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Abstract

It is often argued that asset prices exhibit patterns incompatible
with the behaviour of rational, optimizing agents. This paper pro-
poses a rational framework which generates asset prices which appear
irrational. This is accomplished by studying rational expectations
equilibria in the presence of two realistic market frictions: immediacy
risk (agents have to submit their demand functions before they know
the equilibrium price) and asset-speci�c orders (investors have to sub-
mit one separate demand for each asset, which may not be contingent
upon the prices of the other assets). We study some properties of
such equilibria, in particular the prevalence of arbitrage and of infor-
mational ine�ciencies.
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1 Introduction
In this paper we investigate issues of asymmetric information and strategic
intermediation in environments with realistic trading frictions.

Few practitioners would disagree with the statement that markets occa-
sionally exhibit the following two imperfections: (i) they may be temporarily
informationally ine�cient, and (ii) they may temporarily be out of sync and
exhibit mispricings and arbitrage opportunities.

As to (i), informational ine�ciencies have traditionally been modelled by
preventing revelation of private information by means of noise trading (see
for instance (Grossman and Stiglitz 1980)) or of stochastic asset endowments
(see for instance (Diamond and Verecchia 1981)). In this model we introduce
one further channel leading to informational ine�ciencies.

As to (ii), modelling mispricing situations has not been dealt with in an
entirely satisfactory manner. In standard general equilibrium models, arbi-
trage is impossible since agents submit their Marshallian demand functions
to the auctioneer, and any zero of the aggregate excess demand function is
arbitrage-free by construction. In some sense, the individual demand func-
tions, which map any conceivable price vector to a quantity vector, incorpo-
rate arbitraging strategies. So if the auctioneer was to �x a price allowing
for a free lunch, the arbitrage actions coded into the Marshallian demand
functions trigger, by price-taking, unbounded demands and supplies all on
the same side of the market, proving that all equilibrium prices need to be
free of arbitrage.

One obvious approach to generate arbitrage opportunities at an equilib-
rium is to introduce transaction costs or short-sale constraints to the model.
This way of proceeding is a bit unsatisfactory, however, in accounting for
mispricings since one e�ectively \explains" a $1 mispricing gap by a transac-
tion cost of $1. It is one thing to introduce a device that generates arbitrage
opportunities, but it is another thing to determine the extent of mispric-
ing remaining in the market after trading. Furthermore, di�erent investors
face di�erent transaction costs, and some investors face nearly zero marginal
transaction costs. A more subtle approach to modelling equilibrium arbi-
trage opportunities introduces frictions via costly participation constraints
and endogenous entry, see for instance (Fremault 1993), (Holden 1995) and
(Zigrand 1999). Such frictions generate mispricings, but do not also impose
exogenous limits to arbitrage, and the question as to the limits to arbitrage
becomes interesting and relevant. For instance, in (Holden 1995) and (Zi-
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grand 1999) the extent of arbitrage is limited by strategic considerations in
a Cournot-Walras game, while in (Shleifer and Vishny 1997) the extent of
arbitrage is limited by hidden information considerations.

The current paper can thus be viewed as contributing to the modelling of
the two facets without relying on overly crude or counterfactual assumptions,
but by modelling a plausible microstructure environment. First, we generate
informational ine�ciencies and arbitrage opportunities in a natural manner.
Second, we show that the extent to which arbitrage opportunities survive at
equilibrium is endogenous, even in a fully rational environment.

The framework we propose drops two simplifying (but arguably counter-
factual) assumptions regularly made in �nancial economics:

Instantaneous Execution. Indeed, investors usually face immediacy risk
or execution lags when trading assets, because they do not have instanta-
neous access to the 
oors and they cannot exactly forecast the prices at
which their orders will be executed (or whether they will be executed in
case of limit orders). In particular, this prevents investors from being able
to execute riskless arbitrage strategies. This assumption is similar to (Kyle
1985), except that here (as in (Kyle 1989)) investors are free to submit limit
orders (schedules), rather than limiting their trades to market orders (quan-
tities) which would e�ectively prevent learning from prices. We thus reverse
the standard timing, which assumes that investors �rst observe prices and
then decide about their portfolio weights. The unpredictability we propose
is common on �nancial markets and well-known to practitioners, as revealed
by the universal use of limit orders on more volatile markets. Some of the
underlying volatility may be due to new information about returns occurring
between the instant the order was released and its execution, but a large
part is due to portfolio rebalancing. So even an informational insider would
face immediacy risk for he would be unlikely to be able to accurately forecast
either portfolio rebalancing or the release of information to other informed
participants. In terms of modelling, the unpredictability of non-informational
portfolio rebalancing (\liquidity trades") is due to the fact that the structure
of the economy is not common-knowledge. This uncertainty about economic
fundamentals is often simpli�ed by relying on noise traders.

Marshallian Demand Schedules. In reality investors cannot submit an
order for asset a contingent on prices of assets other than a. They have to
submit schedules (composed of market and limit orders) to the auctioneers
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(the limit-order book, market makers, specialists), one for each asset, that
cannot depend on events other than the price of the asset. We refer to
this restriction as asset-speci�city. For instance, investors cannot submit a
demand schedule that says that they want to purchase 1 unit of Apple at a
price of $x if the price of Microsoft is $y. E�ectively this also implies that
we can think of auctioneers as being \local auctioneers," one for each asset.

The Model. There is a unique perishable consumption commodity per date
and state, chosen as the numeraire. All investors are price-takers. This is in
contrast to (Klemperer and Meyer 1989) and (Kyle 1989) where oligopolists
submit supply functions, realizing the impact on prices via a downward slop-
ing demand schedule. We assume, in order to generate randomness, that the
state of information that determines preferences and the endowment struc-
ture is not known initially. Each investor is then informed of his own prefer-
ences and endowments, but he gets no direct signal as to the structure and
composition of the market, summarized by the preferences and endowments
of the other agents.

