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Abstract

We develop generalised indirect inference procedures that handle equality and
inequality constraints on the auxiliary model parameters. We also show that the
asymptotic efficiency of such estimators can never decrease by explicitly taking
into account Lagrange multipliers associated with additional equality constraints,
regardless of whether the restrictions are correct. Furthermore, we discuss the
variety of effects on efficiency that can result from imposing some constraints on
the parameters of a previously unrestricted model. As examples, we consider
MA(1) estimated through AR(1), AR(1) through MA(1), and stochastic volatility

through GARCH with Gaussian or t distributed errors.

Keywords: Simulation estimators, GMM, Minimum distance, ARCH, stochastic
volatility
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1 Introduction

Consider a stochastic process, ¢, characterised by the sequence of parametric
conditional densities ( X;_ ;p), where p denotes the parameters of interest,
and X, = { . }. Consider also a possibly misspecified, auxiliary
model, described by the sequence of conditional densities ( 4X;_ ;0), where
0 is a dimensional vector of parameters, with < . In those situations in
which no closed-form expression for ( ;|X;_ ;p) exists, but at the same time it
is easy to estimate @, or to compute expectations of possibly nonlinear functions
of 4, either analytically, or by simulation or quadrature, the indirect inference
(IT) procedures of Gallant and Tauchen (1996) (GT), Gourieroux, Monfort and
Renault (1993) (GMR) and Smith (1993) provide convenient estimation methods,
which have made a substantial impact on the practice of econometrics over recent
years. Specifically, the II procedure of GMR uses the pseudo-maximum likelihood
(ML) estimators of 8 as sample statistics on which to base a classical minimum
distance (CMD) estimator of p. In contrast, the procedure proposed by GT
derives a generalised method of moments (GMM) estimator of the parameters of
interest on the basis of the score of the auxiliary model evaluated at the pseudo-
ML estimators. Under certain conditions, both procedures lead to asymptotically
normal estimators of the structural parameters p, which, in fact, can be made
equivalent by an appropriate choice of the CMD and GMM weighting matrices
(see e.g. Proposition 4.3 in Gourieroux and Monfort, 1996) (GM96).

One of those conditions, though, is that the parameters of the auxiliary model
are unrestricted, and consequently, that their pseudo-ML estimators have asymp-
totically normal distribution with a full rank covariance matrix under standard
regularity conditions (see e.g. Gourieroux, Monfort and Trognon (1984) or White
(1982) for a discussion of unconstrained pseudo ML estimation). The first con-

tribution of our paper is to show how II procedures can be generalised to handle



equality and/or inequality restrictions on €. In particular, we propose an alterna-
tive set of moment restrictions based on the first order conditions for (in)equality
restricted models, which nest the ones employed by GT when there are no con-
straints, or when they are not binding, but which remain valid even if they are. We
also derive the corresponding optimal GMM weighting matrix, and explain how
it can be consistently estimated in practice. In addition, we combine the “con-
strained” parameter estimators and Lagrange/Kuhn-Tucker multipliers to extend
the original class of CMD II estimators of GMR to the possibly restricted case.
We also prove that like in the unconstrained case, we can find “restricted” CMD II
estimators that are asymptotically equivalent to the GMM estimators by an appro-
priate choice of weighting matrix. And although we concentrate for expositional
purposes on pseudo-ML estimation of the auxiliary model under the assumption
that the form of the density function is time-invariant, and ; strictly station-
ary and ergodic, our procedures can be extended to cover any other extremum
estimators of just identified auxiliary models under more general circumstances,
such as M-estimators or method of moments (see section 4.1.3 of GM96). For
analogous reasons, we deliberately separate the results directly related to our pro-
posed modification of the existing II procedures from the way one would conduct
numerical simulation in practice. Nevertheless, since very often one has to resort
to simulation to implement II procedures, we include an appendix in which some
relevant issues are discussed.

There are at least two important reasons for taking into account some in-
equality restrictions in the estimation of the auxiliary model in actual empirical
applications. The first, and most obvious one, is that the pseudo log-likelihood
function may not be well defined when certain parameter restrictions are violated,
as would be the case when dealing with (transition) probabilities, (un)conditional

variance/covariance structures, or some non-Gaussian distributions (see e.g. the



examples in section 8.2 of GMR and section 4.1 of GT). In other cases, though,
the log-likelihood function can always be computed, but some of the auxiliary pa-
rameters may become underidentified in certain regions of the auxiliary parameter
space, so that we may decide to restrict it to avoid such discontinuities (see section
3.3 below, or Calzolari, Fiorentini and Sentana (2001) for examples in which both
situations concur). In either case, the resulting parameter restrictions are often
binding in practice.

As for the relevance of equality constraints, one just needs to realise that
any parametric auxiliary model implicitly contains a vast number of maintained
assumptions, which can often be written in terms of zero restrictions on some
additional parameters, as the extensive literature on Lagrange multiplier-based
specification testing shows. Furthermore, equality restricted procedures may be
particularly useful from a computational point of view, because in many situ-
ations of significant empirical interest, it is considerably simpler to estimate a
special restricted case of the auxiliary model than to maximise the unrestricted
log-likelihood function.

In this context, our second contribution is an extensive discussion of the ef-
fects of the introduction of constraints on the auxiliary model parameters, and
of the way we take them into account, on the efficiency of the estimators of the
parameters of interest. In this respect, we show that the asymptotic efficiency of
IT estimators can never decrease by explicitly taking into account the Lagrange
multipliers associated with the implicit zero constraints mentioned in the previ-
ous paragraph. Importantly, though, such a result in no way requires that the
restrictions are correct. Thus, from a practical point of view, our result suggests
a computationally very simple way to improve the efficiency of existing II esti-
mators, which can be particularly useful when the informational content of the

original auxiliary parameters about the structural parameters appears to be poor.



In addition, we illustrate the variety of effects that can be obtained when some
constraints are imposed on the parameters of a previously unrestricted auxiliary
model. For instance, we discuss several circumstances in which the imposition of
constraints has no effect on the efficiency of the resulting II estimators, and others
in which false constraints enable the restricted II estimators to achieve full effi-
ciency. The reason for such counterintuitive results is that by adding restrictions
to the auxiliary model in those circumstances in which they are not required to
properly define the auxiliary objective function, we are implicitly changing the
auxiliary model, and thereby, the binding functions.

For illustrative purposes, we apply our modified procedures to three time series
models. The first two are (i) an MA(1) process estimated as an AR(1), possibly
with an arbitrary (in)equality constraint on the autoregressive coefficient; and (ii)
an AR(1) process estimated as an MA(1), possibly with a zero or non-positivity
constraint on the moving average coefficient. Apart from helping guide intuition,
the main role of these two examples is to illustrate the range of situations that
can occur. Specifically, we show that the imposition of constraints has no effect
on the efficiency of the II estimators in the case of the MA (1) process estimated
as an AR(1), while it allows us to achieve full efficiency in the case of the AR(1)
process estimated as an MA(1). The third model that we study is the popular
discrete time version of the log-normal stochastic volatility process, which we
estimate via a GARCH(1,1) model with either distributed errors, or Gaussian
ones. This model is important in its own right, and has become the acid test of
any simulation-based estimation method. In addition, it also helps to illustrate
the implementation of our proposed procedures in some non-standard situations.
In particular, the pseudo log-likelihood function based on the distribution cannot
be defined in part of the neighbourhood of the parameter values that correspond to

the Gaussian case, and moreover, some of the auxiliary model parameters become



underidentified under conditional homoskedasticity.

The rest of the paper is organized as follows. In section 2, we include a thor-
ough discussion of “restricted” II procedures, and of the efficiency consequences of
the constraints. Detailed applications of such procedures to the three aforemen-
tioned examples can be found in section 3. Finally, our conclusions are presented
in section 4. Proofs and auxiliary results are gathered in the appendix. But be-
fore deriving our main results, it may be useful to have a quick overview of II

procedures and ML estimation subject to constraints.

A very simple example Let { ;} denote a strictly stationary and ergodic
stochastic process whose data generating mechanism is ; = + Z;’O i t—js
where —oo 0o Y | ;| oo, and { .} is a sequence of random
variables with zero mean and unit variance, and suppose that we decide to use
the auxiliary model ; ~ (1), with —o0 00, to estimate
Since the (minus scaled) pseudo-log likelihood function for a sample of size
on ; (ignoring constants) will be given by ZtT ( ¢+ — ), the unconstrained
pseudo-ML estimator of , 7 say, will simply be the sample mean ~7. For each
value of , we can define the unrestricted binding function “( ) as the value
of that solves the analogue population programme miny [( ;— ) | |, where
the symbol (| ) refers to an expected value computed with respect to the true
distribution of ; evaluated at . Hence, it is clear that “( ) = (4] ) = ,
which is the plim of 7. In this respect, note that “( ) satisfies the population first
order conditions { ;[ “( ) 0]} =0, where [;( 0)]= (= | )= -
is the expected value of the (scaled) score of the auxiliary model. In this context,
an unconstrained CMD II estimator of , "7 say, will be such that it minimises
the distance between the binding function “( ) and its sample counterpart .

in some chosen metric. Similarly, an unconstrained GMM II estimator of , 7



say, will be such that it minimises some norm of the sample moment conditions
[ (7 O)} = — "p. Butsince is an unrestricted scalar parameter, it follows
that "7 = " = “p regardless of the metric chosen. Given our assumptions about
1, it is then straightforward to show that v/ ("% — ) <, [0 (1)], where ()
is the autocovariance generating function of { ;}, and  the true value of
Suppose now that we decide to modify the auxiliary model by adding the
constraint = . At first sight, it might seem that such an equality restricted
auxiliary model no longer has any identification information about  because
the equality constrained pseudo-ML estimator of is trivially = ¢ More
formally, the equality restricted binding function would be () = ¢, which
does not depend on . But such a pessimistic conclusion would be ignoring the
information in the Lagrange multiplier of the constraint, ~% say, which is another
sample statistic associated with the constrained model. In this respect, it is easy to
see from the first order conditions of the equality restricted model that ~5 = € —
“r. By considering the analogous population programme, we can then define the
binding function ¢( )= ¢— as the theoretical value of the Lagrange multiplier
associated with the constraint = ¢ for each value of . Not surprisingly, if
[;C )= (+= + | )= — + denotes the expected value of the first
order derivatives of the (scaled) Lagrangian function with respect to , it is clear
that ©( ) satisfies the population first order conditions { ;[ () ©¢( )]} =0.
On this basis, we can define an equality constrained CMD II estimator of , "7 say,

as the value that minimises the distance between the binding function ¢( ) and its

sample counterpart ~%. in some chosen metric. Similarly, an equality constrained

GMM II estimator of , "% say, will be such that it minimises the norm of the
sample moment conditions [ ;( 7 "%)] = — “7. Somewhat remarkably, it
turns out that "7 = 77 = “r regardless of the value of °.

Finally, suppose that we decide to modify yet again the auxiliary model by



e

replacing the equality constraint = ¢ with the inequality constraint > ©. In

this case, the inequality restricted pseudo-ML estimator of _iT say, will coincide

with the unrestricted estimator . if 7 > ¢ but will be © otherwise. Corre-

spondingly, the Kuhn-Tucker multiplier associated with the constraint > €,
i say, will be zero if 5 > °, but will coincide with the Lagrange multiplier
~¢. when the inequality constraint is violated by . If we solve the analogous
population program, we can define the inequality restricted binding functions
()= “+ -9 (> 9and ()=(°— ) ( ¢), where () is the usual
indicator function. As expected, these binding functions satisfy the population
first-order Kuhn-Tucker conditions { ;[ *() ()]} =0, the complementary
slackness restriction [ °( ) — €| () =0, and the sign restrictions ‘( )— ¢ >0
and ‘() > 0. In this context, we can define an inequality constrained CMD
IT estimator of , "% say, as the value that minimises the distance between the
vector of binding functions [ R )}/ — ‘() and their sample counterparts
<_iT _%), = _iT for some chosen metric. It turns out that the choice of metric is

once more irrelevant in this case because "7 = ~r will make the distance between

‘() and 7;, equal to 0 regardless of whether “r exceeds € or not. Similarly, an

inequality constrained GMM II estimator of , ~% say, can be defined so that it
minimises the norm of the sample moment conditions [ ;(_iT _’T)} = -
Therefore, we have once again that "% = ~%, = ~p irrespective of the value of ©.

Although this example is extremely simple, it illustrates the three main points

of our paper:

1. The statistical properties of II estimators are not any more difficult to ob-
tain with constraints on the auxiliary model parameters than without them.
In fact, from a formal point of view, the inequality restricted problem is not
different from the equality restricted or indeed the unrestricted case, since

in the latter case we can always define a multiplier % as being identically

7



0, so that the corresponding binding function *( ) = 0 is completely unin-
formative about the parameter of interest . Therefore, in all three cases we
would be matching either the distance between the vector of binding func-
tions "( ) and their sample counterparts, 7;, or the norm of the sample
moment conditions [ ;( p )], with = . In this respect, it is
important to mention that the singularity and possible non-normality of the
joint distribution of 7 does not create any particular problems, because
(a) the singularity is confined to the complementary slackness condition
(_TT — e) ~7. = 0, which is completely uninformative about the true value
of ; and (b) the linear combination — 7.+ ~%, which coincides with the

sample moment conditions, is always asymptotically well behaved.

