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Abstract

Financial contagion is modeled as an equilibrium phenomenon in a dynamic setting
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a rationale for localized financial panics. Simulations identify the optimal level of in-
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1 Introduction

A commonly held view of financial crises is that they begin locally, in some region, country,
or institution, and subsequently “spread” elsewhere. This process of spread is often referred
to as contagion. What might justify contagion in a rational economy? There are two broad
classes of explanations.

The first class of explanations posits that the adverse information that precipitates a
crisis in one institution also implies adverse information about the other. This view em-
phasizes correlations in underlying value across institutions and Bayes learning by rational
agents. For example, a currency crisis in Thailand may be driven by adverse information
about underlying asset values in South East Asia, which can then apply to other countries
in the region.1

A second type of explanation begins with the observation that financial institutions
are often linked to each other through direct portfolio or balance sheet connections. For
example, entrepreneurs are linked to capitalists through credit relationships; banks are
known to hold interbank deposits. While such balance sheet connections may seem to be
desirable ex ante, during a crisis the failure of one institution can have direct negative payoff
effects upon stakeholders of institutions with which it is linked.2

In this paper, we present a model of financial contagion which formalizes this latter
view. We focus on a particular (but particularly important) type of financial institution:
commercial banks. Throughout history, banks have cross-held deposits (for regulatory and
insurance reasons), and thus the failure of some banks had direct consequences on others
through capital linkages. Contagious bank failure is particularly complex because it involves
an underlying coordination problem amongst depositors of each bank. Even weak banks
may not fail if very few depositors withdraw their money early, while strong banks may fail
if many depositors withdraw early. The existence of multiple equilibria makes it difficult
to examine even individual bank failures, which then compounds the difficulty of isolating
contagious effects in many bank settings.3 Using and extending some recent developments
in the theory of equilibrium selection in coordination games (see Morris and Shin 2000),
we present a model of an economy with multiple banks where the probability of failure of
individual banks, and of systemic crises, is uniquely determined. This then permits us to

1For papers that emphasize this view, see, for example, Kodres and Pritsker (1998), Chen (1999), or

Acharya and Yorulmazer (2002).
2Two leading papers that emphasize this view are Kiyotaki and Moore (2001) and Allen and Gale (2000).

An interesting recent paper which highlights the possibility of contagion through financial links between

stakeholders in different institutions, rather than the institutions themselves, is Goldstein and Pauzner

(2000b). A related explanation, based on a wealth effect, is offered by Kyle and Xiong (2001).
3For the classic multiple equilibrium model of bank runs, see Diamond and Dybvig (1983).
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identify contagion precisely and examine its properties.
The set of financial crises that are best represented by our model are the banking panics

of the National Banking System in the United States. We now provide a brief and stylized
description of these panics.

1.1 National Banking Era Panics

The description presented here selectively synthesises and summarizes the descriptions pro-
vided by Sprague (1910), Wicker (2000), and Calomiris and Gorton (1991). The defining
characteristics of the National Banking System were laid out in the National Banking Act
of 1864. This act prohibited interstate branching of banks and established a system of re-
serve pyramiding, under which country banks could hold reserves in designated reserve city
banks, which in turn could hold reserves in New York. Thus, throughout this period, the
reserve cities including New York directly or indirectly held the deposits of many country
banks. As late as 1907, Sprague (1910, p. 223) points out that: “New York still maintained
its commanding position as a debtor of national banks.”

There were five banking panics of varying intensity in the National Banking Era prior
to the Great Depression. They occurred in 1873, 1884, 1890, 1893, and 1907. With the
exception of the the crisis of 1893, all of these panics began as localized disturbances in
New York and subsequently spread to banks in the interior of the country. What were the
sources of these panics? Calomiris and Gorton (1991) argue persuasively that the panics
typically began with asset-side shocks. Wicker (2000, p. 1) confirms: “In New York, the
banking panics began with an unexpected financial shocks . . . the immediate effect being a
loss of depositor confidence manifest by bank runs that were bank-specific and sometimes
extending to all savings banks.” This was typically followed by suspension of payments by
New York banks, followed by suspensions in banks at various parts of the country.

A particularly good example of such contagious panics was the panic of 1907.4 In 1907,
the panic began due to an unsuccessful attempt to corner the Copper market by a group of
speculators who were associated with several Trust Companies and National Banks in New
York. When news of this speculative failure became public in October there were runs on
Knickerbocker Trust Company. This was followed by runs on the National Bank of North
America and on other institutions thought to be linked to the Copper speculators. While
some attempts were made to ease the crisis by private bankers led by J. P. Morgan, an
unfortunate delay in reaction by the large New York Clearing House led to a widespread

4Sprague (1910) points out that the panic of 1907 was preceded by no systemic shocks that might conflate

our analysis (p. 216): “For our purposes, therefore, we are fortunate in being provided with a crisis which

was preceded by no legislation or monetary conditions unfavorable to sound banking.”
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panic, followed by several suspensions and bank closures. Sprague (1910, p. 259) points
out: “Everywhere the banks suddenly found themselves confronted with demands for money
by frightened depositors . . . Country banks drew money from city banks and all banks
throughout the country demanded the return of funds deposited or on loan in New York.”
Finally, the panic that began with a localized asset shock in New York led to suspensions
(or effective suspensions) through much of the country. In the panic of 1907, therefore, we
find a clear example of how a financial panic may spread along the channels of direct capital
connections between institutions.

To summarize, some of the stylized features of the National Banking System panics are
as follows:

• Panics originated due to asset-side shocks. They were inherently dynamic, starting in
New York and spreading to the interior of the country.

• While other factors may also play a role,5 panics appeared to diffuse nationally through
the correspondent network, from debtor New York banks to creditor banks in the
interior.

In what follows, we develop a dynamic Bayesian game theoretic model in which many of
these stylized features emerge in equilibrium.

1.2 Summary of Model and Results

We consider a 3-period economy with two non-overlapping regions, each with a represen-
tative competitive bank. Regional banks have access to a storage technology (cash) and
a region-specific risky technology that pays a higher expected return than cash if held to
maturity, but pays less than par value if liquidated early. The return on the risky asset is re-
vealed in period three, and is an increasing function of uniformly distributed region-specific
underlying fundamentals.

There are two continuums of risk-averse consumers, one in each region, each of whom
lives three periods. The consumers receive private liquidity shocks: with some probability
they may need to consume in period one. They begin life with their endowments deposited
in the representative bank of their region. The aggregate level of liquidity demand in the
economy is fixed, but the two regions may experience negatively correlated regional shocks.
The two representative banks insure against such regional liquidity shocks by holding inter-

5Wicker (2000) identifies four channels of transmission from New York to the interior, including diffusion

via the correspondent network. However, not all of these factors are independent, and at least two of these

may formally reduce to consequences of existing correspondent relationships.
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bank deposits. Consumer deposits, as well as interbank deposits take the form of standard
demand deposit contracts.

Within period one, regional liquidity shocks are realized first and become public knowl-
edge. Then, nature selects the depositors of one of the banks to receive private signals
about their bank’s fundamentals and make their choices. The depositors of the other bank
observe the net proportion of the depositors of the first bank who withdraw their money.
Shortly thereafter, the depositors of the other bank receive private information about their
bank’s fundamentals, and decide whether to remain or withdraw.6 The seniority of inter-
bank deposits implies that when the depositors of either bank are called upon to make their
choices, there is an interim asymmetry between the two banks: one bank (in the region
with high initial liquidity demand) is a net debtor to the other bank.

Under weak assumptions on the distribution of fundamentals, we prove that there is a
unique threshold in asset returns below which each bank will fail (Propositions 1, 2, 3, and
4). Bank failure thus depends upon the release of adverse information, and the probability
of failure is determined endogenously. In our central result, we show that contagion exists:
that is, there are regions of fundamentals in which one bank fails if and only if the other
bank fails (Proposition 5). Conditional on the failure of the debtor bank, the creditor bank
fails for a wider range of its own fundamentals than if the debtor bank survived. However,
the failure of the creditor bank does not affect the probability of failure of the debtor bank.
Contagion flows from debtors to creditors, and thus spreads along the channels of interbank
deposits in a specific direction. Hence, contagion can be localized and not all institutions
become potential targets.

Interbank deposits enable banks to hedge regional liquidity shocks, but expose them to
the risk of contagion. We illustrate the conditions under which banks would want to hold
significant levels of interbank deposits. Intuition suggests and our simulations confirm that
when banks runs are rare, financial institutions will insure fully against regional liquidity
demand shocks. However, when bank runs are frequent, only partial insurance will be
optimal.

Finally, under the assumption of full liquidity insurance, we present comparative statics
results to demonstrate that contagion is increasing in the size of regional liquidity demand

6There are two natural ways to interpret this non-simultaneity in the model, of which we prefer the

second. One can think of this model as a discrete approximation of a continuous time model with generically

staggered release of information. One can also think of this as a genuine discrete time setting in which (for

reasons we do not model) the depositors of one bank suddenly receive information and choose to act. The

depositors of the other bank (in another region) learn about the events in the first bank the following day,

and then actively seek out information about their own bank immediately thereafter, and choose whether

to withdraw or remain.
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shocks (Proposition 6). This is a testable implication of the model.