Agents submit their asset demand schedules and the auctioneers compute
aggregate demand schedules and clear markets. The resulting equilibrium
prices may allow for arbitrage. This is not the end of the story, though. If
investors have rational expectations, then they are able to re�ne their in-
formation by the information revealed by prices. Even though they cannot
change their orders any more, they built in such contingencies into the de-
mand schedules they originally handed over. Basically, we can view investor
h's optimization program as a team maximization problem with as many
team members as there are di�erent assets, f(h; a); a = 1; : : : ; Ag. Mem-
ber a of investor h's team (denoted by (h; a)) submits the schedule to the
auctioneer of asset a, incorporating the following line of reasoning:

"I am rational in the sense that I know the equilibrium price
function mapping shocks to prices. Unfortunately, I can only
observe the price of asset a, and I cannot communicate with any
of the other members (h; b) who observe qb, b 6= a. But, given
the structure of the economy, I can update my beliefs as to the
composition of the whole market environment from any one price.
The resulting price of asset a at which my order will be executed
contains that information, allowing me to re�ne my information
as to the prices of all the other assets.\
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Related Literature. The investors' optimization problem has the same
team 
avor that was analyzed by (Marschak and Radner 1971) and later
reviewed by (Radner 1986a) and (Radner 1986b). The two latter papers
study related but simpler problems than the one in this paper, in particular
as to the team-wide resource constraints, to the correlatedness of signals
and to the rational information extraction from prices or actions. The REE
aspects that occur here have been analyzed, in di�erent forms, among others,
by (Green 1977), (Grossman 1977), (Radner 1979) and (Allen 1981). The
fact that each investor is unsure whom he is trading against is reminiscent
of (Diamond and Verecchia 1981) where investors are endowed with random
asset supplies. The only paper on arbitrage and information transmission
we are aware of is (Fremault 1993). There is also a growing literature on
the limits of arbitrage, especially intertemporal arbitrage, see for instance
(Dow and Gorton 1994) or (Shleifer and Vishny 1997). The emphasis in this
paper, by its static nature, captures relative mispricing of one portfolio of
assets compared to another one.

Structure of the Paper. The structure of the economy is presented in
Section 2. The two innovative market microstructure assumptions used in
this paper are described in Sections 3 and 4 respectively. Section 5 introduces
the investor's optimization problem, and Section 6 deals with the character-
ization of the rational expectations equilibrium. Section 7 concludes. All
proofs are relegated to the appendix.

2 The Economy
As mentioned in the introduction, individuals face two layers of risk in this
economy, �rst about the trading environment (the state of information) and
then about the realization of endowments and asset payo�s (the state of
nature). At time zero they face uncertainty about the market participants'
endowments and preferences, which translates into uncertainty about prices.
The asset demand functions they submit are not required to be either market
or limit orders, but they are required to only depend on their own price, i.e.
they need to be asset-speci�c. For instance, the demand schedule for asseta is
a function of the price of asseta, qa, only, as opposed to the whole price vector
q. At time one this uncertainty is resolved, asset orders get executed and the
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households consume. They are, by the very nature of immediacy risk, unable
to retrade at the equilibrium price. The state of nature is realized at time two
and �nal consumption occurs. It might be convenient to visualize investor
h's utility maximization program in the following fashion. Given that asset
speci�c demand functions have to be handed over to the auctioneer before the
state of information is realized, every investor's demand function for some
asset a can be thought of as being represented by a team member (h; a)
having the same preferences as the investor, and with the restriction that
the A members cannot communicate, so that (h; a)'s private information
(over and above the private information arising from h's endowments and
preferences) corresponds to the observation of the price of asseta, qa.

2.1 General Setup of the Economy
We shall impose the following strong but standard assumptions on investors:

H1 H, the set (and the cardinality)1 of households, is assumed to be �nite,
and there is only one consumption commodity. Trade occurs over three
time periods: team members trade assets in period zero, they consume
in period one, and �nally they consume the proceeds (and are allowed
to trade consumption) at time two.

H2 (E ;F ; �) is the (complete)probability space of the parameters describing
the states of information. (S;G; p) with S � f1; : : : ; s; : : : ; Sg, S <1
is the probability space of states of nature.2 They are assumed to be
independent: knowledge of one's preference and endowments pro�le
does not help one to predict the likelihood of states of nature, and thus
of future asset payo�s. E � RE is a compact Borel set and contains
an open subset of RE, with E <1. Assume that E is a C1 manifold,
possibly with boundary. � is absolutely continuous with respect toE-
dimensional Lebesgue measure �E on RE. For technical reasons, we
assume that �(@E) = 0 (i.e. E is a contented set) and we can assume
as well that E is equal to the support of �.

1No confusion should arise by denoting the cardinality of a set by the same symbol as
the set itself.