. Relative to the standard practice of ignoring them, our proposed use of
Lagrange and/or Kuhn-Tucker multipliers to take into account constraints
on the auxiliary parameters has an unequivocal non-negative effect on the
asymptotic efficiency of the resulting indirect inference estimators of the
parameters of interest. In this simple example, in particular, the relative
efficiency gain is infinite, since the equality restricted estimator of does

not even enable the identification of

. Once we take the multipliers associated with equality and/or inequality con-
straints into account in our proposed way, though, the efficiency implications
of the precise form of the constraints is unclear. There may be situations,
like the previous example, in which the imposition of constraints has no
effect on the efficiency of the indirect inference estimators of , and others,

in which a restricted II procedure achieves full efficiency.



2 Theoretical set up

2.1 “Restricted” II estimators

Let +(0) =1In ( X ;0), where 8 € ® C R?, denote the density function
of a possibly misspecified auxiliary model, and assume for simplicity of exposition
that its functional form is time-invariant, and that ; is strictly stationary and
ergodic. The pseudo log-likelihood function for a sample of size on ; based
on the auxiliary model (ignoring initial conditions) will therefore be given by

7(0) =>, +(0). Let us now define the (scaled) Lagrangian function

o(B) =L +(0)+ "O)u (1)

where 3 = (0’ 1), and p are the “multipliers” associated with the —constraints
implicitly characterised by the vector of functions (@), which effectively force 6
to lie in a non-empty “restricted” parameter space ®" C ©. Such a set up
is sufficiently general to cover most cases of practical interest, including a mix of
equality and inequality constraints. For the sake of clarity, though, we concentrate
on the three archetypal situations of (a) unconstrained estimation, (b) equality

constraints, and (c) inequality constraints, which can be characterised as follows:

(a) (@) unrestricted p=0
(b) (6)=0 p unrestricted (2)

(c) (6)>0 p>0
Assuming that both the pseudo-log likelihood function 7(8), and the vec-
tor of functions (@) are twice continuously differentiable with respect to 6, the
latter with a Jacobian matrix /(@) € whose rank coincides with the number
of effective constraints at 8, the first-order conditions that take into account the

“constraints” will be given by:
=T T

T LS By =0 ®)

t
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together with the complementary slackness restrictions:

(07) © iy =0 (4)

plus the appropriate (in)equality restrictions on  (87) and/or fi} in (2), where

1(B) = + Iz (5)

is the contribution of the "

observation to the modified score of the auxiliary
model, — indicates pseudo-ML estimators, the superscript = ( ) stands for
unrestricted, equality restricted and inequality restricted respectively, the sub-
script  refers to the sample size of the observed series, and the symbol ® denotes
the Hadamard (or element by element) product of two matrices of the same di-
mensions. Note that the main difference with the usual unrestricted case is that
+(B) not only depends on the auxiliary model parameters €, but also on the

multipliers g associated with the restrictions. In fact, given our assumptions, we

can obtain from (3) the following explicit expression for f}. in terms of 6

—— (07) - '01)]  (07) 1~ 4(0)
where Y is any positive definite (p.d.) matrix of order , which confirms that @’

will be trivially zero in the unrestricted case.

Let us now define
L(p;0)=[.0)|p] (7)

where ( |p) refers to an expected value computed with respect to the distribu-
tion of the model of interest evaluated at p, and assume that L(p;0) is twice
continuously differentiable with respect to both @ and p. For each value of p,
we can define the binding functions for the “constrained” auxiliary parameters 6

and the associated “multipliers” p, B8"(p) = [0"”(p) "' (p)] say, as the values of

10



3 associated with the maximum over the restricted parameter space ©" of the

(population) Lagrangian function

Q(p; B) = L(p;0) + '(O)p 8)

As a result, if we denote by

m(p;8) = [ +(B)p] (9)

the binding functions must satisfy the first-order conditions:

m[p; B"(p)] = O (10)

the exclusion restrictions

[0"(p)] © u'(p) =0 (11)

plus the required (in)equality restrictions on [0"(p)] and/or p"(p) in (2), as
long as the differentiation and expectation operators can be interchanged, which
we assume henceforth. Under those circumstances, we can obtain an explicit

expression for p”(p) in terms of 6"(p) as

“r(p):_{ [6"(P)] ’[9’“(/))]} _10(p)] {M'p} (12)

0’ 0 0’ 0

Let p denote the true value of the parameters of interest, and 3" (p ) the
“constrained” pseudo-true values of 3. To guarantee the local identification of
p , we assume that B"(p ) is locally identified, in the sense that L[p ;0" (p )]
L (p ;0) for any 8 € O in a neighbourhood of 8" (p ). We also assume that the
systems of equations 3" (p) = 3 (p ) and m [p; 3" (p )] = 0 separately admit the
unique solution p = p , which obviously requires the order condition >  (cf.
GM96). If we further assume that both functions are continuously differentiable
in p, a sufficient condition for the identification of p is that the Jacobian matrices

B (p) p and m(p;3) p’ have full column rank. More formally,

11



Assumption 1

[ B’"(p)}
P
{ m [p; B (p )]}
o
for any p in a neighbourhood of p .

As usual, such assumptions are rather difficult to check in non-linear models,
but they are crucial for the consistency of the II estimators that we discuss.
Intuitively, the reason is that when Assumption 1 holds, if we knew 3"(p ), we
could recover p by either inverting the binding functions, or solving the possibly
non-linear system of equations m [p; 3" (p )] = 0 with respect to its first argument
holding the second argument fixed. In practice, though, we do not know the
pseudo true values, but if they are consistently estimated by the auxiliary model,
we can obtain consistent estimators of p by choosing the parameter values that
minimise either some appropriately defined distance between 3"(p) and 37, or a
given norm of the sample moments m(p; BTT) In particular, we can minimise with

respect to p the following quadratic forms:
(i) = [B(p) ~ B7]'- - [(p) — By
or
7(p; ®) = m'(p; Br) - ¥ - m(p; Br)
where € and W are positive semi-definite (p.s.d.) weighting matrices of orders -+
and respectively, and the letters and are a reminder that these objective

functions correspond to CMD and GMM estimation criteria respectively. In what

follows, we shall refer to the resulting estimators

pr(2) = argmin 7(p;€2)

pr(¥) = argmin 7(p; )

12



as the “restricted” CMD and GMM II estimators of p. Obviously, without a
judicious choice of metric that accounts for sample variation in the estimators
of the (in)equality restricted auxiliary parameters and/or multipliers in B, the
asymptotic covariance matrix of pr.(€2) and p7.(¥) is likely to be unnecessarily
large.

Let us start by analysing the second criterion function. It is well known that
if the sample moments m(p; B7) have a limiting normal distribution, the optimal
weighting matrix (in the sense that the difference between the covariance matrices
of the resulting estimator and an estimator based in any other norm is p.s.d.) is
given by the inverse of the asymptotic variance of v/ - m(p; B;) (see e.g. Hansen,
1982). In order to derive the required asymptotic distribution, we assume the
necessary conditions for 87 to converge in probability to 3"(p ) uniformly over
the restricted parameter space, and for a law of large numbers and a central limit
theorem to apply to the Hessian and modified score of the log-likelihood of the

auxiliary model respectively. More formally,

Assumption 2

a0
7lim sup T (p) =0 =1
e " B —p(p)
. 1 :(07) |l _
i {— oo 7|7 !

figtj o) — (0T

where J" and I" are non-stochastic, x  matrices, with " p.d., and 07} is any

sequence that converges in probability to 6" (p ).

In this respect, it is important to note that relative to the standard uncon-

strained case, the main effect of adding the constant term { '[0"(p )] 0} u"(p )

13



to the original score ;[0"(p )] 0 is to centre around zero the asymptotic dis-
tribution of ;[B"(p )]. Therefore, if 8"(p ) is in the interior of the admissible
auxiliary parameter space ®, Assumption 2 is equivalent to the high level assump-
tions made by GMR and GT. In addition, it should be emphasised that there are
many inequality restricted situations in which the pseudo log-likelihood function is
not well-defined outside the restricted parameter space, ®", and yet the (possibly
directional) score and Hessian behave regularly at its boundary (see e.g. the score
of the Student’s GARCH model used in section 3.3 under conditional Gaussianity,
as discussed in Fiorentini, Sentana and Calzolari (2000)).

Unfortunately, we cannot directly rely on the results in GT to derive the
asymptotic distribution of the sample moments m(p; BTT), since the “restricted”
estimator 67, may not be asymptotically normal in large samples in the presence
of inequality constraints (see Andrews (1999) and the references therein). In
addition, the asymptotic distribution of 3} is singular for = ( ). More

specifically:
Proposition 1 Under Assumption 2,

r M\/_ 0.—0" 0" AR —
Wip)o—p 07-6"(p)] + [07(p)] oV [mr—w(p)] = »(1)

Such a singularity is a direct consequence of the fact that the complementary
slackness conditions (4) must always be satisfied by B37. Nevertheless, it is im-
portant to mention that since their population counterparts (11) will be satisfied
for any value of p, the singular combinations of the auxiliary parameters and
multipliers contain no identifying information whatsoever about the parameters
of interest.

In contrast, there are linear combinations that are asymptotically well be-

haved:

14



Proposition 2 Under Assumption 2,

jr + [ur(p )® q] { /[Og/(p )] 0}] \/_ [é;_er(p )}

_I_M\/_ (B —p(p )] + \/_lz (B ()] = (1)

Hence, even though 67 and [} have a singular and possibly non-Gaussian
asymptotic distribution, Proposition 2 shows that under our regularity condi-
tions, there are always linear combinations that are asymptotically normally
distributed, irrespective of the exact nature of the restrictions, and irrespective
of whether the restrictions on [0"(p )] and u"(p ) are satisfied with equality,
or strict inequality. It turns out that those linear combinations are implicitly

contained in the expected value of the modified score:
Proposition 3 Under Assumption 2,

Vol B =S LB )] = (1)

Therefore, v/ m(p ;B87) has indeed a limiting Gaussian distribution, and the
optimal weighting matrix is precisely the inverse of Z".
The following proposition specifies the asymptotic distribution of the (infeasi-

ble) optimal GMM estimator of p based on the “restricted” auxiliary model:

Proposition 4 Under Assumptions 1 and 2

\/_[ﬁrT [(Ir)— } —p} - [0 { ' [p ;8" (p )] (T m[p Qﬁ/r(P )]}]

p p

Given that this expression is completely analogous to the one derived by GT for

their GMM version of the II estimator in the absence of constraints, the required

15



matrices can also be consistently estimated using their suggested procedures. In

particular, since under our assumptions

{ «[B®)lp}=0 ¥

the time-invariant functional form of ,[3], and the strict stationarity and er-

godicity of ; imply that

=Y -[p:Bp)
where
Ap:B) = { «(B) .8)|p}
for >0and .(p;B8)= '_(p;3) for 0, provided that the autocovariance

matrices are absolutely summable (see e.g. Hansen, 1982). Therefore, we could

obtain a consistent estimator of the matrix Z" as

T
Ir=, ()i (13)
T =T*
with
S T .
== Z +(Br) 1/577—<ﬂT)

where () are weights suggested by a standard heteroskedasticity and autocorre-
lation consistent (HAC) covariance estimation procedure, and the corresponding
rate (see e.g. de Jong and Davidson (2000) and the references therein). Then, a
feasible optimal GMM estimator will be given by p’. [(f;)’ } Alternatively, we
could consider continuously updated GMM estimators a la Hansen, Heaton and
Yaaron (1996), by replacing 7 in the above expressions with ,(p; B7).
Another important implication of Proposition 4 is that the usual overidentify-

ing restriction test

p{or (@) @) Y= w {ph (@) 5B} (@) m{ph [(27) ]5Br)

16



converges to a  distribution with — degrees of freedom as — oo, and hence
it can be used in the standard manner to assess the adequacy of the model of
interest to the data.

Let us now turn to the II estimators of p based on the CMD function 7.(p; 2).
Unfortunately, we cannot directly rely on standard CMD theory, because as we
saw before, the limiting distribution of v/ [BTT - B (p )} is singular and possibly
non-normal. To overcome this difficulty, it is convenient to write down the linear
transformations in Propositions 1 and 2 together in terms of the following square

matrix of order + :

o _ | Tty { )l 6y o ()] 6
I w(p)] [07(p)] ¢ { o)}
_ K K"
K Kr
where () is the operator that transforms a vector into a diagonal matrix

of the same order by placing its elements along the main diagonal. Then, if
we transform the CMD conditions by premultiplying them by K", we will have
that the asymptotic distribution of v/ K" [BTT —B"(p )} will be normal, with the
singularity confined to the last elements. In this framework, we can prove the
following result, which can be regarded as a generalisation of Proposition 4.3 in

GMO96, which in turn formalises earlier results in GMR:
Proposition 5 Under Assumptions 1 and 2
Vo [Br(®) — pR(KTEEKT)] = (1)

where
v 0

0 O
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Apart from the computational advantages highlighted by GT, which we dis-
cuss in the appendix, the GMM procedure has the additional advantage that the
optimal weighting matrix can be readily computed as the variance of the limiting
normal distribution of the modified score (9), irrespective of the exact nature of the
inequality restrictions, and irrespective of whether the restrictions on [0"(p )]
and/or pu"(p ) in () are satisfied as equalities, or strict inequalities. Neverthe-
less, there are some cases of practical relevance in which p. [IC’"’ (IEH) }CT] is

relatively easy to compute, where + denotes the Moore-Penrose generalised in-

verse. For instance, suppose that all ~restrictions are of the simple form ; = ;
for =1 < . Then, it is easy to see from Proposition 2 that the x 1 vector
(¢ e ) will have an asymptotically normal distribution, with a

full rank covariance matrix, which can be used to compute the “optimal” equality
constrained CMD II estimator of p.