1.3 Related Literature

Our paper is connected with a diverse literature. We apply the equilibrium selection tech-
niques summarized in Morris and Shin (2000). Goldstein and Pauzner (2000a) were the
first to apply these techniques to the analysis of bank runs. Our model shares features with
theirs.7 They investigate the probability of bank runs in a single-bank setting, while we are
interested in the problem of contagion with multiple banks. Rochet and Vives (2000) also
analyze bank runs using similar techniques, but do not concern themselves with the problem
of contagion. Goldstein and Pauzner (2000b), like us, examine contagion of self-fulfilling
crises, but their mechanism for contagion (through common lenders) is different from ours.
Kiyotaki and Moore (2001) explore the method by which contagion flows through credit
chains amongst lenders and entrepreneurs. Their model shares with ours the feature that
capital connections are the channels for contagion, but does not concern itself with coordi-
nation problems. Rochet and Tirole (1996) examine correlated bank failures via monitoring:
the failure of one bank is assumed to mean that other banks have not been monitored, and
thus triggers multiple collapses.

The paper that comes closest to us in theme is by Allen and Gale (2000). Their purpose
is to model contagion as an equilibrium phenomenon in a many-bank setting. While our
model contains features of Allen and Gale’s framework, there are important differences.
Allen and Gale work with perfect information and bank panics occur due to aggregate
(random) liquidity shocks on the part of the depositors. Such aggregate liquidity shocks are
necessary and sufficient for contagion. Our model features incomplete information. Bank
runs occur due to adverse information about asset returns. Regional liquidity shocks are
necessary but not sufficient for contagion.

The existence of contagion in Allen and Gale (2000) requires incompleteness in the
interbank deposit market. This may suggest that complete interbank deposits may eliminate
contagion, thus reducing the need for a lender of last resort. Our model suggests, however,
that contagion occurs with positive probability even with complete interbank deposits.

The rest of the paper is organized as follows. In the next section we present the model.
In section 3 we prove the existence and uniqueness of threshold equilibria. Section 4 contains
our central result. The optimal level of interbank deposit holdings is illustrated numerically
in Section 5. Section 6 provides closed forms and comparative statics. Section 7 discusses
and concludes.

7Importantly, in both models, payoffs fail to satisfy global strategic complementarities.
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2 The Model

2.1 Regional Liquidity Shocks

We consider an economy with two non-overlapping “regions,” A and B. There are three
time periods t = 0, 1, 2. The regions are populated by distinct continuums of weakly risk
averse agents with utility functions u(·) [u′(·) > 0, u′′(·) ≤ 0] who each live for three peri-
ods. Each agent has an endowment of 1 unit. Agents face private (uninsurable) liquidity
shocks: they need either to consume in period 1 (impatient) or in period 2 (patient). In
the aggregate, there is no uncertainty about liquidity in the economy: there is exactly a
proportion w ∈ (0, 1) of agents who require early liquidity. However, individual regions
experience (regionally) aggregate liquidity shocks of size x > 0. In particular, there are two
states of the world: λ = A or λ = B, corresponding to the cases where region A and region
B have high early liquidity demands respectively. Since aggregate liquidity is constant, re-
gional liquidity shocks are negatively correlated. The state λ is realized and publicly known

A B

λ = A w + x w − x

λ = B w − x w + x

Table 1: Regional Liquidity Shocks

immediately at the beginning of period 1. States A and B occur with equal probability.

2.2 Banks, Demand Deposits, and Interbank Insurance

We consider two symmetric (representative, competitive) banks which lie in two regions
of the economy. Agents begin their lives with their endowments deposited in the bank
of their region.8 There are two classes of assets available to banks: a safe and liquid
storage technology with a low (unit) gross rate of return, and a risky, illiquid asset with
high expected return but with costs to premature liquidation. The storage technology is
common to both banks. One unit stored at time t produces one unit at time t + 1. In
addition, region i’s residents also have access to risky illiquid technology Ri, with returns

8While we thus assume participation in the banking system, it shall become clear below (See section 5)

that this assumption can be justified in equilibrium by choosing free parameters L and U to make bank runs

rare. As bank runs become sufficiently rare, it shall always be optimal for risk averse depositors to deposit

their endowment in banks.
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given by:

Ri(t) =

{
0 < r < 1 when t = 1,

R(θi) when t = 2, where θi is distributed uniform on [L,U ]

where t is the time of liquidation, R(·) is any increasing function. The parameter θi in-
dexes some underlying “fundamentals” related to the bank’s assets, which determine the
level of the bank’s asset returns. These fundamentals θi are independent and identically
distributed for i = A,B. We assume that Eθi

[u(R(θi))] ≥ u(1), i.e., the risky asset pays a
higher expected return if held till period 2.

Banks are constrained to offer depositors demand deposit contracts.9 Demand deposit
contracts offer conversion of deposits into cash at par on demand in period 1 conditional on
sufficient cash being available. If, however, sufficient cash is not available, then the contract
specifies that the bank will divide up evenly what cash it can generate by liquidating its
portfolio amongst the depositors who demand early withdrawal. At this point of time, the
bank goes out of business. For those depositors who choose to remain in the bank till period
2, the bank promises to pay a stochastic amount, which is contingent upon the returns on
the bank’s assets, the proportion of early withdrawals, and payouts to any senior liabilities.

The two banks face aggregate demand shocks in period 1, in keeping with the regionally
aggregate liquidity shocks outlined above. However, since these aggregate regional liquidity
shocks are negatively correlated, banks insure against these by holding interbank deposits.10

In particular, we assume that banks hold cash reserves equal to w, the average level of
liquidity demand in the economy, and insure against regional liquidity shocks by holding
interbank deposits of size D ∈ [0, x] with the other bank.11 Thus, in this symmetric scheme,
banks exchange deposits of size D,12 and distribute their net wealth of 1, putting w in cash,

9Hence we are not solving here for the optimal contractual form. Demand deposit contracts are a

standard feature of banking systems and we take them as given. For theoretical justification of demand

deposit contracts, see Calomiris and Kahn (1991) or Diamond and Dybvig (1983).
10We are implicitly assuming that banks have access to only interbank deposits as a tool to insure, and

hence can insure only against shocks to their liabilities. While this assumption is not central to our analysis,

we assume it for algebraic simplicity as well as to eliminate correlation between the bank’s asset returns.

Such correlation would introduce a second channel of contagion, through learning. Our purpose in this paper

to explore the extent to which capital connections, by themselves can contribute to contagion.
11Given the cash holdings of the banks, and given the timing of the model to be explicated below, interbank

deposits of size larger than x will not be desirable to banks. Such deposits would leave banks unable to

pay their own early consumers in any equilibrium without prematurely liquidating some of their long term

assets. In practice, there were often regulatory restrictions on the size of D.
12One can think of this as the banking system entering into an implicit liquidity insurance scheme ex ante

– no money physically needs to be exchanged in Period 0
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and 1− w in long term investment projects. The size of interbank deposits, D, is a choice
variable for banks. In equilibrium, D shall depend on the parameters of the model.

These interbank deposits have the feature that in each period they “clear before” claims
to individual depositors are paid. In other words, as soon as the state A or B is realized at
the beginning of period 1, the bank in the high liquidity demand region receives a payment
of D from the bank in the other region, before individual depositors can claim money from
the bank. Similarly, in period 2, the banks use any proceeds of liquidated investments to
first pay their fellow bankers, and then pay their patient depositors out of the remaining
proceeds.13 It is helpful to consider an example.

Suppose that only impatient agents withdraw money in period 1 and that D = x. In
addition, suppose state A is realized, so that region A has a higher immediate liquidity shock.
Upon the realization of the state, bank A immediately receives from bank B its deposit of
x, so that bank A now has w+x in cash, which matches the amount of withdrawals it faces.
Similarly, bank B now has w−x in cash, which is precisely the demand it faces in period 1.
Bank A now owes bank B the amount xR(θA), and owes its own customers (w − x)R(θA).
But it has exactly (1−w) invested in the illiquid asset R(θA), so its proceeds in period 2 are
(1 − w)R(θA), which is exactly the sum of its liabilities. Similarly, promises and earnings
clear for bank B.

2.3 Information and Timing

In period 1 nature selects at random (and with equal probability) one of the sets of depositors
to receive information about their bank and to act. Information is received in the form of
private signals about the underlying fundamentals of their bank. Suppose region i is selected
first. Depositor j of region i receives signal θj,i = θi+εj,i, where εj,i are distributed uniformly
in the population on [−ε, ε]. Shortly thereafter, the depositors of the other bank (in region
−i) receive information about their own bank, and get to act themselves. The information
structure is symmetric. Depositor j of region −i receives signal θj,−i = θ−i + εj,−i, where
εj,−i are distributed uniformly in the population on [−ε, ε]. Importantly, before choosing,
the depositors who move second learn what happened in the first bank. Thus, the timing
of this game can be described shown below in itemized form:

• Period 0

– Interbank deposits are initiated.
13Note that the assumed priority order for clearing is an innocuous assumption: giving interbank payments

priority minimizes contagion at the cost of increasing the probability of bank runs in debtor institutions.

