−1
i,j β

(1)
i (k/T ){S(1)

j (k/T )− S
(2)
j (k/T )}

}2

=: I + II.

17



As in the proof of Lemma B.3 from Fryzlewicz, Van Bellegem and von Sachs (2003), we have

|A−1
i,j | ≤ C2i/22j/2, where C is a generic constant which will also appear later and which is not

necessarily the same at each occurrence. Further, by Assumption 2.2, we have Sj(z) ≤ C2j

and, by Proposition 2 from Fryzlewicz and Nason (2006), we have β
(1)
i (k/T ) ≤ C under

Assumptions 2.1 and 2.2. Given the above, we have

II/8 ≤ C

( −J0∑
j=−1

T∑

k=1

−∞∑
i=−J∗−1

2i/22j/22j

)2

≤ CT 22−J∗ . (5.2)

We now turn to I. Denote

bi,j =
T∑

k=1

{I(i)
k,T − β

(1)
i (k/T )}{S(1)

j (k/T )− S
(2)
j (k/T )}.

With this notation, and using the Cauchy inequality, we have

I/8 ≤ E

{ −J0∑
j=−1

−J∗∑
i=−1

A−1
i,j bi,j

}2

≤ J0J
∗
−J0∑

j=−1

−J∗∑
i=−1

{A−1
i,j }2E{b2

i,j} ≤ CJ0J
∗
−J0∑

j=−1

−J∗∑
i=−1

2i+jE{b2
i,j}.

(5.3)

We now evaluate E{b2
i,j}.

E{b2
i,j} = E

{
T∑

k=1

{I(i)
k,T − E(I

(i)
k,T ) + E(I

(i)
k,T )− β

(1)
i (k/T )}{S(1)

j (k/T )− S
(2)
j (k/T )}

}2

≤ 2E

{
T∑

k=1

{I(i)
k,T − E(I

(i)
k,T )}{S(1)

j (k/T )− S
(2)
j (k/T )}

}2

+ 2

{
T∑

k=1

{E(I
(i)
k,T )− β

(1)
i (k/T )}{S(1)

j (k/T )− S
(2)
j (k/T )}

}2

=: 2A + 2B.

Using Cauchy inequality, we have

B ≤
T∑

k=1

{E(I
(i)
k,T )− β

(1)
i (k/T )}2

T∑

k=1

{S(1)
j (k/T )− S

(2)
j (k/T )}2. (5.4)

Using the result of Proposition 1 from Fryzlewicz and Nason (2006) , we have

T∑

k=1

{E(I
(i)
k,T )− β

(1)
i (k/T )}2 ≤ C(2−i + T 1/{2 log2(a)−1}).
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Substituting it back into (5.4), we have B ≤ C(T22j−i + T 1+1/{2 log2(a)−1}22j). Now turn to

A. Denote cj,k = {S(1)
j (k/T )− S

(2)
j (k/T )}. As before, |cj,k| ≤ C2j. We have

A = E

{
T∑

k=1

{I(i)
k,T − E(I

(i)
k,T )}cj,k

}2

≤ 22j

T∑

k,k′=1

|cov(I
(i)
k,T , I

(i)
k′,T )|.

Let d
(i)
k,T be the wavelet coefficient corresponding to I

(i)
k,T , i.e. I

(i)
k,T = (d

(i)
k,T )2. By Isserlis’

theorem, we have

|cov(I
(i)
k,T , I

(i)
k′,T )| = 2cov2(d

(i)
k,T , d

(i)
k′,T ) ≤ 2 sup

k
Var2(d

(i)
k,T )corr2(d

(i)
k,T , d

(i)
k′,T )

≤ 2{E(I
(i)
k,T )}2|corr(d

(i)
k,T , d

(i)
k′,T )|. (5.5)

Using again Proposition 1 from Fryzlewicz and Nason (2006) , we have

E(I
(i)
k,T ) ≤ C

−∞∑
j=−1

2j

∞∑
t=−∞

Ψ2
j,i(t− k) = C

−∞∑
j=−1

2jAj,i = C.