In addition, there is one instance in which our proposed CMD and GMM
procedures yield numerically identical estimators of p, as in Proposition 4.1 in

GM96:

Proposition 6 If = , so that the auxiliary model exactly identifies the param-

eters of interest, then pi(2) = p.(¥) for large enough

For instance, suppose that all the restrictions are of the simple “bounds” form,

ie. 5, < ;< (=1 ), with | ;| | ; | possibly infinity,
and define _;. _§ as the matching pair of Kuhn-Tucker multipliers (which

are set to zero by definition if the corresponding bound is 4+oo, or to + the
corresponding Lagrange multiplier if ; = ; ). Then, the value of p that for

. (p)] that are

equal to (i) (_;-T 00)if ; I T (1) N G AN ) _;'T =5 »0r

(i) (4 0~ )if _;T = ; , would also set to zero the sample moments

=1 produced estimates of the triplets | ;(p) . (p)

m(p; B}), and therefore, would be numerically identical to p%-(¥) for all ¥,
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Finally, given that both GMM and CMD can be regarded as particular cases
of minimum chi-square methods (see e.g. Newey and McFadden (1994)), an at-
tractive way of interpreting all our previous results is to think of the population
moments m (p; 3) as a set of new auxiliary parameters, which summarise all the
information in the original parameters 8 and multipliers p that is useful for esti-
mating p. In this light, Proposition 4 simply says that the precision with which
we can estimate p depends exclusively on (i) the precision that can be achieved in
estimating those new parameters, which is given by the inverse of the covariance
matrix of the modified sample score, (Z")” , and (ii) the identification content of
the same parameters, as measured by the Jacobian of the population moments

/

with respect to its first argument, mp ;3 (p )] p'.

2.2 Efficiency considerations

2.2.1 Implications of the way in which constraints are taken into ac-

count

Equality restricted 11 procedures may be particularly useful from a compu-
tational point of view, because in many situations of interest, it is considerably
simpler to estimate a special restricted case of the auxiliary model than the un-
restricted model itself. For instance, the estimation of a VAR(p) model is much
easier than the estimation of any VARMA (p,q) model that nests it.

Nevertheless, it may seem at first sight that we could equivalently handle equal-
ity restrictions on the auxiliary parameters of the form (0) = 0 with the exist-
ing unrestricted II procedures by re-writing the constraints in explicit form, and
considering only the information in those parameters that were effectively uncon-
strained. More specifically, consider a homeomorphic (i.e. one-to-one and bicon-

tinuous) transformation () =['() ’()] of the auxiliary model parameters 8
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into an alternative set of ( — )+ parameters w = (7' '), wherew = () =
(), and (0) is twice continuously differentiable with rank| '(6) 6] = 1ina
neighbourhood of 6°(p ). For instance, a simple linear equality constraint of the
form ; + j, =0 can be trivially re-written in terms of ;= ;and .= ;+ §,
with ; free and ; = 0. Let % = (67) denote the unconstrained pseudo-ML
estimator of w obtained by maximising with respect to 7w the auxiliary objec-
tive function (@) reparametrised in terms of 7r, with v set to 0. Similarly, let
7 (p) = [0°(p)| denote the corresponding binding function. In this context, we
could define an alternative CMD unconstrained II estimator of p, p7.(®) say, as
the value of p that minimises the distance between 7*(p) and 7%, in the metric
of a p.s.d. matrix ® of order ( — ). The rationale for such an estimator would
be that since 7 is set to zero by assumption, there is no information about the
true value of p in those parameters that do not belong to the active set. There-
fore, it is not surprising that p7.(®) is the estimator that all existing empirical
implementations of IT procedures have effectively used in practice.
However, it is very important to emphasise that in doing so, we would be most
likely incurring in an efficiency loss relative to our proposed estimation procedure.
In this respect, the following result compares the optimal equality constrained

CMD II estimator of p described in the previous section and p7.(®).

Proposition 7 Under Assumptions 1 and 2, p5 [IC” (IEH) IC’“] 15 asymptotically
at least as efficient as py.(®) for any p.s.d. matriz P

Of course, there may be circumstances in which both estimators are equally
efficient - for instance, when p7.(®) achieves the asymptotic Cramer-Rao bound.
At the same time, there are other circumstances in which 7% (p) would not suffice
to identify p, and hence, the relative efficiency gains from taking into account the

information in 15, would be infinite. As an extreme case, suppose that = > |
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and that (@) = —8", so that the only admissible value for the equality restricted
estimator é; is precisely 07, as in our introductory example. In this case, the
dimension of 7t would be zero, and no unconstrained CMD II estimator based on
those inexistent parameters could be defined. In contrast, our equality constrained
CMD II procedure will work by simply matching the equality restricted binding
functions p¢(p) with the sample estimates of the Lagrange multipliers.
Proposition 7 has important consequences for actual practice, since any aux-
iliary parametric model contains a potentially very large number of implicit con-
straints. The extensive literature on LM (or efficient score) tests provides many
such examples (see e.g. Godfrey (1988) and the references therein). Therefore,
given that in practice users of Il procedures typically do the reduction on the aux-
iliary model rather than deal with the modified first order conditions, the scope
for improving the efficiency of existing unconstrained II estimators by explicitly
taking into account the multipliers associated with those implicit constraints could
be significant. We shall investigate this issue with the example in section 3.3.
Finally, it may also seem at first sight that we could handle inequality restric-
tions on the parameters of the auxiliary model with the existing unconstrained
IT procedures, by simply reparametrising the constraints appropriately. For in-
stance, a non-negativity constraint on ; can be formally avoided by replacing ;

with ( ;‘) , where —oo 0o. Unfortunately, the regularity conditions in

J
Assumptions 1 and 2 are no longer satisfied in terms of the new parameter when
the inequality restricted pseudo-true value of the original parameter ;(p ) is 0,

as the Jacobian of the transformation is 0 at ;(p ) =0.

2.2.2 Implications of the nature of the restrictions

If @ were the parameters of interest, and ( 4X;_ ;0) provided the correct

conditional density function for ;, the imposition of correct equality restrictions
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on 6 would weakly improve the efficiency of the resulting estimators (see e.g.
Rothemberg (1973) for details). However, such a result is not necessarily robust to
misspecification of the density function, even if both 87 and 87 remain consistent
for the true value of @ under misspecification of the pseudo-log likelihood function
(see e.g. Arellano (1989) for a counterexample). The situation is even less clear
cut in our “constrained” indirect inference set up, in which both the density
function of the auxiliary model and the restrictions on € and/or g may well be
incorrect. The root of the problem is that by adding restrictions to the auxiliary
model in those circumstances in which they are not required to properly defined
the auxiliary objective function, we are implicitly changing the auxiliary model,
and thereby, the binding functions. This is generally true even if we simply shift
the constraints (@) by a fixed amount. Therefore, except in some special cases,
a general discussion of the effects of the constraints on efficiency is just as elusive
as a general discussion of the effects of replacing a parametric auxiliary model
by another one, which to the best of our knowledge, remains the most important
unresolved issue in the II literature.

Nevertheless, we can be more specific in certain important situations, such as

when the equality restrictions are correct:

Proposition 8 Under Assumptions 1 and 2
VR [@) -85 (@) 1) = ()
if [6"(p)] = 0.
In particular, any unconstrained II estimator is asymptotically equivalent to
an equality constrained II estimator that sets all the parameters of the auxiliary
model to their unconstrained pseudo-true values, 8“(p ).

Of course, if we knew that the equality constraints were indeed correct, we

might be able to obtain more efficient estimators of the parameters of interest
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by using the solution proposed by Dridi (2000), who derives II estimators of p
on the basis of a correctly overidentified auxiliary model. At the same time,
the main advantage of our solution over Dridi’s is that by effectively saturating
his overidentifying moment conditions with Lagrange multipliers to mop up any
possible bias, it produces consistent estimators of the parameters of interest even if
the overidentifying restrictions are not really fulfilled by the unrestricted pseudo-
true values of the auxiliary parameters.

But as we saw in the introduction, the equivalence between pf. [(Z*)~ | and
p7 [(Z¢)~ | may also hold with incorrect constraints. For instance, this is always
the case when the auxiliary model is a linear autoregression, and the restrictions

are linear in the autoregressive coefficients, as in section 3.1. More formally:

Proposition 9 Under Assumptions 1 and 2

VB[ ] -85 (@) ] = K1)

if
1 1
t(a):—§hl2 —5111 —2—< t— t— — - L t,k)
©)= o
and ()=, where ¢ = ( L), and @ = (¢ ).

Note that such a result does not really depend on the nature of the true model,
whose parameters only enter through the first + 1 theoretical “autocovariances”
of +, ;= (++4pP (=0 ), but rather on the particular form of
the auxiliary model used. The reason is that from the point of II estimation, the
first + 1 sample “autocovariances” i (=0 ) play the role of “sufficient
statistics” of the auxiliary model from which we infer p.

In contrast, the asymptotic relationship of the inequality restricted estimators

of the parameters of interest with p7. [(Z*)~ | and p% [(Z¢)~ | can be derived under
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general circumstances. For the sake of clarity, though, we shall only present a

formal result for the case a single restriction

Proposition 10 Under Assumptions 1 and 2

VB[ ] - (@) ]} = Q)

if [0“(p)] O, and
VAR [@) ] -Br (@) ] = .=V B [(T) ] -85 [T |}
if 6“(p)=0.

In fact, the inequality constrained and unconstrained 11 procedures will yield
numerically identical results if the inequality restriction is not binding in a given
sample, since in that case é; coincides with the unconstrained pseudo-ML estima-
tor, O (and il with % = 0). Similarly, the inequality and equality constrained
procedures will yield numerically identical results if the inequality restriction is
binding in a given sample, since in that case 9; coincides with the equality con-
strained pseudo-ML estimator, 9;, and consequently % with .

In the case of multiple inequality constraints, p [(Z%)~ ] will numerically co-
incide with either the unrestricted estimator, or an equality restricted estimator
that imposes the subset of the constraints that happen to be satisfied with equal-
ity by é;. Therefore, it is not surprising that the inequality constrained optimal
IT estimator will be asymptotically equivalent to py [(Z*)” ] if [0“(p )] O,
or to some equality restricted estimator otherwise. We shall provide a detailed

illustration of Propositions 8, 9 and 10 in section 3.1 below.
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Finally, it would be interesting to characterise under which circumstances “re-
stricted” II estimators of p achieve the usual asymptotic Cramer-Rao efficiency
bound. Proposition 2 in GT provides a leading example in the context of un-
restricted II estimation, namely, when the auxiliary model “smoothly embeds”
the true model (see Definition 1 in GT). Unfortunately, it is often the case that
the auxiliary model does not nest the true model, as the examples in section 3
illustrate. However, this is not by any means the only such situation. As the
example in section 3.2 shows, there are other cases in which we can achieve full
efficiency by adding completely false constraints to a badly misspecified auxiliary

model. More generally, we can state the following result:

Proposition 11 Under Assumptions 1 and 2, the optimal CMD II estimator
pr [IC” (IE) ICT] s asymptotically as efficient as the ML estimator of p based
on the true model if the latter only depends on the data through a continuously
differentiable function of the first elements of K" By, and KB (p) is twice con-

tinuously differentiable in p on a neighbourhood of p .

2.3 Extensions
2.3.1 Partially optimised unconstrained procedures

One approach commonly followed by users of I estimation methods is to select
a simple auxiliary model that closely resembles the model of interest, but whose
pseudo-log likelihood function is easy to evaluate, so that they can fully optimise
it very rapidly. Many other empirical researchers, though, prefer to estimate a
reasonably complex auxiliary model, in the hope of capturing the most distinctive
features of the data, and in this way, coming close to the idealised situation covered
by Theorem 2 in GT (see GM96). Unfortunately, such attempts often encounter

numerical optimisation problems. It turns out that our results can be easily
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adapted to cover such a situation as well, at the cost of increasing the complexity of
the notation. For simplicity of exposition, we concentrate on unconstrained GMM-
based II procedures, and assume that the numerical procedure used to maximise
the pseudo log-likelihood function (@) is the Newton-Raphson method without
line searches, and that the researcher abandons her attempts to maximise the
pseudo-log likelihood function after steps, with > 0. More specifically,
if 91? denotes the value of the parameters after iteration (1 < < ), we

assume that the recursive formula employed is

T P D I

6, =0, + ltZT ltz—a

Let us initially consider the case of = 0, so that no optimisation whatso-
ever takes place. If the initial value 8 is non-stochastic, we simply have a special
case of the equality constrained GMM-based II estimator, with the restrictions
0 = 0 . In effect, this transforms the GMM II procedure in a CMD II procedure
in which we match the values of the multipliers ft,. in the actual sample and the
population. Nevertheless, note that if the value of @ is not sensibly chosen by
the practitioner, it may well fail to satisfy the required conditions in Assumptions
1 and 2. Typically, however, 8, would be the result of an earlier optimisation
procedure, during which some of the parameters were fixed at constant values
as part of a step-by-step computational strategy (see e.g. Calzolari, Fiorentini
and Sentana, 2001). If that is the case, the results in sections 2.1 imply that the
fully non-optimised GMM II estimator of p based on @, and fi, , p; say, will
be consistent and asymptotically normal, as long as the regularity conditions in
Assumptions 1 and 2 (with () 6 = I,) remain valid when (i) 7 is replaced
by 0, , (i) 8"(p ) by the pseudo-true value of 8, , 0 (p ) say, (iii) @} by g ,
which are the Lagrange multipliers required to satisfy the sample first-order con-

ditions (3) at @ = 8, , and (iv) u"(p ) by the corresponding pseudo-true value,
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po(p)