2So while the element � 2 E determines, among others, the endowments and prefer-
ences state by state, the element s 2 S determines which element of the endowment and
preference vector is actually realized, as well as the payo� of each asset.
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H3 The information revelation unravels in three steps. Initially, investors
have no information and observe their own preferences and endow-
ments. We assume that the parameters determining the endowments
f!hgHh=1 � f!h0 ; !h1 ; : : : ; !hSgHh=1 2 R(S+1)H

++ and the utility functions
fUhgHh=1 2 UH (the set U will be de�ned under H5) lie in the parame-
ter space

QH
h=1P � RHP and depend for each investor h on the state

of information � 2 E via a measurable gh : (E ;F)! (P;B(P)), where
B denotes the Borel �-algebra and P is a smooth submanifold of RP ,
with E � P + 2. The mapping gh is smooth on the interior of E and is
assumed to be a submersion. Thus we have

� gh7�! eh = gh(�) 7! (!h[eh]; Uh[eh])

When � is realized, each investor h knows the realization3 eh = gh(�)
(and thus knowsf!h; Uhg�gh��), but ignores the realization off!k; Ukg�
gk ��, k 6= h. Fh = �(gh) describes investor h's information after learn-
ing their own parameters4. Since the uncertainty in our model is due
to the composition of the market, it seems natural to assume that
�(F1;F2; : : : ) = F : prices cannot depend on more information than
possessed by all the agents combined.
When trading subsequently the team member (h; b) learns the price of
asset b, qb, and re�nes his information toFh;b = Fh _ �(�b).

H4 Assets pay o� in the last period. The payo� matrixR is of dim S�A and
of full column rank, where A is the number of assets traded,A � S <
1. Assets pay o� in the numeraire, which is also the only consumption
commodity. Row s of R is denoted by ds = (d1;s; : : : ; dA;s) 2 RA. da;s
represents the numeraire payo� of asset a in the state of nature s.
Also, assume there is y 2 RA such that Ry � 0. This assumption
assures that not all prices are no-arbitrage prices, see (Geanakoplos

3In (Allen 1981) and (Allen 1985a), after the realization of the state of information,
investors are assumed to know their endowments and prices but they �nd out about their
preferences from prices. In her model, that's the only incentive to learn from prices. Here
investors are assumed to know their endowments and preferences, and use that knowledge
to predict prices.

4This is similar to the setup in (Green 1977). Notice that we chose this formulation over
the formulation that agents re�ne their information from their endowments and preferences
directly to keep the problem �nite-dimensional. Noise trading is a special case of this setup.
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and Polemarchakis 1986). For instance, it rules out R = [ 1�1 ] and
R =

h 1 1�1 0
0 �1

i
, i.e. economies where no asset and no combination of

assets can be used as a \safe asset" to carry purchasing power over to
the next period.

H5 The consumption set is Xh � RS+1
++ . Von-Neumann{Morgenstern util-

ity functions are smooth, strictly di�erentiably concave, satisfy limx!0
uhs
0(x) = +1 for s = 0; 1; : : : ; S, and are di�erentiable monotonic, by

which we mean that uhs
0(x) � k > 0 for all x > 0, s = 0; : : : S. Notice

that the Von-Neumann-Morgenstern utility functions may contain dis-
count factors. Investors are assumed to be expected utility maximizers
as far as period-zero price uncertainty is concerned as well. We also
de�ne Uh � uh0 +

P
s psuhs . U is the set of such utility functions.

H6 Initial commodity endowments are!h 2 RS+1
++ .

H7 The asset demand function for some asset a must be measurable w.r.t.
the information of team member (h; a), Fh;a. It is denoted by �ha =
fha (qa; eh)[�], where � is the investor's forecast function (to be de�ned
in more detail below, basically it is a function mapping an� 2 E to an
equilibrium price vector q = �(�)).

Having reviewed the main ingredients, in the next two sections we elabo-
rate upon the two assumptions that we consider innovative and that play a
crucial role in the results derived.

Remark 1 As alluded to before, our model encompasses a number of pos-
sible sources of immediacy risk. We mentioned preference and endowment
risk. More restrictively, one may assume that preferences and endowments of
agents h = 1; : : : H are common knowledge, but that agentH+1 is a represen-
tative noise trader. The noise trades ofH+1 are randomly chosen in E � RA,
the set of noise trades on which the noise trader has no need to default and
which still allow markets to clear, i.e. E =

�
� 2 RA : ds � � 2 ��!�s;Ph !hs

�
;

all s 2 Sg, where !�s 2 R++ is the noise trader's endowments in period 2 in
state s.
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3 The Role of Immediacy Risk.
First, we would like to discuss two interpretations of Rational Expectations
Equilibria, REE in short. In order to de�ne by what we mean by REE, we
need:

De�nition 1 A price function or a forecast function ((Radner 1979)) � is
any F=BA-measurable mapping from the set of states of informationE to the
space of asset price vectors, a subset ofRA.

By a REE we then mean:

De�nition 2 A Rational Expectations Equilibrium is a price function � and
asset demands ffha ga2A;h2H solving the investors' problems, such that markets
clear and forecasts are con�rmed:X

h2H
fha (�(�); gh(�))[�] = 0 (almost all � 2 E); (8a 2 A)

Commodities markets then clear by Walras' Law.
There are two interpretations of REE that are relevant in our context:

First, in the market maker interpretation, the economy works as follows:

1. The auctioneer or the market maker knows everything about the deep
parameters of the economy, summarized in the state of information�.
He makes the pricing function � known to all participants.

2. Since he knows all the deep parameters �, he quotes a price vector q
that equals �(�).

3. Investors observe q, update their information via the preimage��1(q),
and submit their market orders (i.e. quantities only).

4. By construction, all market orders exactly sum up to 0.

Alternatively, the algorithm approach seems closer to the actual workings
of order-driven markets, where the auctioneer is a piece of software that takes
the demand and supply schedules as inputs and matches them whenever
possible.

1. The investors have the same forecast function�, and we can think of
the auctioneer as being a computer.
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2. Investors submit (excess) demand functions. They are functions of
prices q, since the investors do not observe market clearing prices at
the time they submit the schedules. However, the demand schedules
incorporate the updating ��1(q). In that respect they yield the equi-
librium portfolio demand for each market clearing price.

3. The auctioneer sums up the demands and solves for q (if a solution
exists). By investor rationality, q = �(�) for each realization of � (the
forecast function coincides with the pricing function).

