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Recent studies in the empirical Þnance literature have reported evidence of two types of asymme-

tries in the joint distribution of stock returns. The Þrst is skewness in the distribution of individual

stock returns, while the second is an asymmetry in the dependence between stocks: stock returns

appear to be more highly correlated during market downturns than during market upturns. In this

paper we examine the economic and statistical signiÞcance of these asymmetries for asset alloca-

tion decisions in an out-of-sample setting. We consider the problem of a CRRA investor allocating

wealth between the risk-free asset, a small-cap and a large-cap portfolio, using monthly data. We

use models that can capture time-varying means and variances of stock returns, and also the pres-

ence of time-varying skewness and kurtosis. Further, we use copula theory to construct models

of the time-varying dependence structure that allow for greater dependence during bear markets

than bull markets. The importance of these two asymmetries for asset allocation is assessed by

comparing the performance of a portfolio based on a normal distribution model with a portfolio

based on a more ßexible distribution model. For a variety of performance measures and levels of

risk aversion our results suggest that capturing skewness and asymmetric dependence leads to gains

that are economically signiÞcant, and statistically signiÞcant in some cases.
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1 Introduction

Recent studies in the empirical Þnance literature have reported evidence of two types of asymmetries

in the joint distribution of stock returns. The Þrst is skewness in the distribution of individual stock

returns, which has been reported by numerous authors over the last two decades1. The second

asymmetry is in the dependence between stocks: stock returns appear to be more dependent

during market downturns than during market upturns, a characteristic we refer to as �asymmetric

dependence�. Evidence that stock returns exhibit some form of asymmetric dependence has been

reported by several authors in recent years; published work includes Erb, et al., (1994), Longin and

Solnik (2001), Ang and Bekaert (2001) and Ang and Chen (2002), who all report that correlations

between stock returns are greater during bear markets than during bull markets. Further evidence

is reported in numerous unpublished studies2. The presence of either of these asymmetries violates

the assumption of elliptically distributed asset returns, which underlies traditional mean-variance

analysis, see Ingersoll (1987). In this paper we examine the economic and statistical signiÞcance

of these two asymmetries for asset allocation decisions in an out-of-sample setting. This paper can

thus be viewed as a Þrst step in addressing the suggestions of Harvey and Siddique (2000) and

Longin and Solnik (2001), who propose investigating the impact of conditional skewness (Harvey

and Siddique) and asymmetric dependence (Longin and Solnik) on portfolio choices.

Theoretical justiÞcation for the importance of distributional asymmetries may be found in

Arrow (1971), who suggests that a desirable property of a utility function is that it exhibits non-

increasing absolute risk aversion3. Under non-increasing absolute risk aversion investors can be

shown to have a preference for positively skewed assets, in the same way that positive marginal

utility leads to a preference for assets with higher mean returns, and diminishing marginal utility

leads to risk aversion. Patton (2002) shows that asymmetric dependence between assets can lead

to skewed portfolios, suggesting that risk averse investors will also have preferences over alternative

dependence structures. Ang, et al., (2001) report empirical evidence in support of this theoretical

result.

We examine the problem of an investor with constant relative risk aversion (CRRA) allocating

wealth between the risk-free asset, the CRSP small-cap and large-cap indices4. We use monthly

data from January 1954 to December 1989 to develop the models, and data from January 1990 to

December 1999 for forecast evaluation. This problem is representative of that of choosing between

1See Kraus and Litzenberger (1976), Friend and WesterÞeld (1980), Singleton and Wingender (1986), Lim (1989),

Richardson and Smith (1993), Harvey and Siddique (1999, 2000) and Äõt-Sahalia and Brandt (2001), amongst others.
2See Bae, et al., (2000), Rosenberg (2000) and Campbell, et al., (2001) amongst others.
3Utility functions that exhibit non-increasing absolute risk aversion include the constant absolute risk aversion

(CARA), or exponential, utility function, and the constant relative risk aversion (CRRA), or ënarrow powerí, utility

function, see Huang and Litzenberger (1988).
4The small-cap index is comprised of the smallest 10% of U.S. stocks by market capitalisation and the large-cap

index is comprised of the largest 10% of U.S. stocks.

2



a high risk - high return asset and a lower risk - lower return asset, as the annualised mean and

standard deviation on these indices over the sample were 9.95% and 21.29% for the small caps, and

7.97% and 14.29% for the large caps. We use distribution models that can capture the empirically

observed time-varying means and variances of stock returns, and also the presence of (possibly

time-varying) skewness and kurtosis. Further, we employ models of the dependence structure that

allow for, but do not impose, greater dependence during bear markets than bull markets, and allow

for changes in this dependence structure through time.

Our models are developed using copula theory, which enables the construction of ßexible multi-

variate distributions. In Section 2 we provide a brief introduction to copula theory; a more thorough

introduction is presented in Nelsen (1999), Schweizer and Sklar (1983) and Joe (1997). The in-

vestor is assumed to estimate the model of the conditional distribution of returns using maximum

likelihood (ML), see Patton (2001b), and then optimise the portfolio�s weight using the predicted

conditional distribution of returns. Work from the forecasting and estimation literature suggests

that the parameter estimation stage and the forecast evaluation stage should both use the same

objective function (or loss function), see Granger (1969), Weiss (1996) and Skouras (2001). As we

do not intend to evaluate the quality of our density forecasts using the log-likelihood function, this

implies we should use some method other than ML for estimation. We use ML for computational

tractability: the forecast evaluation functions used in this paper are functions of the optimal port-

folio weights, which in turn are functions of the model parameters that must be solved numerically.

It is not feasible to estimate the parameters of our models via our forecast evaluation functions.

The importance of skewness and asymmetric dependence for asset allocation is measured by

comparing the performance of a portfolio based on a bivariate normal distribution model with a

portfolio based on a model developed using copula theory. The signiÞcance of the differences in

measures of portfolio performance is tested using bootstrap methods. We Þnd substantial evi-

dence in most cases that skewness and asymmetric dependence do indeed have important economic

implications for asset allocation, however the statistical signiÞcance of the improvement is only

moderate. For example5, while a constant equally weighted portfolio of the two assets generates

a Sharpe ratio of 0.242 and the portfolio based on the bivariate normal model generates a Sharpe

ratio of 0.286, the portfolio developed using copula theory attains a Sharpe ratio of 0.302. Thus

the gains to modelling the distribution of returns are increased by almost 40% (according to this

measure) by capturing and modelling deviations from joint normality. If we instead use the 5%

Value-at-Risk (VaR) as a measure of risk the beneÞts of modelling deviations from joint normality

are over 80%.

It should be re-emphasised that the goal of this paper is not to determine whether skewness and

asymmetric dependence are present in asset returns, but whether the capturing of these asymmetries

5The Þgures here are taken from Table 4 for a short sales constained investor with relative risk aversion of seven.
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leads to better out-of-sample portfolio decisions. The distinction between in-sample and out-of-

sample signiÞcance of these asymmetries for asset allocation is an important one. Finding that a

more ßexible distribution model Þts the data better in-sample does not imply that it will lead to

better out-of-sample portfolio decisions than those based on a simpler model. In fact, a common

Þnding in the (point) forecasting literature is that more complicated models often provide worse

forecasts that simple mis-speciÞed models, see Weigend and Gershenfeld (1994), Swanson and

White (1995, 1997) and Stock and Watson (1999). More complicated models generally are more

highly parameterised and thus subject to greater estimation error than simpler models. Our Þnding

that the more ßexible models generally perform better than simpler models is thus a noteworthy

one.

In this paper we consider both unconstrained and short sales constrained estimates of the

optimal portfolio weight for a given density forecast. We do so for two reasons. The Þrst reason

is economically motivated: many market participants face the constraint that they are unable to

short sell stocks or to borrow and invest the proceeds in stocks. The second reason is statistically

motivated: the optimal portfolio weight given a density forecast is itself only an estimate of the

true optimal portfolio weight. By ensuring that our estimate always lies in the interval [0, 1] we

employ a type of �insanity Þlter� which prevents the investor from taking an extreme position in

the market. Such constraints have been found to improve the out-of-sample performance of optimal

portfolios based on parameter estimates, see Frost and Savarino (1988) and Jagannathan and Ma

(2002).

Much of the existing work on asset allocation focussed on special cases where the combination

of utility function and distribution model were such than an analytical solution for the optimal

portfolio decision exists, see Kandel and Stambaugh (1996) or Campbell and Viceira (1999) amongst

many others. For example, the combination of quadratic or exponential utility with elliptical

distributions, or where the utility function was assumed to be a function of a certain number of

moments of the returns. The focus on such analytically tractable special cases was motivated, at

least in part, by computational constraints and certainly not by the fact that the utility functions or

distributional assumptions were considered realistic. In this paper we combine density models that

are thought to adequately describe the statistical properties of the asset returns with the CRRA

utility function.

Recent work by Brandt (1999) and Äõt-Sahalia and Brandt (2001) overcome the problem of

the appropriate distributional assumption to combine with a given utility function by using the

method of moments and the Þrst-order conditions of the investor�s optimisation problem to obtain

an optimal portfolio decision. Doing so allows them to use whichever utility function they please.

Theirs is indeed an interesting approach, however it has the drawback that its nonparametric nature

imposes restrictions on the number of exogenous regressors that may be included in the model, as
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in Brandt (1999), or on the way a larger number of regressors may enter into the problem, as in

Äõt-Sahalia and Brandt (2001). Our framework instead involves a ßexible parametric approach to

distribution modelling.

One of the costs of using ßexible parametric models for the joint distribution of stock returns

is that we are forced by computational constraints to be relatively unsophisticated in other aspects

of the project. Firstly, we ignore the effects of parameter estimation uncertainty on the investor�s

decision problem, though this has been found to be important, see Kandel and Stambaugh (1996)

and the references cited therein. Also, we only consider the investor�s problem for the one-period-

ahead investment horizon. For one of the utility functions we consider, the log utility function6,

this approach is correct, however for the remaining utility functions the optimal weights will have

both a �myopic� component and a �hedging� component, see Merton (1971). The myopic component

is the solution we focus on: the investor simply seeks to maximise the next-period expected utility.

The hedging component represents the deviation from the myopic optimal weight that occurs when

the investor seeks to hedge possible future adverse movements in the investment opportunity set.

