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Abstract

After the seminal paper of Jarrow and Rudd (1982), several authors have proposed

to use different statistical series expansion to price options when the risk-neutral density

is asymmetric and leptokurtic. Amongst them, one can distinguish the Gram-Charlier

Type A series expansion (Corrado and Su, 1996-b and 1997-b), the log-normal Gram-

Charlier series expansion (Jarrow and Rudd, 1982) and the Edgeworth series expansion

(Rubinstein, 1998). The purpose of this paper is to compare these different multi-

moment approximate option pricing models. We first recall the link between the risk-

neutral density and moments in a general statistical series expansion framework under

the martingale hypothesis. We then derive analytical formulae for several four-moment

approximate option pricing models, namely, the Jarrow and Rudd (1982), Corrado and

Su (1996-b and 1997-b) and Rubinstein (1998) models. We investigate in particular the

conditions that ensure the respect of the martingale restriction (see Longstaff, 1995)

and consequently revisit the approximate option pricing models under study. We also

get for these models the analytical expressions of implied probability densities, implied

volatility smile functions and several hedging parameters of interest.
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Revisited Multi-moment Approximate Option Pricing Models: A

General Comparison (Part 1)

1 Introduction

The Black and Scholes (1973) formula is certainly one of the most used in finance, but

presents some inconsistencies. In particular, several empirical studies1 show that the model

missprices deep out-of-the-money and deep in-the-money options. In other words, when

the Black-Scholes formula is inverted, the implied volatilities estimates differ across exercise

prices and maturities, and form patterns called “smile”, “smirk” or “sneers” depending on

their shapes.2 This result is generally attributed to the unrealistic hypothesis of a geometric

Brownian motion for the underlying asset process or, equivalently, of a normally distributed

continuous rate of return with constant volatility under an equivalent martingale measure.

Indeed, if rare events are more frequent than it is assumed in the normal case, then the

price of deep out-of-the-money options will be higher than the Black and Scholes (1973)

model predicts. If, moreover, the log-return distribution is negatively skewed, prices of deep

out-the-money put options will be higher than those of deep in-the-money call options and

the implied volatility function will be downward biased.

In order to avoid these biases, different approaches have been proposed. A first one is

to consider alternative stochastic processes than the geometric Brownian motion with or

without additional stochastic factors. For instance, a jump-diffusion process is chosen by

Merton (1976) and more recently by Bates (1991 and 1996-a), whilst Hull and White (1987),

Stein and Stein (1991) and Heston (1993) consider stochastic volatility models. Bates (1996-
1See, for instance, MacBeth and Merville (1979), Rubinstein (1985 and 1994) and Bates (1996-c).
2Bates (2000) shows that “smiles” often appear before the crash of 1987 on the American market, whilst

“sneer” patterns are more likely to be found since.

2



b and 2000) and Pan (2002) extend the jump-diffusion model to incorporate stochastic

volatility to explain the structure of option prices, while Bakshi et al. (1997 and 2000)

develop option pricing models that admit simultaneously stochastic volatility, stochastic

interest rate and random jump.

A second approach is to use binomial - or trinomial - lattices in order to approximate

the whole structure of market prices (see Rubinstein, 1994, Derman and Kani, 1994, Dupire

1994, Dernan et al., 1996 and Jackwerth, 1997). In achieving an exact cross-sectional fit

of option prices, trees can be constrained to reproduce moments of a prespecified implied

density (see Rubinstein, 1998, Li, 2000 and Ang et al., 2001).

Despite the fact that both approaches can yield skewed and leptokurtic risk-neutral

density, they are not perfectly satisfactory. The most severe critics of these related models

are the lack of parsimony (leading to possible overfitting), the choice of a deterministic

volatility function (see Dumas et al., 1998) or the existence of inadequate volatility term

structure (see Das and Sundaram, 1999). Moreover estimation problems on illiquid markets

are reported.

An alternative approach consists in specifying a functional form of the terminal risk-

neutral density of the underlying asset price.3 Amongst the distributional specifications

investigated for the pricing kernel, one can firstly distinguish non-parametric - model-free

- statistical methods that impose a very slight structure on the form of the distribution,

such as kernel estimators (see Ait-Sahalia and Lo, 1998 and 2000), smoothed curve fitting

methods of the pricing or the implied volatility function (see for instance Shimko, 1993,

Rubinstein, 1994, Jackwerth and Rubinstein, 1996, Brown and Toft, 1997, Malz, 1997,
3Indeed for a given expiration date, there exists an infinite number of stochastic processes which are

consistent with one particular risk-neutral distribution (see, for instance, Melick and Thomas, 1997 and

Dupire, 1998).
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Campa et al., 1998 and Hartvig et al., 1999) and maximum entropy estimation methods

(see Buchen and Kelly, 1996, Stutzer, 1996, Guo, 2001 and Jondeau and Rockinger, 2002).

Secondly, fully parametric models consider more flexible and general distributions than the

normal, such as three parameter distributions (see Sherrick et al., 1996), four parameter

distributions (see Posner and Milevsky, 1998, Lim et al., 2000 and 2002, Theodossiou, 2000

and Corrado, 2001) and five parameter distributions - for instance mixtures of lognormal

distributions (see for instance Ritchey, 1990, Bahra, 1996 and 1997, Malz, 1996 and 1997,

Melick and Thomas, 1997 and Pirkner et al., 1999). Thirdly, semi-parametric models consist

in approximating the state price density using empirical counterparts of the implied moments.

Initially developed by Jarrow and Rudd (1982), this last approach aims to approximate the

risk-neutral density by a statistical series expansion such as a Gram-Charlier Type A series

expansion (see Corrado and Su, 1996-b and 1997-b, Backus et al., 1997, Bouchaud et al.,

1998, Brown and Robinson, 1999 and Knigth and Satchell, 2001), a lognormal Gram-Charlier

series expansion (see Jarrow and Rudd, 1982, Turnbull and Wakeman, 1991, Corrado and

Su, 1996-a and 1997-a, Jondeau and Rockinger, 2000 and Flamouris and Giamouridis, 2002)

or an Edgeworth series expansion (Rubinstein, 1998 and Li, 2000).4 The series are truncated

to a finite order that usually gives a tractable closed-form expressions for option prices. In

this last approach, the risk-neutral skewness and kurtosis of the underlying asset enter in

option pricing in a very natural way since the coefficients of statistical series expansions are

functions of moments of the given and approximating distributions.

The purpose of this article is to focus on this last field of literature. We aim to present,

in an unified framework, the theoretical foundations of the option pricing models based on
4While these expansions are the most popular in the literature, others have also been considered such

as Laguerre series expansions (Brenner and Eom, 1997 and Dufresne, 2000) and Kummer functions (Abadir

and Rockinger, 1997).
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statistical series expansion methods, namely, the Jarrow and Rudd (1982), the Corrado and

Su (1996-b and 1997-b) and the Rubinstein (1998) models.

Our study provides several contributions. Firstly, we investigate the conditions that

ensure the respect of the martingale restriction (see Longstaff, 1995). This gives us crucial

insights on approximations involved in the multi-moment approximate option pricing models.

Indeed, while it is showed that the martingale restriction is fulfilled in the Jarrow and Rudd

(1982) model, the Corrado and Su (1996-b and 1997-b) and the Rubinstein (1998) models

do not conform to it and need then to be revisited. We also establish the link between

these models and alternative option pricing models such as the Black and Scholes (1973)

and the Hermite polynomial models (see Madan and Milne, 1994 and Abken et al., 1996).