Since the goal of this exercise is to show that contagion is an essential element of interconnected banking

systems, this assumption acutally works against us.
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• Period 1

– State A or B is realized.

– Period 1 interbank claims settle.

– Depositors in bank i receive information and choose actions.

– Depositors of bank i who demand early withdrawal are paid.

– Depositors in bank −i receive information and choose actions.

– Depositors in bank −i who demand early withdrawal are paid.

• Period 2

– Period 2 interbank claims settle.

– Residual depositor claims on the two banks settle.

2.4 Depositor Payoffs and Interbank Payments

We are now ready to write down the payoffs to depositors in this game. In period 1, de-
positors choose whether to demand conversion of their deposits into cash at par (withdraw)
or to retain their deposits with the bank (remain). Impatient depositors can only consume
in period 1. They will therefore always withdraw. However, the patient depositors face a
non-trivial decision problem. We explicate their payoffs below.

Recall that in period 1 one bank will be a debtor and one bank will be a creditor. Thus,
without loss of generality, we can label the payoff matrices for the patient depositors of the
two banks as those of the debtor bank and the creditor bank respectively.

Begin by considering the debtor bank, i.e. the bank that experienced a high liquidity
shock in period 1. There is a mass 1− (w+x) of patient agents in the debtor region. Let nd

represent the proportion of the patient depositors who choose to withdraw in period 1. If nd

proportion of patient depositors withdraw, then, since impatient agents (of measure w + x)
always withdraw in period 1, total demand for cash in period 1 is (w +x)+nd(1− (w +x)).
The bank had w in cash and received D in cash from the creditor bank at the beginning of
period 1 (and hence became a debtor to the creditor bank). Thus, its total cash holdings
are w+D. If demand for cash exceeds w+D, the bank can obtain more cash by liquidating
its long assets. It has 1−w invested in the long asset, from which it can generate (1−w)r
in cash in period 1. Thus, observe that if [w + x] + (1− [w + x])nd ≥ [w + D] + (1− w)r,
i.e., if

nd ≥
(1− w)r + D − x

1− (w + x)
(1)
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then the debtor bank becomes insolvent and goes out of business in period 1, and in the pro-
cess divides up the proceeds of its liquidated asset portfolio equally amongst its claimants
in period 1. However, if the bank remains solvent in period 1, then it must first settle
its debt of DR(θi) to the creditor bank (because interbank deposits have seniority, within
each period, to regular demand deposits). In order to pay early demands by patient agents
in period 1, the debtor bank had to liquidate (1−w−x)nd+(x−D)

r of the illiquid asset in pe-
riod 1. Its original investment in the long asset was 1 − w. The remaining proceeds
are (1 − w − (1−(w+x))nd+(x−D)

r )R(θi). As long as (1 − w − (1−(w+x))nd+(x−D)
r )R(θi) >

DR(θi) (i.e., nd < (1−w)r+(D−x)−rD
1−w−x ), the debtor bank pays DR(θi) to the creditor bank

in period 2, and divides up the remainder equally amongst its residual depositors who
chose to remain in the bank. This means that each patient depositor who chooses to

remain receives 1−w− (1−(w+x))nd+(x−D)

r
−D

(1−w−x)(1−nd) R(θi). However, if nd ≥ (1−w)r+(D−x)−rD
1−w−x , resid-

ual depositors receive nothing, and the creditor bank receives (due to seniority) (1 − w −
(1−(w+x))nd+(x−D)

r )R(θi). Thus, the period 2 payments on the interbank deposits from the
debtor to the creditor bank can be written as:

g(θi, nd) =


DR(θi) if nd < (1−w)r+(D−x)−rD

1−w−x

(1− w − (1−(w+x))nd+(x−D)
r )R(θi) if (1−w)r+(D−x)−rD

1−w−x ≤ nd < (1−w)r+(D−x)
1−(w+x)

0 if nd ≥ (1−w)r+(D−x)
1−(w+x)

Correspondingly, the payoffs to the patient depositors, if they withdraw, are given by:

uW (θi, nd) =

{
u[1] if nd < (1−w)r+(D−x)

1−(w+x)

u[ (w+D)+(1−w)r
(w+x)+(1−(w+x))nd

] if nd ≥ (1−w)r+(D−x)
1−(w+x)

And if they remain:

uR(θi, nd) =

 u[1−w− (1−(w+x))nd+(x−D)

r
−D

(1−w−x)(1−nd) R(θi)] if nd < (1−w)r+(D−x)−rD
1−w−x

u[0] if nd ≥ (1−w)r+(D−x)−rD
1−w−x

Now consider the payoffs to the depositors of the creditor bank. Observe that the creditor
bank’s payoffs are complicated by the fact that they depend on the condition of the debtor
bank. If the debtor bank were to become insolvent in period 1 (i.e. condition (1) holds),
then the creditor bank receives no money from the debtor bank in period 2, and has to
divide up a smaller pool of proceeds amongst its residual claimants. However, regardless
of the condition of the debtor bank, the creditor bank may itself be run out of business.
Let nc denote the proportion of the patient depositors of the creditor bank who choose to
withdraw in period 1. Observe that if

nc ≥
(1− w)r + (x−D)

1− (w − x)
(2)
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the creditor bank shall become insolvent. It is thus possible that the creditor bank shall
become insolvent while the debtor bank remains solvent. In the simplest possible interpre-
tation of bankruptcy laws, we assume that in this event the proceeds from the debtor bank
will be divided equally amongst all the depositors of the creditor bank.

Conditional on the failure of the debtor bank (i.e., if condition (1) holds), the payoffs
are:

uW (θi, nc) =

{
u[1] if nc < (1−w)r+(x−D)

1−(w−x)

u[ (w−D)+(1−w)r
(w−x)+(1−(w−x))nc

] if nc ≥ (1−w)r+(x−D)
1−(w−x)

uR(θi, nc) =


u[ (x−D)−(1−w+x)nc+(1−w)R(θi)

(1−nc)(1−w+x) ] if nc < x−D
1−w+x

u[1−w−D−x+nc(1−(w−x))
r

(1−nc)(1−(w−x)) R(θi)] if x−D
1−w+x ≤ nc < (1−w)r+(x−D)

1−(w−x)

u[0] if nc ≥ (1−w)r+(x−D)
1−(w−x)

Conditional on the survival of the debtor bank the payoffs are:

uW (θi, nc) =

{
u[1] if nc < (1−w)r+(x−D)

1−(w−x)

u[ (w−D)+(1−w)r
(w−x)+(1−(w−x))nc

+ g(θ−i, nd)] if nc ≥ (1−w)r+(x−D)
1−(w−x)

uR(θi, nc) =


u[ (x−D)−(1−w+x)nc+(1−w)R(θi)+g(θ−i,nd)

(1−nc)(1−w+x) ] if nc < x−D
1−w+x

u[(1−w−D−x+nc(1−(w−x))
r

)R(θi)+g(θ−i,nd)

(1−nc)(1−(w−x)) ] if x−D
1−w+x ≤ nc < (1−w)r+(x−D)

1−(w−x)

u[g(θ−i, nd)] if nc ≥ (1−w)r+(x−D)
1−(w−x)



is always at least some positive proportion of patient agents. Otherwise the game Γ would
be vacuous. Hence, we assume that w + x < 1, or, in other words

x < 1− w (3)

Similarly, in the low liquidity demand state, we insist that there are at least some impatient
agents, and hence:

x < w (4)

Finally, to keep the stage coordination games non-trivial, we require that both the debtor
bank and the creditor bank can become insolvent for some ranges of withdrawals by patient
agents. In other words, we insist that (1−w)r+(D−x)

1−w−x < 1 for all D. In particular, since the
LHS is maximized at D = x, we require that (1−w)r

1−w−x < 1, or,

x < (1− r)(1− w) (5)

Since we wish all the features implied by the above restrictions to hold in our model, we
consider parameters in the region implied by their intersection, i.e., (r ∈ (0, 1), w > 0, x > 0)
are chosen such that

x < min[w, (1− r)(1− w)] (6)

We are now ready to find equilibria of this model.

3 Equilibrium

In each of the static coordination games Γi,1 and Γi,2 for i = c, d, with common knowledge
of θi, there are (at least) two equilibria. In one of these equilibria, all patient agents remain
in the bank (tell the truth) because they expect other patient agents to do so. In the other,
they all withdraw money from the bank, because they expect other patient agents to do
so. With common knowledge of θi, patient agents have nothing to condition their beliefs
upon, and hence any feasible belief about the actions and beliefs of others is permissible.
However, with private signals, the situation changes.