Ang and Bekaert (2001) and Äõt-Sahalia and Brandt (2001) Þnd, however, only weak evidence of

hedging demand, though Brandt (1999) reports it to be quite signiÞcant.

The remainder of the paper is structured as follows. In Section 2 we provide a brief introduction

to copula theory and its use in the density forecasting of stock returns. In Section 3 we present

empirical results on the asset allocation problem for a portfolio of a small-cap index and a large-

cap index: Section 3.1 presents the investor�s problem in detail, Section 3.3 presents the models

employed and the performance of the resulting portfolios are evaluated in 3.4. Finally, we conclude

in Section 4. In Appendix 1 we present some useful results on Hansen�s skewed t distribution and

in Appendix 2 we provide the functional forms of the copulas considered in Section 3.

2 Flexible multivariate distribution models using copulas

In this paper we use copula theory to develop ßexible parametric models of the joint distribution

of returns. Below we provide a non-technical introduction to copula theory, which follows that of

Patton (2001a) closely. Let us Þrstly deÞne our notation: we have two (scalar) random variables

of interest, Xt and Yt, and some exogenous variables Wt. The variables� joint conditional distri-

bution is: (Xt, Yt) |Ft−1 ∼ Ht ≡ Ct (Ft, Gt), where Ht is some bivariate distribution function, the
marginal distributions of Xt and Yt are Ft and Gt, the copula is Ct, and Ft−1 is the information set
deÞned as Ft ≡ σ (Zt), for Zt ≡

h
Xt, Yt,W

0
t,Xt−1, Yt−1,W0

t−1, ...Xt−j , Yt−j ,W0
t−j
i0
. (The notation

�H ≡ C (F,G)� will be explained below.) We will assume that all distributions are continuous and
differentiable, though this assumption may be relaxed at the expense of further complication. We

will denote the distribution (or c.d.f.) of a random variable using an upper case letter, and the

6This is the CRRA utility function with a coefficient of relative risk aversion of 1.
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corresponding density (or p.d.f.) using the lower case letter. We will denote the extended real line

as R̄ ≡ R ∪ {±∞}.

A copula is a function that links together two (or more) marginal distributions to form a joint

distribution. The marginal distributions that it couples can be of any type: a normal and an

exponential, or a Student�s t and a Uniform, for example. The theory of copulas dates back to

Sklar (1959), but it wasn�t until the 1970�s that copulas were used in applied work. Since then

numerous applications have appeared in the statistics literature, see Clayton (1978), Cook and

Johnson (1981), Oakes (1989), Genest and Rivest (1993) and Fine and Jiang (2000), amongst

others, and more recently in the analysis of economic data, see Rosenberg (1999) and (2000), Li

(2000), Scaillet (2000), Embrechts, et al., (2001), Patton (2001a,b), Rockinger and Jondeau (2001)

and Miller and Liu (2002). The main theorem in copula theory is that of Sklar (1959), and below

we present a modiÞcation of it for conditional distributions.

DeÞnition 1 (Conditional copula) A two-dimensional conditional copula is a function C :

[0, 1]× [0, 1]×Z → [0, 1], where Z ⊆ Rk and k is a Þnite integer, with the following properties:

1. C(u, 0|z) = C(0, v|z) = 0, and C(u, 1|z) = u and C(1, v|z) = v, for every u, v in [0, 1] and

all z ∈ Z

2. VC ([u1, u2]× [v1, v2] |z) ≡ C (u2, v2|z) − C (u1, v2|z) − C (u2, v1|z) + C (u1, v1|z) ≥ 0 for all

u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2, and all z ∈ Z.

Theorem 1 (Sklar�s theorem for continuous conditional distributions) Let F be the con-

ditional distribution of X|Z, G be the conditional distribution of Y |Z, and H be the joint conditional

distribution of (X,Y ) |Z. Assume that F and G are continuous in x and y. Then there exists a

unique conditional copula C such that

H(x, y|z) = C(F (x|z), G(y|z)|z), ∀ (x, y) ∈ R̄× R̄ and each z ∈ Z (1)

Conversely, if we let F be the conditional distribution of X|Z, G be the conditional distribution of

Y |Z, and C be a conditional copula, then the function H deÞned by equation (1) is a conditional

bivariate distribution function with conditional marginal distributions F and G.

For the proof of Theorem 1 see Patton (2001a). Sklar�s theorem allows us to decompose a

bivariate distribution, Ht, into three components: the two marginal distributions, Ft and Gt, and

the copula, Ct. Since all of the univariate information on Xt and Yt is contained in the marginal

distributions, what remains is all of the dependence information between Xt and Yt, which is

captured in the copula. The density function equivalent of (1) is useful for maximum likelihood
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analysis, and is obtained quite easily, provided that Ft and Gt are differentiable, and Ht and Ct

are twice differentiable.

ht (x, y|z) ≡ ∂2Ht (x, y|z)
∂x∂y

=
∂Ft (x|z)
∂x

· ∂Gt (y|z)
∂y

· ∂
2Ct (Ft (x|z) , Gt (y|z) |z)
∂(Ft (x|z) ∂ (Gt (y|z))

≡ ft (x|z) · gt (y|z) · ct (u, v|z) , ∀ (x, y, z) ∈ R̄× R̄×Z (2)

where u ≡ Ft (x|z), and v ≡ Gt (y|z). Taking logs of both sides we obtain:

LXY = LX + LY + LC (3)

and so the joint log-likelihood is equal to the sum of the marginal log-likelihoods and the copula

log-likelihood. For the purposes of multivariate density modelling the copula representation allows

for great ßexibility in the speciÞcation: we may model the individual variables using whichever

marginal distributions Þt best, and then work on modelling the dependence structure via a model

for the copula. The estimation of multivariate time series models constructed using copulas is

discussed in Patton (2001b).

3 A portfolio of small cap and large cap stocks

In this section we consider an investor with constant relative risk aversion facing the problem of

allocating wealth between two assets: a portfolio of low market capitalisation stocks (�small caps�)

and a portfolio of high market capitalisation stocks (�large caps�). These two assets were chosen as

being representative of the general problem of balancing a portfolio comprised of a high risk - high

return asset and a lower risk - lower return asset. The small cap and large cap portfolios Þt this

problem: the average annualised return on these indices was 9.95% and 7.97% respectively, and

their annualised standard deviations were 21.29% and 14.29%.

3.1 The investor�s optimisation problem

The utility functions we assume for our hypothetical investors are from the class of constant relative

risk aversion (CRRA) utility functions:

U (γ) =
(
(1− γ)−1 · (P0 · (1 + ωxXt + ωyYt))1−γ if γ 6= 1
log (P0 · (1 + ωxXt + ωyYt)) if γ = 1

(4)

where P0 is the initial wealth, Xt represents the return on the small-cap index, Yt represents the

return on the large-cap index and ωi is the proportion of wealth in asset i. The degree of relative

risk aversion (RRA) is denoted by γ. For this utility function the initial wealth does not affect
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the choice of optimal weight and so we set P0 = 1. We consider Þve different levels of relative risk

aversion: γ=1, 3, 7, 10 and 20. This range of risk aversion levels was also considered in Äõt-Sahalia

and Brandt (2001).

The set-up of the investor�s problem is as follows. Let the returns on the two assets under

consideration be denotedXt and Yt. These returns have some joint distribution, Ht, with associated

marginal distributions, Ft and Gt, and a copula, Ct. That is, (Xt, Yt) |Ft−1 ∼ Ht ≡ Ct (Ft, Gt).

We will develop density forecasts of this joint distribution: �Ft+1, �Gt+1, and the conditional copula,

�Ct+1, and use them to compute the optimal weights, ω∗t+1 ≡
£
ω∗x,t+1,ω∗y,t+1

¤
, for the portfolio. The

optimal weights are found by maximising the expected utility of the end-of-period wealth under

the estimated probability density:

ω∗t+1 ≡ argmax
ω∈W

E �Ht+1
[U (1 + ωxXt+1 + ωyYt+1)]

≡ argmax
ω∈W

ZZ
U (1 + ωxx+ ωyy) · �ht+1 (x, y) · dx · dy

= argmax
ω∈W

ZZ
U (1 + ωxx+ ωyy) · �ft+1 (x) · �gt+1 (y) · �ct+1

³
�Ft+1 (x) , �Gt+1 (y)

´
· dx · dy

where W is some compact sub-set of R2 for the unconstrained investor and W =n
(ωx,ωy) ∈ [0, 1]2 : ωx + ωy ≤ 1

o
for the short sales constrained investor.

The double-integral deÞning the expected utility of wealth does not have a closed-form solution

for our case. We use 10,000 Monte Carlo replications to estimate the value of this integral7. The

objective function ϕt+1 (ω) ≡
RR U (1 + ωxx+ ωyy) · �ht+1 (x, y) · dx · dy was found to be well-

behaved (smooth and having a unique global optimum) for our choices of utility functions and

density models and so we employed the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to

locate the optimum, ω∗t+1, at each point in time.

3.2 Description of the data

We use monthly data from the Center for Research in Security Prices (CRSP) on the top 10% and

bottom 10% of stocks sorted by market capitalisation to form indices - the �big cap� and �small

cap� indices, from January 1954 to December 1999, yielding 552 observations. This data was also

analysed in a different context by Perez-Quiros and Timmermann (2001). We reserve the last 120

observations, from January 1990 to December 1999, for the out-of-sample evaluation of the models.

Descriptive statistics on the two portfolios over the entire sample are presented in Table 1.

[ INSERT TABLE 1 HERE ]

7Judd (1998, pp291-305) discusses some of the issues surrounding the use of Monte Carlo simulations to approxi-

mate objective functions containing integrals.
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Table 1 reveals that the small cap index had a higher mean and higher volatility than the large

cap index. The small cap index also exhibited slightly positive skewness, while the big cap index

exhibited substantial negative skewness. Both indices exhibited excess kurtosis. The Jarque-Bera

statistic indicates that neither series is unconditionally normal, and the unconditional correlation

coefficient indicates a high degree of linear dependence.