Next, we provide analytical formulae for implied density function and we generalize the

approach of Backus et al. (1997) regarding the volatility smile functions. We finally provide

hedging parameters of interest following Corrado and Su (1997-a), Hull and White (1997),

and Knigth and Satchell (2001).

The paper is organized as follows. In section 2, we review the statistical foundations and

the pricing formulae of the Jarrow and Rudd (1982), Corrado and Su (1996-b and 1997-

b) and Rubinstein (1998) models. In section 3, we present the implied probability density

and the implied volatility smile functions. We also compute the Greeks - namely, the Delta,

Gamma, Vega, Khi and Psi5. Section 4 summarizes and concludes. Main proofs (Appendixes

1 to 10) and Figures (Appendix 11) are collected at the end of the article.
5The two last one - proposed by Hull and White (1997) - measure respectively changes in the option price

with respect to changes in skewness and kurtosis.
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2 Pricing of Options when Risk-neutral Densities are

Skewed and Leptokurtic

When pricing an option, several elements of interest are involved. We start by defining

variables under consideration, the no-arbitrage conditions and the general expression of the

option price. We then recall main statistical series expansion that lead to revisited - because

of the martingale restriction - multi-moment approximate option pricing models.

2.1 Option Pricing and Martingale Restriction

The first element of interest in option pricing is the conditional distribution of the terminal

price of the underlying asset. Let xτ be the τ -th period log-return on the underlying asset

defined such as:

xτ = ln

µ
ST
St

¶
=

NX
i=1

ln

·
St+i∆

St+(i−1)∆

¸
(1)

=
NX
i=1

xi

where ST and St are respectively the terminal and the actual price of the underlying asset,

N = τ/∆ is the number of unit time intervals of length ∆ during a period τ = (T − t) , and

xi is the instantaneous log-return on the underlying asset. Rearranging terms, we obtain:

lnST = lnSt +
NX
i=1

xi (2)

then:

ST = St exp

Ã
NX
i=1

xi

!
(3)

6



and the conditional distribution of the terminal price of the underlying asset depends on

that of xi. If we assume that xi are IID random variables with finite variance, it follows

by application of the central limit theorem and the definition of a lognormal random vari-

able6 that when N tends to infinity, the underlying asset terminal log-price is conditionally

normally distributed and the underlying asset terminal price is conditionally log-normally

distributed.

The second element of interest when valuing options is the determination of the fair price

in a risk-neutral framework. An European call option is a contract which confers on its

holder the right, with no obligation, to purchase an underlying asset, which current price

is noted St, for a prescribed amount, known as the exercise or strike price, denoted K, at

the expiration date, T . Under the assumptions of (dynamically) complete market and no

arbitrage opportunity, and if we suppose that the risk-free rate of interest, denoted r, is

constant, the theoretical price of a call option is the present value of the expected payoff at

expirity, given by the following pricing kernel (see Harrison and Kreps, 1979):

C = C [St, K, τ , r, f, ST , θ] = e−rτEQ [Max (ST −K, 0)]

= e−rτ
Z +∞

ST=K

(ST −K) f (ST ) dST (4)

where EQ [.] is the expectation under the risk-neutral probability measure, θ is a vector of

parameters - the first moments - characterizing the risk-neutral density of underlying asset

terminal price f (ST ).

The third element of interest is linked with the martingale restriction implied by the

no-arbritage condition. Under this condition, the expected price under the correct proba-

bility measure should be equal to the current asset price compounded at the risk-free rate.
6A random variable x is said to be log-normal if ln(x) is normally distributed. For a study of the

log-normal distribution, see, for instance, Aitchinson and Brown (1966).
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Accordingly, the probability measure to be considered must satisfy the so-called martingale

restriction (see Longstaff, 1995):

EQ [ST ] = erτSt (5)

and then the density of underlying asset terminal price f (ST ) must respect:

ln {EQ [ST ]} = ln
·Z +∞

0

ST f (ST ) dST

¸
= rτ + ln (St) (6)

depending on the shape of the chosen density as a proxy for the “true” underlying risk-neutral

density.

Finally, a closed-form for the option formula can be obtained if we assumed a lognormal

distribution for the terminal price of the asset, as in Black and Scholes (1976), or if we use a

statistical series expansion for the conditional density of the price of the asset, as in Jarrow

and Rudd (1982) or for the conditional density of the related continuously compounded

return, as in Corrado and Su (1996-b and 1997-b) and Rubinstein (1998).

2.2 Risk-neutral Density and Moments

The problem is then to get an analytical expression for the risk-neutral density function. One

way of doing that is, following Jarrow and Rudd (1982), to use a statistical series expansion7

of the state price density in order to get an approximation used in (4) when replacing f (x)

by the rigth-hand side of the following equation:

f (x) = v (f, g, x, θ) + ε (x) (7)

where g(.) is a fitted density, x the random variable under interest - terminal price or log-

return - θ is a vector of moments characterizing the “true” risk-neutral density, v (.) a

statistical series expansion and ε (x) a residual.
7Statistical series expansion are conceptually similar to a Taylor series expansion: a given density is

approximated by an expansion around a prespecified distribution.
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In this case, estimation of parameters included in the vector of moments θ are sufficient to

recover a parametric approximation of the risk-neutral density8. More formally, any robust

class of density f (x) can be written as (see Johnson et al., 1994, p.28 and Appendix 1):

f (x) = g(x) +
+∞X
i=1

1

i!

"
N−1X
j=1

(−1)j kj Dj

j !

#i
g (x) + ε (x) (8)

where g (x) is an arbitrary density, κj (.) , j = [1, ..., N−1] its cumulants, kj = [κj (f)− κj (g)] ,

κ1 (.) = µ1 (.) , κ2 (.) = µ2 (.) , κ3 (.) = µ3 (.) , κ4 (.) = µ4 (.)−3µ2 (.)2 with µj, j = [1, ..., 4], the

centered moments of order j, D is the differentiation operator such as Djg(x) = djg(x)/dxj

and ε (x) is a residual.9

In the last formula, terms in g(x) represent a traditional general statistical series expan-

sion. Some restrictions could be added on existence of moments10 and on the fact that the

distribution could be uniquely defined using its moments11. Specific ordering of terms and

special choices about the form of the approximating distribution lead to several expressions

of equation (8).

In particular, the way terms are ordered in the general form (8) lead to different statistical

series expansion as presented hereafter. Indeed, developing and collecting terms determined
8Some of the others common approximation techniques of density by their moments include Cornish-

Fisher series expansion and Johnson family of curves.
9The cumulants of f (x) are defined as coefficients of ( j)

−1
djg(x)/dxj in equation (8), whether or not

f (x) ≥ 0. So, in general, expression (8) will not constitute a proper probability density function (see Kendall

and Stuart, 1977, pp.168-171 and Johnson et al., 1994, pp.25-30). Nevertheless, this problem can be solved

by imposing restrictions on the domain of variation of the moments (see for instance, Barton and Dennis,

1952, Balitskaia and Zolotuhina, 1988, and Jondeau and Rockinger, 2001). Another problem that can arise

is that, even if for all x, f (x) ≥ 0, the density may display multimodality (see Barton and Dennis, 1952).

Despite these limitations, it is often possible to obtain from statistical series expansion useful approximate

expression of a distribution with known moments.
10In a financial framework, expansions usually consider only the first four moments.
11That is not the case for the log-normal distribution for instance.
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by successive derivatives of g (x) in (8), up say to the fourth order, leads to:

f (x) = υGC(f, g, x, θ) + ς (x)

= g (x)− k1
dg (x)

dx
+

"
k2 + (k1)

2

2!

#
d2g (x)

dx2
(9)

−
"

k3 + 3k1k2 + 3 (k1)
3

3!