In this second interpretation, investors never explicitly observe prices and
then update their beliefs and demands. The information re�nement is di-
rectly integrated into the schedules. This introduces price uncertainty at the
time the investors submit their orders. Investors know the price distribu-
tion, but they cannot be exactly sure at which prices their orders will be
executed. This we call immediacy risk, and it basically reverses the standard
timing which assumes that investors �rst observe prices and then submit
their orders. The traditional economy where agents have rational expec-
tations and observe prices before choosing their optimal actions is called a
Radner economy.

We can show the following equivalence relation:

Lemma 1 If, in a Radner economy, we impose the additional constraint
that agents have to submit their excess demand schedules before prices are
observed, the Rational Expectations Equilibrium will be una�ected.

In other words, both interpretations of REE coincide.

4 The Role of Asset-Speci�c Orders.
Let us depart from the Radner model by adding the unique constraint upon
investors that the demand function for asset a may only be explicitly con-
ditioned on its own price, rather than on the entire price vector. We call
this restriction \asset-speci�city." Since we abstract from immediacy risk,
the investor is able to observe the Radner price vector qR = �(�) before
forming his demand, and submits the function fha (qa; qR�a), a function of the
�rst variable, qa, only. The investor simply hides the second element qR�a
from the auctioneer. The auctioneer solves

P
h fha (qa; qR�a) = 0 for qRa = �(�):
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the standard equilibrium is trivially una�ected by this constraint. We have
shown

Lemma 2 Any REE in a Radner economy is also an equilibrium if asset
demands are constrained to be asset-speci�c.

Next, let us keep the asset-speci�city constraint, but add the further
constraint of immediacy risk. We now face a modelling choice as to whether
E , the support of �, is a countable or uncountable set. It turns out that in
order to generate nontrivial results, the underlying probability space has to
be uncountable (as de�ned and assumed in H2). The reason is in fact very
simple. If the state space is �nite, we can show that the team member (h; a)
can induce the payo� relevant joint signal from the price of asseta only (and
the same must hold for all assets a 2 A), i.e. typically any single price qb is
fully revealing. Indeed, an argument identical to Radner's ((Radner 1979))
shows that the following system of aggregate excess demands (a superscript
\R" means the demand function is a standard REE demand function) has
typically no solution (the two di�erent realizations of the joint signals aree
and e0): X

h

fR;ha (q; eh) = 0 (8a 2 A)X
h

fR;ha (q; eh0) = 0 (8a 2 A)

qb = q0b
e 6= e0

Let us denote the Radner REE by �̂ and assume asset-speci�city away.
Then every single price is fully revealing all the other prices via q�a =
�̂�a(�̂�1

a (qa)). Denote such a price vector by qR. Now do impose asset-
speci�city as well, and the investor hands over the schedule

fha (qa; eh) = fR;ha (qa; �̂�a(�̂�1
a (qa)); eh)

to the auctioneer clearing market a, and the full-communication equilibrium
ensues, as qR = �̂(�) (the Radner equilibrium price which solves

P
h fR;ha (qRa ; qR�a; eh) =

0, all a 2 A) solves this new system of equations as well:
P

h fR;ha (qRa ; �̂�a(�̂�1
a (qRa )); eh) =

0, all a because �̂�a(�̂�1
a (qRa )) = qR�a.
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Loosely speaking, however, investors have to be a bit 'more precise' be-
cause they have to be able to induce the joint signal from a single price,
rather than from a price vector. We sum this discussion up in the following
lemma.

Lemma 3 (Discrete States) When the state of information is a discrete
random variable, adding the combined assumption of asset-speci�c orders and
of immediacy risk does not change the Radner REE.

Typically, this is no longer true when an asset price does not reveal all
payo� relevant information. For the Radner REE�̂ to still be an equilibrium,
it has to solve both

P
h fR;ha (�̂a(�); �̂�a(�); gh(�))[�̂] = 0, the de�ning equilib-

rium condition, and
P

h fha (�̂a(�); gh(�))[�̂] = 0, a = 1; : : : A. The function
fha (�̂a(�); gh(�))[�̂] is the demand function for team member (h; a), who de-
cides about the holdings of asseta for agent h and whose information is given
by Fh;a. So unless the information gathered from �̂�a is super
uous, it will
typically be the case that

P
h fha (�̂a; eh)[�̂] 6= 0: the Radner REE pricing

function �̂ no longer clears markets, and the new one that does is denoted
by �. Consider the system of equations

0 =
X
h

fR;ha (qa; q�a; eh)[�̂] ; a = 1; : : : A

0 =
X
h

fh1 (q1; eh)[�̂]

To see intuitively why we cannot typically expect a solution to this system
of A + 1 equations in A unknowns, assume to the contrary that there is a
solution at some � 2 E. Perturb the endowments of agents 1 and 2 as
d!1

s = d1
s and d!2

s = �d1
s, s = 1; : : : S, and d!1

0 = �q1 = �d!2
0. Call this

state of information �0. It follows that in the Radner equilibrium prices are
una�ected, �̂(�) = �̂(�0) and dfR;11 = �1 = �dfR;21 . However, Radner pricing
�̂(�0) is typically no longer an equilibrium in the immediacy risk economy.
Agent 1 observes a new endowment vector and updates his information to
F1, but he does not observe d!2, and similarly for agent 2. If �̂ is still an
equilibrium, the price is q1 = �̂1(�) = �̂1(�0). But since for non-degenerate g
functions the information of agents 1 and 2 are a�ected asymmetrically, we
expect that df1

1 6= �df2
1 , so that

P
h fh1 (�̂1(�0); gh(�0))[�̂] 6= 0.
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5 The Investor Problem
In this section we analyze the optimal investment decisions of a rational
investor or household. Such an investor's views of the workings of an economy
can be summarized by his forecast function, �. Assume that � : E ! RA is
F=BA measurable, where BA is the appropriate Borelian sigma-algebra.