To examine the presence of asymmetric dependence between these two assets we use measures

presented in Longin and Solnik (2001) and Ang and Chen (2002) called �exceedence correlations�,

�ρ (q):

�ρ (q) ≡
(
Corr [X,Y | X ≤ Qx (q) ∩ Y ≤ Qy (q)] , for q ≤ 0.5
Corr [X,Y | X > Qx (q) ∩ Y > Qy (q)] , for q ≥ 0.5

where Qx (q) and Qy (q) are the q
th quantiles of X and Y respectively. As Longin and Solnik (2001)

and Ang and Chen (2002) point out, the shape of the exceedence correlation plot (as a function

of q) depends on the underlying distribution of the data. Even for the standard bivariate normal

distribution �ρ (q) is non-linear in q. In Figure 1 we plot the empirical exceedence correlations

based on the (raw) excess returns on the two indices. In Figure 2 we plot the empirical exceedence

correlations based on the transformed standardised residuals of the models for the two indices,

along with what would be expected if these assets had the normal copula and the �rotated Gumbel�

copula, which is described below. Figure 1 shows the degree of asymmetry in the unconditional

distribution of the returns on these two assets; Figure 2 shows the degree of asymmetry in the

unconditional copula of these two assets, having removed all marginal distribution asymmetry.

Clearly both the unconditional joint distribution and the unconditional copula exhibit substantial

asymmetry.

[ INSERT FIGURES 1 AND 2 HERE ]

In our density forecasts we use three further variables as explanatory variables in our analysis.

The Þrst is the one-month treasury bill rate, denoted Rft, which is taken as the risk-free rate. This

variable has been used by Fama (1981) and others as a proxy for shocks to expected growth in

the real economy. The second variable is the difference between the yield on corporate bonds with

Moody�s rating Baa versus those with an Aaa rating, denoted SPRt, which is called the �default

spread�. This variable tracks the cyclical variation in the risk premium on stocks, see Perez-Quiros

and Timmermann (2001). Finally, we look at the dividend yield, denoted DIVt, which is measured

as the total dividends paid over the previous 12 months divided by the stock price at the end of

the month. This variable acts as a proxy for time-varying expected returns. For a comprehensive

review of the variables that have been used in previous studies as predictive variables for stock

returns see Äõt-Sahalia and Brandt (2001, pp1297-1298).
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3.3 Analysis of the different models

We consider a number of different investment strategies, some of which are based on density fore-

casts. In this section we describe the models used to obtain the density forecasts.

The Þrst three strategies we consider and simply buy-and-hold strategies. The fourth strategy is

one based solely on the unconditional distribution of returns. For this portfolio we assume that the

investor optimises his/her portfolio weights for the period t + 1 using the empirical unconditional

distribution of returns observed up until time t.

ω∗uncond,t+1 ≡ argmax
ω∈W

�Et [U (1 + ωxXt+1 + ωyYt+1)]

≡ argmax
ω∈W

ZZ
U (1 + ωxx+ ωyy) · d �Ht (x, y)

= argmax
ω∈W

t−1
Xt

j=1
U (1 + ωxxj + ωyyj) (5)

where {(xj , yj)}tj=1 are the observed excess returns on the two assets. This portfolio is �somewhat
näõve�, in that the investor does perform some optimisation, but assumes that the joint distribution

of these two assets is i.i.d. throughout the sample. A comparison of the performance of this portfolio

with those constructed using parametric conditional distribution models may then be interpreted

as a measure of the beneÞts to modelling the conditional distribution of these stock returns.

The benchmark parametric model for our study is the bivariate normal distribution, which is

compared with a parametric model constructed using copula theory. Both parametric models have

the same forms for the conditional means, µxt and µ
y
t , and variances, h

x
t and h

y
t . We used likelihood

ratio tests to determine the best Þtting model over the in-sample period. Although the models are

recursively re-estimated throughout the out-of-sample period they are �non-adaptive�, in that the

model speciÞcations are determined using the in-sample data and not updated in the out-of-sample

period. We do not present the Þnal models or the parameter estimates here, but they are available

from the author upon request. The conditional means were set to be linear functions of up to

twelve lags of the two asset returns, the risk-free rate, the default spread and the dividend yield.

For the conditional variance we employed a TARCH(1,1) speciÞcation8 and allowed the three lagged

exogenous regressors to enter into the conditional variance speciÞcation in levels and squares. The

Þnal model for the small cap (large cap) index contained 5 (4) parameters for the conditional mean

and 6 (5) for the conditional variance.

For the bivariate normal model, all that remains to be speciÞed is a model for the conditional

correlation. The conditional correlation was set as a function of the lagged risk-free rate, default

spread, dividend yield, and the forecasts of the conditional means of the two variables. All of these

variables were found to be important in-sample. The bivariate normal model is:

8The general TARCH(1,1) speciÞcation is: ht = ω+βht−1+α+·ε2t−1·1 {εt−1 > 0}+α−·ε2t−1·1 {εt−1 < 0}+αz ·zt−1,
where εt is the residual from the model for the mean, and zt is an exogenous regressor.
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Bivariate normal speciÞcationÃ
Xt − µxtp

hxt
,
Yt − µytp

hyt

!
∼ N

Ã
0,

"
1 ρt

ρt 1

#!
(6)

ρt = Λ (α0 + α1Rft−1 + α2SPRt−1 + α3DIVt−1

+α4µ
x
t + α5µ

y
t ) (7)

where Λ (x) = 1−e−x
1+e−x is the modiÞed logistic transformation, designed to keep ρt in (−1, 1) at all

times.

To determine the importance of skewness and asymmetric dependence for asset allocation we

specify distribution models that can capture these features. We found Hansen�s (1994) skewed

Student�s t distribution to provide a good Þt for the marginal distributions of both assets. Some

results on this distribution are presented in Appendix 1. In addition to time-varying conditional

means and variances, the skewed t distribution can capture time-varying conditional skewness and

kurtosis. Both skewness and kurtosis were allowed to depend on lags of the exogenous variables

and the forecast conditional means and variances. As suggested by Hansen (1994), we used the

logistic transformation to ensure that the skewness and degrees of freedom parameters remained

within (−1, 1) and (2,∞] respectively at all times. For both assets we found signiÞcant in-sample
time-variation in these moments. Both small cap and large cap skewness parameters were found

to be inßuenced by the dividend yield. The degree of freedom parameter for the small caps was

found to be inßuenced by the dividend yield while that of the large caps was inßuenced by the

risk free rate and the default spread. The total additional number of parameters in the skewed t

distribution over those in the normal distribution for the small caps (large caps) was 5 (4). Using

likelihood ratio tests we could reject (with p-values of less than 0.001) for both models the normal

distribution in favour of the skewed t distribution over the in-sample period. This improvement in

in-sample goodness-of-Þt is traded off against possible increased parameter estimation error in the

out-of-sample setting.

For the ßexible distribution model all that remains is to specify the form of the copula used

to link the two skewed t marginal distributions. A total of nine different copulas were estimated

on the transformed residuals from the skewed t models, in the search for the best Þtting copula.

The copulas considered were the normal, Student�s t, Clayton, rotated Clayton9, Joe-Clayton,

Plackett, Frank, Gumbel and rotated Gumbel copulas; contour plots of a few of these copulas is

provided in Figure 3 and the functional forms of these copulas are contained in Appendix 2. This

9The ërotatedí copulas were formed as follows: Let (U,V) be distributed according to the copula C. Then (1-

U,1-V) will be distributed according to the ërotated Cí copula. The rotation allows us to take a copula that allows

for greater dependence in the negative (positive) quadrant and create one that allows for greater dependence in the

positive (negative) quadrant.
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list includes almost all of the copulas considered in the various applications of copulas in statistics

and economics10, and is signiÞcantly more than we found in any single previous applied study.

[ INSERT FIGURE 3 HERE ]

As in the bivariate normal distribution we estimated these copulas with conditional dependence

modelled as a function of the lagged risk-free rate, default spread and dividend yield, and the

forecasts of the conditional means of the two variables, see equation (9) below. The maximum log-

likelihood values for each of the copulas considered are presented in Table 2, and we can see that

the rotated Gumbel copula attained the greatest log-likelihood value. The Student�s t copula has

seven parameters (we Þx the degree of freedom parameter and only allow the correlation coefficient

to be time-varying) and the Joe-Clayton copula has twelve parameters (both upper and lower tail

dependence are allowed to vary). All other copulas have six parameters, and so picking the rotated

Gumbel on the basis of the likelihood value is equivalent to choosing it according to some other

model selection criteria (such as AIC or BIC for example) as it has the greatest log-likelihood value

and no more parameters than the competing copula speciÞcations. We call ßexible distribution

speciÞcation using the rotated Gumbel copula the �Gumbel� model.

[INSERT TABLE 2 HERE ]

Copula distribution speciÞcations

Ã
Xt − µxtp

hxt
,
Yt − µytp

hyt

!
∼ C (Skewed t (λxt , ν

x
t ) , Skewed t (λ

y
t , ν

y
t ) ; δt) (8)

δt = Γ (β0 + β1Rft−1 + β2SPRt−1 + β3DIVt−1

+β4µ
x
t + β5µ

y
t ) (9)

where Γ (x) is a function designed to keep δt in the feasible region for the copula C at all times,

and C is one of the nine copulas discussed above.

We specify one Þnal alternative model, called the �NormCop� model, which uses the skewed t

marginal distributions along with a normal copula. This speciÞcation is included to determine where

the beneÞts, if any, from ßexible density modelling lie: in the marginal distribution speciÞcations

or in the copula speciÞcation. The values of the log-likelihoods at the optimum for the three joint

distributions (normal, NormCop and Gumbel) are -2391.04, -2355.38 and -2342.28, so in terms of

in-sample goodness-of-Þt we can see that around 73% of the gains come from the ßexible marginal

distribution models, though in an out-of-sample setting this ranking need not hold.
10One copula that was consciously omitted from this list is the Farlie-Gumbel-Morgenstern copula. This copula

was excluded due to the limited amount of dependence it is able to consider: rank correlation under this copula is

bounded in absolute value by one-third, see Joe (1997, p35).
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We again use likelihood ratio tests to determine if any of the Þve regressors for the conditional

copula parameter can be dropped. For the bivariate normal distribution and the NormCop models

all Þve were signiÞcant at the 10% level, while for the rotated Gumbel copula the risk-free rate

and the spread were not signiÞcant and so were removed from the model, reducing the number of

parameters for this copula from six to four.