In the game with incomplete information, agents are able to condition their beliefs on
their private signals, which are known to be correlated with the private signals of others.
Since R(θi) is increasing in θi, and private signals are positively correlated with funda-
mentals, high signals convey “good news” to patient agents, and, ceteris paribus, make
remaining in the bank more attractive. A natural class of strategies that emerges are those
in which agents actions are increasing in their beliefs: for good information, agents are more
optimistic and more easily persuaded to remain in the bank; the opposite is true for bad
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information. Since this is a binary action game, such strategies take a particularly simple
form: Agents choose to remain in the bank if their private information θi,j is above some
threshold θ∗i,j , and choose to withdraw otherwise. We shall call such strategies monotone
strategies, and equilibria in such strategies monotone equilibria. Monotone equilibria are
characterized by threshold levels, and hence we shall sometimes refer to these as equilib-
rium thresholds. In what follows, we first restrict attention to such monotone equilibria, and
demonstrate their existence and uniqueness. We then show that there are no other more
complicated Bayesian Nash equilibria in these games: the unique monotone equilibrium is
also the unique equilibrium. However, first, we need to make two weak assumptions, which
we shall refer to as the lower and upper dominance assumptions. We explicate these below.

Assumption 1 (Lower Dominance) For each depositor of each bank, in each stage game
Γi,j for i ∈ {c, d}, j ∈ {1, 2}, if θi,j = L, it is strictly dominant to withdraw.

In other words, if depositors knew that the bank’s returns were going to be at its lowest
possible level, it is strictly dominant to withdraw. This is an extremely weak assumption,
and emerges essentially endogenously from the payoffs of the game. Observe that since
at θ = L the dominance is strict, there is some (possibly vanishing measure) region in the
neighborhood of L over which dominance holds. Call this region [L, θ], the lower dominance
region.

Assumption 2 (Upper Dominance) For each depositor of each bank, in each stage game
Γi,j for i ∈ {c, d}, j ∈ {1, 2}, if θi,j = U , it is strictly dominant to remain.

In other words, if depositors knew that the bank’s returns were going to be at its highest
possible level, it is strictly dominant to remain. This is also a weak assumption. It can be
supported by a number of explanations. For example, we could assume that for very high
θ, the risky asset in each region pays a premium over cash even in period 1. We could also
argue that when extremely high level of future returns are guaranteed, the bank becomes
a very attractive target for potential purchases by larger, more liquid, banks, making it
optimal for patient depositors never to withdraw their money early. The strict dominance
inherent in this assumption, implies, as before, that there exists some region [θ̄, U ], in the
interior of which the dominance result holds. We call this the upper dominance region. Note
that this region can be vanishingly small.

Given these two assumptions, we are able to characterize the equilibrium outcome of
each of these static coordination games.

Proposition 1 (Monotone Existence) For each stage game Γi,j for i ∈ {c, d}, j ∈
{1, 2}, there exists a threshold level in the fundamentals θ∗(Γi,j) such that agents who receive
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signals above θ∗(Γi,j) will remain in the bank, while those that receive signals below it will
withdraw.

Proof: We demonstrate this proof for only one of the static coordination games: the
coordination game of the debtor bank’s patient depositors. The proofs for the other games
are simpler than but otherwise identical to the proof for this one.

For the purposes of this proof, denote by θ, the underlying fundamentals of the bank
concerned, and by θi the signal received by agent i. Upon receiving signal θi, the agent
has to decide whether to remain or withdraw. The quantity she is interested in is the
expected payoff difference between withdrawing and remaining. Suppose all other agents
were following threshold strategies with threshold θ∗. Conditional upon receiving signal θi,
the agent knows that fundamentals lie between θi − ε and θi + ε, and has uniform beliefs
over this interval. For any θ, therefore, the agent believes that a proportion

n(θ, θ∗) =


1 if θ ≤ θ∗ − ε
1
2 + θ∗−θ

2ε if θ∗ − ε < θ < θ∗ + ε

0 if θ ≥ θ∗ + ε

(7)

of agents will withdraw from the bank. For a particular (θ, θ∗), the payoff premium to
remaining is given by:

π(θ, n) =


u[0]− u[ w+D+(1−w)r

w+x+(1−w−x)n ] if (1−w)r+(D−x)
1−w−x ≤ n ≤ 1

u[0]− u[1] if (1−w)r+(D−x)−rD
1−w−x ≤ n ≤ (1−w)r+(D−x)

1−w−x

u[1−w− (1−(w+x))n+(x−D)
r

−D

(1−w−x)(1−n) R(θi)]− u[1] if 0 ≤ n ≤ (1−w)r+(D−x)−rD
1−w−x

(8)

Thus, the quantity of interest to the agent is

Π(θi, θ
∗) =

∫ θi+ε

θi−ε
π(θ, n(θ, θ∗))dθ

θ∗ is a monotone equilibrium if the following hold:

1. Π(θ∗, θ∗) = 0

2. Π(θi, θ
∗) > 0 if θi > θ∗

3. Π(θi, θ
∗) < 0 if θi < θ∗

Observe that the existence of the upper and lower dominance regions implies that Π(θ∗) is
negative for sufficiently low θ∗ and positive for sufficiently high θ∗. Thus, it must cross the
θ∗ axis somewhere. This establishes (1) above.

To prove (2) and (3) observe that changing θi, holding θ∗ constant only changes the
bounds of integration in Π(·). In particular, notice that π(θ, n) < 0 for θ ≤ θ∗ − ε and
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π(θ, n) > 0 for θ ≥ θ∗ + ε. Since Π(θ∗, θ∗) = 0, the positive and negative parts of the
integral exactly offset each other. Increasing θi above θ∗ increases the positive part of the
integral and reduces the negative part, and thus makes Π(·) strictly positive. By the same
token, reducing θi below θ∗ makes Π(·) strictly negative. Thus, we have established (2) and
(3). �

Having thus shown existence of monotone equilibria, we now demonstrate that they are
unique:

Proposition 2 (Monotone Uniqueness) For each stage game Γi,j for i ∈ {c, d}, j ∈
{1, 2}, there is only one threshold level in the fundamentals θ∗(Γi,j) such that agents who
receive signals above θ∗(Γi,j) will remain in the bank, while those that receive signals below
it will withdraw.

The proof is in the appendix. Given that there is a unique equilibrium in monotone strate-
gies, a natural question is: are there other equilibria, involving the use of more complex
strategies? We demonstrate that there are no such complex equilibria. In games similar
to our stage games but with full strategic complementarities the work of Carlsson and van
Damme and Morris and Shin have demonstrated that there is a unique strategy profile
that survives the iterative deletion of dominated strategies. Our payoffs do not satisfy full
strategic complementarities: conditional on the failure of a bank, the actions of individual
depositors are strategic substitutes. Thus, the strong dominance-solvability result does not
apply to our setting. However, by restricting attention to equilibrium strategies, we are able
to show that behavior shall always be monotone. The proof technique used here builds on
the work of Goldstein and Pauzner, extending their arguments to our more complex payoffs.
Formally, the result states:

Proposition 3 (No non-monotone equilibria) For each stage game Γi,j for i ∈ {c, d},
j ∈ {1, 2}, there is no non-monotone equilibrium.

The proof is in the appendix.
Let us now consider these stage games in sequence. To do this, we introduce some

additional notation. There are four possible stage games, as we have discussed above. The
depositors of the creditor bank may be chosen to receive information and act first. This
generates the stage game Γc,1. Denote the threshold of this game by θ∗c,1. The depositors of
creditor bank may also move second. In particular, they may do so after observing that the
debtor bank has failed or survived. Denote the threshold of the creditor bank’s depositors
conditional upon the survival of the debtor bank by θ∗c,S . Conditional upon the failure of
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the debtor bank, call this threshold θ∗c,F . Correspondingly denote by θ∗d,1, θ∗d,S , and θ∗d,F the
respective thresholds for the depositors of the debtor bank.

We have shown above that there is a unique equilibrium in each stage game. Does this
mean that there is a unique equilibrium in the dynamic game Γ? In general, these thresholds
may be interlinked by intricate functional relationships. Thus, uniqueness in the component
static games does not necessarily imply uniqueness in the dynamic game. However, note
that a solvent debtor bank is assumed to always pay its debt to the residual claimants of the
creditor bank, regardless of whether the creditor bank remains solvent or not.14 Thus, the
thresholds of the debtor bank’s depositors are independent of the outcome in the creditor
bank, and, therefore, of the thresholds of the creditor bank’s depositors. Thus, θ∗d,1, θ∗d,S ,
and θ∗d,F are all uniquely defined in the general dynamic game. In particular, they are equal
to each other. Write θ∗d for the unique threshold of the debtor bank. Now, by backward
induction, θ∗c,1(θ

∗
d) is uniquely defined. Similarly, θ∗c,S(θ∗d) and θ∗c,F are uniquely defined.

Thus, we have just argued that the following result holds:

Proposition 4 (Dynamic Uniqueness) There is a unique equilibrium in Γ. In Γc it is
characterized by the triple (θ∗c,1, θ

∗
d,S , θ∗d,F ). In Γd, it is characterized by the triple (θ∗d,1, θ

∗
c,F , θ∗c,S).

One straightforward interpretation of propositions 1, 2, 3, and 4 taken together is that
banks fail upon the release of adverse news about them. This matches the commonly made
observation that bank failures are positively correlated with the release of bank-specific or
region-specific adverse information.

Having established uniqueness of equilibria, it is now of interest to us to explore some
of their properties.