The household problem consists in choosingFh;a-measurable schedules5
fha (qa; eh) for every asset a, where Fh;a = �(gh; �a) and where eh = gh(�)
and qa = �a(�). A particular team member (h; b) tries to solve the interim
problem [P:i]:

max
�hb

E[UhkFh;b]

= max
�hb

E

"
uh0

�
!h0 �

X
a6=b

fha (�a; eh)�a � �hb qb
�

[P:i]

+
X
s

psuhs

�
!hs +

X
a6=b

da;sfha (�a; eh) + db;s�hb

�



Fh;b#
Assume that the di�erentiation and integration operators are exchange-

able. Then the �rst order condition with respect to�hb for an interior solution
is

qb =
X
s

db;s

"
E[psuhs

0(!hs +
P

a fha (�a; eh)da;s)kFh;b]
E[uh0

0(!h0 �Pa fha (�a; eh)qa)kFh;b]
#

The term in the outer brackets, call it �h;bs , is the state-price that is
speci�c to asset b, or maybe to a speci�c market-maker or exchange. The
intertemporal marginal rate of substitution cannot, in contrast to standard
models, play the role of a stochastic pricing kernel since the�h;b used in the
pricing of asset b does not typically price any other asset. This is the crucial

5Since each optimal portfolio �ha will to be measurable w.r.t. �(gh; �a), there is a
Baire function fha satisfying �ha = fha (qa; eh) (refer for instance to (Krickeberg 1965),
Theorem 2.5 on p.139). The optimal demand functions fha also depend on the entire
function � (as opposed to a particular realization of the random variable�), since the agent
updates via ��1

a (qa) and then forms his views about the other prices via the correspondence
��a(��1

a (qa)). We might thus write them as �ha = fha (qa; eh)[�]. The dependence on eh
and � (as a function) will often be left implicit in order to simplify notation.
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asset-pricing implication of this model that will allow us to generate ine�cient
and mispriced equilibrium prices without recourse to ad-hoc assumptions.
Informational innovations in one part of the markets are not immediately and
simultaneously incorporated into all other prices, as standard REE models
assume.

Given the demand functions for the other assets, fh�b(�), and the real-
ization qb, the FOC determines the optimal amount of asset b to buy, �hb .
Repeating that exercise for every value of qb, we can trace out a demand
function. However, we still have to guarantee that demand functions exist,
i.e. that there are such functions solving the �xed-point problem.

Proposition 1 (Existence of demand functions) Assume the investment
opportunity set is truncated to a compact set. For given (eh; �) and under
the standard assumptions, there exists a Fh;a-measurable demand function
fha : qa 7! �ha = fha (qa; eh)[�] for any asset a 2 A.

The investment opportunity set is truncated to a compact set for we want
to show the existence of demand functions for any pricing function� and any
realization � 2 E, some of which may allow for an arbitrage.

6 Equilibrium
The existence of REE with truly partially revealing prices is in general prob-
lematic, c.f. (Green 1977), (Kreps 1977) and (Jordan and Radner 1982) for
instances of non-existence, and (Allen 1985a), (Allen 1985b), (Ausubel 1990),
(Heifetz and Polemarchakis 1998) and the family of CARA-normal �nance
models for di�erent special contexts in which equilibria do exist. Over and
above the problems typically encountered in this strand of literature, the
set of admissible equilibrium price functions is a delicate issue here. It is
well-known that in standard economies the image of� is a subset of Q, the
set of no-arbitrage prices de�ned as follows:

De�nition 3 A price vector q admits No Arbitrage (NA) if there is no trade
y 2 RA such that

either y0q � 0 and Ry > 0;
or y0q < 0 and Ry � 0

The set of such vectors is denoted byQ.
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This is overly restrictive in our setup: the fact that�(�) allows for arbi-
trage does not prevent it from being an equilibrium, since no investor may
realize that there is an arbitrage (as de�ned in De�nition 3, which makes no
reference to information sets). Further, assume that� is such that at �a(�)
team member (h; a) knows for sure that there is an arbitrage strategy involv-
ing asset a. This does not necessarily cause the price system to be nonviable,
since the other legs of the operation may not realize there is an arbitrage.
Worse, suppose all legs of the arbitrage trade know there is an arbitrage at
�(�), but that one or more of them do not know that the others know it. In
short, the team members will not be able to fully take advantage of this op-
portunity unless it is common knowledge (CK) among the relevant subset of
team members. They will only take advantage of what in e�ect amounts to
a very good deal. But due to the possibility that the submitted demands do
not form an arbitrage portfolio, their decision problem is well-de�ned and a
solution exists. The section below contains a number of illustrative examples
that show that the set of admissible pricing functions� is much larger than
the set in standard RE economies. Even price realizations that are far inside
the set of arbitrage prices may be compatible with a REE.

6.1 Illustrations
Assume that the �rst asset pays o� 1 in the �rst state only, while the second
asset is a riskless bond, R = [ 1 1

0 1 ]. The absence of arbitrage corresponds to
the requirement that q2 > q1 > 0. As a convention, on the �gures below
the price realization is represented by a bold point, and the set of possible
realizations of the price vector by the respective team member is represented
by a bold line. Example 1 shows a� that is not compatible with equilibrium
because it is CK that there is an arbitrage.

Insert
figure 1

here
In Figure 2, team member (h; 1) knows there is an arbitrage, but (h; 2)

does not. The bold line represents the set of all possible prices according
to member (h; 1)'s information set, and it is included in the set of arbitrage
prices.