#
d3g (x)

dx3

+

"
k4 + 4k3k1 + 3 (k2)

2 + 6 (k1)
2 k2 + (k1)

4

4!

#
d4g (x)

dx4

+ ς (x)

where kj, with j = [1, ..., 4], are defined as previously and ς (x) is an error term.

The state price density is then a linear combination of g (x) and its derivatives. The col-

lection of terms in g (x) is called a Gram-Charlier series expansion (see for instance Johnson

et al., 1994, p.28 )12. Second, third, fourth and fifth terms in equation (9) allow to adjust

g (x) according to the gap between, respectively, the mean, the variance, the skewness and

the kurtosis of the approximated distribution and that of the approximating density function

(each term being weighted by the first, second, third and fourth derivatives of the approxi-

mating density function). The last part of equation (9) - the residual ς (x) - captures terms

neglected in the expansion.

If we moreover assume that x is a standardized random variable and g (x) a Gaussian

distribution, then equation (9) becomes:

f (x) = υGC(f,ϕ, x, θ) + ζ (x) (10)

= ϕ (x) +
κ3 (f)

3!
H3 (x) ϕ (x) +

κ4 (f)

4!
H4 (x)ϕ (x) + ζ (x)

where ϕ (x) = (2πτ)−1/2 exp (−x2/2) is the standard normal density function, κj (ϕ) = κj (f)

for j = [1, 2] and κj (ϕ) = 0 for j = [3, 4], Hi (x) denotes the i-th Hermite polynomial defined
12Some authors refer to it also as a Bruns-Charlier Expansion (see Hall, 1997).
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by Rodrigues’ formula13 Hi (x) = (−1)n ϕ (x)−1 diϕ (x) /dxi and ζ (x) is a residual.14 The

equation (10) corresponds to Gram-Charlier Type A series or Hermite polynomial series

expansion.15

For practical purposes, expression (8) is usually truncated up to the fourth order, and

the remainder ε (x) is dropped. Since the successive terms in a Gram-Charlier expansion are

not necessarily in decreasing order of importance, ς (x) in (9) may not converge uniformly

to zero as more terms are added. However, if x is a normalized sum of n independent and

identically distributed random variables xi, with i = [1, ..., n] , that is:

x = n−1/2σ−1
nX
i=1

(xi − µ) (11)

it is possible to sort differently terms in equation (8) such as to ensure that it constitutes

a proper asymptotic series expansion16. The ordering is based on the fact that, for a sum
13See Abramowitz and Stegun (1972).
14The Hermite polynomials through the fourth order are (see Kendall and Stuart, 1977, p.163):

H0 (x) = 1

H1 (x) = x

H2 (x) =
¡
x2 − 1¢

H3 (x) =
¡
x3 − 3x¢

H4 (x) =
¡
x4 − 6x2 + 3¢

H5 (x) =
¡
x5 − 10x3 + 15x¢

H6 (x) =
¡
x6 − 15x4 + 45x2 − 15¢

15While formula (10) is one of the most commonly used in statistical theory, it must be emphasized that

Gram-Charlier expansion based on a standard beta, standard gamma, poisson, log-normal (see below) and

t-student distributions have also been developped.
16An asymptotic expansion is defined to be a expansion which has the property that when truncated at

some finite number r, the remainder is of smaller order than the last term that has been included (see for

instance, Hall, 1992, p.45 and Spanos, 1986, pp.205-206).
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of n IID standardized random variables17, the j-th cumulant is proportional to n1−j/2, with

j ≥ 2 (see Appendix 2). After developing and collecting terms of equal order in n−1/2 in (8),

say up to n−1order, f (x) can then be expressed as:

f (x) = υE(f, g, x, θ) + ξ (x) (12)

= g (x)− n−1/2
ki,3
3!

d3g (x)

dx3

+ n−1
"

ki,4
4!

d4g (x)

dx4
+ 10

(ki,3)
2

6!

d6g (x)

dx6

#
+ ξ (x)

where ki,j = [κi,j (f)− κi,j (g)] with κi,j, now the j-th cumulant of the standardized random

variable σ−1 (xi − µ), (i× j) = (1, .., n)× (1, ..., 4) , with κi,1 = 0 and κi,2 = 1 and ξ (x) is a

residual with ξ (x) = o (n−1) where o (.) corresponds to the landau notation.

In the last formulation, the group of terms in g (x) is known as an Edgeworth series

expansion (see, for instance, Johnson et al., 1994, p.28)18. Second and third terms in equation

(12) allow to adjust g (x) according to the gap between the skewness and the kurtosis of the

risk-neutral distribution function and that of the approximating density (successive terms

being now weighted by n−1/2 and n−1). The last part of equation (12) - the residual ξ (x) -

takes into account terms in the development based on higher order cumulants.

If we assume again that g (x) is a standard normal density, equation (12) becomes:

f (x) = υE(f,ϕ, x, θ) + η (x)

= ϕ (x) +
κ3 (f)

3!
H3 (x) ϕ (x) (13)

+

"
κ4 (f)

4!
H4 (x) + 10

[κ3 (f)]
2

6!
H6 (x)

#
ϕ (x)

+ η (x)

17When standardized random variables are not an IID sequence see Kochard (1999).
18Some authors refer to it also as a Edgeworth-Sargan (Mauleon and Perote, 2000).
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where ϕ (x) , Hi (x) and η (x) denotes respectively the standard normal density, the i-th

Hermite polynomial and a residual. This form is called a normal Edgeworth series expansion

(see, for instance, Spanos, 1986).

Note that none of the expression (12) or (13) possess a general theoretical superiority

over the equation (9) or (10), since they depend on a particular assumption about the orders

of magnitude of successive cumulants (see Johnson et al., 1994, p.28).

2.3 Fourth-moment Option Pricing Models

The statistical series expansion methodologies recalled, we present the derivation of the

multi-moment approximate option pricing models, depending on the choice of the approxi-

mating distribution of the risk-neutral density. While the martingale restriction is nothing

else than a rescaling of the risk-neutral density, it is shown nevertheless that the restriction

is model dependent. This thus leads to revisit some of multi-moment approximate option

pricing models under review.

2.3.1 The Black and Scholes (1973) Model

Black and Scholes (1973) model assumes that the dynamics of the underlying asset follows

a geometric Brownian motion:19

dSt =

µ
α+

σ2

2

¶
Stdt+ σStdWt (14)

where α is the expected value of the log-return, σ represents the related volatility and Wt is

a standard Brownian motion under the physical measure.

When markets are complete, Harrison and Pliska (1981) show that there exists a risk-
19For the stochastic differential equation notation, see Baxter and Rennie, (1996), p.85.
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neutral transformation that leads to the following expression:

dSt = rStdt+ σStdWQ
t (15)

where WQ
t is a Brownian motion under the risk-neutral probability measure.

It follows from Itô’s lemma that the risk-neutral density of the terminal price of the

underlying asset is lognormal, that is:

f (ST ) =
1

STσ
√
2πτ

exp

−
h
ln
³
ST
St

´
− ¡r − 1

2
σ2
¢
τ
i2

2σ2τ

 (16)

or, by definition, that of the asset log-return is normal, that is:

f (lnST ) =
1

σ
√
2πτ

exp

(
−
£
lnST −

¡
lnSt +

£
r − 1

2
σ2
¤
τ
¢¤2

2σ2τ

)
(17)

so the price of an European call option under the Black and Scholes (1973) assumptions can

be written as:

CBS = C [St, K, τ , r, υ, f, g, x, θ] (18)

= e−rτ
Z +∞

ST=K

(ST −K) υ [f (St, θ) , g (St, θ)] dST

where υ (f, g, θ) is defined - in the particular case of Black and Scholes (1973) - such as:

υ (.) = Id

f (.) = l (.)

x = ST

g (.) = f (.)