Substituting it back into (5.5), we get |cov(I
(i)
k,T , I

(i)
k′,T )| ≤ C|corr(d

(i)
k,T , d

(i)
k′,T )|, so that the

bound for A is

A ≤ C22j

T∑

k,k′=1

|corr(d
(i)
k,T , d

(i)
k′,T )|

≤ C22j

T∑

k=1

∑
τ

∣∣∣∣∣corr

(∑
t

Xtψi,k−t,
∑

s

Xsψi,k+τ−s

)∣∣∣∣∣

≤ C22j
∑

t

∑
s

|corr(Xt, Xs)|
s−t+M2−i∑

τ=s−t−M2−i

{∑

k

|ψi,k−t||ψi,k−s+τ |
}

≤ C22j−i
∑

t

∑
ρ

|corr(Xt, Xt+ρ)| ≤ C22j−iT,

where the last inequality is implied by the short-memory assumption. Substituting A and

B back into (5.3), the bound for I becomes

I ≤ CJ0J
∗
−J0∑

j=−1

−J∗∑
i=−i

2i+j{22j−iT + T 1+1/{2 log2(a)−1}22j}

≤ C log2
2 T

−J0∑
j=−1

−J∗∑
i=−i

23jT + 2i+3jT 1+1/{2 log2(a)−1}

≤ C log2
2 T{T log2 T + T 1+1/{2 log2(a)−1}}.
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With this result, the overall bound for E(X2) is

E(X2) ≤ C{T 22−J∗ + T log3
2 T + T 1+1/{2 log2(a)−1} log2

2 T}.

Choosing J∗ = log2 T makes the above bound E(X2) ≤ C{T log3
2 T + T 1+ε log2

2 T}. By the

assumption on M, t2 is of order T 2. Considering again (5.1), we can see that the probability

of misclassification is of order

P (X > t) = O(T−1 log3
2 T + T 1/{2 log2(a)−1}−1 log2

2 T ),

which completes the proof. ¤
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Pfurtscheller, G., Brunner, C., Schlögl, A. and Lopes da Silva, F. (2006). Mu

rhythm de-synchronization and EEG single-trial classification of different motor imagery

tasks. Neuroimage, 31, 153-159.

Priestley, M. (1965). Evolutionary spectra and non-stationary processes. Journal of the

Royal Statistical Society, Series B, 27, 204-237.

Sakiyama, K. and Taniguchi, M. (2004). Discriminant analysis for locally stationary

processes. J. Multivariate Analysis, 90, 282-300.

Shumway, R. (2003). Time-frequency clustering and discriminant analysis. Statistics and

Probability Letters, 63, 307-314.

22



Shumway, R. and Stoffer, D. (2006). Time Series Analysis and Its Applications With

R Examples. New York: Springer.

Sun, W. and Cai, T. (2007). Oracle and adaptive compound decision rules for false

discovery rate control. Journal of the American Statistical Association, 102, 901-912.

Van Bellegem, S. and von Sachs, R. (2007). Locally adaptive estimation of evolution-

ary wavelet spectra. Annals of Statistics, in press.

Vannucci. M., Sha, N. and Brown, P. (2005). NIR and mass spectra classification:

Bayesian methods for wavelet-based feature selection. Chemometrics and Intelligent

Laboratory Systems, 77, 139-148.

Vidakovic, B. (1999). Statistical Modeling by Wavelets. New York: Wiley.

von Sachs, R. and MacGibbon, B. (2000). Non-parametric curve estimation by wavelet

thresholding with locally stationary errors. Scandinavian Journal of Statististics, 27,

475-499.

Wasserman, L. and Roeder, K. (2006). Weighted Hypothesis Testing. Department of

Statistics Technical Report, Carnegie Mellon University.