One concern that may arise in this design is the existence of E �Ht+1
[U (1 + ωxXt+1 + ωyYt+1)] for

certain density models. Given CRRA utility, any density model that assigns positive probability to

the case of bankruptcy would preclude the existence of E �Ht+1
[U ]. All of the above speciÞcations will

assign some (extremely small) positive probability to bankruptcy, and so left unmodiÞed E �Ht+1
[U ]

will not exist. We get around this by smoothly truncating the tails of the distribution: we apply a

logistic transformation to the lower tail of the portfolio return distribution so that all probability

mass assigned to the region (−∞, ε) is re-located to the region (0, ε), where ε is some extremely
small positive number. We do an equivalent transformation for the upper tail. In this way the

density is still continuous and E �Ht+1
[U ] exists.

3.4 Performance of the different strategies

We now analyse the performance of the different asset allocation decisions made using the various

models. We consider Þve levels of relative risk aversion (γ = 1, 3, 7, 10 and 20), and eleven

strategies. The eleven strategies are:

1. Always hold the small cap index,

2. Always hold the large cap index,

3. Always hold a 50:50 mix of the two indices,

4. Optimise the portfolio weight using the unconditional empirical distribution of returns,

5. Find the optimal portfolio weight for each period using the bivariate normal model,

6. Find the optimal portfolio weight for each period using the NormCop model,

7. Find the optimal portfolio weight for each period using the Gumbel model,

8. Same as strategy 4, subject to a short sales constraint,

9. Same as strategy 5, subject to a short sales constraint,

10. Same as strategy 6, subject to a short sales constraint,

11. Same as strategy 7, subject to a short sales constraint.
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The Þrst three portfolios are based on näõve rules, in that they are not the result of an optimi-

sation problem. The Þnal eight models are the results of optimisation problems, with the Þrst four

being unconstrained and the Þnal four being subject to a short sales constraint.

3.4.1 Summary statistics

Firstly, let us look at some summary statistics of the realised portfolio returns based on the different

models. These are presented in Table 3. We present Þve summary statistics on the optimal

portfolio return series: the mean, standard deviation, skewness, 5% Value-at-Risk (5% VaR) and

5% Expected Shortfall (5% ES).

The 5% VaR is deÞned as the negative of the Þfth empirical percentile of the realised returns,

that is [V aR (X; 0.05) ≡ − �F−1n (0.05), where �Fn is the empirical distribution of returns on portfolio

X using the n out-of-sample observations. Value-at-Risk has gained some acceptance by practi-

tioners as an alternative to standard deviation as a measure of risk. One of its main advantages is

that it considers only the left tail of the distribution of returns, that is the losses, rather than the

entire distribution.

While VaR has some advantages over traditional measures of risk, it has received criticism for

not being a �coherent� measure of risk, see Artzner et al. (1999). An alternative to VaR that has

gained some attention recently is the �expected shortfall� of a portfolio. The 5% expected shortfall

is deÞned as the negative of the average return on a portfolio given the return has exceeded its 5%

VaR, that is dES (X; 0.05) ≡ − �En
h
X|X ≤[V aR (X; 0.05)

i
, where �En is the sample average. We

will use both VaR and expected shortfall as alternative measures of risk.

[ INSERT TABLE 3 ]

A striking feature of the summary statistics is the much greater mean and standard deviation

of the portfolio returns based on the distribution models (normal, NormCop and Gumbel) than

the portfolios with constant weights for all but the most risk averse investor. We ignore parameter

estimation uncertainty, and so the query may be raised as to whether the investors would so

aggressively invest if they knew that they were using parameter estimates rather than the true

parameters. Kandel and Stambaugh (1996) and Brandt (1999) both Þnd that even when parameter

estimation uncertainty is accounted for a CRRA investor aggressively seeks the best portfolio. The

results for the short sales constrained investors reveal a much smaller difference in mean and risk

between the distribution portfolios and the constant weight portfolios.

Also note the skewness coefficients: both the small cap and large cap indices exhibited negative

unconditional skewness over this period. As noted in the introduction, CRRA investors have a

preference for positively skewed assets, ceteris paribus. The normal and NormCop portfolios also

generally exhibited negative skewness while the unconstrained Gumbel portfolio actually displayed
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positive skewness, suggesting that modelling both skewness and asymmetric dependence enables

the investor to better avoid negatively skewed portfolio returns. For the short sales constrained

portfolios all models lead to negatively skewed portfolios.

3.4.2 Performance statistics

Table 4 contains some risk-adjusted performance measures on the realised portfolio returns. These

tables present measures in the form of ratios of average return to a measure of risk. In addition to

the usual Sharpe ratio (mean to standard deviation) we present two alternative measures: mean

to 5% VaR and mean to 5% expected shortfall. The presence of skewness in the distribution of

returns, reported in Tables 3 and 4, implies that standard deviation may not be an appropriate

measure of risk. In all cases the VaRs and expected shortfalls are reported as �losses� and so are

positive numbers, so for example a larger (positive) mean/VaR ratio implies a greater return per

unit of risk.

Possibly the most interesting performance measure we consider is the amount (in basis points

per year) that the investor would pay to switch from the �50:50 mix� portfolio to another portfolio.

This performance measure was used by West, et al. (1993) to compare the economic value of various

volatility models. This amount is the �management fee� that may be deducted from the monthly

return on portfolio i over the out-of-sample period and leave the investor indifferent between the

50:50 portfolio and portfolio i. For example, an investor with risk aversion 1 would be willing to

pay up to 25.176 basis points per year to switch from the 50:50 portfolio to the constrained Gumbel

portfolio, while he would require compensation of 2.0114 basis points per year to switch from the

50:50 portfolio to the �unconditional� portfolio.

It should be pointed out that the investors with risk aversion of one and three using the normal

model density forecast would have gone bankrupt in the month of January 1992. On this date these

two investors took the positions ωx = −8.9, ωy = 21.3 and ωx = −5.1, ωy = 11.5 respectively, and
the month Þnished with returns of 14.0% on the small caps (the largest return on this asset over

the out-of-sample period) and −2.6% on the large caps leading to negative gross returns for these

investors11. For this month the realised utility for these investors is not deÞned, and so we do not

report the management fee for these investors.

[ INSERT TABLE 4 HERE ]

11This obviously represents a failure of these investorsí models or optimisation methods, as they did not recognise

the risk of taking such extreme positions. According to the normal density forecast for that month the probability of

a return such as this or more extreme, ie Pr [X > 14.0 ∩ Y ≤ −2.6], was less than 3 in ten million. Our Monte Carlo

estimate of the expected utility used only 10,000 draws from the forecast density so it is not surprising that this

outcome was not anticipated by an investor using a normal density forecast. This may be interpreted as a signal that

the normal density forecast is mis-speciÞed; the model with skewed t margins and rotated Gumbel copula assigned a

probability of 131 in ten million, or 3 in 228,000 to this event.
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The performance statistics indicate that substantial gains may be obtained by employing weights

obtained from a model of the conditional distribution of stock returns, particularly when coupled

with a short sales constraint. The unconstrained estimates generally do not perform as well as sim-

ply holding an equally weighted portfolio of the two indices, as the large caps performed particularly

well over the period 1990 to 1999.

The improvements in portfolio performance are substantial: the Sharpe ratios for the con-

strained Gumbel portfolios are between 23% and 38% greater than those of the 50:50 portfolio.

The mean/5%VaR and mean/5%ES ratios for the Gumbel portfolios are all around 50% greater

than those of the 50:50 portfolio. Further, the �management fees� that one could charge an investor

currently holding the 50:50 portfolio to switch to the constrained Gumbel portfolio range between

3 and 27 basis points per year. This is substantial economic evidence in favour of the use of density

forecasts for asset allocation.

Looking now to the gains from modelling skewness and asymmetric dependence: for the least

risk averse investor the constrained normal performs the best according to all four performance

measures, thus there are no gains here. Note however that the improvement that the constrained

normal offers over the constrained Gumbel for this investor is less than 1% for all performance

measures. For investors with risk aversion of 3, 7, 10 and 20 the constrained Gumbel outperformed

the constrained normal, and the improvements in performance range from 4% to 51%. If we

aggregate over all four performance measures and all Þve levels of risk aversion the constrained

Gumbel portfolio generates an average improvement of 16.7% over the constrained normal portfolio.

This suggests that there are out-of-sample gains to be had by capturing skewness and asymmetric

dependence in the joint density of the assets under analysis here.

Somewhat surprisingly, the NormCop model generally performs worse than both the normal and

the Gumbel models. The out-performance of the constrained Gumbel portfolio over the constrained

NormCop portfolio averages 52.3%. Of course, our out-of-sample period is just 120 months and

so this poor performance may simply be due to the short evaluation period. Nevertheless, the

results suggest that both the marginal distribution and copula speciÞcations are important for

asset allocation.

3.4.3 Tests for superior portfolio performance

In this section we attempt to determine whether the economic gains documented in the previous

section are statistically signiÞcant. We present the results of two tests for superior performance:

a bootstrap test of pair-wise comparisons, and the reality check of White (2000), as modiÞed by

Hansen (2001). In all cases we employ the stationary bootstrap of Politis and Romano (1994)12.

12The stationary bootstrap is a block bootstrap with block lengths that are distributed as a Geometric(q) random

variable. The average block length is 1/q. We choose q by running univariate regressions of each portfolioís returns

on 36 lags, in both levels and squares to capture serial dependence in the conditional mean and variance. We set 1/q
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We conduct pair-wise comparisons by looking at the bootstrap conÞdence interval on the differ-

ence in the performance measures of two portfolios13. Let the performance measure of portfolio i be

µi. If the lower bound of the bootstrap 90% conÞdence interval of µi−µj is greater than zero, then
we take model i to be signiÞcantly better than model j. If the upper bound of the interval is less

than zero then we take model j to be signiÞcantly better than model i. If the conÞdence interval

includes zero, then the test is inconclusive, and we cannot statistically distinguish models i and j

according to that performance measure. The results of these tests are presented in Tables 5 and 6

below. Tables 7 and 8 contain the comparisons involving the NormCop model. In these tables, we

include only the 50:50 portfolio of the three näõve portfolios to save space. The results from the

pair-wise comparisons involving this portfolio are representative of the results from comparisons

involving the other two näõve portfolios.