θ = σ

with l (.) , the lognormal distribution function.

Performing the following change of variable on ST in integral (18):

z =
log
³
ST
St

´
− µτ

σ
√
τ

(19)
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where µτ and σ
√
τ respectively represent the expected value and the volatility of the log-

return under the risk-neutral measure, leads to the Black and Scholes formula (1973), that

is:

CBS = e−rt
Z +∞

z=
ln(K/St)−µτ

σ
√
τ

(ST −K)ϕ (z) dz (20)

= StΦ (d)−Ke−rτΦ
¡
d− σ

√
τ
¢

with:

d =
log (St/Ke−rτ) + σ2τ/2

σ
√
τ

where ϕ (.) and Φ (.) are respectively the standard normal density function and the standard

normal distribution.

The main advantage of this model is that all parameters, except the volatility, are directly

observable. However, empirical evidence against the hypothesis that returns are homoskedas-

tic and normally distributed, and the existence of some anomalies on option markets reported

in several studies (see for instance Rubinstein, 1994) lead to the development of option pric-

ing models based upon alternative risk-neutral density function.

Whilst Black-Scholes (1973) model supposes that the continuous underlying asset return

is normally distributed, Jarrow-Rudd (1982) have proposed a method based on statistical

series expansions for pricing options when densities are skewed and leptokurtic. The Black-

Scholes (1973) model is then a special case of the Jarrow-Rudd (1982) model. The unknown

state price density of the underlying asset return is approximated by using the information of

skewness and kurtosis departures from Gaussianity. In this approach, only the first moments

of the risk-neutral distribution are needed and can be approximated using their empirical

counterparts estimated on the data.
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2.3.2 The Jarrow and Rudd (1982) Model

Following Jarrow and Rudd (1982), we assume that the approximate distribution of the asset

price g (ST ) is the lognormal distribution l (ST ), with the two first centered moments equal

to the “true” ones20, that is:

κ1 (f) = κ1 (l) and κ2 (f) = κ2 (l) . (21)

using a Gram-Charlier series expansion, the risk-neutral density function can be written as:

f (ST ) = l (ST )− k3
3!

d3l (ST )

dS3T
+

k4
4!

d4l (ST )

dS4T
+ ε (ST ) (22)

where k3 = κ3 (f)− κ3 (l), k4 = κ4 (f)− κ4 (l) and ε (ST ) is a residual.

Substituting this expression into the risk-neutral valuation operator (4), yields the fol-

lowing theorem.

Theorem 1 (Jarrow and Rudd, 1982). Under the hypotheses of existence of the first

five non-central moments of the underlying asset terminal price density, the choice of the

lognormal as the approximate density of the underlying asset terminal price density and

perfection and completeness of financial markets, the fair price of an European call option

CJR written on a stock St with strike price K is:

CJR = C [St, K, τ , r, υGC , f, l, ST ,σ,κ3,κ4]

= e− rτ
Z +∞

ST=K

(ST −K)

·
l (ST )− k3

3!

d3l (ST )

dS3T
(23)

+
k4
4!

d4l (ST )

dS4T

¸
dST + ς (ST )

where ς (ST ) is a residual.

Proof: see previous discussion.
20These restrictions are justified by an heuristic argument of goodness-of-fit of the approximating density

to the approximated one.
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Developing equation (23), the Jarrow and Rudd European call option price can be ex-

pressed as:

CJR = CBS − e− rτ
k3
3!

Z +∞

ST=K

(ST −K)
d3l (ST )

dS3T
dST (24)

+ e− rτ
k4
4!

Z +∞

ST=K

(ST −K)
d4l (ST )

dS4T
dST + ς (ST )

where CBS is the price of an European call and d corresponds to the standard moneyness

measure under the Black and Scholes (1973) hypotheses.

The second term of the equation (24) corrects the pricing error due to the asymmetry of

the original distribution function, whilst the third allows to take into account the phenom-

enon of heavy tails and the fourth term is a residual depending on the strike price. This

statistical series expansion could obviously be based on higher moments, but one can think

that moments higher than the fourth one, if they exist, would bring no supplementary valu-

able information. If the risk-neutral density of the underlying asset price is lognormal, then

kj = 0 for j = [3, 4] , and equation (24) collapses to the Black and Scholes (1973) formula.

Recalling that κ1 (f) = κ1 (l) = Ste
µτ+σ2τ

2 , κ2 (f) = κ2 (l) = [κ1 (l)]
2
³

eσ
2τ − 1

´
, κ3 (.) =

µ3 (.) , κ4 (.) = µ4 (.) − 3µ2 (.)2 and using the martingale restriction (see Appendix 3), that

is:

µτ = rτ − σ2τ

2

we obtain the following explicit formula for the price of an European call option.

Corollary 1 (Corrado and Su, 1996-a). Under the hypotheses of existence of the first

five non-central moments of the underlying asset terminal price density, the choice of the

lognormal as the approximate density of the underlying asset terminal price density and

perfection and completeness of financial markets, the fair price of an European call option

CJR written on a stock St with strike price K can also be written as:

CJR ' CBS + λ1 Q3 + λ2 Q4 (25)
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with: 

Q3 = (St e
rτ )3

³
eσ

2τ − 1
´3/2

e−rτ
3!

P1 (d)
l(K)
K σ

√
τ

Q4 = (St e
rτ )4

³
eσ

2τ − 1
´2

e−rτ
4!
[P2 (d) + 2P1 (d)σ

√
τ − σ2τ ] l(K)

K 2σ2τ

P1 (y) = 2σ
√
τ − y

P2 (y) = y2 − 3 y σ
√
τ + 3σ2τ − 1

and:

λ1 = [γ1 (f)− γ1 (l)]

λ2 = [γ1 (f)− γ1 (l)]

where P1 (.) and P2 (.) are polynomials respectively of first and second order, γ1 (.) and γ2 (.)

are the Fisher parameters for skewness and kurtosis21:

γ1 (.) =
µ3 (.)

µ
3/2
2 (.)

and γ2 (.) =
µ4 (.)

µ22 (.)
− 3

and the remainder term ς (ST ) have been neglected in (25).

Proof : see Appendix 3.

The coefficients [γ1 (f)− γ1 (l)] and [γ2 (f)− γ2 (l)] measure, respectively, the excess

skewness and the excess of excess kurtosis of the true risk-neutral density, and characterize

the gap between the distribution function of the underlying asset price and the lognormal

one. Parameters Q3 and Q4, because they also depend on the exercise price relative to

options and the standard deviation of the underlying asset, represent the sensitivities of the

price of a specific option to departures from log-normality. The difference between Black-

Scholes and Jarrow-Rudd induced option prices is then a non-linear function of the excess

moments, the level of the volatility of the market and the specific exercise price of the option
21In the case of the log-normal density, Fisher parameters are equal to: γ1 (l) = 3

³
eσ

2τ − 1
´ 1
2

+
³

eσ
2τ − 1

´ 3
2

γ2 (l) = 16
³

eσ
2τ − 1

´
+ 15

³
eσ

2τ − 1
´2
+ 6

³
eσ

2τ − 1
´3
+
³

eσ
2τ − 1

´4
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considered. Figure 1 of Appendix 11 displays the sensitivities of the option price to the

excess moments which represent the value of parameters −Q3 and Q4 as a function of the

moneyness of the specific option under valuation (see also Corrado and Su, 1996-a).