4 Contagion

Contagion emerges as a natural property of the unique equilibrium thresholds of this game.
In the context of bank runs, the most natural concept of contagion is as follows: Consider
any two banks within a banking system, i and j. Both banks i and j have some probability
of failure independent of what happens in other banks. Thus, even if bank i does not fail,
bank j may fail for some realized level of adverse information about it. However, if bank i

fails, this may create an adverse effect on bank j. Now, bank j may fail for a larger range
of information about itself. Thus, we say that the failure of bank i has a contagious effect

14This assumption is not just one of convenience but is also the simplest interpretation of bankruptcy law.

The failure of the creditor bank by definition leaves a set of residual claimants to its assets. These assets

naturally include expected payments from the debtor bank. The qualitative results of the model do not

depend on this assumption.
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on bank j, if, conditional on the failure of bank i, bank j fails with higher probability than
it would have had bank i not failed. Formally, we can define this as follows:

Definition 1 (Contagion) Consider a pair of banks i and j, each with asset returns in-
dexed by θi and θj. Let θ∗j,F and θ∗j,S denote the failure threshold of bank j conditional on
the failure and survival of bank i respectively. We say that the failure of bank i contagiously
affects bank j if the region of fundamentals [θ∗j,S , θ∗j,F ] has positive measure.

Having thus defined contagion, we are ready to state a central result of this paper.

Proposition 5 (Contagion) In the game where depositors of the debtor bank act first, the
failure of the debtor bank contagiously affects the creditor bank, i.e., there exists a region
of fundamentals [θ∗c,S , θ∗c,F ] in which the creditor bank fails if and only if the debtor bank
fails. But in the game where depositors of the creditor bank act first, θ∗d,F = θ∗d,S. Thus, the
failure of the creditor does not contagiously affect the debtor.

The proof is in the appendix.
In other words, contagious effects flow in a specific direction, from debtors to creditors.

The failure of debtors adversely affects the failure of creditors, and thus, ceteris paribus,
makes it likelier that the creditor shall fail. This is because the failure of the debtor bank
reduces the assets of the creditor bank. Rational depositors, knowing this, shall be more
likely to run on the creditor bank in the event of the failure of the debtor bank. On the
other hand, the failure of a creditor makes the debtor no better or worse off, since we have
assumed that the debtor has to always pay the residual claimants of the failed creditor the
amount originally owed.15 Focussing purely on capital linkages as a channel for contagion,
this result suggests why individual bank runs may not necessarily become widespread bank
panics. Conditional upon the failure of a bank, this theorem also characterizes which other
banks, ceteris paribus, are likelier to face runs. Thus, this result provides one rationale for
why panics may be “local” in some specific but unobvious sense.

5 Should banks hold interbank deposits?

In our discussion to date, we have not commented on the size of interbank deposit holdings.
We have shown above that when banks cross-hold deposits to hedge against regional liquidity
shocks, the failure of one bank may contagiously affect the other. Thus, in deciding the
amount of interbank deposit holdings, banks trade off the benefit of insuring liquidity shocks
against the cost of exposing themselves to the risk of contagion. We have demonstrated

15Any other assumption would imply that the debtor actually benefits from the failure of the creditor,

thus naturally ruling out contagion, leaving our results unchanged.
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that for a given set of parameters of our stylized banking system (w, x, r, U , L), for each
choice of D ∈ [0, x], there is a unique monotone equilibrium with an associated level of
social welfare. This makes it possible to determine the optimal interbank deposit amount
by mazimizing ex ante social welfare. While the model is too complex to derive an analytical
formula for such optimal interbank deposit levels in general, it is possible to characterize
the solution numerically. We shall show later that under additional assumptions motivated
by the numerical solutions presented here we can indeed solve the model in closed form and
perform comparative statics.

bank runs likely bank runs rare

Figure 1: Welfare Comparisons: w = 0.3, x = w
2 , r = 0.7

We present typical results from our simulations in Figures 1 and 2. These illustrate the
optimal holding of interbank deposits in a risk-neutral economy. Along the horizontal axis
we plot the proportion of interbank deposits (D) to the size of regional liquidity shocks (x).
The vertical axis shows the ex ante welfare corresponding to the chosen level of D

x . The
level of D

x corresponding to the maximal level of social welfare denotes the optimal holdings
of interbank deposits.

In figure 1, we set the constant aggregate liquidity demand (w) to be 30%, and the
level of regional variation at w

2 . We fix the lower bound of fundamentals (θ) to be L = 0,
and vary the upper bound (U) to change the equilibrium probability of bank runs. The
left panel in each image corresponds to the case in which bank runs are relatively frequent
(U = 10), and the right panel to the case in which runs are rare (U = 30). The early
liquidation return r is set to 0.7, and R(θ) =

√
θ. Figure 2 portrays a similar economy in
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bank runs likely bank runs rare

Figure 2: Welfare Comparisons: w = 0.5, x = w
4 , r = 0.7

which average liquidity demand is greater (w = 0.5), but the proportional level of regional
variation is smaller (x = w

4 ). In all cases, the analysis if carried out “close” to the full
information limit. The bound on idiosyncratic noise (ε) is set to 1

1000 .
The x-axis in each image shows D

x , the proportionate size of interbank deposit holdings.
The central locus in each figure represents the ex ante social welfare at to the corresponding
level of D. From the figures it is apparent that when bank runs are frequent, social welfare is
maximized for intermediate values of D, whereas when runs are rare, welfare is maximized
for maximal values of D.

Intuition for this property can be derived upon inspection of the other two locii in each
of the images. These locii represent the ex ante welfare of banks under the hypothetical
assumption that they know whether they are going to be interim debtors or creditors (i.e.,
receive high or low idiosyncratic regional shocks in period 1). Since the two regions receive
idiosyncratic liquidity shocks with equal probability in the model, the central welfare locus
is simply the arithmetic average of these two locii. It follows from the model that interbank
deposit holdings are always beneficial for debtors. They are not affected by contagion.
Thus interbank holdings insure them against regional liquidity shocks without exposing
them to any additional risk. This is evidenced in the figures: the locii representing debtor
welfare are always strictly increasing in D

x . For the bank that is the interim creditor, there
is a tangible risk of contagion. However, contagion is a conditional event. A necessary
condition for contagion is that the debtor bank must actually experience a run. Thus, the
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attractiveness of interbank deposits to creditor banks depends crucially on their assessment
of the probability of runs on the debtor bank. When this probability is high, a higher level
of interbank deposit holdings exposes the creditor to greater contagion risk, thus lowering
its ex ante welfare. This can be seen in the left panels of the figures. When the probability
that the debtor bank will fail is low, it becomes much more attractive for the creditor bank
to hold interbank deposits, which enable it to eliminate idle reserves and increase expected
payments to its depositors. Under these circumstances, holding higher interbank deposits
increases the welfare of the interim debtor bank. This can be seen in the right panels of the
figures.

Ex ante social welfare is given by the average of debtor and creditor welfares. When
bank runs are rare, and both debtor and creditor welfare increasing in D

x , social welfare
is maximized at D = x. Thus, banks should hold a maximal level of interbank deposits.
However, when bank runs are more likely, creditor welfare decreases in D

x while debtor
welfare increases. Thus, the social welfare locus is hump-shaped, and there is a strictly
interior level of optimal interbank deposit holdings.

6 Closed Forms, Comparative Statics

Historically, bank runs have been rare. The simulations presented above suggest that when
bank runs are rare, banks will find it optimal to insure against idiosyncratic liquidity shocks
by holding a maximal level of interbank deposits. For the remainder of the paper, we shall,
therefore, assume that banks fully insure against regional liquidity shocks by setting D = x.

This assumption enables us to demonstrate further properties of contagion. Under the
assumption of complete interbank deposit holdings, we can solve the linear realization of
the model (with risk neutral consumers and R(θ) = θ) in closed form.

Below, we present the closed forms for the equilibrium thresholds for this simplified
model. This requires a small intermediate step. The thresholds of depositors of the creditor
bank are functions of the interbank payments from the debtor bank. These interbank
payments, in turn, are functions of the proportion of premature withdrawals from the
creditor bank (which may or may not be observable to the depositors of the creditor bank,
depending on whether Γc or Γd is realized) and the underlying fundamentals of the debtor
bank (which are never observable to the depositors of the creditor bank). The depositors
of the creditor bank, therefore, have to compute the expected interbank payments from the
debtor bank. In preparation for writing down the closed forms for equilibrium thresholds,
we explicate below the functional form of the expected interbank payments for the game.
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6.1 Expected Interbank Payments

There are two situations in which payments from the debtor bank must be anticipated by
depositors in the creditor bank. In game Γc the depositors of the creditor bank must, upon
acting first, decide what probability with which the debtor bank will remain solvent, and,
if solvent, the expected payment that they shall make. Observe that the depositors of the
creditor bank can calculate θ∗d, which is uniquely defined in terms of the parameters. Given
θ∗d, they can assign probabilities to ranges of nd(θd, θ

∗
d), and thus compute ĝ = E(g|θ∗d).