[ INSERT TABLES 5 AND 6 HERE ]

Table 5 shows that the comparisons between unconstrained portfolios rarely provide a deÞnitive

result. Indeed no comparisons using the Sharpe ratio or the mean/5% VaR ratio were signiÞcant.

Using the investors� utility function as the performance measure does yield some signiÞcant results:

for three out of three utility functions the unconstrained Gumbel signiÞcantly out-performed the

unconstrained normal, while for the remaining two utility functions no comparison is possible as

the unconstrained normal portfolio went bankrupt during the sample period. These results again

suggest the importance of skewness and asymmetric dependence for asset allocation.

For the constrained portfolios we Þnd that the Gumbel signiÞcantly out-performs the normal for

two out of the Þve utility functions when using realised utility as a performance measure, and out-

performs the constrained normal when using the Sharpe ratio for the most risk averse investor and

when using the mean/5% VaR ratio for the investor with risk aversion 3. In only one comparison

does the constrained normal portfolio signiÞcantly out-perform the constrained Gumbel.

The signiÞcance of the comparisons using average realised utility may reßect the fact that this

was the objective function used in-sample to compute the optimal portfolio weights. The mean-to-

risk measures of performance were not used in the optimisation stage, and so it is not so surprising

that comparisons using these measures are not signiÞcant. This Þnding supports a long-standing

idea in forecasting that the objective function used in the in-sample optimisation should match the

one to be used in out-of-sample evaluation14.

equal to the maximum of 6 and the largest signiÞcant lag in the regressions. The results suggested an average block

length of between 25 and 34 observations. We investigated whether the results were sensitive to the choice of average

block length, and found that the results were quite robust for average length choices greater than 20.
13In this section we bootstrap the average realised utility of a portfolio rather than the ëmanagement feeí discussed

above. This is simply for computational ease and should not affect the conclusions drawn.
14As mentioned in the introduction, it would be even better if the parameters of the density models were estimated
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[ INSERT TABLES 7 AND 8 HERE ]

From Table 7 we see that the unconstrained Gumbel signiÞcantly beats the unconstrained

NormCop portfolio for 17 out of the 20 possible combinations of loss function and risk aversion

level. The unconstrained normal portfolio signiÞcantly beats the unconstrained NormCop portfolio

on 5 out of 18 comparisons. For the constrained portfolios the Gumbel signiÞcantly out-performs the

NormCop portfolio on 9 out of the 20 comparisons, while the comparisons between the constrained

normal and constrained NormCop contain only one signiÞcant result. Overall we can conclude

that the unconstrained and constrained Gumbel portfolio signiÞcantly beats the corresponding

NormCop portfolio, and thus that the beneÞts of ßexible copula modelling are signiÞcant.

Although the above results are useful for comparing the results of just two particular models,

a more appropriate test would compare all models jointly. With this in mind we now present the

results of the reality check test of White (2000). This is a test that a given benchmark portfolio

performs as well as the best competing alternative model, where we have possibly many competing

alternatives. We present the three estimates of the reality check p-values discussed in Hansen

(2001), and focus our attention on the �consistent� p-value estimates. In these tests we separate the

two sets of models into unconstrained and constrained, and include the three näõve portfolios in

both sets. Tables 9, 10 and 11 present the results when the 50:50, normal and NormCop portfolios

are taken as the benchmarks respectively.

[ INSERT TABLES 9, 10 AND 11 HERE ]

When comparing the 50:50 portfolio with the unconstrained model-based portfolios we are not

able to reject that it performs as well as the best alternative for any loss function. Comparing

the 50:50 portfolio with the short sales constrained portfolios leads to six rejections out of 20,

with most of these occurring for the less risk averse investors. Table 9 thus provides further

evidence that placing short sales constraints on the optimal portfolio weights obtained from forecasts

improves out-of-sample portfolio performance, see Frost and Savarino (1988) and Jagannathan and

Ma (2002). If the short sales constraint is interpreted as a type of �insanity Þlter�, preventing the

investor from taking an extreme position in the market, then this Þnding corresponds to results

previously reported in the forecasting literature, see Stock and Watson (1999) for example, that

constrained forecasts often out-perform unconstrained forecasts from non-linear models.

From Table 10 we see that we are able to reject the unconstrained normal portfolio using two

out of the three valid utility functions. Table 11 similarly shows that we are often able to reject the

unconstrained NormCop portfolio. The constrained normal is only rejected once, and we are unable

using the out-of-sample evaluation function, which in this case is the expected utility from the portfolio constructed

using the density forecast. Similar ideas are pursued in Weiss (1996) and Skouras (2001). It is computationally

infeasible to do so for the models and evaluation functions used in this paper.
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to reject the constrained NormCop portfolio using these loss functions. These results weaken the

evidence found using pair-wise comparisons that modelling skewness and asymmetric dependence

leads to signiÞcantly better out-of-sample portfolio performance, when the optimal portfolio weights

are constrained to lie in [0, 1].

4 Conclusions and future work

In this paper we considered the impact that skewness and asymmetric dependence have on the

out-of-sample portfolio decisions of a CRRA investor. Evidence of skewness in stock returns has

been widely reported over the years, and is generally accepted as a common feature of stock returns.

Skewness is of interest as any investor that exhibits non-increasing absolute risk aversion, a very

weak requirement, can be shown to exhibit a preference for positively skewed assets, ceteris paribus.

Harvey and Siddique (2000) conÞrmed empirically that investors require a premium for holding

negatively skewed assets. Recent work, see Erb, et al., (1994), Ang and Chen (2002) and Longin

and Solnik (2001) inter alia, has produced evidence that stock returns exhibit greater dependence

during market downturns than during market upturns. Patton (2002) shows that a portfolio of

assets that have this asymmetric dependence structure may exhibit negative skewness, even if the

individual assets themselves are symmetrically distributed, and so risk-averse investors require a

premium for holding such assets. Evidence that assets that have this type of dependence structure

with the market portfolio carry a premium is reported in Ang, et al., (2001).

We considered the problem of allocating wealth between the risk-free asset, and the CRSP

small-cap and large-cap indices, using monthly data from January 1954 to December 1999. We

used the data up to December 1989 to develop the models, and reserved the last 120 months for

an out-of-sample evaluation of the competing methods. This problem is representative of that of

choosing between a high risk - high return asset and a lower risk - lower return asset. We adopted

a parametric approach, using conditional distribution models that are able to capture time-varying

conditional means and variances of stock returns, and also (possibly time-varying) skewness and

kurtosis. Further, we employed models of the dependence structure of these asset returns that

allowed for greater dependence during market downturns than market upturns, and allowed for

changes in this dependence structure through time. Our models were constructed using copula

theory, which enables us to model separately the individual asset return distributions and their

dependence structure, increasing the ßexibility in the speciÞcation of a parametric density model.

We measured the importance of skewness and asymmetric dependence for asset allocation by

comparing the risk-adjusted performance of a portfolio based on a bivariate normal distribution

model with a portfolio based on a model developed using copula theory. We also included an

�intermediate� model that captured skewness in the marginal distributions but assumed symmetry

for the dependence structure to determine which of marginal distribution modelling or copula
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modelling were more important for asset allocation.

The signiÞcance of the differences in portfolio performance were tested using bootstrap methods.

We considered four performance measures on the realised optimal portfolio returns: the Sharpe

ratio, a mean/5% Value-at-Risk ratio, a mean/5% expected shortfall ratio and the average realised

utility (which was used to compute a type of certainty equivalent measure). We also considered

Þve levels of relative risk aversion, ranging from one to twenty.

Given that the model capturing skewness and asymmetric dependence had 33 parameters ver-

sus 26 for the bivariate normal model, it was not clear a priori that the more ßexible density

model would perform better out-of-sample. Indeed, it is a common Þnding in the point forecasting

literature that simpler mis-speciÞed models out-perform more complicated models in forecast com-

parisons. However we found substantial economic evidence that the model capturing skewness and

asymmetric dependence yielded better portfolio decisions than the bivariate normal model. The

most ßexible density model out-performed the bivariate normal model by 16.7%, when averaging

over performance measures and risk aversion levels. The most ßexible distribution model out-

performed the intermediate model by 52.3% on average, suggesting that both marginal modelling

and copula modelling have important implicati



5 Appendix 1: Some results on the skewed t distribution.

We provide in this section a few results on Hansen�s (1994) skewed t distribution. Hansen provided

the p.d.f. of the skewed t random variable; below we provide the corresponding c.d.f. and inverse

c.d.f. (useful for random number generation) of the skewed t in terms of the standard Student�s t

random variable. The motivation for doing this is that most econometric packages (such as Gauss

and Matlab) have code available on the standard Students t distribution. With the following

results this code can be utilised for the skewed t distribution. Matlab code for each of the functions

presented below are available from the author�s web site15.

Let Y be a skewed t random variable, with density function g (ν,λ). The variable Y has mean

zero and variance one by construction, and so is a suitable model for the standardised residuals

of some conditional mean and variance model. The parameters ν and λ control the kurtosis and

skewness of the variable.

Skewed t density

g (y; ν,λ) =
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Let X be a (standard) Student�s tν random variable, with mean zero and variance
ν
ν−2 . Denote

the c.d.f. of X as F (ν). Below we derive an expression for the c.d.f. of a skewed t random variable

in terms of F .

Skewed t cumulative distribution function
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where a, b and c are as deÞned for the density function.

15See http://econ.ucsd.edu/∼apatton/code.html.
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Finally, we present the inverse c.d.f. of the skewed t distribution, which is denoted G−1 (ν,λ).

We will express it in terms of the inverse distribution of a Student�s t random variable, denoted

F−1 (ν).

Inverse Skewed t cumulative distribution function

G−1 (u; ν,λ) =


1−λ
b

q
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ν · F−1

³
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b
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³
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The inverse c.d.f. can be used to generate random draws from the skewed t distribution as

follows: Þrstly obtain n draws from the Uniform(0, 1) distribution, {ut}nt=1. Almost all software
packages provide such a feature. Then deÞne yt ≡ G−1 (ut; ν,λ). The resulting sequence {yt}nt=1
are draws from the skewed t distribution. The ability to generate such random variables is useful

for Monte Carlo simulations involving this distribution, amongst other things.