Let us now consider the more interesting case of = 1. It is then clear that

0, and p; will also be stochastic, with pseudo-true values given by

If, mutatis mutandi, the regularity conditions in Assumptions 1 and 2 remain
valid, then the one-step optimised GMM estimator of p based on 6, and fi, ,
pr say, will also be consistent and asymptotically normal. But since the above
argument does not really depend on being 1, or the way in which 8, was
obtained, it remains valid for any

Although situations in which an applied researcher knowingly decides to pro-
ceed with a partially optimised auxiliary model may seem hard to envisage, there
are at least two practical cases in which the results of this subsection may be of
some use: (i) to allow for the fact that the numerical algorithm used to optimise
the auxiliary objective function may have converged very close to, but not ex-
actly at the optimum, as we do in section 3.3, and (ii) to cater for an increasing
number of practitioners who use the SNP auxiliary model suggested by GT with
a ever growing number of terms in the Hermite expansions to obtain what has
become commonly known as EMM estimators of p. In both cases, the important
conclusion from the analysis in this section is that an unsuccessful attempt to
optimise the pseudo-log likelihood function can still be successfully used to obtain
a consistent II estimator of the parameters of interest p, as long as the moment
conditions used include Lagrange multipliers to reflect the lack of convergence of

the algorithm.
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2.3.2 Pre-test estimators

For reasons analogous to the ones discussed at the beginning of the previous
subsection, an empirical researcher may alternatively decide to conduct some spec-
ification test in order to assess if there is any evidence in the sample for an addi-
tional feature of the data that she has not yet incorporated in her auxiliary model,
which merits the optimisation of an even more complex pseudo log-likelihood func-
tion. Since most existing specification tests are of the LM form, they can often
be written in terms of zero parameter restrictions. Therefore, a numerically sen-
sible strategy could be to base the II estimator on the unrestricted estimator of
the more complex model if the specification test rejects the null hypothesis, or
on the equality restricted version if does not, provided that in the latter case the
information in the corresponding Lagrange multiplier is taken into account. If the
specification test is consistent (in the sense that it rejects the null hypothesis with
probability approaching one as the sample size increases when the unrestricted
pseudo-true value of the relevant parameter is different from zero), then the lim-
iting distribution of the pre-test II estimator of p is the same as the limiting
distribution of the fully optimised unconstrained II estimator. In contrast, if the
limiting unrestricted pseudo-true value is exactly zero, then the limiting distri-
bution of the pre-test estimator of p will be a mixture of the equality restricted

estimator, and the unconstrained estimator. But since equality restricted and un-



3 Examples

3.1 MA(1) estimated as AR(1)

3.1.1 True and auxiliary models

Consider the following Gaussian MA (1) process:
. el - ~ (0 ) [l<1 0 oo (14)

where the parameters of interest are p = (). It is well known that ( |p) =0,

and that its autocovariance structure is given by

(p) =01+ ) (p) = — j(p)=0 1 (15)

In order to estimate p by II, we are going to consider the following first-order

autoregression:
= = T ¢ ¢l e ~ (0 ) >0

possibly subject to the restrictions = or > , with | | oo but
otherwise arbitrary, so that @ = ( )’. In this respect, note that the unrestricted

auxiliary model only nests the true model if = 0.

3.1.2 Pseudo-ML estimators

The log-likelihood function of the auxiliary AR(1) model for a sample of size

(ignoring initial conditions) will be given by:

1
T(O):Zt(9)2—51n2 — 5 —2—2“— )

and the (scaled) Lagrangian function by

1 1 11
r(B)=—g2 Sl —o—=)> (= ) +( - )t .



where = (, )" are the multipliers associated with the (in)equality restrictions
> and > 0 respectively. Therefore, the sample first-order conditions that

take into account those constraints will be given by:
11

— (t—fgvtf)thr‘Q,T:O
T t

11 |:(t__TTt)_1:|_|_—r _ 0
—r —r Wl
27 & T

(16)

together with the complementary slackness conditions:

plus the appropriate (in)equality restrictions on parameters and/or multipliers.

But since in all three cases
_y 1 —r
T:_Z( t— p ) =0
t

we can safely take ~/, as 0 in what follows. Also note that since

we can interpret the other multiplier as (minus) the coefficient in the OLS regres-
sion of ;_ on the “restricted” residuals ( ;— ;) (see Gourieroux, Holly and
Monfort, 1982). Therefore, we will have that &, ~i and ~4r will be equal to the

unrestricted estimators

T - T

= Tr=" r——— “or =10
T - T . ¢T
if 7> , or to the equality restricted estimators
—e e - . - r— " 1)
— —= T+ T—2 T == _ _ —
T T ¢T i _2 .
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otherwise, where:

e S B Sl B N PR

T T t t—

is the sample second moment matrix.

3.1.3 Population moments and binding functions

If we now define

1

L(p;0) = [t(0)|p]:—%ln2 -3 i+ ) (p-2 (p)

In -
it is clear that the binding functions 8" (p) satisfy the moment conditions

my [p; 8 (p)] = O

my [p; 8 (p)] = 0

together with the exclusion restrictions

mo(piB) = ~ (0 O+
(17)
mu(p:B) = 2L —2 (p+d+ ) ], )

and the dependence of ; on p comes from (15).

From here, it is easy to see that



so that 7 (p) = 0. As for the other elements, in principle there may be two

different situations. Specifically, “(p), (p) and 4(p) will be equal to

u p) (p)
(p)=—7= ‘o= (p)——= 6(p) =0
(p) (p) ’
respectively when — (1+ ) > . Otherwise, they will be equal to

—[ (p)— (p)]
1+ ) (P2 (p)

Figure 1 plots the binding functions “(p) and §(p) for -1 < < 1 and

‘(p) = ‘)=0+ ) (P-2 (p) 4lp)=

= 0. Note that in this case, ‘(p) = max[ “(p) 0] and L(p) =max [ §(p) 0].

3.1.4 Asymptotic distributions of pseudo-ML estimators and sample

moments

Given the different expressions for the inequality restricted pseudo-ML esti-
mators of @ and p discussed previously, the sample counterparts to (17) will be

given by either:

my(p; Br) = - -
T — T T
—i —2(" - 1+~ - — (" p—" -
iy — 20T 00T ) ()€ rm g )
20 r—" 7 1)
when = 7 = > , which are precisely the sample moments that we would

use in an unrestricted GMM-based II procedure, or

—i [ (p)— 1] — [ (p)— 7]
my(p; =
+(p; Br) S 2 -
=i —2 (p)+(1+ ) )| - r+ T —2 Tor
m,(p; Br) = [ _ ] ( _ )
2(7 r+ T—2 7)
when = 7 = 7 < , which are the sample moments that correspond to the

equality constrained GMM-based procedure that imposes the restriction =
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Let us now derive the asymptotic distribution of the pseudo-ML estimators of
the auxiliary parameters, multipliers and moments in the three different relevant
situations that may occur: (i) — [1 +( ) } , (i) — [1 +( ) }

, and (iii) — [1 +( ) } = . To do so, we shall use the following
lemma, which can be proved as a straightforward application of Theorem 5.7.1 in

Anderson (1971):

Lemma 1 When  is given by the Gaussian MA (1) model (14), the first sam-
ple autocorrelation 7; is | -consistent for the first population autocorrelation

“(p ), with the following limiting distribution

Vel BT 01+<>+4<>+<>+<>}
e { 1+ )]

Note that the asymptotic variance of 7., which not surprisingly is the same for

a non-invertible MA (1) process with parameter 1 | achieves its maximum (=1)

for =0 and its minimum (=1/2) for = +1. As a result, we will have that

1 if “(p)
lim [f(‘;— ) 0] —lm (V5 =S 120 “p)=

0 if “(p)
Hence, when — [1 +( ) ] e <_ZT - _;) and v ' are both (1),
and the inequality restricted 11 estimators of p are asymptotically equivalent to
the usual unrestricted II estimators. In contrast, when — [1 + ( ) ] ,
\/_(_ZT - ) and v (T'p — "¢7) are ,(1), and the inequality restricted T

estimators of p will then coincide in large samples with the equality restricted
ones. The most interesting situation arises when — [1 + ( ) ] = . In this
case, BZT has a non-normal asymptotic distribution, as it will be equal to either

(p % 0)or( ~% ~°r)" with probability approximately one half each. As a

consequence, the sample moment conditions will also be m(p; B7) fifty per cent
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of the time, and m(p; B7) the other fifty. Nevertheless, given that we can easily
prove that v [mg(p ; B7) —mg(p ;B7)] = (1) when — [1 +( ) ] =,
the limiting distribution of v/ my(p ; B;) will also be normal, with an analogous
result for the other moment. In this respect, the above results can be regarded as

an illustration of Propositions 8 and 10.

3.1.5 Indirect inference estimators

If the parameters of interest of the true model were v = ( ) rather than
p, the solution of the linear system of equations m[y B7] = 0 with respect to
its first argument would give us the “restricted” GMM-based estimator of these
autocovariances, 7. In this context, it is easy to see that if = r» =~ 7, we would

have that all three GMM-based estimators of v would be numerically identical to

= (18)
- - .
regardless of the sign of “(p )— , and indeed, regardless of the value of
In finite samples, of course, = 1 # = p, but given that = 7 —~ = ,( 7))

for any value of , it is straightforward to show that 4%, 45 and 7% are always
asymptotically equivalent.

In addition, since  and  are free parameters, and the auxiliary model ex-
actly identifies them, their CMD-based II estimators will be numerically identical
to the GMM-based II estimators in large samples, as indicated by Proposition 6.

The common asymptotic distribution of 4% 4% and 4% can be directly ob-

tained as a special case of Theorem 8.4.2 in Anderson (1971):

Lemma 2 When  is given by the Gaussian MA (1) model (14), "7 and ~"p
are | -consistent for (p ) and (p ) respectively, with the following limiting

distribution

Vo [AR - (p)] S [0 V(p)]



where
248 +2 —4 —4

—4 -4 1+5 +

Vip) =

But even though ~ are not really the parameters of interest, we can regard
their II estimators as “sufficient statistics” of the auxiliary model from which we
can estimate p. In particular, if )AT) < 5, we can obtain all the II estimators
of p (irrespective of the weighting matrix) by solving numerically the nonlinear
system of equations (15).

The asymptotic equivalence of the different constrained II estimators is some-
what surprising, for in principle, it may seem that by choosing = — 5 one
should obtain more efficient estimators of the parameters of interest. The intu-
ition would be that since the inequality constraint > — 5 is trivially satisfied by
the unrestricted binding function “(p), and the inequality restricted pseudo-ML
estimator _iT must necessarily have less sampling variance than the unrestricted
estimator . around the pseudo-true value “(p ) = “(p ), then the inequality
restricted II estimator of p should be more efficient than the unrestricted one.
However, our previous results, which can be regarded as an illustration of Propo-
sition 9, imply that such an intuition is not correct, as both II estimators are
asymptotically equivalent regardless of the value of

An analogous line of reasoning applies to pretest II estimators that use either
the equality restricted estimators when a standard LM test for first order serial
correlation does not reject the null of = , or the unrestricted estimators
when it does. Since as we have just seen, p7 and p7. have the same asymptotic
distribution regardless of the value of , such a common distribution will be
inherited by the pretest estimators.

Finally, note that since the unrestricted auxiliary model “smoothly embeds”

the true model when = 0, Theorem 2 in GT implies that in this particu-
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lar case, the unrestricted estimator p7. is asymptotically equivalent to maximum
likelihood, and the same obviously applies to all the other estimators. How-
ever, the asymptotic efficiency of pr. relative to the ML estimator decreases as
‘ ‘ increases. In particular, if = 1, the ML estimator of is supercon-
sistent (i.e. consistent at the rate ; see Sargan and Bhargava, 1983), while
the asymptotic distribution of v/ (7 — ) is half normal. The reason is that
limp_, oo [\/_(7; — 5) 0| =1 2 by virtue of Lemma 1, which in turn means
that the system of equations (15) evaluated at v = 7%, does not have a real so-
lution in p half the time. In those cases, one attractive possibility involves the

minimisation of the optimal (continuously updated) CMD criterion:

subject to the inequality constraints —1 < < 1 and > 0. Tedious but
otherwise straightforward algebra shows that the resulting estimators of and

will be given by the following expressions:

o
T reyima(n | e

=" [1+(D) ]
o T = (;) £ (W)

p="o|7+12(5) —16| 7| (6-4|7%|)
Asymptotically equivalent estimators will be obtained if we replace the above

CMD criterion with the optimal (continuously updated) GMM criterion based on

the moment conditions



3.2 AR(1) estimated as MA(1)
3.2.1 True and auxiliary models

Consider now the following stationary AR(1) process:
= o=+ e o~ (0 ) [ 10 oo (19)

where the parameters of interest this time are p = (). It is well known that

( ¢/ p) =0, and that its autocovariance structure is given by

J(p) = >0 (20)

t= t— - . ~ (0 ) >0

possibly subject to the restrictions = 0or < 0, so that @ = ( ). In this
respect, note that the unrestricted auxiliary model only nests the true model if

= 0.