In the game Γd when the debtor bank survives, the depositors of the creditor bank can
observe nd. When 0 < nd < 1, there is a one-to-one relationship between nd and θd, and
thus for strictly interior nd, depositors at the creditor bank can compute g(nd, θd) exactly.
However, when nd = 0, the depositors of the creditor bank know simply that θd > θ∗d + ε,
or, in the limit as noise vanishes, θd > θ∗d. Thus, their expected value of θd is θ∗d+U

2 . Hence,
for this game, we can write ĝ as follows:

ĝ(θd|θ∗d, nd) =

{
xR( θ∗d+U

2 ) if nd = 0
g(θd, nd) if 1 > nd > 0

(9)

We are now ready to write down the equilibrium thresholds.

6.2 Limiting Thresholds

The equilibrium thresholds are particularly tractable in the limit as ε → 0. The limit
threshold points of interest are as follows:

• For the coordination game amongst depositors at the debtor bank:

θ∗d = r
r(1− w) + (r(1− w) + w + x) ln

[
1

r(1−w)+w+x

]
(1− w − x)(r + (1− r) ln[1− r])

(10)

• For the coordination game amongst depositors at the creditor bank conditional upon
the survival of the debtor bank (in the game Γd):

θ∗c,S = r
r(1− w) + ĝ(nd, θ

∗
d) ln

[
1− 1−w

1−w+xr
]

+ (r(1− w) + w − x) ln
[

1
r(1−w)+w−x

]
r(1− w) + (1− r(1− w)− w + x) ln

[
1− 1−w

1−w+xr
]

(11)
where ĝ(·) is defined as in (9).

• For the coordination game amongst depositors at the creditor bank conditional upon
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the failure of the debtor bank (in the game Γd):

θ∗c,F = r
r(1− w) + (r(1− w) + w − x) ln

[
1

r(1−w)+w−x

]
r(1− w) + (1− r(1− w)− w + x) ln

[
1− 1−w

1−w+xr
] (12)

Now, it is of interest to us to explore some of the comparative statics of our model by
using these closed form expressions for the thresholds. In particular, we examine below how
the magnitude of the contagious effect changes as the volatility of the financial system, or,
equivalently,the depth of inter-institutional financial linkages increases.16 It turns out that
the degree of the contagious effect increases in the strength of financial linkages between
banks. Formally,

Proposition 6 The size of contagion increases with the size of the regional liquidity shocks,
i.e.,ct(r, w, x) = θ∗c,F − θ∗c,S is increasing in x.

The proof is in the appendix.
This proposition has a natural interpretation. Contagion flows from debtors to creditors

through the channels of interbank deposits. The larger the interbank deposits, the larger
the “pipe” through which the contagious effect can flow. In a setting of complete interbank
deposits (or, indeed, in any setting in which interbank deposits are increasing in the size
of the negatively correlated regional liquidity shocks), the larger the anticipated regional
liquidity shocks, the larger the dollar value of interbank deposits, and thus the larger the
effect of contagion when it occurs. In another, somewhat looser, interpretation, note that
the size of the regional liquidity shocks can be seen to be a measure of the level of intra-
economy financial volatility. On this interpretation, the proposition above says that as
financial volatility in the system increases, the damage caused by the failure of a financial
institution also increases.

7 Discussion

We conclude with a few thoughts on the robustness of these results, and on potential
extensions.

16Note that in a fully rational set-up, regional liquidity shocks are always anticipated ex ante. Since these

shocks are negatively correlated, larger shocks imply larger interbank insurance levels, under the maintained

assumption of complete interbank deposit insurance.
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7.1 More regions? Aggregate liquidity shocks?

Our model extends naturally to more than two regions, and none of the results change in this
extension. With more than two regions, holding aggregate liquidity constant, there would
be some level of negative correlation across regional liquidity demands. This would create,
as before, the incentive to insure against regional liquidity demand shocks using interbank
deposits. The only significant change would be one of algebraic complexity in computing
the level of interbank deposits, since imperfect negative correlation across regional liquidity
shocks would lead to multi-party cross holdings of interbank deposits. The existence of
interbank deposits, however complex, along with the seniority of institutional claims, shall
create ex interim asymmetries amongst banks (some shall be debtors, others creditors)
exactly as in the simpler two-region model discussed above. Thus, the contagious effect
shall re-emerge in equilibrium exactly as before.

Adding aggregate liquidity shocks to our model creates a second source of bank failure
in our model without changing the internal structure of interbank deposits and contagion.
With large aggregate liquidity shocks, banks may fail simply because there is just not
enough money in the system to meet all claims in period 1 even without expectations-based
runs. While we do not deny that fully aggregate liquidity shocks may, indeed, emerge in
an economy, we argue that the strategic nature of the game remains the same even in their
presence. Therefore, we limit our attention to constant aggregate liquidity economies and
show that contagion occurs even in such economies. Naturally, adding more sources for
contagion will increase its occurence.

7.2 Learning?

An important limitation of our model is that we abstract from social learning. We assume
that fundamentals in the two regions are independent, and thus eliminate any conclusions
that agents in one region can draw about their own bank from the observed failure or
survival of a bank in a different region. While this assumption seems fitting when discussing
banks in New York and Oregon, for banks in neighboring regions, it seems less natural.
Incorporating correlations amongst assets across the regions of our economy would introduce
Bayes learning into our model and would complicate our arguments significantly. However,
in recent work we have laid out techniques to analyze dynamic coordination games with
social learning (Dasgupta 2001). Incorporating learning into a model similar to ours is a
promising direction for future research. We conjecture that incorporating learning into our
model would increase the occurence of contagion, without modifying the main qualitative
features outlined above.
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8 Appendix

Proof of Proposition 2: Again, we prove this only for the coordination game of the
patient depositors of the debtor bank, and extend by symmetry to all other games. By a
slight abuse of notation, we write Π(θ∗) = Π(θ∗, θ∗). We shall show Π(θ∗) is monotone in
θ∗. Write nd = (1−w)r+(D−x)

1−w−x . Note that if n(θ, θ∗) < nd, then θ > θ∗+ ε(1−2nd). Thus, we
can express Π(·), as a sum of integrals over θ, with limits of integration given by functions
of θ∗, following the piecewise definition of π(θ, n) above. Since the limits of integration are
always linear with slope 1 in θ∗, integrating over constant terms gives us final products that
are independent of θ∗. Thus, we can rewrite Π(·) as∫ θ∗+ε

θ∗+ε(1−2r)
u[

1− w − (1−(w+x))nd+(x−D)
r −D

(1− w − x)(1− nd)
R(θi)]dθ−

∫ θ∗+ε(1−2nd)

θ∗−ε
u[

w + D + (1− w)r
w + x + (1− w − x)n(θ, θ∗)

]dθ+K

(13)
where K proxies for the terms that do not involve θ∗. Taking the other parameters as given,
we write:

f(θ, θ∗) = u[
1− w − (1−(w+x))nd+(x−D)

r −D

(1− w − x)(1− nd)
R(θi)]

and
g(θ, θ∗) = u[

w + D + (1− w)r
w + x + (1− w − x)n(θ, θ∗)

]

and differentiate with respect to θ∗:

d

dθ∗
Π(θ∗) =

d

dθ∗

∫ θ∗+ε

θ∗+ε(1−2r)
f(θ, θ∗)dθ − d

dθ∗

∫ θ∗+ε(1−2nd)

θ∗−ε
g(θ, θ∗)dθ

Since the limits of integration, in each case are linear in θ∗, their derivatives are simply
unity, and thus differentiating under the integral:

d

dθ∗

∫ θ∗+ε

θ∗+ε(1−2r)
f(θ, θ∗)dθ = f(θ∗ + ε, θ∗)− f(θ∗ + ε(1− 2r), θ∗) +

∫ θ∗+ε

θ∗+ε(1−2r)

d

dθ∗
f(θ, θ∗)dθ

We can rewrite this to be:

d

dθ∗

∫ θ∗+ε

θ∗+ε(1−2r)
f(θ, θ∗)dθ =

∫ θ∗+ε

θ∗+ε(1−2r)

d

dθ
f(θ, θ∗)dθ +

∫ θ∗+ε

θ∗+ε(1−2r)

d

dθ∗
f(θ, θ∗)dθ

Similarly,

d

dθ∗

∫ θ∗+ε(1−2nd)

θ∗−ε
g(θ, θ∗)dθ =

∫ θ∗+ε(1−2nd)

θ∗−ε

d

dθ
g(θ, θ∗)dθ +

∫ θ∗+ε(1−2nd)

θ∗−ε

d

dθ∗
g(θ, θ∗)dθ

Now, we make the following set of observations:
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1. f(θ, θ∗) decreases in n(θ, θ∗).

2. g(θ, θ∗) decreases in n(θ, θ∗).

3. n(θ, θ∗) increases in θ∗.

4. n(θ, θ∗) decreases in θ.

5. |dn(θ,θ∗)
dθ | = |dn(θ,θ∗)

dθ∗ |, since θ and θ∗ enter n(θ, θ∗) symmetrically.