- Please insert Figure 1 somewhere here -

Simulations done by Jarrow and Rudd (1982) show that their formula constitutes a good

approximation of the option price when the underlying asset follows a Brownian process

with jumps. Moreover, Jarrow and Rudd (1983) test their relation for pricing individual

stock options with market data, and confirm that the use of third and fourth moments

seem to improve in-sample the European call option pricing. The same conclusion has been

drawn by Corrado and Su (1996-a, 1997-a) who test the Jarrow-Rudd formula on S&P 500

index options traded on the Chicago Board Option Exchange (CBOE). Using optimization

techniques to obtain implicit parameter values in-sample, they conclude to a better fit of

Jarrow and Rudd (1982) formula out-of-sample.

2.3.3 The Revisited Corrado and Su (1996-b and 1997-b) Model

While the Jarrow and Rudd (1982) model leads to a closed-form solution for option pricing

when densities are skewed and leptokurtic, this approach remains nevertheless muddily com-

plex since its expression involves the computation of the lognormal distribution derivatives.

Following Madan and Milne (1994), an alternative approach is to work with Hermite poly-

nomials series in which the conditional distribution of the underlying asset price log-return

- rather than the price itself - is considered, and a standard normal density is used as the

approximating distribution22.
22Hermite polynomials have also been used in the context of American options to provide an efficient

numerical integration scheme, denoted the Gauss-Hermite integration, for the compound option approxi-
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Let the τ -period log-return of the underlying asset xτ has a conditional mean µτ and a

standard deviation σ
√
τ , and define the standardized variable z as:

z =
log
³
ST
St

´
− µτ

σ
√
τ

(26)

Using a Gram-Charlier type A series expansion, the risk-neutral density function for z is

now:

f (z) = ϕ (z) +
κ3 (f)

3!
H3 (z) ϕ (z) +

κ4 (f)

4!
H4 (z)ϕ (z) + ε (z) (27)

where ϕ (z) is the standard normal density function and the standard normal cumulative

density, κj (ϕ) = κj (f) for j = [1, 2] and κj (ϕ) = 0 for j = [3, 4], and Hi (z) denotes the

i-th Hermite polynomial.

Substituting (27) into the risk-neutral valuation operator (4), after the change of variable

(19) have been performed in (4), Corrado and Su (1996-b and 1997-b) show that the value

for an European call option can be obtained from the following theorem.

Theorem 2 (Corrado and Su, 1996-b and 1997-b). Under the hypotheses of existence

of the five first non-central moments of the underlying asset log-return density, the choice

of the normal as the approximate density of the continuous compound return density and

perfection and completeness of financial markets, the fair price of an European call option

mate valuation when early exercise is continuously optimal (see Omberg, 1988) and in semi-nonparametric

econometric estimation approaches (see for instance, Gallant and Nychka, 1987, Gallant and Tauchen, 1989,

Gallant et al.,1990 and Lee and Tse, 1991).
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CCS written on a stock St with strike price K is (with previous notation):

CCS = C [St, K, τ , r, υGC , f,ϕ, z,σ,κ3,κ4]

= e−rt
Z +∞

z=
ln(K/St)−µτ

σ
√
τ

³
St e

µτ+σ
√
tz −K

´
(28)·

1 +
κ3 (f)

3!
H3 (z) +

κ4 (f)

4!
H4 (z)

¸
ϕ (z) dz

+ς

µ
ln (K/St)− µτ

σ
√
τ

¶
where ς (.) is a residual.

Proof: see previous discussion.

Developing this expression, the call option price can be written as:

CCS = e−rt
Z +∞

z=
ln(K/St)−µτ

σ
√
τ

³
St e

µτ+σ
√
tz −K

´
ϕ (z) dz

+ e−rt
κ3 (f)

3!

Z +∞

z=
ln(K/St)−µτ

σ
√
τ

³
St e

µτ+σ
√
tz −K

´
H3 (z)ϕ (z) dz (29)

+ e−rt
κ4 (f)

4!

Z +∞

z=
ln(K/St)−µτ

σ
√
τ

³
St e

µτ+σ
√
tz −K

´
H4 (z)ϕ (z) dz

+ ζ

µ
ln (K/St)− µτ

σ
√
τ

¶
where ζ (.) is a residual.

The second and the third terms of the equation take into account the pricing error due

to the skewness and the kurtosis deviations from normality.

Recalling that κ1 (f) = κ1 (ϕ) = 0, κ2 (f) = κ2 (ϕ) = 1, κ3 (f) = γ1 (f) ,κ4 (f) =

γ2 (f) - where γ1 (f) and γ2 (f) denote the Fisher parameters - and using the martingale

restriction with the Gram-Charlier series expansion (see Backus et al., 1997, Kochard, 1999

and Appendix 4):

µτ = rτ − 1
2
σ2τ − ln

·
1 +

γ1 (f)

3!
σ3τ 3/2 +

γ2 (f)

4!
σ4τ 2

¸
(30)

we obtain the following corollary for the price of an European call option.
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Corollary 3 (Corrado and Su, 1996-b and 1997-b). Under the hypotheses of existence

of the first five non-central moments of the underlying asset log-return density, the choice

of the normal as the approximate density of the continuous compound return density and

perfection and completeness of financial markets, the fair price of an European call option

CCS written on a stock St with strike price K can also be written as:23

CCS ' C∗
BS + γ1 (f) Q

0
3 + γ2 (f) Q

0
4 (31)

with (using previous notation): Q
0
3 = [3! (1 + ω)]−1 St σ

√
τP1 (d

∗)ϕ (d∗)

Q
0
4 = [4! (1 + ω)]−1 St σ

√
τP2 (d

∗)ϕ (d∗)

and:  d∗ = (σ
√
τ)
−1 £

ln (St/Ke−rτ) + 1
2
σ2τ − ln [(1 + ω)]

¤
ω = γ1(f)

3!
σ3τ 3/2 + γ2(f)

4!
σ4τ 2

where C∗
BS is the Black and Scholes price evaluated at a corrected standardized moneyness

level denoted d∗, ω is a constant and the remainder term ζ
¡−d+ σ

√
t
¢
have been neglected

in (31).

Note that the previous expression24 differs from those of Corrado and Su (1996-b and

1997-b) because we explicitly used the martingale restriction presented in Sub-section 2.1.

Parameters Q
0
3 and Q

0
4 do not anymore represent the true marginal effects of the non-normal

log-return skewness and kurtosis on the option price since terms depending on kurtosis
23This formula is also consistent with the Hermite polynomial option pricing model developped by Madan

and Milne (1994).
24Kochard, (1999), developp an expression like (31) using an expansion of an infinite order. Moreover,

if we neglect terms in σ3τ3/2 and σ4τ2, this formula is thus consistent with those presented by Backus

et al. (1997), that is: CCS = CBS + γ1 (f) Q
b

3 + γ2 (f) Q
b

4 with Q
b

3 =
1
3! St σ

√
τ (2σ

√
τ − d) ϕ (d) and

Q
b

4 =
1
4! St σ

√
τ
¡
d2 − 3dσ√τ − 1¢ ϕ (d) .
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(skewness) appear in Q
0
3 (Q

0
4). Nevertheless, the Figure 2 of Appendix 11 indicates that the

modified parameters are close - even if different - from the original ones. In that sense, Q
0
3

remains mainly related to skewness whilst Q
0
4 seems to be strongly linked with kurtosis when

realistic values are considered.

- Please insert Figure 2 somewhere here -

Simulations done by Backus et al. (1997) show that the Corrado and Su formula consti-

tutes a good approximation of the option price when the underlying asset follows a jump-

diffusion process. Moreover, Corrado and Su (1996-b) and Brown and Robinson (1999) test

the model by using, respectively, S&P 500 index options traded on the Chicago Board Option

Exchange (CBOE) and SPI index future options traded on the Sydney Futures Exchange.