3.2.2 Pseudo-ML estimators

The log-likelihood function of the MA (1) model for a sample of size  will be
given by:
1
7(0) = —gh2 -5 —2—2[ e— ()]

with
()==> 7+
J
and the (scaled) Lagrangian function by

T(ﬁ):—%an —%m —QLEZ[t— O]+ s+

t
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where = (5 )" are the multipliers associated with the (in)equality restrictions

< 0and > 0respectively. Therefore, the sample first-order conditions will be:

(1)

S5 (D
;lzl t_(TTT)—1]+—;T ~ 0

+7ET =0

together with the exclusion constraints

L
T ' 6T — 0
-r

v e = 0

plus the appropriate (in)equality restrictions, where

() =37 (21)

J

D -y (22)

But as

-r 1 -r
T:_Z (1) =0
t

we can safely take 3 = 0 in what follows. Also since

T t
we can interpret this multiplier as (minus) the coefficient in the OLS regression
of (1) on the “restricted” residuals ( 1) (see Gourieroux, Holly and
Monfort, 1980). Therefore, ~%, will be 0 if the inequality restriction is satisfied,
or the usual Lagrange multiplier associated with the equality constraint = 0

otherwise. Not surprisingly, the Lagrange multiplier is simply

—e _7Ztttf__

o DD T
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which is approximately the same as the (opposite of the) first sample autocorre-

lation in large samples. Similarly,

_6_1 e
T__E t T
t

i.e. the sample variance with denominator

3.2.3 Population moments and binding functions

If we now define

Lp:0)= [O)p]= 52 —zln ——— { ,()]p)

it is clear that the binding functions 3" (p) satisfy the moment conditions

ms [p; B"(p)] =

my [p; 8 (p)] =

together with the exclusion restrictions

plus the appropriate (in)equality restrictions on 8"(p) and/or u"(p), where

ms(p:B) — [1 O— 4,

p

wio®) = {20 o)

Using the results in the appendix, we can write (23) as

wiod) = 2 sk v )1

(23)
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my(p; B) = % 1_&<H2Z : ’iiﬁ)— +
1 : 1—
S22 |- )(- ) 1+ T

where the intermediate expressions are valid whatever the true model, while the
final expressions are obtained by replacing (20) in the intermediate ones.

From here, it is easy to see that
W= { o} - — O (1+2i[ T<p>]l%> >0
1- [ (P)} ! P
and consequently, that 7 (p) = 0.
From the above moment expressions, we also have that the unconstrained

binding function for , “(p), will be the real root of the following third order

equation

whose modulus is less than or equal to 1. !

As a result, if “(p) <0, then B'(p) = B“(p), where

1- "(p)

“p) = z ' u
{1-["p] (- ) 1+ “p)
sp) = 0
are the remaining unconstrained binding functions, while if “(p) 0, then

B'(p) = B°(p), where

‘(p) = 0

Tt is important to mention that §"(p) is different from the first inverse autocorrelation of
the AR(1) model, which is given by ¢/(1 + ¢?), since the range of 6*(p) is -1 to 1, rather than
-1/2 to 1/2 (see e.g. Bhansali, 1980).
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W = (P =1 (24)

e (p)
o) (p)
are the binding functions associated with the equality constraint = 0. Since the

first theoretical autocorrelation has the same sign as , the first solution applies
when > 0, while the second solution when < 0. Obviously, they all coincide
when =0.

Figure 2 plots the binding functions “(p) and §(p) for —1 1. Note
that in this framework, ‘(p) = min[ “(p) 0] while %(p) =max[ §(p) 0].
3.2.4 Asymptotic distributions of pseudo-ML estimators and sample

moments

First of all, let us state the AR(1) version of Lemma 2 above, which can again
be obtained from theorem 8.4.2 in Anderson (1971):
Lemma 3 When . is given by the Gaussian AR (1) model (19), = 1 and =~ r

are | -consistent for (p ) and (p ) in (20) respectively, with the following
limiting distribution

V3 - (p)] S [0 Vip)]
where

V(p):ﬁ(ﬂf 1+44— )

Given that the population moments evaluated at the equality restricted pseudo-

ML estimators are given by:

mé(P;Be) = - I s

mw(P?Be) = 2_1T[(1_ )—7 T]
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it is straightforward to derive their asymptotic distribution by means of the delta
method. Similarly, we can use the same technique to derive the asymptotic dis-

tribution of ¢, = —~ ¢ = rand 5 = ~ 7. Alternatively, the asymptotic
distribution of the estimator of the Lagrange multiplier can be directly obtained
from the Mann and Wald theorem.

In contrast, the asymptotic distribution of the unrestricted estimators . and
- is rather more laborious to obtain, as we need to derive closed form expressions
for the matrices Z% and J*. For simplicity, we shall only do it for the case of

= 0, which as we saw before, corresponds to “(p ) =0and “(p )= . In
this case, the score of the MA (1) log-likelihood function evaluated at the pseudo-

true parameter values will be given by the following expressions:

11 1_
— t t— = — T
t
11 ( . ) 1 [_ ]
_— _t _ - - -
2 - 2( )
Hence, we can use Lemma 3 directly, with = 0, to show that
1 0
A
0 12( )

Similarly, it is also easy to prove that for p = (0 )

. 1 0
j —
012 )
so that
e T a 0 1 0
- 0 0 2( )

as expected, since the true process is white noise, and the MA and AR log-likelihood

functions are locally equivalent.
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As for the inequality restricted pseudo-ML estimators of , , and , there
may be three different situations, according to whether 0, Oor =0.
In the first case, it is easy to see from Propositions 1 and 2 that v/ (7; - 1),
v (7; — 7)and v "4 areall ,(1), while in the second case the same applies
to \/__iT, \/_(_ZT — %) and v (Th — ~%). Once more, the most interesting
case arises when = 0, because v/ _iT and v~ ~ g have half normal asymptotic
distributions. Nevertheless, from Proposition 2 we will again have that v/ (7; —

i) will share an asymptotic (0 1) distribution with v (7 — %) =+ 7

and \/_<_; — Tor) = _\/__ET-
3.2.5 Indirect inference estimators

Given the two different expressions for the inequality restricted pseudo-ML
estimates of @ and p discussed previously, the sample counterparts to the pop-
ulation moments (23) will be given by either m(p; 37), which correspond to the
sample moments used by an unrestricted GMM-based II procedure, or m(p; 87),
which will be the moments used by the equality constrained one. But since when

we solve for p from the system of equations m(p; 37) = 0 we get

it is clear that the equality constrained II estimator converges in probability to
the maximum likelihood estimator of the parameters of interest. Note that this
is true regardless of the sign of “(p ), and therefore independently of whether or
not the restriction = 0 is correct. Of course, if we knew that “(p ) =0, or any
other value for that matter, we could recover  from the binding function directly
without estimation error (cf. Dridi, 2000). Given that the auxiliary model exactly

identifies the parameters of interest, the same result applies to the corresponding
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equality constrained CMD II estimators, which minimise the objective function

e (. __ | —e ﬂ e
T(va)_ [ 5T+ (p):| +[ T (p)]

The reason for this seemingly counterintuitive result is that ~§, and 7 are
sufficient statistics for the true AR(1) model, so that Proposition 11 applies.

As for the inequality restricted estimators, it depends on whether or not the
pseudo-true value ‘(p ) is 0 or strictly negative (or the associated Kuhn-Tucker
multiplier %(p )is 0 or strictly positive). If 0, then p% will be asymptotically
equivalent to the unrestricted estimator py. because the sign restriction on T is
not binding in large samples, as predicted by the first part of Proposition 10. As
a result, the inequality restricted estimators will be less efficient than the equality
constrained ones. If on the other hand, 0, the restriction is almost certainly
binding in the limit, and therefore p% will be asymptotically equivalent to the
equality restricted estimator p7., as predicted by the second part of Proposition 10.
Finally, since the unrestricted pseudo log-likelihood nests the true log-likelihood
when = 0, the unrestricted estimators will also be as efficient as ML by virtue
of Theorem 2 in GT. But since the inequality restricted estimators will be a 50:50
mixture of p7. and p%. in large samples, it will share their common asymptotic
distribution, as indicated by the last statement in Proposition 10.

A similar line of reasoning can be applied to a pre-test estimator that uses
either p7. when a standard LM test for first order serial correlation does not reject
the null hypothesis of white noise, or p7. when it does. Since such an LM test is
consistent in the context of the AR(1) model (19), then the pretest 11 estimator
will always be asymptotically equivalent to p7., and therefore inefficient relative

to pr, except when = 0.
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3.3 Stochastic volatility estimated as GARCH(1,1) with
Gaussian and Student’s t distributed errors

3.3.1 True and auxiliary models

Consider the following log-normal stochastic volatility process

t:\/_tt

lnt:+1nt—+vt

(25)

where | | 10 » oo, and (¢ )] 4o ~ (0 1I). This model was
originally proposed as an alternative to the ARCH class, and can be regarded as
the discrete time analogue of the continuous time Orstein-Uhlenbeck stochastic
processes for instantaneous log volatility frequently used in the theoretical finance
literature. Unfortunately, it is impossible to find analytical expressions for the
conditional distribution of ; based on its own past values alone, despite the fact
that its distribution conditional on ; is Gaussian, with zero mean and
variance ;. Given its importance, though, it is not surprising that a voluminous
collection of research papers has been devoted to the estimation of the parameters
of interest p = ( »)" (see Shephard (1996) for a survey).

In an influential such paper, Kim, Shephard and Chib (1998) consider likelihood-
based estimators of (25), and analyse its goodness of fit relative to some popular
ARCH-type competitors. In particular, they find that the log-normal stochastic
model above and a GARCH(1,1) model with (standardised) Student’s t distributed
errors fit the data equally well, as long as the additional tail-thickness parameter
is not set to its limiting value under Gaussianity. Therefore, since the latter has
a conditional density that can be written in closed form, it looks like the ideal
candidate for auxiliary model. On this basis, the most general model that we will
estimate is given by

t = \/_t t

t= + o+
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where 4| ;- follows a standardised Student’s t distribution with ~ degrees
of freedom,? so that 6 = ( ). As is well known, the standardised t distri-
bution nests the standard normal for = 0, but has otherwise fatter tails. Also
note that like in the previous two examples, the auxiliary and true models are
non-nested, except in the trivial case in which ; is Gaussian white noise.

The parameters of the auxiliary model are usually estimated subject to several

inequality restrictions for the following reasons:

1. As discussed by e.g. Nelson and Cao (1991), when , has infinite support,
the conditional variance ; will be nonnegative with probability one if > 0,

>0and >0.

2. The pseudo-ML estimators of @ may not be well behaved when + 1
(see Lumsdaine, 1996).

3. The pseudo log-likelihood function based on the standardised Student’s
distribution cannot be defined when the inverse of the degrees of freedom

parameter is either negative, or exceeds 1/2.

4. When = 0, becomes asymptotically underidentified, which may also
happen in finite samples depending on the treatment of the initial observa-

tions (see e.g. Andrews, 1999).

As a consequence, we estimate the auxiliary model subject to the following set

of inequality constraints:

>0 > >0 + <1 0< < (26)

where ,and 1 2 — are arbitrarily chosen small values.?

2Since the implied degrees of freedom parameter can take any real value above 2, in fact
the errors have a distribution that is /(1 — 2n)/n times the ratio of a standard normal to the
square root of an independent Gamma variate with mean 1/n and variance 2/7.

3 After some experimentation, we chose ¢, ;. = .025, and 7, = .499, which corresponds to
2.04 degrees of freedom.
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Unfortunately, the tail-thickness parameter is often very imprecisely esti-
mated even if the sample size is reasonably large. This is due to the fact that
the log-likelihood function becomes rather flat for very small values of because
it is very difficult to numerically distinguish a standardised t with 2,000 degrees
of freedom from another one with 5,000 degrees of freedom, or indeed from their
Gaussian limit. For that reason, we also consider a mixed equality/inequality
estimator that sets to 0 to obtain a Gaussian pseudo log-likelihood function,
but which takes into account the value of the corresponding multiplier from the
relevant first order condition. Finally, we consider a third estimator that is also
based on the Gaussian pseudo log-likelihood function, but which discards the in-
formation in the multiplier, as discussed in section 2.2.1. For the sake of brevity,
we shall refer to the estimator that allows to vary freely within its bounds as the
“inequality restricted” II estimator, to the second one as the “equality restricted”
IT estimator, and to the third one as the “unrestricted” II estimator. In all three
cases, though, the remaining auxiliary parameters are always estimated subject

to the other bounds in (26).

3.3.2 Monte Carlo study

We assess the performance of our proposed procedures by means of an extended
Monte Carlo analysis, with the same experimental design as Jacquier, Polson and
Rossi (1994) (JPR). In this respect, the results in JPR suggest that the most
important determinant of the performance of the different estimators will be the
unconditional coefficient of variation of the unobserved volatility level ;, say,

where

(( tt)) :eXp(l _v )_ 1

Intuitively, the reason is that when is low, the observed process is close to

Gaussian white noise, and the estimation of the stochastic volatility parameters
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is difficult. Unfortunately, the existing empirical evidence suggests that low '

(around 3) are the rule, rather than the exception (see JPR and the references
therein).

The Monte Carlo designs considered by JPR in their tables 5, 6 and 7, have nine
entries, arranged in three rows and columns. The rows are defined in terms of
and the columns by the autocorrelation coefficient for log volatility, . Finally, the
remaining parameter is chosen so that the unconditional mean of the volatility
level equals .0009. Although most of their reported results correspond to a sample
size of = 500 observations, we have also considered =1 000 and 2 000.