Insert
figure 2

here
The next example (Figure 3) shows a � and a price realization at which

both team members know there is an arbitrage, but no-one knows that the
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other knows.
Insert

figure 3
here

An example where � and the price realization are such that both know
there is an arbitrage, member 2 knows that 1 knows it, but 1 does not know
that 2 knows is illustrated in Figure 4.

Insert
figure 4

here
The �nal example (Figure 5) illustrates how much larger the set of admis-

sible price functions can be, compared to the standard model. Even at a price
realization like the one given by the bold dot it is easy to verify that it is not
common knowledge that there is an arbitrage (i.e. 1 knows, 2 knows, 1 knows
that 2 knows, 2 knows that 1 knows, 1 knows that 2 knows that 1 knows
etc, but not ad in�nitum). Thus there is some probability of miscoordination
which guarantees that their portfolio problem is well-de�ned.

Insert
figure 5

here

6.2 Domain of the Pricing Function
In order to summarize the previous discussion a bit more formally, we de�ne
G to be the powerset of A, the set of all subsets of A. Also, de�ne the
set of realizations � that yield an arbitrage opportunity that can be taken
advantage of by some set of tradersG 2 G having the information of investor
h by

Eh;G(�) ��� 2 E : it is f�(gh(�); �a(�))ga2G � common-knowledge that

6 9� 2 RS++ such that �a(�) =
X
s2S

da;s�s for all a 2 G	
By an event being f�(gh(�); �a(�))ga2G�CK we mean that the event is CK for
the subset of investor h's team members a 2 G, given that the sigma-algebra
of (h; a) is given by �(gh(�); �a(�)), all a 2 G.

A pricing function then needs to belong to

� � �� : E ! RA; F=BA-measurable; such that �
�[h2H;G2GEh;G(�)

�
= 0
	

Notice that this formulation also eliminates single-agent arbitrages in
which an agent (h; a) knows there is an arbitrage that he can exploit on his
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own. Indeed, if G = fag, then realizations � such that there is no � 2 RS++
for which �a(�) =

P
s �sda;s have zero measure if � 2 �. For instance, a bond

with a sure payo� of 1 in each state cannot have a non-positive price.
The following proposition is then an easy consequence of Proposition 1:

Proposition 2 For � 2 �, demand functions are well-de�ned.

There are no general equilibrium existence results for standard rational
expectations economies, and there are a number of counterexamples to ex-
istence (e.g. (Green 1977)). Our aim in not to extend on the literature on
existence. Still, we would brie
y like to point out that, just as in (Allen
1985a), equilibria exist in our model if we allow for what may be called a
fuzzy price economy, where the actual transacting price is a properly per-
turbed version of the \true equilibrium price." In general, however, the
frictions we introduce in this paper exacerbate the di�culties of establishing
the behaviour of demand functions, the domain of viable prices and the exis-
tence of equilibria. Therefore, in the remainder of this paper, we shall assume
that an equilibrium exists and study some of its qualitative properties.

6.3 Arbitrage
The joint assumption of immediacy risk and of asset-speci�city may generate
arbitrage opportunities with positive probability, depending on (E ; �; R).6
Since in our economy prices are determined locally,qa = da ��a, a 2 A, there
is no guarantee that there is a �� 0 for which qa = �a(�) = da � �, 8a 2 A.
As a function of �, prices of di�erent assets are determined by di�erent state-
prices and depend on local information, and there is no reason why the
resulting price vector q should not admit free lunches. This is clearest if we
assume that the state of information �a only a�ects demand for asset a, in
which case qa = da ��a(�a). As long as the fact that q represents an arbitrage
is not common knowledge for any subset of agents (h;A0), A0 � A, there is
no force driving prices into the set of no-arbitrage prices.

The ingredients needed to induce �(E) \ Q 6= ; are threefold. First, �
must be well-behaved. In particular, � must not map all points � 2 E into
\too small a set." Second, it is obvious that E needs to be \large enough,"

6Of course, in the fuzzy price economy, the probability of arbitrage depends on the
exogenous speci�cation of the support of the fuzzy prices. If the support is all ofRA,
arbitrage price vectors trivially occur in a fuzzy price equilibrium.
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else the equilibria will be too close to the Radner REE (if� is well-behaved),
which cannot allow for any arbitrage. Lastly, we have to allow for asset
payo�s that are general enough so that an arbitrage can be constructed at
all. This latter requirement is guaranteed by H4 which warrants that there
is a portfolio y such that Ry� 0.

If these conditions are satis�ed, it becomes apparent that arbitrage is
possible, for we have enough degrees of freedom to choose � for which f� 2
RS : R0� = �(�)g \RS++ = ;. A simple example (taken from (Zigrand 2001))
may be instructive.

Example 1 Consider the CAPM economy (quadratic Von Neumann - Mor-
genstern utility functions over time two consumption and linear time zero
utility function over time one consumption). Assume also that� 2 RA repre-
sents a stochastic asset supply, assumed to be multivariate normalN(0;��).

Because the support of � is all of the real space, E = RA, this speci�cation
simpli�es the equilibrium existence problem. There cannot be any situation
where it is common knowledge to some subset of traders that there is an
arbitrage opportunity, �

�[h2H;G2GEh;G(�)
�

= 0, and the domain for � is the
set of all F=BA- measurable functions.

Then it can be shown that the REE pricing function� is an isomorphism,
�(�) = F+G�, with parametersF 2 RA and G a diagonal and invertibleA�A
matrix. Arbitrage may therefore occur with strictly positive�� probability (a
simple proof is in the appendix).