They show that the use of higher moments seems to improve significantly the in-sample op-

tion pricing accuracy. Corrado and Su (1997-a) also conclude to a better fit of their formula

on an out-of-sample basis, using actively traded individual equity options on the Chicago

Board Option Exchange (CBOE), while Kochard (1999) document on the Chicago Mercan-

tile Exchange S&P 500 index future options market an in-sample and out-sample pricing

improvement for this model.

While the option pricing model based on Gram-Charlier series expansion leads to analytic

expressions for the option price, as it has been pointed previously, the successive terms that

appear in the series expansion of the risk-neutral density are not necessarily in decreasing

order of importance, so that the expansion may not converge regularly. The use of an

Edgeworth series expansion can attenuate this problem.
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2.3.4 The Revisited Rubinstein (1998) Model

Following Rubinstein (1998), we consider a normal Edgeworth series expansion as a natural

candidate for approximating the “true” risk-neutral density of the underlying asset log-

return. In this case, recalling that the density expansion is:

f (z) = ϕ (z) +
κ3 (f)

3!
H3 (z) ϕ (z)

+

(
κ4 (f)

4!
H4 (z) + 10

[κ3 (f)]
2

6!
H6 (z)

)
ϕ (z) (32)

+ ε (z)

where z is defined as in (19), ϕ (z) , Hi (z) and ε (z) denotes respectively the standard normal

density, the i-th Hermite polynomial and a residual.

Recalling that κ1 (f) = κ1 (ϕ) = 0, κ2 (f) = κ2 (ϕ) = 1, κ3 (f) = γ1 (f) ,κ4 (f) = γ2 (f)

and using the martingale restriction with the Edgeworth series expansion (see Backus et al.,

1997, Kochard, 1999 and Appendix 4):

µτ = rτ − 1
2
σ2τ − ln

"
1 +

γ1 (f)

3!
σ3τ 3/2 +

γ2 (f)

4!
σ4τ 2 + 10

γ1 (f)
2

6!
σ6τ 3

#
(33)

the Edgeworth series expansion based option price can be expressed in the following theorem.

Theorem 3 (Rubinstein, 1998). Under the hypotheses of existence of the five first non-

central moments of the underlying asset log-return density, the choice of the normal as the

approximate density of the continuous compound return density, and perfection and com-

pleteness of financial markets, the fair price of an European call option CR written on a

stock St with strike price K can be written as:

CR ' C [St, K, τ , r, υE, f,ϕ, z,σ,κ3,κ4] (34)

= C∗∗
BS + γ1 (f) Q

00
3 + γ2 (f) Q

00
4 + γ1 (f)

2Q
00
5
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with (using previous notation):
Q

00
3 = [3! (1 +$)] −1 St σ

√
τP1 (d

∗∗)ϕ (d∗∗)

Q
00
4 = [4! (1 +$)]−1 St σ

√
τP2 (d

∗∗)ϕ (d∗∗)

Q
00
5 = 10 [6! (1 +$)]−1 St σ

√
τP4 (d

∗∗)ϕ (d∗ ∗ S �3����P

9
/TT9 1 Tf
529T12 1 ln)��4��3τ3τ3τⱐ

3



- Please insert Figures 3 and 4 somewhere here -

2.4 Implied Probability Densities, Implied Volatility Smile Func-

tions and Greeks



with: 

dl(ST )
dST

= −
³
1 + ln(ST /St)−µτ

σ2τ

´
l(ST )
ST

d2l(ST )
dS2T

= −
³
2 + ln(ST /St)−µτ

σ2τ

´
1
ST

dl(ST )
dST
− l(ST )

S2Tσ
2τ

d3l(ST )
dS3T

= −
³
3 + ln(ST /St)−µτ

σ2τ

´
1
ST

d2l(ST )
dS2T

− 2
S2T σ

2τ
dl(ST )
dST

+ l(ST )
S3T σ

2τ

d4l(ST )
dS4T

= −
³
4 + ln(ST /St)−µτ

σ2τ

´
1
ST

d3l(ST )
dS3T

− 3
S2T σ

2τ
d2l(ST )
dS2T

+ 3
S3T σ

2τ
dl(ST )
dST
− 2 l(ST )

S4Tσ
2τ

where l (.) is the lognormal density function.

Proof: see previous discussion.

The implied risk-neutral density function can then be expressed as a linear function of

the excess skewness and excess of excess kurtosis of the underlying asset price.

Theorem 5. When the European call market price is given by the Corrado and Su

(1996-b and 1997-b) formula, the implied risk-neutral density function of the continuous

compounded asset return can be written such as:

f (z) ' ϕ (z)

·
1 +

γ1 (f)

3!

¡
z3 − 3z¢+ γ2 (f)

4!

¡
z4 − 6z2 + 3¢¸ (36)

where ϕ (.) is the standard normal density function and z is defined as in (19).

Proof: see previous discussion.

The implied state price distribution function is a linear function of the skewness and the

excess kurtosis of the asset log-return.

Theorem 6. When the European call market price is given by the Rubinstein (1998)

formula, the implied risk-neutral density function of the continuous compounded asset return

can be written such as:

f (z) ' ϕ (z)

·
1 +

γ1 (f)

3!

¡
z3 − 3z¢+ γ2 (f)

4!

¡
z4 − 6z2 + 3¢ (37)

+10
[γ1 (f)]

2

6!

¡
z6 − 15z4 + 45z2 − 15¢#

where ϕ (.) is the standard normal density function and z is defined as in (19).
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Proof: see previous discussion.

As with the Gram-Charlier Type A series expansion, the implied risk-neutral density

function can be written as a function of the skewness and excess kurtosis of the underlying

asset log-return. Nevertheless, the relation is no longer linear but quadratic.

In Figure 5 of Appendix 11, we display simultaneously the Black-Scholes and the Jarrow-

Rudd, the Corrado-Su and the Rubinstein probability density functions with realistic skew-

ness and kurtosis.

- Please insert Figure 5 somewhere here -

2.4.2 Implied Volatility Smile Functions

Following the approach of Backus et al., (1997) and Bakshi et al. (2002), we can also provide

the implied standard deviation function ISD that corresponds to a volatility, denoted Ψ,

that equates the market price of the option to the value given by the Black-Scholes (1973)

formula, other values and parameters fixed. Using Jarrow-Rudd (1982), Corrado-Su (1996-b

and 1997-b) and Rubinstein (1998) European call option pricing models, we get the following

expressions for the implied volatility smile functions26.

Theorem 7. When the European call market price is given by the Jarrow and Rudd

(1982) formula, the implied volatility smile function can be written such as27:

ISDJR = Ψ (St, K, τ , r, υGC , f, l, ST ,σ,κ3,κ4) (38)

' σ
√
τ + λ1σ

√
τ Q

000
3 [ϕ (d)]

−1 + λ2 σ
√
τ Q

000
4 [ϕ (d)]

−1

26Following Backus et al. (1997), we refer to the relation Ψ(.) between implied volatility and moneyness

as the implied volatility smile function.
27Equation (38) is an approximation due to the presence of the Gram-Charlier series expansion and of a

linear approximation of European call prices in terms of volatility (see Appendix 7).
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with (using previous notation): Q
000
3 = (St e

rτ)2
³

eσ
2τ − 1

´3/2
P1 (d)

l(K)
3!K σ2τ

Q
000
4 = (St e

rτ)3
³

eσ
2τ − 1

´2
[P2 (d) + 2P1 (d)σ

√
τ − σ2τ ] l(K)

4!K 2σ3τ3/2

where the implied volatility function ISDJR corresponds to the value of Ψ that equates the

Jarrow and Rudd (1982) price to the value of the Black and Scholes (1973) formula, given

the values of other parameters fixed and ϕ (.) is the standard normal density function.