Wasserman, L. and Roeder, K. (2007). High dimensional variable selection. Depart-

ment of Statistics Technical Report, Carnegie Mellon University.

Wood, J., O’Connell-Rodwell, C. and Klemperer, S. (2005). Using seismic sensors

to detect elephants and other large mammals: a potential census technique. Journal of

Applied Ecology, 42, 587-594.

23



FIGURES

Time

0 500 1000 1500 2000

−6
−4

−2
0

2
4

6

Earthquake Signal

Time

0 500 1000 1500 2000

−6
−4

−2
0

2
4

6

Explosion Signal

Time

0 500 1000 1500 2000

−6
−4

−2
0

2
4

6

Novaya−Zemlya Event

Figure 1: Seismic Signals. (1, 1): Earthquake Signal (no. 1, out of 8). (2, 1): Ex-
plosion Signal (no. 1, out of 8). (3, 1): Event at Novaya Zemlya (unknown origin).
Source of the data: the file eq+exp.dat from Shumway and Stoffer (2006) available from
http://lib.stat.cmu.edu/general/tsa2/.
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Figure 2: Piecewise-stationary AR(1) processes. (1, 1): Estimated wavelet spectrum of group
1 (vertical scale denotes the scale of the wavelet transform; the darker the color the larger
the amplitude of the corresponding spectrum estimate). (1, 2): A time series from group 1.
(2, 1): Estimated wavelet spectrum of group 2. (1, 2): A time series from group 2. Length of
the time series is T = 256. Maximal scale is J = log2(256) = 8. Total number of signals in
each group is N = 8. In wavelet spectrum estimation, kernel smoothing over time was used
with the Gaussian kernel and bandwidth = 100.
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Figure 3: Piecewise-stationary AR(1) processes. (1, 1): Squared difference between wavelet
spectra of the two groups (the darker the color, the greater the magnitude of the difference).
(2, 1): Discriminant time-scale features selected (the darker the color, the larger the propor-
tion of times the given feature was selected; p = 0.25 was used). Length of the time series
is T = 256. Maximal scale is J = log2(256) = 8. Total number of signals in each group
is N = 8. In wavelet spectrum estimation, kernel smoothing over time was used with the
Gaussian kernel and bandwidth = 100.
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Figure 4: AR(2) processes with slowly time-varying coefficients. (1, 1): Estimated wavelet
spectrum of group 1 (vertical scale denotes the scale of the wavelet transform; the darker
the color the larger the amplitude of the corresponding spectrum estimate). (1, 2): A time
series from group 1. (2, 1): Estimated wavelet spectrum of group 2. (1, 2): A time series
from group 2. Length of the time series is T = 256. Maximal scale is J = log2(256) = 8.
Total number of signals in each group is N = 8. In wavelet spectrum estimation, kernel
smoothing over time was used with the Gaussian kernel and bandwidth = 100.
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Figure 5: AR(2) processes with slowly time-varying coefficients. (1, 1): Squared difference
between wavelet spectra of the two groups (the darker the color, the greater the magnitude
of the difference). (2, 1): Discriminant time-scale features selected (the darker the color, the
larger the proportion of times the given feature was selected; p = 0.25 was used). Length of
the time series is T = 256. Maximal scale is J = log2(256) = 8. Total number of signals in
each group is N = 8. In wavelet spectrum estimation, kernel smoothing over time was used
with the Gaussian kernel and bandwidth = 100.
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Figure 6: Earthquake vs Explosion Signals. (1, 1): Squared difference between wavelet spec-
tra of the two groups (the darker the color, the greater the magnitude of the difference).
(2, 1): Discriminant time-scale features selected (the darker the color, the larger the propor-
tion of times the given feature was selected; p = 0.25 was used). Length of the time series
is T = 2048. Maximal scale is J = log2(2048) = 11. Total number of signals in each group
is N = 8. In wavelet spectrum estimation, kernel smoothing over time was used with the
Gaussian kernel and bandwidth = 100.
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