Interestingly, if � is bijective as in this example, the equilibrium price vec-
tor is fully revealing the state of information. In that case the equilibrium is
fully e�cient and Pareto optimal in standard economies. Nevertheless, even
in that benchmark economy, equilibria may exhibit arbitrage opportunities
and allocational ine�ciencies under the maintained plausible assumptions of
asset-speci�city and immediacy risk. The next section shows that equilibria
are characterized by informational ine�ciency as well.

6.4 Informational E�ciency
Here we analyze the information transmission across exchanges or across pits
at these equilibria. If each pit is hit by an independent demand or supply
shock and if no investors can trade on more than one pit, no information
can be transmitted. In our setup, however, prices are correlated so that each
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observed asset price reveals information about all the states of information.
Still, at a given typical realization (qb; eh), markets remain ine�cient:

Proposition 3 (Degree of Information Revelation ) Assume that the
equilibrium price function � is smooth. De�ne (h; b)'s observation function
ih;b : E ! D � R� P by ih;b : � 7! (�b; gh)(�). It follows from H3 that ih;b is
a smooth mapping between smooth manifolds. Then for a dense set of prices
and individual characteristics (qb; eh), denoted by Z, whose complement is of
Lebesgue measure zero inRP+1, the dimension of residual uncertainty facing
team member (h; b) is E � P � 1.

This result can be strengthened when more is known on the observation
function:

Example 1 (contd) In this economy the observation functions ih;b = �b
are submersions. Since submersions do not admit any critical points, the
previous proposition is actually true for any state of information. In other
words, the dimension of residual uncertainty facing team member (h; b) is
E � 1 with �- probability one.

7 Conclusion
This paper proposes a plausible framework in which to address general equi-
librium pricing implications.

First, we show that under standard assumptions, some micro market
structure aspects (if taken one at a time) are not crucial because equilibria
coincide with standard REE.

Second, we analyze a class of models in which the marketstructure does
matter. We do this by combining two plausible and appealing conditions on
how orders are computed, submitted and executed. The implication is that a
piece of information on one market needs not be immediately re
ected in all
other prices. These marketstructure assumptions dispense with noise trading
as a means to avoid complete information revelation and thus help avoid
the Grossman-Stiglitz paradox (see (Grossman and Stiglitz 1980)). While
agents would have been perfectly informed from prices in a standard economy,
calling for a blurring device in order to generate imperfect information and
an incentive to gather and pay for informative signals, no such device is
necessary here.
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Third, we show that given the imperfect knowledge of any one trader
about the other traders' deep parameters, equilibria may exhibit mispricings,
and therefore arbitrage opportunities.

The proposed marketstructure assumptions break perfect risk-sharing,
enable investors to gain from better information and allow us to view markets
much more as the decentralized places they are, as opposed to the idealized
frictionless simultaneous worldwide auction envisaged by Walras. We believe
that the plausible framework introduced in this paper therefore lends itself to
the study of a number of more applied �nancial problems. Some applications
of the setup proposed in this paper to asset pricing can be found in (Zigrand
2001).

One �nal application of the framework is to view it as a mechanism to
generate arbitrage opportunities, and to explicitly account for arbitrageurs.
Along the line of (Zigrand 1999), arbitrageurs can be fruitfully modelled as
strategic Cournot competitors, taking as given the Walrasian correspondence
generated in this model. In other words, by paying �xed entry fees, arbi-
trageurs acquired a technology that allows them to trade without immediacy
risk. With costly entry into the arbitraging business, the Cournot-Walras
equilibrium characterizes the number of active players, the degree of inte-
gration as well as the degree of informational e�ciency since arbitrageurs
e�ectively make markets more revealing.
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Appendix: Proofs
Proof of Lemma 1 At a standard REE, investors observe the price realiza-
tion q = �(�) and solve their asset allocation problem

�h;� = arg max
�2RAE[Uhk�(gh; �)] [R]

Since each optimal portfolio �h;� is measurable w.r.t. �(gh; �), this gen-
erates a Baire function (Borel-measurable functionf : Rn ! Rn) fh;� satis-
fying �h;� = fh;�(q; eh) (refer for instance to (Krickeberg 1965), Theorem 2.5
on p.139).

On the other hand, assume the same standard investor optimization prob-
lem, but with the added feature of price uncertainty at the time zero opti-
mization stage. Recall that investors have common prior beliefs (summarized
by the measure�) over states of information �. They choose, given their infor-
mation Fh = �(gh), an (version of the) optimal Baire functionfh : RA ! RA
s.t.

fh = arg max
F :RA!RAE

�
uh0
�
!h0 (�)� �(�) � F (�(�)); �

�
+X

s

psuhs
�
ds � F (�(�)) + !hs (�); �

�



�(gh)
�

[IR]

First, we show that the argmax fh of the immediacy risk problem [IR]
also solves the Radner problem [R]. Assume to the contrary that, forq 2W
where the set W is measurable with respect to �(gh) with positive measure
(conditional on �(gh)), fh(q) 6= fh;�(q). Then on W we have that

E[Uh(fh;�)k�(gh; �)] > E[Uh(fh)k�(gh; �)]

The function F de�ned as F = fh if q 62 W and F = fh;�(q) if q 2 W then
satis�es

E[Uh(F )k�(gh)] > E[Uh(fh)k�(gh)]

contradicting the maximality of fh.
Second, we show that the function fh;� also solves [IR]. Since there

is no ex-ante link between the events represented by the sets in �(gh; �),
the investor can optimize event by event, and the derived demand func-
tions are the standard Marshallian demand functions. In other words, since
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E[Uhk�(gh)] = E[E[Uhk�(gh; �)]k�(gh)], maximizing E[Uhk�(gh; �)] auto-
matically maximizes the entire expression.