For convenience, we first optimise the pseudo log-likelihood function in terms

of some unrestricted parameters ", where = *, = +(1— )sin (),
=(1— )sin ( ")and =sin ( ¥) . Then, we compute the score in terms of
the original parameters 8 = ( ) using the analytical expressions derived

by Fiorentini, Sentana and Calzolari (2000) to avoid large numerical errors, and
introduce one multiplier for each of the four first order conditions in order to take
away any slack left. Since there are no closed-form expressions for the expected
value of the modified score, we compute them on the basis of single simulations of
length , with =10, as explained in the appendix. A larger value of  should
in theory reduce the Monte Carlo variability of the II estimators according to the
relation (1 + ), but at the cost of a significant increase in the computational
burden. Finally, we minimise numerically the GMM criterion function in terms
of some unrestricted parameters p*, with = * = sin( *) and , = *,
where = 9999, so as to ensure that | | 1and , >0.

Tables 1, 2 and 3 contain the proportion of inequality and equality restricted
pseudo-ML estimators of @ that satisfy with equality the different restrictions in

(26). In this respect, note that the auxiliary model estimated by the unrestricted

procedure coincides with the model estimated by the equality restricted one.
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When  is 1, such restrictions are hardly ever binding, especially for =2 000.
However, when  is rather large (=10), most of the estimated GARCH models are
of the IGARCH variety. This is particularly true when is free, but it also happens
when the conditional distribution is assumed Gaussian. Somewhat surprisingly,
such a finding does not seem to constitute a finite sample problem, because the pro-
portion of boundary cases actually increases with the sample size. In contrast, in
those situations in which  is very small (=.1), IGARCH parameter configurations
are hardly ever estimated, but the estimates of the ARCH and GARCH coefficients,
and the reciprocal of the degrees of freedom parameter, reach their lower bounds
fairly often, especially for the smaller sample sizes. For instance, when = 500
and = 98, almost 60% of the simulations have inequality constrained pseudo-ML
estimators for which at least one of those restrictions is binding. As pointed out
by Shephard (1996), part of the empirical success of the stochastic volatility and
t-GARCH models simply lies on their ability to capture the fat-tailed behaviour
of asset returns. Therefore, when one tries to fit a t-distributed GARCH(1,1) aux-
iliary model to artificial data that shows little volatility clustering, and only a
small degree of leptokurtosis, it is not totally surprising that one ends up with
parameter estimates that correspond to Gaussian white noise. In any case, the
results clearly show that our proposed generalisations of II procedures are not
only of theoretical interest, but also highly relevant in practice.

Tables 4 to 12 present the means, root mean square errors, mean biases and
standard deviations of the “unrestricted”, “equality restricted”, and “inequality
restricted” GMM-based II estimators of the parameters of interest p for the case
in which the optimal weighting matrix is estimated as the variance in the original
data of the modified score of the auxiliary model evaluated at the pseudo-ML

parameter estimates.? In this respect, note that by including a multiplier in each

4Note that since the “unrestricted” II estimator is effectively using a just-identified auxiliary
model, it is invariant to the weighting matrix. Nevertheless, by using the optimal weighting
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first order condition, we automatically centre the scores around their sample mean.
Given that the auxiliary model tends to fit the simulated data rather well, in the
sense that the score of the auxiliary model is close to being a vector martingale
difference sequence, we have not included any correction for serial correlation (cf.
GT).

In line with the existing literature, we find that the different estimators of
the autoregressive parameter are systematically downward biased. This is par-
ticularly so when  is high, and/or , low, which mimics the behaviour of a
pseudo-ML estimator of the autoregressive parameter of an AR(1) process ob-
served subject to measurement error. And exactly like in that situation, the
downward bias in the estimator of is transmitted into an upward bias in the ab-
solute value of the estimates of the mean constant, , and the standard deviation
of the log-volatility innovations ,. Therefore, it is not surprising that the most
important determinant of the performance of the estimators is precisely , which
effectively plays the role of a signal to noise ratio.

As for the comparison between the “unrestricted” and “equality restricted” II
estimators, the most noticeable effect of taking into account the information in the
multiplier associated with the zero constraint on is that the precision with which
we estimate the volatility of volatility parameter, ,, increases substantially, the
more so the smaller the signal to noise ratio. This is due to the fact that , is
the parameter that most directly determines the degree of leptokurtosis of the
conditional distribution of ;, which is mainly captured in the GARCH model
through the value of | or its associated multiplier. With respect to the other
structural parameters, the reported simulation evidence also confirms the result
stated in Proposition 7, with the exception of = 1, where large sample sizes are

required for the asymptotics to apply.

matrix, we ensure that the objective function is evenly scaled across parameters, which improves
the numerical properties of the optimisation algorithm.

50



In contrast, neither of the two restricted versions of the II estimator seems to
dominate the other across all Monte Carlo designs. When  is 10, the inequality
restricted II estimator systematically outperforms the equality restricted one in
terms of root mean square error, although not necessarily in terms of mean bias for

= 500. In contrast, when is .1, the equality restricted II estimator tends to
outperform the inequality restricted one, except perhaps as far as , is concerned.
The reason is that when the behaviour of the data is close to Gaussian white
noise, the auxiliary parameter is poorly determined. As a result, our attempts
to estimate simultaneously the reciprocal of the degrees of freedom result in a
deterioration of the estimators of the GARCH parameters relative to the Gaussian
case. At the same time, since as we explained above the first order condition
for is the most directly related to the degree of leptokurtosis of the observed
data, the equality restricted II estimator of , is somewhat less precise than its
inequality restricted counterpart. As for the middle row, the results are mixed,
at least for = 500. As increases, the inequality restricted II estimator tends
to have a smaller root mean square error than the equality restricted one, at the
cost of a slightly higher mean bias. In this respect, please note that the mixed
conclusions that we obtain from these simulations are partly the result of the
pseudo-true values of  (computed on the basis of 500 000 observations) being
systematically different from zero (cf. Propositions 8 and 10). In addition, they
also reflect the fact that the accuracy with which one can estimate the equality
and inequality restricted auxiliary parameters crucially depends on the values of
the true parameters. In practice, of course, an applied econometrician will often
know the range of values of p that she is likely to obtain with her data, in which
case the ambiguity disappears.

Finally, a comparison of our results with the ones reported by JPR suggests

that our II procedures tend to outperform the QML and MM estimators consid-
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ered by these authors, except in those instances in which, according to JPR, the
performance of the latter is exceptionally good. In contrast, our II estimators
are dominated by the empirical Bayesian estimators proposed by JPR, which is
not very surprising given that our auxiliary model does not nest the model of
interest, and we do not use any prior information. In this respect, it is important
to mention that the relatively poor performance of the II estimators is partly due
to those simulations in which is estimated as being negative. For instance, the
root mean square error of the equality restricted estimator of in row 2, column
3 of Table 5 decreases from .0765 to .0524 if we exclude the only two negative

estimates of found in 1,000 replications.

4 Conclusions

In this paper, we generalise the 1I approaches of GT and GMR to those situa-
tions in which there are equality and/or inequality constraints on the parameters
of the auxiliary model. Specifically, we propose an alternative set of moment re-
strictions based on the first order conditions for (in)equality restricted models,

which nest the ones employed by GT when there are no constraints, or when they



well as those that impose the constraints depending on the significance of some
preliminary specification test.

Inequality restrictions must often be considered in practice because either the
pseudo log-likelihood function may not be well defined when certain parameter
restrictions are violated, or some of the auxiliary parameters may become underi-
dentified in certain regions of the auxiliary parameter space. In addition, equality
constrained estimators may be particularly useful from a computational point of
view, since in many situations of interest, it is considerably simpler to estimate a
special restricted case of the auxiliary model. In this respect, we show that the
asymptotic efficiency of II estimators can never decrease by explicitly taking into
account the Lagrange multipliers associated with additional equality constraints,
regardless of whether such restrictions are correct. This result is particularly im-
portant in practice, as any parametric auxiliary model implicitly contains a vast
number of maintained assumptions, which can often be written in terms of zero
restrictions on some additional parameters.

We also illustrate the variety of effects that can be obtained when some con-
straints are imposed on the parameters of a previously unrestricted auxiliary
model. For instance, we discuss several circumstances in which the imposition
of constraints has no effect on the efficiency of the resulting II estimators, and
others in which false constraints enable the restricted II estimators to achieve
full efficiency. The reason for these seemingly counterintuitive results is that by
adding restrictions to the auxiliary model in those circumstances in which they are
not required to properly define the auxiliary objective function, we are implicitly
changing the auxiliary model, and thereby, the binding functions.

For illustrative purposes, we discuss the usual example of MA(1) estimated
as AR(1), and show that inequality restricted II estimators are asymptotically

equivalent to the unrestricted estimators, and indeed, to equality restricted II
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estimators that set the autoregressive parameter in the auxiliary model to any
arbitrary bounded value, but include either the corresponding first order condi-
tion in the set of moments, or the Lagrange multiplier in the distance function.
Importantly, the equivalence of the different II estimators in this example does
not really depend on the specific inequality restriction imposed, or the nature of
the true model, but rather on the particular form of the auxiliary model used.
In this respect, the same result continues to hold if the auxiliary model is given
by a conditionally homoskedastic Gaussian AR(p) process with linear restrictions
on the autoregressive parameters. We also discuss the reverse example in which
an AR(1) model is estimated via MA(1). It turns out that the equality restricted
IT estimators that impose a white noise restriction not only dominate the unre-
stricted estimators, but also become as efficient as ML, even though the auxiliary
model does not nest the true one, and the restriction is false. Finally, we compare
the performance of our proposed procedures for a log-normal stochastic volatility
process estimated as a GARCH(1,1) model with either Gaussian or t-distributed
errors. In this case, we find that the pseudo-ML estimators are quite often at
the boundary of the parameter space. We also document that when the auxiliary
model is estimated under Gaussianity, we can increase the efficiency of the usual
IT estimators by including the information in the multiplier corresponding to the
reciprocal of the degrees of freedom. Finally, we find that although neither ver-
sion of the restricted II estimator systematically outperforms the other, replacing
the pseudo-ML estimator of the tail-thickness parameter by its multiplier in those
situations in which there is little information in the data about this auxiliary

parameter results in more efficient estimators of the parameters of interest.
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Appendix

Proofs of results
Proposition 1
If we linearise the complementary slackness conditions
(07) © =0

around 3" (p ), taking into account that [0"(p )|ou"(p ) = 0, and that Hadamard

products are commutative, we obtain:

i © — I (0070 )] + (03) 0V [ (p )] = 0

where 35 = (07 p¥) is an “intermediate” value (in fact, a different one for each
row). Then, given that in view of our high level assumptions, ui—p"(p ) = (1),

)= (070 )] = (1), and  (8)) 6— [07(p)] 6= (1), the result
follows. U

Proposition 2

If we linearise the first-order conditions
Ve o
- Z t(07) =0
t
around B7.(p ), we obtain:

\/—_Z t [er(p )}

I R e A D)

LIV

+
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where 35 = (0% p%) is another “intermediate” value. Then, since in view of

Assumption 2

SR, - e

. [ '(67) 6] . { 'e"(p)] 6}
(b7 ® ) o = [Wp)® 7 »(1)
07) _ '[6"(p)]
a straightforward application of Cramer’s theorem completes the proof. O

Proposition 3

Let us now linearise the sample moments m(p ; 37) around 3" (p ) to obtain

vV omp:iBr) = vV m[p:8(p)]
m p 7/8<> ya) r m p 7/8<> -7 r
+%\/_ [6:—6"(p )] +%\/_ (27— (p )]
where 37 is yet another “intermediate” value. This implies that under Assumption

2, v m(p ;B7) has the same asymptotic distribution as

m'[p: 3 (p )]\/_[é;—er(p )]+ w' [p ;B (p )]\/_[ﬂrT_“r(p )]

0 Iz
where
mp ;6" ., ., "1e" 0 .
lp ,(p)] T+ ] { [/(p)] b

7] 0

mlp;B )l _ 0] _
74 0

But then, Proposition 2 directly yields the required result O
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Proposition 4

The first order conditions associated with p7. [(Z")~ ] can be written as

m' {67 (7)1 Br}
p

() m{E (@) ] By} =0

Expanding around p yields

Py w5
A N CACSR BT
FE B e ) — B Py

P
where p} is some “intermediate” value. But since m(pi};B;) is (1), and

m[p ;3" (p)] p has full column rank, we finally have that

\/_{ﬁ;[(z'r)—}_p} _ {ml[PQﬂr(P )]'(Ir)—' mp ;8 (p )]}

P P
« m [p ;p/B (p )] (Ir)f \/_m <p :BTT) + p(l)
as required. Il

Proposition 5

The result follows directly if we combine the proofs of Propositions 2 and 3 to

show that
Vom(p 3B — {7 VT 05070 + KV [ (p )] | = (1)
Proposition 6

By definition, p7. (¥) must always satisfy the first-order equations:

w' [pr (¥); Br]
p

W m [pr(®); Br] =0
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If = and is large enough, though, our assumptions imply that p.(¥) will

in fact be the solution to the system of equations

independently of ¥. But since

m [pr (2):Br] = [ +(Br)| A7 (P)]

the first order conditions that characterise the binding functions imply that

!/

which means that 8" [p} (¥)] trivially minimises 8" (p) — 87| - [8" (p) — By ]

for any €2.

Proposition 7

Given our assumptions about the relationship between 7 and 6, we can use
the results of Ferguson (1958) to show that p% [IC“ (7%) IC’"} is asymptotically
equivalent to the optimal CMD II estimator of p that minimises the distance
between the “sample statistics” (7_1'“/7, 0 ;) and their population counterparts
(7 (p) O p,e'(p)]/, where i are the Lagrange multipliers associated with the
equality constraints (0) = = 0, and pu®(p) the corresponding binding func-
tions. But such an estimator is at least as efficient as the optimal CMD II esti-

mator of p that simply minimises the distance between 7", and 7*(p).