6 Appendix 3: Copula functional forms

In this appendix we provide the functional forms of the copulas used in this paper. The c.d.f. forms

will be denoted C, and the p.d.f. forms c. For further details on any of these copulas, or for other

copulas, the reader is referred to Joe (1997) and Nelsen (1999).

Normal Copula

CN(u, v; ρ) =

Φ−1(u)Z
−∞

Φ−1(v)Z
−∞

1

2π
p
(1− ρ2) exp

½−(r2 − 2ρrs+ s2)
2(1− ρ2)

¾
dr ds

cN (u, v; ρ) =
1p
1− ρ2 exp

(
Φ−1 (u)2 +Φ−1 (v)2 − 2ρΦ−1 (u)Φ−1 (v)

2 (1− ρ2) +
Φ−1 (u)2Φ−1 (v)2

2

)
ρ ∈ (−1, 1)

Clayton Copula (Kimeldorf and Sampson Copula in Joe (1997) )

CC(u, v; θ) =
³
u−θ + v−θ − 1

´−1/θ
cC (u, v; ρ) = (1 + θ) (uv)−θ−1

³
u−θ + v−θ − 1

´−2−1/θ
θ ∈ [−1,∞)\ {0}

Rotated Clayton Copula

CRC(u, v; θ) = u+ v − 1 + CC (1− u, 1− v; θ)
cRC = cC (1− u, 1− v; θ)
θ ∈ [−1,∞)\ {0}
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Joe-Clayton Copula (family BB7 in Joe (1997) )

CJC(u, v|τU , τL) = 1−
µ

1−
n

[1− (1− u)κ]−γ + [1− (1− v)κ]−γ − 1
o−1/γ¶1/κ

cJC(u, v|τU , τL) = very long and complicated. Available from the author upon request.

where κ =
£
log2

¡
2− τU

¢¤−1
and γ =

£− log2
¡
τL
¢¤−1

τU ∈ (0, 1) , τL ∈ (0, 1)

Plackett Copula

CP (u, v;π) =
1

2 (π − 1)

µ
1 + (π − 1) (u+ v)−

q
(1 + (π − 1) (u+ v))2 − 4π (π − 1)uv

¶
cP (u, v;π) =

π (1 + (π − 1) (u+ v − 2uv))³
(1 + (π − 1) (u+ v))2 − 4π (π − 1)uv

´3/2
π ∈ [0,∞)\ {1}

Frank Copula

CF (u, v;λ) =
−1

λ
log

Ã¡
1− e−λ¢− ¡1− e−λu

¢ ¡
1− e−λv

¢
(1− e−λ)

!

cF (u, v;λ) =
λ
¡
1− e−λ¢ e−λ(u+v)

((1− e−λ)− (1− e−λu) (1− e−λv))
2

λ ∈ (−∞,∞) \ {0}
Gumbel Copula

CG (u, v; δ) = exp

½
−
³

(− log u)δ + (− log v)δ
´1/δ¾

cG (u, v; δ) =
CG (u, v; δ) (log u · log v)δ−1

uv
³

(− log u)δ + (− log v)δ
´2−1/δ µ³(− log u)δ + (− log v)δ

´1/δ
+ δ − 1

¶
δ ∈ [1,∞)

Rotated Gumbel Copula

CRG (u, v; δ) = u+ v − 1 + CG (1− u, 1− v; δ)
cRG (u, v; δ) = cG (1− u, 1− v; δ)

δ ∈ [1,∞)
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7 Tables

Table 1: Descriptive Statistics

Small caps Large caps
Mean∗ 9.9549 7.9748
Std Dev∗ 21.2932 14.2888
Skewness 0.0558 −0.3795
5% VaR 8.7973 6.2306
1% VaR 18.9576 9.6657
Kurtosis 7.5647 4.9088
Min −29.3153 −20.8934
Max 38.3804 16.8145
Jarque-Bera 479.5162 97.0484
p-val 0 .0000 0 .0000
Correlation 0.7210

Note to Table 1: These summary statistics use the entire data set, from January 1954 to December 1999.

The statistics marked with an asterix were annualised to ease interpretation. �Jarque-Bera� refers to the test

for normality of the unconditional distribution of returns.

.

Table 2: Results from the copula speciÞcation search
Symmetric copulas Asymmetric copulas

Model LC Model LC
Normal 153.5681 Clayton 151.3272
Student�s t 158.1329 Rotated Clayton 90.8669
Plackett 163.1763 Joe-Clayton 158.8478
Frank 158.2502 Gumbel 127.8091

Rotated Gumbel 166.6628

Note to Table 2: Presented here are the nine copula speciÞcations tried for the copula distribution model.

The copula likelihood at the optimum is denoted LC .
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Table 3: Realised portfolio return summary statistics

Unconstrained

Small Caps Large Caps 50 mix Uncond Normal NormCop Gumbel

RRA=1

Mean 0.9038 1.1275 1.0157 2.6768 8.2724 5.2659 6.6488

Std Dev 5.3121 3.9093 4.1928 10.3586 45.1292 30.4298 31.4865

Skewness -0.6128 -0.6124 -1.0307 -1.0854 -0.3708 0.0889 0.4814

5% VaR 6.9628 4.943 5.3338 12.9446 58.0278 47.8849 44.6935

5% ES 11.5049 7.9529 9.5332 22.5199 104.5118 64.3796 62.1585

RRA=3

Mean 0.9038 1.1275 1.0157 0.8848 4.1397 0.7284 2.1974

Std Dev 5.3121 3.9093 4.1928 3.5501 24.823 10.9912 10.4894

Skewness -0.6128 -0.6124 -1.0307 -1.2768 -0.2671 -0.0164 0.0492

5% VaR 6.9628 4.943 5.3338 4.4658 33.1535 16.2164 12.731

5% ES 11.5049 7.9529 9.5332 8.0024 57.1473 24.7803 20.4849

RRA=7

Mean 0.9038 1.1275 1.0157 0.4119 1.994 0.1168 1.4336

Std Dev 5.3121 3.9093 4.1928 1.6026 11.5989 6.4371 6.6022

Skewness -0.6128 -0.6124 -1.0307 -1.1236 -0.2151 -1.0435 0.2685

5% VaR 6.9628 4.943 5.3338 2.0264 14.3828 10.8161 9.2782

5% ES 11.5049 7.9529 9.5332 3.4964 27.8403 17.6022 13.7038

RRA=10

Mean 0.9038 1.1275 1.0157 0.289 1.4064 0.0777 1.1397

Std Dev 5.3121 3.9093 4.1928 1.1251 8.1985 5.0844 4.584

Skewness -0.6128 -0.6124 -1.0307 -1.1157 -0.2016 -1.3305 0.5795

5% VaR 6.9628 4.943 5.3338 1.4247 10.1103 8.014 6.3274

5% ES 11.5049 7.9529 9.5332 2.4449 19.6923 15.1624 8.7192

RRA=20

Mean 0.9038 1.1275 1.0157 0.1455 0.706 0.0117 0.6583

Std Dev 5.3121 3.9093 4.1928 0.5641 4.1239 2.8471 2.7152

Skewness -0.6128 -0.6124 -1.0307 -1.1169 -0.1977 -2.6714 0.4628

5% VaR 6.9628 4.943 5.3338 0.7146 5.0671 4.7973 3.3004

5% ES 11.5049 7.9529 9.5332 1.2247 9.9177 8.3836 5.1940

Note to Table 3: �RRA� refers to the coefficient of relative risk aversion. The Þrst two columns of

data report the results on the small cap and large cap indices, the third column reports the results for a

constant evenly weighted portfolio, the fourth portfolio is based on a weight that is optimised using the

empirical unconditional distribution of returns, the Þfth portfolio is based on the normal distribution model,

the sixth portfolio on the skewed t - normal copula model and the seventh portfolio is based on the skewed

t - rotated Gumbel copula model. The rows present the sample mean, sample standard deviation, sample

5% Value-at-Risk (Þfth percentile) and sample 5% expected shortfall (mean of returns that exceed the 5%

Value-at-Risk).
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Table 3 (cont�d): Realised portfolio return summary statistics

Subject to short sales constraint

Uncond Normal NormCop Gumbel

RRA=1

Mean 0.8925 1.2659 1.263 1.2555

Std Dev 5.1452 3.8598 3.8636 3.8626

Skewness -0.6608 -0.2738 -0.2702 -0.2655

5% VaR 6.6903 4.6733 4.6733 4.6733

5% ES 11.3452 7.1708 7.1708 7.1708

RRA=3

Mean 0.8935 1.2075 1.0293 1.2074

Std Dev 3.5243 3.806 3.6672 3.6156

Skewness -1.1645 -0.2455 -0.1251 -0.1861

5% VaR 4.6009 4.6733 4.3646 3.8212

5% ES 7.8806 7.0491 6.9646 6.6575

RRA=7

Mean 0.4119 0.9904 0.6961 0.8874

Std Dev 1.6026 3.4672 2.9854 2.9373

Skewness -1.1236 -0.4865 -0.6268 -0.7429

5% VaR 2.0264 4.2064 3.4382 3.2623

5% ES 3.4964 6.6776 5.9938 5.7425

RRA=10

Mean 0.289 0.8236 0.553 0.7043

Std Dev 1.1251 3.2152 2.3789 2.3596

Skewness -1.1157 -0.6958 -0.8026 -0.973

5% VaR 1.4247 3.9514 2.7253 2.4289

5% ES 2.4449 6.4419 4.7754 4.5365

RRA=20

Mean 0.1455 0.4832 0.2928 0.3838

Std Dev 0.5641 2.0592 1.2541 1.2382

Skewness -1.1169 -0.4653 -0.7411 -0.8631

5% VaR 0.7146 2.4188 1.5186 1.2693

5% ES 1.2242 6.6262 4.3324 4.2081

Note to Table 3 (continued): �RRA� refers to the coefficient of relative risk aversion. The Þrst column of

data reports the results the fourth portfolio, which is based on a weight that is optimised using the empirical

unconditional distribution of returns, the second portfolio is based on the normal distribution model, the

third portfolio on the skewed t - normal copula model and the fourth portfolio is based on the skewed t -

rotated Gumbel copula model. All of these portfolio weights are subject to a short sales constraint. The

rows present the sample mean, sample standard deviation, sample 5% Value-at-Risk (Þfth percentile) and

sample 5% expected shortfall (mean of returns that exceed the 5% Value-at-Risk).
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Table 4: Realised portfolio return performance statistics