6. R(θ) increases in θ, but is unaffected by θ∗.

Now, (1) and (3) imply that f(θ, θ∗) decreases in θ∗. (1) and (4) imply that f(θ, θ∗) increases
in θ. (1), (3), (4), (5), and (6) imply that |df(θ,θ∗)

dθ | > |df(θ,θ∗)
dθ∗ |. Thus,

d

dθ∗

∫ θ∗+ε

θ∗+ε(1−2r)
f(θ, θ∗)dθ > 0

Similarly, (2) and (3) imply that g(θ, θ∗) decreases in θ∗. (2) and (4) imply that g(θ, θ∗)
increases in θ. (2), (3), and (5) imply that |dg(θ,θ∗)

dθ | = |dg(θ,θ∗)
dθ∗ |. Thus,

d

dθ∗

∫ θ∗+ε(1−2nd)

θ∗−ε
g(θ, θ∗)dθ = 0

In the net, we have just shown that Π(·) is strictly increasing in θ∗. Thus, there is only one
value of θ∗ that solves Π(θ∗, θ∗) = 0. �

Proof of Proposition 3 As always, we only present the proof for the static coordination
game for the debtor bank’s patient depositors. The proofs for all other static games are
identical, with simpler payoffs. We first establish a series of lemmas:

Lemma 1 Let n(θ) be any feasible belief about the number of patient depositors who choose
to run when the state is θ. Then dn(θ)

dθ ∈ [− 1
2ε ,

1
2ε ]

Proof: At state θ, the possible realizations of signals lie in [θ−ε, θ+ε]. Let p(θi) denote the
beliefs of agent i about the mass of patient agents who shall run when she receives signal
θi. Then, for this agent:

n(θ) =
∫ θ+ε

θ−ε
p(θi)

1
2ε

dθi

Differentiating relative to θ, we have:

dn(θ)
dθ

=
1
2ε

[p(θ + ε)− p(θ − ε)]

Since p(·) ∈ [0, 1], the result follows. �
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Lemma 2 Assume that 0 < θT − θB ≤ 2ε and that for all θ ∈ [θB, θT ] θ̂(θ) ≤ θB and
n(θ) ≥ θT−θ

2ε .

If
∫ θT

θB

π(θ,
θT − θ

2ε
) ≥ 0, then

∫ θT

θB

π(θ,
θT − θ

2ε
)dθ >

∫ θT

θB

π(θ̂(θ), n(θ))dθ

Proof: As we have seen above

π(θ, n) =


u[0]− u[ w+D+(1−w)r

w+x+(1−w−x)n(θ,θ∗) ] if (1−w)r+(D−x)
1−w−x ≤ n ≤ 1

u[0]− u[1] if (1−w)r+(D−x)−rD
1−w−x ≤ n ≤ (1−w)r+(D−x)

1−w−x

u[1−w− (1−(w+x))nd+(x−D)

r
−D

(1−w−x)(1−nd) R(θi)]− u[1] if 0 ≤ n ≤ (1−w)r+(D−x)−rD
1−w−x

Notice the following:

1. When (1−w)r+(D−x)
1−w−x ≤ n ≤ 1, ∂π(θ,n)

∂θ = 0, ∂π(θ,n)
∂n > 0. Call this the (strategic)

“substitutes” range of π(·, ·).

2. When (1−w)r+(D−x)−rD
1−w−x ≤ n ≤ (1−w)r+(D−x)

1−w−x , ∂π(θ,n)
∂θ = 0, ∂π(θ,n)

∂n = 0. Call this the
“flat” range of π(·, ·).

3. When 0 ≤ n ≤ (1−w)r+(D−x)−rD
1−w−x , ∂π(θ,n)

∂θ > 0, ∂π(θ,n)
∂n < 0. Call this the (strategic)

“complements” range of π(·, ·).

4. π(·, ·) is always negative in the “substitutes” or “flat” ranges. The maximum value it
can attain in this range is u[0]− u[w + D + (1− w)r] < 0.

Now, suppose π(θ, θT−θ
2ε ) > 0 for all θ ∈ [θb, θt]. Then the result follows trivially because

π(θ, θT−θ
2ε ) ≥ π(θ̂(θ), n(θ)) for all θ under these circumstances. To see why, notice that since

n(θ) ≥ θT−θ
2ε , π(θ̂(θ), n(θ)) can either fall in the “complements” range, in which case it is

smaller than π(θ, θT−θ
2ε ) by (3) above, or it can fall in the “flat” or “supplements” range, in

which case it is smaller by (4).

Suppose now that π(θ, θT−θ
2ε ) > 0 for some θ and π(θ, θT−θ

2ε ) < 0 for some other θ in [θB, θT ].
Since θT−θ

2ε is monotone in θ, there is exactly one point, call it θ1 at which π(θ, θT−θ
2ε ) = 0.

Let
θ2 = inf{θ ∈ [θB, θT ] : π(θ̂(θ), n(θ)) = 0}

Now we shall show that ∫ θ1

θB

π(θ,
θT − θ

2ε
)dθ ≥

∫ θ2

θB

π(θ̂(θ), n(θ))dθ (14)

To establish this, we first prove two claims:
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Claim 1

π(θ̂(θ), n(θ)) < 0 ∀θ ∈ [θB, θ2]

Proof of Claim: Consider θ < min[θ1, θ2]. For such θ, π(θ, θT−θ
2ε ) < 0. The various

possibilities are:

1. θT−θ
2ε > (1−w)r+(D−x)−rD

1−w−x . This implies that n(θ) > (1−w)r+(D−x)−rD
1−w−x . Thus, π(θ̂(θ), n(θ))

is in the “flat” or “substitutes” range, and is negative.

2. θT−θ
2ε ≤ (1−w)r+(D−x)−rD

1−w−x . Now, either n(θ) > (1−w)r+(D−x)−rD
1−w−x , in which the case

the above comment applies, or n(θ) ≤ (1−w)r+(D−x)−rD
1−w−x , in which case we are in the

“complements” range, and by we know that π(θ̂(θ), n(θ)) ≤ π(θ, θT−θ
2ε ) < 0.

Thus, if min[θ1, θ2] = θ2 the claim is proved. If min[θ1, θ2] < θ2, then suppose there exist
θ ∈ [min[θ1, θ2], θ2] such that π(θ̂(θ), n(θ)) ≥ 0. But, by continuity, then, we can find a
point θ3 < θ2 such that π(θ̂(θ3), n(θ3)) = 0, a contradiction. This completes the proof of
the claim.

Claim 2

n(θ2) <
θT − θ1

2ε

Proof of Claim: At θ1,

u[
1− w − (1−(w+x))

θT−θ

2ε
+(x−D)

r −D

(1− w − x)(1− θT−θ
2ε )

R(θ)] = u[1]

At θ2,

u[
1− w − (1−(w+x))n(θ)+(x−D)

r −D

(1− w − x)(1− n(θ))
R(θ̂(θ))] = u[1]

Since θ̂(θ2) < θ1, n(θ2) > θT−θ1
2ε . This completes the proof of the claim.

Now we shall use Claims (1) and (2) to demonstrate (14). Denote m(θ) = θT−θ
2ε . By a

change of variables: ∫ θ1

θB

π(θ, m(θ))dθ =
∫ m(θB)

m(θ1)
π(θ(m),m)| ∂θ

∂m
|dm

∫ θ2

θB

π(θ̂(θ), n(θ))dθ =
∫ max[n(θ):θ∈[θB ,θ2]

min[n(θ):θ∈[θB ,θ2]
π(θ̂(θ(n)), n)| ∂θ

∂n
|dn +

∫
θ: ∂θ

∂n
=0

π(θ̂(θ(n)), n)dθ
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The second integral is smaller, because it is computed over a range that is smaller (by
Claim 2), because | ∂θ

∂n | ≥ | ∂θ
∂m | (by Lemma 1), and because π(·, ·) is negative in the range

considered (by Claim 1). This establishes (14).

Since m(θ) declines faster than n(θ), and by Claim 2, we know that θ2 > θ1. Thus,∫ θT

θ1

π(θ, m(θ))dθ ≥
∫ θT

θ2

π(θ, m(θ))dθ >

∫ θT

θ2

π(θ̂(θ), n(θ))dθ (15)

We combine (14) and (15) to conclude the proof of the lemma. �

By the existence of the upper and lower dominance regions, we know that for any
feasible beliefs n over the actions of other agents, there exists at least one point θ∗ such
that Π(θ∗, n) = 0. If there is only one such point, it must be true that Π(θi, n) > 0 for all
θi > θ∗, and Π(θi, n) < 0 for all θi < θ∗. But then, there would be only one equilibrium, and
it would be a monotone equilibrium with threshold θ∗. Thus, if we could show that under
any feasible beliefs n over the actions of other agents, there can be only one point θ∗ such
that Π(θ∗, n) = 0, then we would be able to establish the non-existence of non-monotone
equilibria. We now proceed to do so.