Proposition 8

If the equality constraints are satisfied by the unrestricted pseudo-true values
of 8, in the sense that [6“(p )] =0, then 8"(p ) =0°(p ), u“(p ) = p(p ) =0,
and [B°(p )] = ¢[B“(p)]V . Asaresult, m[p B°(p )] =m[p B“(p )] for all
p in aneighbourhood of p ,sothat m[p B%(p )] p= m[p B“(p)] p. For
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analogous reasons, v/ m [p B;] v m [p B;} = ,(1) in view of Proposition
3, so that Z" = 7Z°. The required result then follows from Proposition 4.

Proposition 9

For simplicity of notation, let us definez; = ( ;,_ k) w=(p)= (] P)
o..(p) = (z: ¢|p) and X.,(p) = (zz}| p). It is then straightforward to see
that

my(p B) = —[olp) — Sulp)d) + 'n

1

mu(p B) = 5[ w(p) + ¢..2(p)p — 20", (p)p— |

from where we can obtain the following binding functions

®“(p) = X, (p)o.(p)

“p) = w(p) —0.u(p)ZL (p)o.(p)

¢°(p) = T (poP)+Z_(p) '[| Top) ' [ — =L (p)o=(p)]
p(p) = 1 ) =L T [ - ZL(p)ow(p)

‘(p) =  w(p)+0°(p)Z..(p)o°(p) — 207, (p)d°(p)

Therefore, we will have that

my[p B (p)] = vzx(p)—Zzz(/sziz (p)o(p)

my [p B"(p)] = wa(p) + (P )’Ezz(p);b{(up(;;}2a;x(p)¢“(p)— “(p)
and

my [p B(p )] = [o20(p) ~ Z=:(P)¢"(P )] | ‘o) ‘ulp)




w(p) + 0°(p ) T..(p)°(p ) — 200, (p)d°(p ) — “(p)
2[ “(p)]

Let us now define the +1 vector of functions y(p) = (p) (p) L(0)],

my, [p Be(p )] =

so that all the elements of ,.(p), 0..(p) and X,,(p) can be trivially written as
functions of y(p). Then, tedious but otherwise straightforward algebra shows that
both m[p B“(p )] and m[p B°(p )] can be written as homeomorphic functions of
v(p). As a result, the estimators of p based on minimising the optimal norm of
m [p Blﬂ or m [p B;}, will be asymptotically equivalent to the CMD estimators
based on minimising the optimal norm of v(p) — 7., where 7, contains the first

+ 1 sample autocovariances of ;.

Proposition 10

The proof of these three cases, which correspond to an asymptotically strictly
unconstrained auxiliary model, an asymptotically strictly constrained auxiliary
model, and an asymptotically correctly equality constrained auxiliary model fol-
lows the lines of the proof of Proposition 8.

In the first case, we have that 8'(p ) = 8“(p ),sothat . [B'(p )] = +[B8"(p )]
V. Hence, m [p B'(p )] =m[p B“(p )] for all p in a neighbourhood of p , which
implies that m[p B'(p)] p= mlp B“p)] p. In addition, v f} =

o(1) and v (9i —07) = ,(1) from Propositions 1 and 2 respectively, and
VAR [p BZT] — [ By } ) in view of Proposition 3, so that Z* = Z".
In the second case, B'(p ) = ( ), so that . [B(p )] = [B°(p)] V.

Hence, m [p B' '(p )] =m[p B°(p )] for all p in a neighbourhood of p , which im-
plies that m [p B(p )] p= mlp B%p )] p. Similarly, Propositions 1 to
3 also imply that v/ (i, —fis) = ,(1), v (6,—85) = ,(1),and v m [p BZT] —
vV m[p B3] = ,(1), 5o that T = 7°.
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In the last case, of course, 3'(p ) = B“(p ) = B"(p ), so that [B'(p )] =
([B(p)] = ¢[B(p)]V . Hence,m[p B'(p )] =mp B"(p )] =m[p B(p )
for all p in a neighbourhood of p , which implies that m[p B'(p )] p =
m[p B(p) p= m[p B°p) p.- Butin contrast, even if is large,
m [p BZT} will only coincide with m [p B;} approximately half the time, while
it will coincide with m [p Beﬂ the other half. Nevertheless, since in this case
v o m [p BH —v m [p B;} = ,(1) from Proposition 8, all three estimators

are asymptotically equivalent.

Proposition 11

The proof of this result follows directly from the proof of Theorem 6 in Chi-
ang (1956), with the first elements of X"3} and K3 (p) playing the roles of
the consistent and asymptotically normal “sufficient statistics”, and their plims
respectively. In this respect, note that the only role of K" is to relegate the

singular combinations of Proposition 1 to the last positions.

The expected value of the score of an MA(1)
model

In order to find

mp:B) = |0

my(p; B) = L] —1l+ |p
=]

1t is convenient to write
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and

so that we can understand both ;( )and ()  as the output of linear filters
applied to the original series ;. In this light, we can obtain the required expec-
tations as the constant terms in the autocovariance generating function of ,( )

and ( )- () . Inparticular, Iy, 5 4 s ( ) will be given by

(P [1+557 7+ )]
= — | X 0 1+ Y+ )
X ) IR (4 )]
Hence,

Ol =22 (14237 2

which for the special case of the true process being a stationary AR (1) reduces to

1—
1— Y- ) 1+

[t( )‘P}:(

In fact, given that we can write

()=1= 1
t - t — t
1- - - )
it is not surprising that [ ,( )| p| coincides with the unconditional variance of

an AR(2) process with autoregressive roots and , and innovation variance
Similarly, the cross-covariance generating function of () and (),
Lov, s j06,u; 6 (), will be given by (minus) the following expression

1
ﬁ'rxt( )'1—_

o0

=D VIR (NES SREES SR B (O oRRy
l l k

J
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= @Y T T e+ Y
@Y > T TR > T Pt ) Y

Therefore, the coefficient associated with the constant term will be

P Y T aer2) ey, Y ey
j I I j I j
But since for | | 1

2T = X =
Z - Z(+1)j:—

we will have that

K >AH:‘%{ 2 +0- )] " if})}

For the special case of a stationary AR(1) process, this expression reduces to:

L O— o] - ( + - )

Simulation-based estimators

For the sake of clarity, we have assumed throughout that analytical expressions
for (7) and (9) can be readily obtained, as in sections 3.1 and 3.2. However, in
many other cases, such expressions may be very difficult, or simply impossible
to find, and yet they can often be easily obtained by numerical simulation (see
e.g. GM96). In particular, we can compute the required expectations as ensemble

averages of the levels and derivatives of the Lagrangian function (1) across
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realizations of size  of the true process simulated with parameter values equal

to p. Specifically,

Lo(p0) ~ Lur(p0)=—3 1% t(z)
h t

mr(p; B) ~ HT(pQﬂ):iZlZ tgg)+ /‘(99);;,

where we can make the last terms arbitrarily close in a numerical sense to the first
onesas — oo. Nevertheless, it is important to bear in mind that these simulated
functions will seldom be differentiable with respect to p unless the underlying
uniform variates are kept fixed across simulations, there are no discrete variables
in 4, and smooth transformations of the underlying uniforms are used to obtain
the desired distributions. In this respect, we would like to stress that in the only
example in which we relied on simulations to compute the required moments (see
section 3.3), all three conditions were fulfilled.

Alternatively, since we are assuming that  is strictly stationary and ergodic,



of estimators obtained from each simulated sample. The main attraction of the
second procedure is that it may often improve the small sample properties of the
estimators of p (see e.g. Gourieroux, Renault and Touzi, 2000).

From a computational point of view, though, the crucial advantage of GMM-
based estimators over CMD-ones is that they avoid the calculation of the possibly
constrained estimators for each simulation of the process. However, given that
pf = 0, we can always regard the GMM-based II procedure as a CMD procedure
that matches the value in the observed sample of a vector that contains one
multiplier per auxiliary parameter with the (average) value of the same vector
in the simulated sample(s). At the same time, since the term [ /(67) 6] - @i},
is fixed across simulations, what we effectively do in practice is to minimise the
distance between the score in the actual sample and the (average) score in the
simulated samples.

Finally, note that the autocovariance matrices ,(p;3;) used in the compu-
tation of the optimal weighting matrix for the continuously updated GMM-based
IT estimators can also be arbitrarily approximated by replacing the required ex-
pected values by their sample counterparts in a long simulation of length
Nevertheless, it is important to bear in mind that since  is finite in practice, the
asymptotic covariance matrix of the GMM and CMD II estimators in Proposition

4 must be multiplied by the scalar quantity (1 4+ ~ ) (see GMR).
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Table 1

Proportion of auxiliary model parameter estimates at the boundary

total

® = ©min
7'(' =
p+m=1
n=20
total

(Inequality /Equality)

T=500, H=10, Fixed GMM weighting matrix, 1,000 replications

« 1) oo
-.821 .9 .675
0/0
0/0
.967/.815
0/1
.967/.815

136 .9 .63
002/.004
.003,/.003
012/.010

0/1
015/.016

706 .9 135
291/.287
169/.177

0/.004
215/ 1
533/.383

-.4106

« 1) oo
.95 4835
0/0
0/0
.949/.867

0/1
.949/.867

568 .95 .26
.003,.002
001/0
063/.047
0/1
066,.049

-.353 .95
260,280
133/.162
.001/.004

264/ 1
526/.363

.0964

Table 2

« 6 Ou
-.1642 .98 .308
0/0
0/0
816/.762
0/1
.816/.762
-1472 .98 166
.006/.003
.003/.004
111/.076
014/1
.132/.082

141 .98
.306/.328
149/.115

0/.001
299/1
577/.393

0614

Proportion of auxiliary model parameter estimates at the boundary

(Inequality /Equality)

T=1,000, H=10, Fixed GMM weighting matrix, 1,000 replications

total

® = Pmin
=0
p+m=1
n=20
total

« 1) Oy
-.821 .9 .675
0/0
0/0
.995/.894
0/1
.995/.894

-786 .9

0/0

0/0

.001/.001
0/1

.001/.001

363

706 .9 135
215/.228
.082/.100

0/.003
113/1
352/ .277

« 1) Oy
-.4106 .95 4835
0/0
0/0
.989/.954
0/1
.989/.954

368 .95 .26
0/0
0/0
.030/.020
0/1
030/.020

-.358 .95
.188/.213
.059/.059

0/0
126/ 1
:320/.239

.096/

« 1) Oy
-.1642 .98 .308
0/0
0/0
.960/.918
0/1
.960/.918
-.1472 .98 .166
0/0
0/.001
.112/.081
.002/1
.114/.082

141 .98
239/.241
.051/.035

0/0
169/ 1
.386/.260

L0614



Table 3

Proportion of auxiliary model parameter estimates at the boundary

(Inequality /Equality)

T=2,000, H=10, Fixed GMM weighting matrix, 1,000 replications

total

® = ©min
7'(' =
p+m=1
n=20
total

« )

-.821 .9

0/0

0/0
1/.973

0/1
1/.973

Ov

675

7186 .9
0/0
0/0
0/0
0/1
0/0

363

706 .9 135
147/.153
027/.034

0/.001
034/ 1
.197/.169

« 1)
-.4106

Ov
95 4835
0/0
0/0

1/.995
0/1

1/.995

-.368 .95

0/0

0/0

009/.002

0/1

009/.002

.26

-.853 .95
130/.128
015/.012

0/0
056/ 1
186,/.133

.0964

Table 4

« )
-.1642 .98
0/0
0/0
.998/.988
0/1
.998/.988

Ov

.308

1472 .98
0/0
0/0
.089/.069
0/1
.089/.069

.166

141 .98
198/.192
.008/.006

0/0
096/ 1
281/.194

0614

Mean, root mean square error, mean bias and standard deviation of the

2

K o
10 -.821
mean -1.0831
rmse 7874
mean bias  -.2621
std. dev. 7425
1 -. 736
mean -1.0574
rmse .8319
mean bias  -.3214
std. dev. 7673
.1 -.706
mean -1.7255
rmse 2.2915
mean bias -1.0195
std. dev. 2.0522

unrestricted II estimator

T=500, H=10, Fixed GMM weighting matrix, 1,000 replications

) Ow
.9 675
0.8723 .7395
0794 2711
-.0277  .0645
0744 .2633
.9 .363
.8596 .4315
1025 .2212
-.0404 .0685
.0942 .2104
.9 185
7648  .2757
3035 L3788
-.1352  .1407
2717 3517

« ) Oy
-.4106 95 4835
-.5901  .9299 .5302

4514 .0499 .1666
-1795 -.0201 .0467

4142 .0456  .1600
-.368 .95 .26
-.6082 .9183 .3130

5205 0677 .1422
-.2402 -.0317 .0530
4617 .0598  .1320
-.353 .95 .0964
-1.1924 .8360 .1999
1.8727  .2499 .2793
-.8394 -.1140 .1035
1.6741  .2223 .2594

« 0
-.1642 .98
-.3329  .9600

3122 .0363
-.1687 -.0200
2627 .0303
-.1472 .98

-4144  .9445
5799 .0722
-.2672 -.0355
5146  .0629
141 .98

-.7804  .8916
1.5052  .2039
-.6394 -.0884

1.3626  .1838

Oy

.308

.3498
1074
.0418
.0990

166

.2269
1354
.0609
1210

061/
1376
1949
0762
1794



I<.72

10
mean
rmse
mean bias
std. dev.