Unconstrained

Small Caps Large Caps 50:50 mix Uncond Normal NormCop Gumbel

RRA=1

Mean/StdDev 0.1701 0.2884 0.2422 0.2584 0.1833 0.1731 0.2112

Mean/5%VaR 0.1298 0.2281 0.1904 0.2068 0.1426 0.11 0.1488

Mean/5%ES 0.0786 0.1418 0.1065 0.1189 0.0792 0.0818 0.1070

Mgmt Fee -1.9811 1.4959 0 13.9372 N/A -15.2901 1.8154

RRA=3

Mean/StdDev 0.1701 0.2884 0.2422 0.2492 0.1668 0.0663 0.2095

Mean/5%VaR 0.1298 0.2281 0.1904 0.1981 0.1249 0.0449 0.1726

Mean/5%ES 0.0786 0.1418 0.1065 0.1106 0.0724 0.0294 0.1073

Mgmt Fee -3.3108 1.8658 0 -0.5508 N/A -22.4892 -2.7387

RRA=7

Mean/StdDev 0.1701 0.2884 0.2422 0.257 0.1719 0.0181 0.2171

Mean/5%VaR 0.1298 0.2281 0.1904 0.2033 0.1386 0.0108 0.1545

Mean/5%ES 0.0786 0.1418 0.1065 0.1178 0.0716 0.0066 0.1046

Mgmt Fee -6.3061 2.9521 0 0.1412 -67.0713 -26.3494 -4.8058

RRA=10

Mean/StdDev 0.1701 0.2884 0.2422 0.2569 0.1715 0.0153 0.2486

Mean/5%VaR 0.1298 0.2281 0.1904 0.2029 0.1391 0.0097 0.1801

Mean/5%ES 0.0786 0.1418 0.1065 0.1182 0.0714 0.0051 0.1307

Mgmt Fee -9.0655 4.2016 0 3.6384 -40.6527 -20.565 2.6759

RRA=20

Mean/StdDev 0.1701 0.2884 0.2422 0.2579 0.1712 0.0041 0.2424

Mean/5%VaR 0.1298 0.2281 0.1904 0.2036 0.1393 0.0024 0.1994

Mean/5%ES 0.0786 0.1418 0.1065 0.1188 0.0712 0.0014 0.1267

Mgmt Fee -23.0183 13.1512 0 25.9284 4.5104 -1.448 23.4016

Note to Table 4: �RRA� refers to the coefficient of relative risk aversion. Each of the seven columns of

Þgures refer to a particular portfolio: the Þrst two portfolios are the assets themselves, the third is a constant

evenly weighted portfolio, the fourth portfolio is based on a weight that is optimised using the empirical

unconditional distribution of returns, the Þfth portfolio is based on the normal distribution model, the sixth

portfolio is based on the skewed t - normal copula model and the seventh portfolio is based on the skewed

t - rotated Gumbel copula model. The rows present the sample Sharpe ratio (mean to standard deviation),

sample mean to 5% Value-at-Risk ratio, sample mean to 5% expected shortfall ratio and the management

fee (the number of basis points per year that the investor would be willing to pay to switch from the 50:50

portfolio).
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Table 4 (cont�d): Realised portfolio return performance statistics

Subject to short sales constraint

Uncond Normal NormCop Gumbel

RRA=1

Mean/StdDev 0.1735 0.328 0.3269 0.325

Mean/5%VaR 0.1334 0.2709 0.2703 0.2686

Mean/5%ES 0.0787 0.1765 0.1761 0.1751

Mgmt Fee -2.0114 25.3021 25.2654 25.176

RRA=3

Mean/StdDev 0.2535 0.3173 0.2807 0.334

Mean/5%VaR 0.1942 0.2584 0.2358 0.316

Mean/5%ES 0.1134 0.1713 0.1478 0.1814

Mgmt Fee -0.4145 3.018 1.0794 3.278

RRA=7

Mean/StdDev 0.257 0.2856 0.2332 0.3021

Mean/5%VaR 0.2033 0.2355 0.2025 0.272

Mean/5%ES 0.1178 0.1483 0.1161 0.1545

Mgmt Fee 0.1412 2.8306 0.6189 3.0071

RRA=10

Mean/StdDev 0.2569 0.2561 0.2325 0.2985

Mean/5%VaR 0.2029 0.2084 0.2029 0.29

Mean/5%ES 0.1182 0.1278 0.1158 0.1552

Mgmt Fee 3.6384 3.762 3.7849 5.5675

RRA=20

Mean/StdDev 0.258 0.2346 0.2335 0.31

Mean/5%VaR 0.2036 0.1998 0.1928 0.3024

Mean/5%ES 0.1189 0.1134 0.1163 0.1631

Mgmt Fee 25.9287 24.4493 25.958 27.0638

Note to Table 4 (continued): �RRA� refers to the coefficient of relative risk aversion. Each of the four

columns of Þgures refer to a particular portfolio: the Þrst portfolio is based on a weight that is optimised using

the empirical unconditional distribution of returns, the second portfolio is based on the normal distribution

model, the third portfolio is based on the skewed t - normal copula model and the fourth portfolio is based
on the skewed t - rotated Gumbel copula model. All of these portfolio weights are subject to a short sales

constraint. The rows present the sample Sharpe ratio (mean to standard deviation), sample mean to 5%

Value-at-Risk ratio, sample mean to 5% expected shortfall ratio and the management fee (the number of

basis points per year that the investor would be willing to pay to switch from the 50:50 portfolio).
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Table 5: Pair-wise comparisons of the unconstrained models� risk-adjusted performance

Mean / StdDev Mean / 5%VaR Mean / 5% ES Avg Utility

RRA=1

Näõve vs. Uncond - - - Uncond

Näõve vs. Normal - - - N/A

Näõve vs. Gumbel - - - -

Uncond vs. Normal - - - N/A

Uncond vs. Gumbel - - - -

Gumbel vs. Normal - - Gumbel N/A

RRA=3

Näõve vs. Uncond - - - -

Näõve vs. Normal - - - N/A

Näõve vs. Gumbel - - - -

Uncond vs. Normal - - - N/A

Uncond vs. Gumbel - - - -

Gumbel vs. Normal - - - N/A

RRA=7

Näõve vs. Uncond - - - -

Näõve vs. Normal - - - Näõve

Näõve vs. Gumbel - - - -

Uncond vs. Normal - - - Uncond

Uncond vs. Gumbel - - - -

Gumbel vs. Normal - - - Gumbel

RRA=10

Näõve vs. Uncond - - - -

Näõve vs. Normal - - - Näõve

Näõve vs. Gumbel - - - -

Uncond vs. Normal - - - Uncond

Uncond vs. Gumbel - - - -

Gumbel vs. Normal - - - Gumbel

RRA=20

Näõve vs. Uncond - - - -

Näõve vs. Normal - - - -

Näõve vs. Gumbel - - - -

Uncond vs. Normal - - - Uncond

Uncond vs. Gumbel - - - -

Gumbel vs. Normal - - - Gumbel

Note to Table 5: This table presents the results of pair-wise comparisons of the 50:50 portfolio (denoted

�näõve�), the unconditionally optimal portfolio and the portfolios based on the normal distribution, the skewed

t - rotated Gumbel copula and the skewed t - normal copula models. The tests were conducted at the 10%

signiÞcance level. A dash is reported if the test was inconclusive, and the name of the model was reported

if that model signiÞcantly out-performed the other. The four performance measures are the sample Sharpe

ratio (mean to standard deviation), sample mean to 5% Value-at-Risk ratio, sample mean to 5% expected

shortfall ratio and the sample mean of the realised utility.
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Table 6: Pair-wise comparisons of the short sales constrained models� risk-adjusted performance

Mean/StdDev Mean/5%VaR Mean/5%ES Avg Utility

RRA=1

Näõve vs. Uncond Näõve Näõve Näõve -

Näõve vs. Normal Normal - Normal -

Näõve vs. Gumbel Gumbel - Gumbel -

Uncond vs. Normal Normal Normal Normal -

Uncond vs. Gumbel Gumbel Gumbel Gumbel -

Gumbel vs. Normal - - - Normal

RRA=3

Näõve vs. Uncond - - - -

Näõve vs. Normal - - Normal -

Näõve vs. Gumbel Gumbel Gumbel Gumbel -

Uncond vs. Normal - - Normal -

Uncond vs. Gumbel Gumbel Gumbel Gumbel -

Gumbel vs. Normal - Gumbel - -

RRA=7

Näõve vs. Uncond - - - -

Näõve vs. Normal - - Normal -

Näõve vs. Gumbel - - - -

Uncond vs. Normal - - Normal Normal

Uncond vs. Gumbel - - - Gumbel

Gumbel vs. Normal - - - -

RRA=10

Näõve vs. Uncond - - - -

Näõve vs. Normal - - - -

Näõve vs. Gumbel - - - -

Uncond vs. Normal - - - -

Uncond vs. Gumbel - - - -

Gumbel vs. Normal - - - Gumbel

RRA=20

Näõve vs. Uncond - - - -

Näõve vs. Normal - - - -

Näõve vs. Gumbel - - - -

Uncond vs. Normal - - - -

Uncond vs. Gumbel - - - -

Gumbel vs. Normal Gumbel - - Gumbel

Note to Table 6: This table presents the results of pair-wise comparisons of the 50:50 portfolio (denoted

�näõve�), the unconditionally optimal portfolio and the portfolios based on the normal distribution, the

skewed t - rotated Gumbel copula and the skewed t - normal copula models. All portfolio weights in these

comparisons are subject to a short sales constraint. The tests were conducted at the 10% signiÞcance level.

A dash is reported if the test was inconclusive, and the name of the model was reported if that model

signiÞcantly out-performed the other. The four performance measures are the sample Sharpe ratio (mean

to standard deviation), sample mean to 5% Value-at-Risk ratio, sample mean to 5% expected shortfall ratio

and the sample mean of the realised utility.