Proof: see Appendix 7.

The implied volatility function is then a linear function of the excess skewness and excess

of excess kurtosis of the underlying asset log-return risk-neutral density.

Theorem 8 (see Backus et al., 1997). When the European call market price is given by

the Corrado and Su (1996-b and 1997-b) formula, the implied volatility smile function can

be written28 such as:29

ISDCS = Ψ (St, K, τ , r, υGC , f,ϕ, z,σ,κ3,κ4) (39)

' σ
√
τ +

1

St
(C∗

BS − CBS) [ϕ (d)]
−1

+ γ1 (f) σ
√
τ Q

0000
3 [ϕ (d)]−1 + γ2 (f) σ

√
τ Q

0000
4 [ϕ (d)]−1

with (using previous notation): Q
0000
3 = [3! (1 + ω)]−1 P1 (d

∗)ϕ (d∗)

Q
0000
4 = [4! (1 + ω)]−1 P2 (d

∗)ϕ (d∗)
28Equation (39) is also an approximation for several reasons: the Gram-Charlier series expansion, a linear

approximation of European call prices in terms of volatility and the elimination of terms involving σ3τ3/2

and σ4τ2 (see Appendix 4 and 7).
29Using the same approach, Baschi et al. (2002) derive a similar relation between the implied volatility and

the skewness and kurtosis of the risk-neutral distribution. The only difference is that they do not explicitly

identify the coefficients of implied volatility function.
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where the implied volatility ISDCS corresponds to the value of Ψ that equates the Corrado

and Su (1996-b and 1997-b) price to the value of the Black and Scholes (1973) formula, given

the values of other parameters fixed.

Proof: see Appendix 7.

The implied volatility function can again be expressed as a linear function of the skewness

and excess kurtosis of the underlying asset log-return risk-neutral density.

Theorem 9. When the European call market price is given by the Rubinstein (1998)

formula, the implied volatility smile function reads:

ISDR = Ψ (St, K, τ , r, υE, f,ϕ, z,σ,κ3,κ4) (40)

' σ
√
τ +

1

St
(C∗∗

BS − CBS) [ϕ (d)]
−1

+ γ1 (f) σ
√
τ Q

00000
3 [ϕ (d)]−1 + γ2 (f) σ

√
τ Q

00000
4 [ϕ (d)]−1

+ [γ1 (f)]
2 σ
√
τ Q

00000
5 [ϕ (d)]−1

with (using previous notation):
Q

00000
3 = [3! (1 +$)] −1 P1 (d

∗∗)ϕ (d∗∗)

Q
00000
4 = [4! (1 +$)]−1 P2 (d

∗∗)ϕ (d∗∗)

Q
00000
5 = 10 [6! (1 +$)]−1 P4 (d

∗∗)ϕ (d∗∗)

where the implied volatility ISDR corresponds to the value of Ψ that equates the Rubinstein

price (1998) to the value of the Black and Scholes (1973) formula, given the values of other

parameters fixed.

Proof: see Appendix 7.

As with the Gram-Charlier Type A series expansion, the implied volatility smile function

can here be expressed as a function of the skewness and excess kurtosis of the underlying

asset log-return risk-neutral density. However, the relation is no longer linear but quadratic

as in the previous case.
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Figure 6 illustrates the comparison of Jarrow-Rudd, Corrado-Su and Rubinstein’s implied

volatility smile functions when the risk-neutral density is skewed and leptokurtic. Figures

7 and 8 are dedicated to the comparison of the specific effect of the skewness and of the

kurtosis on the shape of the implied volatility smile functions.

- Please insert Figures 6 to 8 somewhere here -

2.4.3 The Greeks

The Greek parameters are of interest since they can be used for testing and hedging pur-

poses. In particular, Delta states the sensitivity of the option price to underlying asset price

movements. By definition, it is the first partial derivative of the option price with respect to

the underlying asset price. Gamma measures the sensitivity of Delta-hedged strategies to the

underlying asset price changes and is defined by the second partial derivative of the option

price with respect to the underlying asset price. Vega, Khi and Psi measure the sensitivities

of the option price with respect to changes in the volatility, skewness and kurtosis and are

defined by the first partial derivatives of the option price. By taking the appropriate deriv-

atives of the Jarrow-Rudd (1982), the Corrado-Su (1996-b and 1997-b) and the Rubinstein

(1998) European call option pricing models, we get the following expressions for the Delta,

Gamma, Khi and Psi.

Theorem 10 (see Corrado and Su, 1996-b and 1997-b). When the European call market

price is given by the Jarrow and Rudd (1982) formula, the Delta, Gamma, Vega, Khi and

Psi of the call can be written respectively such as:

∆C
JR =

∂CJR

∂St

' Φ (d) + λ1Q
0000
3

£−P2 (d)− 3P1 (d)σ
√
τ + σ2τ

¤
+λ2Q

0000
4

£−P3 (d) + 6P2 (d)σ
√
τ + 7P1 (d)σ

2τ − 5σ3τ 3/2¤ (41)
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∂S2t

' ¡
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χCJR =
∂CJR

∂ γ1 (f)
' Q3 (44)

and:

ΨC
JR =

∂CJR

∂ γ2 (f)
' Q4 (45)

with (using previous notation):
Q

0000
3 = − (St erτ)2

³
eσ

2τ − 1
´3/2
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3!K σ2τ

Q
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4!K 2σ3τ3/2

P3 (y) = y3 − 4y2σ√τ − 3y + 6yσ2τ − 3σ3τ 3/2 + 4σ√τ

where Φ (.) , ϕ (.) and l (.) are, respectively, the cumulative density function of the standard

Gaussian distribution, the density function of the standard Gaussian distribution and the

density function of the lognormal distribution; P3 (.) is a polynomial of third order and λ1,

λ2, P1(.), P2(.), d, Q3, Q4, Q
000
3 and Q

000
4 are defined in equation (25) and (38).

Proof: see Appendix 8.
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Theorem 11 (see Backus et al., 1997). When the European call market price is given by

the Corrado and Su (1996-b and 1997-b) formula, the Delta, Gamma, Vega, Khi and Psi of

the call can be written respectively such as:
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∂St
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and:

ΨC
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where Φ (.) and ϕ (.) are the cumulative density function and the density function of the

standard Gaussian distribution and P1 (.), P2 (.), d∗, ω and P3 (.) are defined respectively in

equation (25), (31) and (41).

Proof: see Appendix 9.

Theorem 12. When the European call market price is given by the Rubinstein (1998)

formula, the Delta, Gamma, Khi and Psi of the call can be written respectively such as:

∆C
R =

∂CR

∂St
(51)

' Φ (d∗) +
ϕ (d∗∗)
σ
√
τ
+

ϕ (d∗∗)
(1 +$)

½
− 1

σ
√
τ
+

γ1 (f)

3!

£
P2 (d

∗∗)− σ2τ
¤

−γ2 (f)

4!
P3 (d

∗∗)− 10 [γ1 (f)]
2

6!
P5 (d

∗∗)

)

ΓCR =
∂2CR
∂S2t

(52)

' ϕ (d∗∗)
Stσ
√
τ
− d∗∗ϕ (d∗∗)

Stσ2τ
+

ϕ (d∗∗)
Stσ
√
τ (1 +$)

½
d∗∗

σ
√
τ
+

γ1 (f)

3!
[−P3 (d

∗∗)

−P2 (d
∗∗)σ
√
τ + d∗∗σ2τ + 6σ3τ 3/2

¤
+

γ2 (f)

4!