Assume the contrary. Let θH = sup{θi : Π(θi, n) = 0}, and suppose there exist (pos-
sibly many) zeros of Π(θi, n) that are strictly smaller than θH . Let θL = sup{θi : θi <

θH ,Π(θi, n) = 0}. It is easy to see that Π(θi, n) < 0 for all θi ∈ (θL, θH).
Consider the case when θH − θL < 2ε.17 Then

θL − ε < θL < θH − ε < θL + ε < θH < θH + ε

Thus, eliminating the common parts of the two integrals, we can write

Π(θH , n)−Π(θL, n) =
∫ θH+ε

θL+ε
π(θ, n(θ))dθ −

∫ θH−ε

θL−ε
π(θ, n(θ))dθ̂

Now by a simple change of variables θ̂(θ) = θL + θH − θ, we can re-write this as:

Π(θH , n)−Π(θL, n) =
∫ θH+ε

θL+ε
π(θ, n(θ))dθ −

∫ θH+ε

θL+ε
π(θ̂, n(θ̂))dθ

Claim 3 There are two parts:

1. For θ ∈ [θL + ε, θH + ε], n(θ) = θH+ε−θ
2ε .

2. n(θH − ε) ≥ n(θL + ε)
17The complementary case has an essentially identical, but simpler, proof, and is omitted.
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Proof: For θ ∈ [θL + ε,∞), n(θ) = Pr(θi ≤ θH |θ). This is because if θ ∈ [θL + ε,∞),
θi ∈ (θL,∞), and the only θi for which Π(θi) < 0 lie in (θL, θH). Thus, in particular, for
θ ∈ [θL + ε, θH + ε], n(θ) = Pr(θi ≤ θH |θ) = θH−θ+ε

2ε . This proves the first part of the claim.
Using the above, n(θL + ε) = θH+ε−θL−ε

2ε = θH−θL
2ε For θ ∈ (−∞, θH − ε], by an ar-

gument parallel to the above, n(θ) ≥ Pr(θi > θL|θ). The inequality arises because while
Π(θi) is definitely negative between θL and θH , it can also be negative elsewhere. Thus,
n(θH − ε) ≥ Pr(θi ≥ θL|θH − ε) = θH−θL

2ε . Therefore, n(θH − ε) ≥ θH−θL
2ε = n(θL + ε). This

proves the second part of the claim.

Given the above claim,∫ θT

θB

π(θ, n(θ))dθ =
∫ θT

θB

π(θ,
θT − θ

2ε
)dθ

where θB = θL + ε, and θT = θH + ε. It is easy to see that
∫ θT

θB
π(θ, θT−θ

2ε )dθ ≥ 0. When
θ̂ = θB, θ = θH − ε. Thus, given the claim above, and given that θT−ε

2ε decreases at the
fastest feasible rate, we can say, for all θ ∈ [θB, θT ], n(θ) ≥ θT−ε

2ε . We can now directly
apply Lemma 2 to claim that Π(θH , n)−Π(θL, n) > 0, a contradiction. �.

Proof of Proposition 5: To prove this result, we begin by writing down the threshold
equation for the coordination game amongst depositors at the creditor bank conditional on
the failure of the debtor bank. First, we write nc

1 = x−D
1−w+x , and nc

2 = (1−w)r+x−D
1−w+x . Let

l1 = 1− 2nc
1, and l2 = 1− 2nc

2. Finally, for brevity, we let m = 1−w + x, and suppress the
arguments of n(θ, θ∗). Then, the threshold equation for patient depositors of the creditor
bank conditional upon the failure of the debtor bank can be written as Lf (θ∗) = Rf (θ∗)
where,

Lf (θ∗) =
∫ θ∗+εl2

θ∗+εl1

u[
1− w − x−D+nm

r

(1− n)m
R(θ)]dθ +

∫ θ∗+ε

θ∗+εl2

u[
(x−D)−mn + (1− w)R(θi)

(1− n)m
]dθ

Rf (θ∗) =
∫ θ∗+εl1

θ∗−ε
(u[

w −D + (1− w)r
w − x + mn

]− u[0])dθ + K1

where K1 =
∫ θ∗+ε
θ∗+εl1

u[1]dθ. We know by our previous results that there is a unique θ∗c,F
that solves this equation. Now, we write down the corresponding threshold equation for
the depositors of the creditor bank conditional upon the survival of the debtor bank as
Ls(θ∗) = Rs(θ∗), where

Ls(θ∗) =
∫ θ∗+εl2

θ∗+εl1

u[
(1− w − x−D+nm

r )R(θ) + g

(1− n)m
]dθ+

∫ θ∗+ε

θ∗+εl2

u[
(x−D)−mn + (1− w)R(θi) + g

(1− n)m
]dθ
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Rs(θ∗) =
∫ θ∗+εl1

θ∗−ε
(u[

w −D + (1− w)r
w − x + mn

+ g]− u[g])dθ + K1

where K1 is as before. Observe that since g > 0, Ls(θ∗) > Lf (θ∗) for all θ∗. Since u(·) is
a concave function, u(x + y)− u(y) ≤ u(x)− u(0), for all x, y > 0. Thus, Rs(θ∗) ≤ Rf (θ∗)
for all θ∗. In particular, this means that

Ls(θ∗c,F ) > Rs(θ∗c,F )

i.e., θ∗c,F 6= θ∗c,S . Now, observe that by analogy to the proof of proposition 2 we know that
Ls(θ∗) is increasing in θ∗, while Rs(θ∗) is invariant with θ∗. Thus, in order to make the
indifference equations hold, we need to reduce θ∗ below θ∗c,F , and thus, we have just shown
that θ∗c,S < θ∗c,F . �

Proof of Proposition 6: We begin by proving two intermediate results:

Lemma 3 r(1−w)+(1− r(1−w)−w +x) ln
[
1− 1−w

1−w+xr
]

is decreasing in x and positive
over the permissible range of x.

Proof: Let

E(r, w, x) = r(1− w) + (1− r(1− w)− w + x) ln
[
1− 1− w

1− w + x
r

]
Write a = (1− w)(1− r) and b = (1− w). Observe that a = b(1− r). Now,

E(r, a, b, x) = (a + x) ln
[
1− br

b + x

]
which simplifies to

E(a, b, x) = (a + x) ln
[
a + x

b + x

]
We differentiate with respect to x to obtain

E′[a, b, x] =
b− a

b + x
+ ln

[
a + x

b + x

]
Is this expression always negative over the permissible range of x? To investigate, we
differentiate again with respect to x, and obtain

E′′(a, b, x) =
b− a

b + x

[
1

a + x
− 1

b + x

]
> 0

Thus, if E′ < 0 for the maximal permissible x, we shall be done. But note that x <

min[w, (1− w)(1− r)] = min[1− b, a]. We check that for x = 1− b, E′ is negative.

E′(a, b, 1− b) = (b− a) + ln(1− (b− a))
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Let y = b− a. This is then equivalent to

y > 1− exp(−y)

which is always true for y ≥ 0. Thus, we have just shown that r(1−w)+(1−r(1−w)−w+
x) ln

[
1− 1−w

1−w+xr
]

is decreasing in x. To show that it is always positive, we simply need

to check that it is positive at the highest global value of x, which is 1
2 . Note that x = 1

2

implies that w = 1
2 to keep everything well defined. Thus, our target expression reduces to

E(r,
1
2
,
1
2
) =

r

2
+ (1− r

2
) ln

[
1− r

2

]
which is clearly positive for all r ∈ (0, 1). �

Lemma 4 θ∗d increases in x.

Proof: Observe that

θ∗d =
[

r

r + (1− r) ln(1− r)

](1− w) + (r(1− w) + wx) ln
[

1
r(1−w)+w+x

]
(1− w − x)


Observe that the left term in the product is always positive and is not affected by x. Thus,
to analyze the dependence of θ∗d on x, it is sufficient to examine the right term in the
product. We differentiate this with respect to x, to obtain

[x− (1− r)(1− w)]− [1 + r(1− w)] ln[r(1− w) + w + x]
(1− w − x)2

Since the denominator is always positive, if we could show that the numerator is positive,
then we shall be done. Observe that by differentiating the numerator with respect to x, we
get

1− 1 + r(1− w)
r(1− w) + w + x

Since x < (1 − r)(1 − w), the numerator is decreasing in x. Thus, if the numerator is
positive for the maximal x, then it is positive for all x, and we are done. We check that the
numerator is 0 for x = (1− r)(1− w), and so we are done. �

We are now ready to prove the main result. In the limit, the survivor of the debtor
bank implies that nd = 0, so that ĝ(·) = x( θ∗d+U

2 ). Now, we can use the expressions for the
equilibrium thresholds shown above and write:

ct(r, w, x) =
[−x( θ∗d+U

2 )]r ln
[
1− 1−w

1−w+xr
]

r(1− w) + (1− r(1− w)− w + x) ln
[
1− 1−w

1−w+xr
]
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The numerator of ct(x) can be rewritten as [( θ∗d+U
2 )]r(−x ln

[
1− 1−w

1−w+xr
]
). θ∗d+U

2 is increas-

ing in θ∗d, which in turn is increasing in x by Lemma 4. −x ln
[
1− 1−w

1−w+xr
]

is increasing in
x. By Lemma 3 we know that the denominator decreases in x. Thus, ct(x) increases in x. �
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