30



Table 7: Pair-wise comparisons of the unconstrained models� risk-adjusted performance

Mean / StdDev Mean / 5%VaR Mean / 5% ES Avg Utility

RRA=1

Näõve vs. NormCop - - - -

Uncond vs. NormCop - - - -

Normal vs. NormCop - - - N/A

Gumbel vs. NormCop Gumbel Gumbel Gumbel Gumbel

RRA=3

Näõve vs. NormCop - - - -

Uncond vs. NormCop - - - -

Normal vs. NormCop - - - N/A

Gumbel vs. NormCop Gumbel Gumbel Gumbel Gumbel

RRA=7

Näõve vs. NormCop - Näõve - -

Uncond vs. NormCop - Uncond - Uncond

Normal vs. NormCop Normal Normal - -

Gumbel vs. NormCop Gumbel - - Gumbel

RRA=10

Näõve vs. NormCop Näõve Näõve - Näõve

Uncond vs. NormCop Uncond Uncond Uncond Uncond

Normal vs. NormCop Normal Normal - -

Gumbel vs. NormCop Gumbel Gumbel Gumbel Gumbel

RRA=20

Näõve vs. NormCop - Näõve - -

Uncond vs. NormCop - Uncond - -

Normal vs. NormCop - Normal - -

Gumbel vs. NormCop Gumbel Gumbel - Gumbel

Note to Table 7: This table presents the results of pair-wise comparisons of the 50:50 portfolio (denoted

�näõve�), the unconditionally optimal portfolio and the portfolios based on the normal distribution, the skewed

t - rotated Gumbel copula and the skewed t - normal copula models. The tests were conducted at the 10%

signiÞcance level. A dash is reported if the test was inconclusive, and the name of the model was reported

if that model signiÞcantly out-performed the other. The four performance measures are the sample Sharpe

ratio (mean to standard deviation), sample mean to 5% Value-at-Risk ratio, sample mean to 5% expected

shortfall ratio and the sample mean of the realised utility.
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Table 8: Pair-wise comparisons of the short sales constrained models� risk-adjusted performance

Mean / StdDev Mean / 5%VaR Mean / 5% ES Avg Utility

RRA=1

Näõve vs. NormCop NormCop - NormCop -

Uncond vs. NormCop NormCop NormCop NormCop -

Normal vs. NormCop - - - -

Gumbel vs. NormCop - - NormCop -

RRA=3

Näõve vs. NormCop - - NormCop -

Uncond vs. NormCop - - NormCop -

Normal vs. NormCop - - - Normal

Gumbel vs. NormCop - Gumbel - Gumbel

RRA=7

Näõve vs. NormCop - - NormCop -

Uncond vs. NormCop - - - -

Normal vs. NormCop - - - -

Gumbel vs. NormCop Gumbel - - Gumbel

RRA=10

Näõve vs. NormCop - - NormCop -

Uncond vs. NormCop - - NormCop -

Normal vs. NormCop - - - -

Gumbel vs. NormCop Gumbel - NormCop Gumbel

RRA=20

Näõve vs. NormCop - - NormCop -

Uncond vs. NormCop - - NormCop -

Normal vs. NormCop - - - -

Gumbel vs. NormCop Gumbel Gumbel - Gumbel

Note to Table 8: This table presents the results of pair-wise comparisons of the 50:50 portfolio (denoted

�näõve�), the unconditionally optimal portfolio and the portfolios based on the normal distribution, the

skewed t - rotated Gumbel copula and the skewed t - normal copula models. All portfolio weights in these

comparisons are subject to a short sales constraint. The tests were conducted at the 10% signiÞcance level.

A dash is reported if the test was inconclusive, and the name of the model was reported if that model

signiÞcantly out-performed the other. The four performance measures are the sample Sharpe ratio (mean

to standard deviation), sample mean to 5% Value-at-Risk ratio, sample mean to 5% expected shortfall ratio

and the sample mean of the realised utility.
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Table 9: Bootstrap Reality Check p-values, �50:50 mix� as benchmark

Unconstrained Short sales constrained

Lower Consistent Upper Lower Consistent Upper

RRA=1

Mean/StdDev 0.233 0.371 0.406 0.044 0.044 0.044

Mean/5%VaR 0.323 0.45 0.52 0.175 0.175 0.186

Mean/5%ES 0.26 0.308 0.321 0.026 0.026 0.028

Avg Utility∗ 0.259 0.259 0.462 0.177 0.177 0.266

RRA=3

Mean/StdDev 0.285 0.412 0.456 0.043 0.043 0.043

Mean/5%VaR 0.428 0.493 0.573 0.049 0.049 0.049

Mean/5%ES 0.296 0.349 0.359 0.039 0.039 0.039

Avg Utility∗ 0.352 0.43 0.736 0.196 0.196 0.291

RRA=7

Mean/StdDev 0.36 0.474 0.52 0.245 0.245 0.255

Mean/5%VaR 0.438 0.533 0.622 0.261 0.261 0.263

Mean/5%ES 0.375 0.433 0.452 0.155 0.155 0.158

Avg Utility 0.327 0.451 0.843 0.313 0.313 0.481

RRA=10

Mean/StdDev 0.349 0.402 0.426 0.271 0.271 0.291

Mean/5%VaR 0.487 0.532 0.579 0.192 0.192 0.195

Mean/5%ES 0.298 0.368 0.38 0.178 0.178 0.188

Avg Utility 0.28 0.28 0.657 0.175 0.175 0.312

RRA=20

Mean/StdDev 0.409 0.447 0.485 0.181 0.195 0.198

Mean/5%VaR 0.561 0.578 0.636 0.137 0.137 0.137

Mean/5%ES 0.405 0.469 0.484 0.157 0.157 0.158

Avg Utility 0.145 0.145 0.373 0.057 0.057 0.251

Note to Table 9: This table presents the results of the reality check of White (2000), as modiÞed by

Hansen (2001). �Lower�, �Consistent� and �Upper� refer to three estimates of the p-value of the test statistic.

A p-value of less than 0.10 indicates that we may reject the hypothesis that the benchmark model performs

as well as the best alternative model considered according to the given performance measure. Any rejections

are marked with bold font. The four performance measures are the sample Sharpe ratio (mean to standard

deviation), sample mean to 5% Value-at-Risk ratio, sample mean to 5% expected shortfall ratio and the

sample mean of the realised utility. ∗For the comparisons of unconstrained portfolios for investors with
risk aversion of 1 and 3 using average realised utility we excluded the bivariate normal portfolio, as it went

bankrupt during the sample.
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Table 10: Bootstrap Reality Check p-values, �Normal� as benchmark

Unconstrained Short sales constrained

Lower Consistent Upper Lower Consistent Upper

RRA=1

Mean/StdDev 0.22 0.231 0.231 0.243 0.243 0.89

Mean/5%VaR 0.231 0.244 0.244 0.221 0.444 0.827

Mean/5%ES 0.225 0.225 0.225 0.195 0.195 0.813

Avg Utility N/A N/A N/A 0.316 0.316 0.866

RRA=3

Mean/StdDev 0.239 0.239 0.239 0.387 0.47 0.63

Mean/5%VaR 0.237 0.237 0.237 0.09 0.197 0.333

Mean/5%ES 0.271 0.271 0.271 0.378 0.523 0.624

Avg Utility N/A N/A N/A 0.586 0.667 0.792

RRA=7

Mean/StdDev 0.362 0.364 0.364



Table 11: Bootstrap Reality Check p-values, �NormCop� as benchmark

Unconstrained Short sales constrained

Lower Consistent Upper Lower Consistent Upper

RRA=1

Mean/StdDev 0.22 0.225 0.225 0.341 0.341 0.859

Mean/5%VaR 0.148 0.148 0.148 0.488 0.68 0.892

Mean/5%ES 0.257 0.261 0.261 0.42 0.42 0.888

Avg Utility∗ 0.126 0.126 0.405 0.556 0.556 0.932

RRA=3

Mean/StdDev 0.104 0.104 0.104 0.269 0.327 0.383

Mean/5%VaR 0.07 0.07 0.07 0.169 0.253 0.287

Mean/5%ES 0.143 0.143 0.143 0.274 0.324 0.355

Avg Utility∗ 0.066 0.066 0.317 0.319 0.368 0.47

RRA=7

Mean/StdDev 0.06 0.06 0.06 0.273 0.273 0.306

Mean/5%VaR 0.082 0.082 0.082 0.291 0.299 0.324

Mean/5%ES 0.137 0.137 0.137 0.33 0.354 0.354

Avg Utility 0.067 0.067 0.305 0.349 0.394 0.493

RRA=10

Mean/StdDev 0.017 0.017 0.017 0.276 0.276 0.305

Mean/5%VaR 0.009 0.009 0.009 0.245 0.253 0.278

Mean/5%ES 0.052 0.052 0.052 0.324 0.343 0.343

Avg Utility 0.023 0.023 0.224 0.38 0.511 0.579

RRA=20

Mean/StdDev 0.05 0.05 0.05 0.247 0.247 0.266

Mean/5%VaR 0.032 0.032 0.032 0.131 0.133 0.142

Mean/5%ES 0.131 0.131 0.131 0.283 0.31 0.31

Avg Utility 0.238 0.38 0.38 0.151 0.161 0.611

Note to Table 11: This table presents the results of the reality check of White (2000), and modiÞed by

Hansen (2001). �Lower�, �Consistent� and �Upper� refer to three estimates of the p-value of the test statistic.

A p-value of less than 0.10 indicates that we may reject the hypothesis that the benchmark model performs

as well as the best alternative model considered according to the given performance measure. Any rejections

are marked with bold font. The four performance measures are the sample Sharpe ratio (mean to standard

deviation), sample mean to 5% Value-at-Risk ratio, sample mean to 5% expected shortfall ratio and the

sample mean of the realised utility. ∗For the comparisons of unconstrained portfolios for investors with
risk aversion of 1 and 3 using average realised utility we excluded the bivariate normal portfolio, as it went

bankrupt during the sample.
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Figure 1: Exceedence correlations between excess returns (X and Y) on small caps and large caps.
The horizontal axis shows the cut-off quantile, and the vertical axis shows the correlation between
the two returns given that both exceed that quantile.
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Figure 2: Exceedence correlations between transformed residuals (U and V) of small caps and large
caps. The horizontal axis shows the cut-off quantile, and the vertical axis shows the correlation
between the two residuals given that both exceed that quantile.
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