1
mean
rmse
mean bias
std. dev.

.1
mean
rmse
mean bias
std. dev.

I<.72

10
mean
rmse
mean bias
std. dev.

1
mean
rmse
mean bias
std. dev.

.1
mean
rmse
mean bias
std. dev.

Table 5

Mean, root mean square error, mean bias and standard deviation of the

!
-.821
-.9245
5582
-.1035
.5485

-.736

-.9546
1267

-.2186
.6930

-.706
-2.2013

3.0879
-1.4953

2.7017

0

.9
.8884
.0657
-.0116
.0647

.9
8711
.0983

-.0289
.0940

.9
.6892
4363

-.2108
.3820

equality restricted II estimator
T=500, H=10, Fixed GMM weighting matrix, 1,000 replications

Ov

675
.5836
.1926
-.0914
1695

3638
3423
1213
-.0207
1195

135

.1636
.1380
.0286
1350

« 1)
-.4106 .95
-.5249  .9365

3759 .0438
-.1143 -.0135

3581 .0417
-.368 .95
-.5671  .9237

5590  .0739
-.1991 -.0263

.5523  .0690
-.358 .95

-1.8327  .7416
2.8495  .4019
-1.4797 -.2083
2.4352  .3437

Table 6

Ov
4835
.4386
1305
-.0449
1225

.26
2577
1023

-.0023
1023

.096/
1449
1340
0485
1249

(0%
1642
~.3084
2772
~.1442
2367

1472
~.3620
6130
~.2148
5741

141
-1.4194
2.6460
-1.2784
2.3167

0
.98
.9629
.0332
-.0171
.0284

.98
9515
0765

-.0285
.0710

.98
7999
3724

-.1801
.3260

Oy
.308
.2958
.0914

-.0122
.0906

.166

1781
.0845
.0121
.0837

L0614
1131
1251
0517
1139

Mean, root mean square error, mean bias and standard deviation of the

o!
-.821
-.9613
.3902
-.1403
.3641

-.736
-1.0108
.6969
-.2748
.6404

-.706
-2.3819

3.3865
-1.6759

2.9428

0

.9
.8834
.0468
-.0166
.0438

.8628
.0929
-.0372
.0851

.6642
AT73
-.2358
4150

inequality restricted II estimator
T=500, H=10, Fixed GMM weighting matrix, 1,000 replications

Oy
675
.6804
.1003
.0054
.1001

3638
.3840
.1064
.0210
.1044

135
1712
.1418
.0362
1371

(87
-.4106
_.5549
3124
-.1443
2771

-.368

-.6402
.6284

-.2722
.5663

-.858
-1.9527

3.1102
-1.5997

2.6673

0
.95
9325
.0381
-.0175
.0339

.95
9130
.0876

-.0370
0794

.95
1247
4383

-.2253
3759

Oy

4835
4959
.0844
.0124
.0835

.26

.2907
.0973
.0307
.0923

.096/
1526
1420
0562
1304

«
-.1642
-.3342
3181
~.1700
2688

1472
~.4013
5431
~.2541
4800

141
-1.5684
2.8693
-1.4274
2.4891

0
.98
.9595
.0389
-.0205
.0330

.98
9452
0741

-.0348
.0654

.98
7792
4025

-.2008
.3488

Oy

.808

.3290
.0742
.0210
0712

.166

1997
.0913
.0337
.0848

061
1227
1343
0613
1196



I<.72

10
mean
rmse
mean bias
std. dev.

1
mean
rmse
mean bias
std. dev.

.1
mean
rmse
mean bias
std. dev.

I<.72

10
mean
rmse
mean bias
std. dev.

1
mean
rmse
mean bias
std. dev.

.1
mean
rmse
mean bias
std. dev.

Table 7

Mean, root mean square error, mean bias and standard deviation of the

!
-.821
-.9546

4518
-.1336
4315

-.736

-.8919
4694

-.1559
4427

-.706
-1.6044
1.9730
-.8984
1.7565

0

.9
.8861
.0493
-.0139
0473

.8800
.0607
-.0200
.0573

1787
2643
-.1213
.2349

Oy
.675
.7069
.1660
.0319
.1629

3638
3958
1241
.0328
1197

135
.2506
.2946
.1156
2709

unrestricted II estimator
T=1,000, H=10, Fixed GMM weighting matrix, 1,000 replications

« 1) oo
-.4106 .95 4835
-.5013  .9398 .5066

.2655  .0302 .1034
-.0907 -.0102 .0231

2496  .0284 .1008

-.368 .95 .26
-4906 9338 .2894
3164 0413 .0868
-.1226  -.0162 .0294
2917 .0381 .0817

-.858 .95 .0964
-1.0513  .8543 .1907
1.4970  .2012 .2350
-.6983 -.0957 .0943
1.3241 1770 .2152

Table 8

« 0
-.1642 .98
-.2486  .9702

1805  .0209
-.0844 -.0098
1596 .0184
-1472 .98

-.2529  .9658
2208  .0294
-.1057 -.0142
1938 .0257
-.141 .98

-.6128 .9141
1.0655  .1470
-.4718 -.0659
9553 1315

Oy

.308

3310
.0700
.0230
.0661

.166

1943
.0662
.0283
.0598

L0614
1248
1517
0634
1378

Mean, root mean square error, mean bias and standard deviation of the

T=1,000, H=10, Fixed GMM weighting matrix, 1,000 replications

o
-.821
-.8228

3243
-.0018
3243

-. 186
-.8249
3677
-.0889
.3568

-.706
-1.6778
2.3131
-.9718
2.0991

0
.9
.9000
0378
.0000
0378

.9
.8885
.0490

-.0115
.0476

.9
7631
.3264

-.1368
.2963

equality restricted II estimator

Oy

675
.6032
1416
-.0718
1220

363
3497
.0869
-.0133
.0859

135

.1580
.1062
.0223
1037

« 1) Ou

4106 .95 4835
4610 9443 4524
2337 0268 .0953
0504 -.0057 -.0311
2282 0262  .0901

-.368 .95 .26

-4557 9385  .2580
2518  .0336  .0653
-.0877 -.0115 -.0020
2360 .0315  .0653

-.858 .95 .0964
-1.2176 8282  .1343
2.0173  .2847  .1015
-.8646 -.1218 .0380
1.8226  .2573  .0941

« 1)
-.1642 .98
-.2373 9714

1734 .0199
-.0731 -.0086
1572 .0179
-.1472 .98

-.2480  .9668
3091 .0388
-.1001 -.0132
2922 .0364
-.141 .98

-.8975  .8733
1.8984  .2676
-.7565 -.1067
1.7412  .2455

Oy
.308
.3020
.0622

-.0060
.0619

166

1753
.0530
.0093
.0521

L0614
1015
0923
.0401
0831



Table 9
Mean, root mean square error, mean bias and standard deviation of the

inequality restricted II estimator
T=1,000, H=10, Fixed GMM weighting matrix, 1,000 replications

K2 « 1) oo « 6 Ou « 1) Oy
10 -.821 .9 675 -.4106 .95 4835 -.1642 .98 .308
mean -.8752 .8940 .6726 -4726 9427 4870 -.2395 .9706 .3188
rmse 2388  .0281 .0712 1836 .0225 .0568 1498  .0183 .0445
mean bias  -.0542 -.0060 -.0024 -.0620 -.0073 .0035 -.0753 -.0094 .0108
std. dev. 2326 .0275 .0711 1728 0 .0213  .0567 1295 .0157  .0432
1 -.736 .9 .363 -.368 .95 .26 - 1472 .98 .166
mean -.8426  .8859  .3703 -.4679 9366 .2725 -.2521  .9658 .1840
rmse 3343 .0447  .0677 2396 .0326  .0541 2023 .0277 .0485
mean bias  -.1066 -.0141 .0073 -.0999 -.0134 .0125 -.1049 -.0142 .0180
std. dev. 3168  .0425  .0673 2178 .0297 .0527 1730 .0237 .0450
.1 -.706 .9 135 -.358 .95 .0964 -.141 .98 .0614
mean -1.7295 .7559  .1684 -1.2584 8226 .1381 -.9353 .8680 .1062
rmse 2.3196  .3270 .1085 2.1294  .2995 .1010 1.9963 .2813 .0955
mean bias -1.0235 -.1441 .0334 -.9054 -.1274 .0417 -.7943 -.1120 .0449

std. dev. 2.0815 .2936 .1033 1.9273 2711 .0920 1.8314  .2581 .0843

Table 10
Mean, root mean square error, mean bias and standard deviation of the
urestricted II estimator
T=2,000, H=10, Fixed GMM weighting matrix, 1,000 replications

K2 « 0 Ou « 0 o « 0 Oy
10 -.821 .9 675 -.4106 .95 4835 -.1642 .98 .308
mean -.9079 0.8908 .7013 -.4660 .9438 .5002 -.2099 9747 .3213
rmse 2977 .0328 .1180 1693 .0192  .0726 1063 .0123  .0472
mean bias  -.0869 -.0092 .0263 -.0554 -.0062 .0167 -.0457 -.0053 .0133
std. dev. 2847  .0315 .1150 .1600 .0182 .0706 0959  .0111 .0453
1 =786 .9 368 -.368 .95 .26 -1472 .98 .166
mean -.8231  .8887 .3840 -4336  .9413 .2774 -.2027 9725 .1821
rmse 2690  .0353 .0806 1620 .0215  .0535 1122 .0150 .0400
mean bias  -.0871 -.0113 .0210 -.0656 -.0087 .0174 -.0555 -.0075 .0161
std. dev. 2545 .0334 .0778 1481 .0197 .0506 .0975 .0130 .0366
1 =706 .9 135 -.853 .95 .096/ -.141 .98 .0614
mean -1.3798  .8078 .2229 -.8413  .8822 .1619 -.4565  .9358 .1094
rmse 1.4439 1946 .2187 1.0238 1397 .1477 .6963  .0956 .1080
mean bias  -.6738 -.0922 .0879 -.4883 -.0678 .0655 -.3155 -.0442 .0480

std. dev. 1.2770 1714 .2003 8999 1221 1324 6208  .0848 .0967



Table 11
Mean, root mean square error, mean bias and standard deviation of the

equality restricted II estimator
T=2,000, H=10, Fixed GMM weighting matrix, 1,000 replications

K2 « 1) oo « 1) oo « 6 Oy
10 -.821 .9 675 -.4106 .95 48835 -.1642 .98 .308
mean -.8229  .8999  .6288 -.4249 9485  .4576 -.2012 9758  .3027
rmse 2397 .0279  .1083 1351 .0159  .0693 .0952  .0110 .0435
mean bias  -.0019 -.0001 -.0462 -.0143 -.0015 -.0259 -.0370 -.0042 -.0053
std. dev. 22396 .0279  .0980 1343 .0158  .0643 0877  .0102 .0432
1 -.736 .9 .363 -.368 .95 .26 -.1472 .98 .166
mean -7798  .8943  .3549 -.4149 9439  .2593 -.1954 9736  .1723
rmse 2212 .0295  .0596 1498  .0199  .0449 1043 .0138  .0349
mean bias  -.0438 -.0057 -.0081 -.0469 -.0062 -.0007 -.0482 -.0064 .0063
std. dev. 2168  .0290  .0590 1422 .0190  .0449 0925 .0123 .0343
.1 -.706 .9 135 -.358 .95 .0964 -.141 .98 .0614
mean -1.1955 .8310 .1549 -.7130  .8994 1212 -.4184  .9410 .0885
rmse 1.3864 .1956 .0783 9254 .1301  .0687 6934  .0969 .0601
mean bias  -.4895 -.0690 .0199 -.3600 -.0506 .0248 -.2774  -.0390 .0271
std. dev. 1.2971 1830 .0757 8525  .1198  .0641 .6355  .0887  .0537
Table 12

Mean, root mean square error, mean bias and standard deviation of the
inequality restricted II estimator
T=2,000, H=10, Fixed GMM weighting matrix, 1,000 replications

K2 « 1) o « 1) Ou « ) Oy
10 -.821 .9 675 -.4106 .95  .}835 -.1642 .98 .308
mean -.8590  .8957 .6777 -.4463  .9458 .4872 -.2074 9747 .3150
rmse .1603  .0190 .0510 1157 .0138  .0407 .0932 .0117 .0319
mean bias  -.0380 -.0043 .0027 -.0357 -.0042 .0037 -.0432 -.0053 .0070
std. dev. 1558  .0185 .0509 1101 .0132  .0406 0826 .0104 .0312
1 =756 .9 368 -.868 .95 .26 -1472 .98 .166
mean -.7960 .8921 .3696 -.4184 9432 .2676 -.2009 9727 .1752
rmse 1955 .0261  .0465 1323 .0180 .0366 1109 .0156  .0342
mean bias  -.0600 -.0079 .0066 -.0504 -.0068 .0076 -.0537 -.0073 .0092
std. dev. 1860  .0249 .0460 1223 .0167 .0358 .0970 .0137 .0330
1 -.706 .9 135 -.853 .95 .0964 -.141 .98 .0614
mean -1.2351  .8254 .1604 -.7558  .8933 .1256 -4874 9313  .0934
rmse 1.4174 .2001 .0791 1.0600 .1493 .0703 1.0634 .1423 .0654
mean bias  -.5291 -.0746 .0254 -.4028 -.0567 .0292 -.3464 -.0487 .0320

std. dev. 1.3150  .1856 .0750 9805 1382 .0640 9555 1337 .0570



Figure 1: Binding Functions for MA(1) estimated as AR(1)
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Figure 2: Binding Functions for AR(1) estimated as MA(1)
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