It follows that the resulting equilibrium price vector will indeed be in
the set of no-arbitrage prices, which we denote byQ (de�ned in Section 6),
and coincides with the REE equilibrium of the economy without immediacy
risk (ignoring issues arising from multiple and sunspot equilibria). In other
words, both interpretations of REE that we advanced above are formally
equivalent.

Proof of Proposition 1 (Existence of Demand Functions)The proof
goes along similar lines as the proof of 1. The �xed point problem can be
transformed into an easier problem as follows. Rather than maximize the
interim objective, given Fh;a, we maximize the ex-ante objective [P.ea.], i.e.
given Fh, by choosing (for a given eh) Baire functions fha : R ! R for all
a 2 A (which we could again denote by fha (qa; eh)[�]):

V h(gh)[�] = maxffha :R!RgAa=1

E[Uh(xh(fh))kFh] [P:ea]

where the budget constraints are used in the functions

(xh � fh) � q =

26664
(xh0 � fh) � q

...
(xhs � fh) � q

...

37775 =

26664
!h0 �Pa fha (qa)qa

...
!hs +

P
a fha (qa)da;s
...

37775
Measurability is then guaranteed: for two realizations q and q0 of the ran-
dom variable �, fha (qa) =fha (q0a) if qa=q0a. If this standard problem admits a
solution, this same solution also has to be a solution to each team member's
problem. Indeed, let f� represent the solution to the ex-ante problem, and
let �hb (qb) 2 R represent the solution to the interim (given qb) problem of

max
�hb 2R

E[UhkFh;b]

Keeping in mind thatE[UhkFh] = E[E[UhkFh;b]kFh], assume that f�b (qb)
does not maximize the interim problem (for a nonnull set of pricesqb 2 A).
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Then setting fb(qb) = �hb (qb) for qb 2 A and fb(qb) = f�b (qb) for qb 2 R n A
yields a strictly higher ex-ante utility, contradicting the optimality off�.

Assume that the space of demand functions f : RA ! RA (but where
each of the A functions only maps R to R) is the normed vector spaceLA1 of
measurable functions with the norm

kfk � E[jf j kFh] = E

24  AX
a=1

fa(qa)2

!1=2

kFh
35

Obviously, for certain pricing functions, the optimization problem may not
admit a solution unless we restrict the domain of choice. We are thus led
to truncate the investment opportunity set by insisting that investors choose
(f; x) 2 K \ B � (K 0 �K 00) \ B, K 0 and K 00 compact rectangles in LA1 and
LS+1

1 respectively, with center at the origin, andB the budget set. Here the
object of choice x is also a Baire function, x : RA ! RS+1, for given eh and
�. The constraint set is compact and convex. The demand functions solve
the truncated problem:

max
(f;x)2K\BW (x) � E �Uh(x)kFh�

The objective functionW is continuous and strictly concave. To see conti-
nuity, limn!1E[Uh(xn)kFh] = E[Uh(limn!1 xn)kFh], notice that jUh(xn)j
� w � sup~x2K00 Uh(~x) �MU <1, and that w is evidently integrable. So by
the Lebesgue convergence theorem,

lim
n!1E[Uh(xn)kFh] = E[ lim

n!1U
h(xn)kFh] = E[Uh( lim

n!1xn)kFh]
where the last equality follows from the assumed continuity ofUh(�). Strict
concavity is evident: W (�x0 + (1 � �)x00) = E[Uh(�x0 + (1 � �)x00)kFh]
< E[�Uh(x0) + (1� �)Uh(x00)kFh] =�W (x0) + (1� �)W (x00).

Now since K is compact and W continuous, as functions of (eh; �), (f; x)
is nonempty and convex-valued, and by the strict concavity ofW and the
convexity of the constraint set, (f; x) is single-valued.

Proof that Arbitrage can Occur with Positive Probability in Ex-
ample 1 Consider the set Y � fy 2 RA : Ry � 0g, nonempty by H3. It
is su�cient to show that the set P � � fq 2 RA : 9y 2 Y : q0y � 0g has
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strictly positive derived measure over asset prices, � � � � ��1. De�ne the
set P � �Y . We show �rst that P � int(P �), and second that �(P ) > 0.

P only contains arbitrage prices: take anyq 2 P and let the asset demand
be y = �q 2 Y . Then since y 2 Y , Ry� 0, and since y = �q, q0y = �q0q <
0: P � int (P �).

Upon inspection, it is clear that the linear mapping de�ned by R is
transversal to RS++. It follows that Y is a manifold of dimension A and
has positive A-Lebesgue measure, and so doesP . Notice that �(E)\P 6= ;.
Since the pricing function � is an isomorphism, the preimage of P in E via
� has positive �-measure as well.

Proof of Proposition 3. Similar to (Allen 1985b) and (Heifetz and Pole-
marchakis 1998). By Sard's Theorem ((Guillemin and Pollack 1974)), the set
of critical values of ih;b is of Lebesgue measure zero and its complementZ is
dense. By the regular value theorem, ih;b�1(qb; eh) is an E�P�1 dimensional
smooth manifold for every (qb; eh) 2 Z.
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Figure 1: � is not admissible. It is common knowledge that there is an
arbitrage opportunity.
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Figure 2: � is admissible. 1 knows there is an arbitrage, but 2 doesn't.
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Figure 3: � is admissible. Both know there is an arbitrage, but no agent
knows that the other agent knows.
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Figure 4: � is admissible. Both know there is an arbitrage, 2 knows that 1
knows, but 1 does not know whether 2 knows.
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Figure 5: � is admissible. Both know there is an arbitrage, and each one
knows that the other one knows, and 1 knows that 2 knows that 1 knows
etc., but not ad in�nitum.
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