£
P4 (d

∗∗)− P3 (d
∗∗)σ
√
τ

−2d∗∗3σ√τ + d∗∗σ3τ 3/2 + 8σ4τ 2
¤
+
10 [γ1 (f)]

2

6!

h
P6 (d

∗∗)− 5P4 (d∗∗)− 15d∗∗2σ2τ
i)

34



υCR =
∂CR
∂ σ

(53)

' St
√
τϕ (d∗∗)

µ
1− d∗∗

σ
√
τ

¶
+

St
√
τϕ (d∗∗)

(1 +$)

½
d∗∗

σ
√
τ
+

γ1 (f)

3!
[−d∗∗P2 (d∗∗)

+d∗∗σ2τ + d∗∗ + 3σ
√
τ
¤
+

γ2 (f)

4!

£
d∗∗P3 (d∗∗) + P2 (d

∗∗)− 7d∗∗σ√τ − 3σ2τ¤
+10

[γ1 (f)
2]

6!
P6 (d

∗∗)
¾
+

St
√
τ ϕ (d∗∗)

³
γ1(f)
2!

σ2τ 2 + γ2(f)
3!

σ3τ 3/2 + 10γ1(f)
2

5!
σ5τ 5/2

´
(1 +$)2½

1

σ
√
τ
+

γ1 (f)

3!

£−P2 (d
∗∗) + σ2τ

¤
+

γ2 (f)

4!
P3 (d

∗∗) + 10
[γ1 (f)

2]

6!
P5 (d

∗∗)
¾

χCR =
∂CR

∂ γ1 (f)
(54)

' −
St σ
√
τ
h
P1 (d

∗∗) + γ1(f)
6

P4 (d
∗∗) + σ4τ 2 + σ

√
τ
i
ϕ (d∗∗)

3! (1 +$)

+
St σ

3τ 3/2
³
1 + γ1(f)

6
σ3τ 3/2

´
ϕ (d∗∗)

3! (1 +$)2

½
1

σ
√
τ
+

γ1 (f)

3!

£−P2 (d
∗∗) + σ2τ

¤
+
γ2 (f)

(4!)
P3 (d

∗∗) + 10
[γ1 (f)]

2

6!
P5 (d

∗∗)

)

and:

ΨCR =
∂CR

∂ γ2 (f)
(55)

' St σ
√
τ
√
τ [P2 (d

∗∗)− σ
√
τ ]ϕ (d∗∗)

4! (1 +$)
+

St σ
4τ 2ϕ (d∗∗)

4! (1 +$)2

½
1

σ
√
τ

+
γ1 (f)

3!

£−P2 (d
∗∗) + σ

√
τ
¤
+

γ2 (f)

4!
P3 (d

∗∗) +
10 [γ1 (f)]

2

6!
P5 (d

∗∗)

)

with (using previous notation):
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where Φ (.) and ϕ (.) are, respectively, the cumulative density function and the density func-

tion of the standard Gaussian distribution, P5 (.) and P6 (.) are respectively polynomials of

fourth and fifth order and P1 (.), P2 (.), d∗∗, $, P4 (.) and P3 (.) are defined respectively in

equation (25), (34) and (41).

Proof: see Appendix 10.

The first terms on the right-hand sides of equations (41), (46) and (51); (42), (47) and

(52); and (43), (48) and (53) are respectively the Delta, Gamma and Vega of the Black-

Scholes (1973) model whilst the other terms adjust the Delta, Gamma and Vega for the

presence of skewness and kurtosis in the return distribution. In Figures 9 to 11, we illustrate

respectively the differences in Deltas, Gammas and Vegas for the approximate models. Figure

12 displays the Khi of the Corrado-Su and Rubinstein models, and Figure 13 represents the

comparison between related Psi.

- Please insert Figures 9 to 13 somewhere here -

3 Conclusion

This article focuses on a way of solving drawbacks of Black and Scholes (1973) model using

statistical series expansions to correct the implied density departures from Gaussianity. We

investigate several different multi-moment approximate option pricing models in an unified

framework, highlighting the difference between Jarrow and Rudd (1982), Corrado and Su

(1996-b and 1997-b) and Rubinstein (1998) models. We present the conditions that ensure

the respect of the martingale restriction and establish the link between these approximate

models and alternative option pricing models such as Black and Scholes (1973) and Hermite

polynomial models (see Madan and Milne, 1994, Abken et al., 1996). We also provide
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analytical formulae for related implied densities and implicit volatility smile functions, and

illustrate their properties with simulated data. The final contribution of this paper concerns

hedging parameters in this setting: we extend the traditional Greeks to deal with higher

moment changes.

Our next work will consist in investigating the relative pricing power and hedging per-

formances of all these different fourth-moment options pricing models with market data.
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Appendix 1

It is possible to express - under mild conditions, see below - a continuous density f(x) as

a function of an arbitrary continuous density g (x) and its cumulants κj (.) , j = [1, ..., N−1],
as follows:

f (x) = g(x) +
+∞X
i=1

1

i!

(
N−1X
j=1

(−1)j [κj (f)− κj (g)] Dj

j !

)i
g (x) + ε (x) (8)

Proof. Let F (x) and G (x) be respectively the “true” cumulative density function and the

approximating one. We moreover assume that dF (x) /dx = f (x) and dG (x) /dx = g (x)

exist, as well as the first N non-central moments of the distribution function F . Formally,

the first cumulants κj (f), j = [1, ..., N − 1] , are given by the following equality (see Kendall

and Stuart, 1977, p.73):

lnφ (f, t) =

"
N−1X
j=1

κj (f)
(it)j

j!

#
+ o

¡
tN−1

¢
(A.1.1.)

where φ (f, t) is the characteristic function of f(x) and i2 = −1.
Taking exponential of equation (A.1.1.) and using the definition of the characteristic

function of g (x) , we obtain:

φ (f, t) = exp

(
N−1X
j=1

[κj (f)− κj (g)]
(it)j

j!

)
φ (g, t) + o

¡
tN−1

¢
(A.1.2.)

Taking the inverse Fourier transform of (A.1.2.), yields (see Johnson et al., 1994, p.26):

f (x) = exp

(
N−1X
j=1

(−1)j kj (D)
j

j!

)
g (x) + ε (x) (A.1.3.)

with: 

f (x) = 1
2π

R∞
−∞ e− itxφ (f, t) dt

g (x) = 1
2π

R∞
−∞ e− itxφ (g, t) dt

exp
h
(−1)j Dj

i
g (x) = 1

2π

R∞
−∞ e− itx exp

h
kj
(it)j

j!

i
φ (g, t) dt

ε (x) = 1
2π

R∞
−∞ e− itxo

¡
tN−1

¢
dt
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where kj = [κj (f)− κj (g)] and D is the differentiation operator such as Djg(x) = djg(x)/dxj.

Expanding the equation (A.1.3.) as an infinite polynomial leads to the desired result,

that is:

f (x) = g (x) +
∞X
i=0

1

i!

"
N−1X
j=1

(−1)j kj (D)
j

j !

#i
g (x) + ε (x) (A.1.4.)

¥

Appendix 2

The j-th cumulant for a normalized sum x of n independent and identically standardized

random variables xi, such as:

x = n−1/2σ−1
nX
i=1

(xi − µ) (11)

is proportional to n1−j/2( j ≥ 2).
Proof. By construction, the characteristic function of x must verified the following

equality:

φ ( t) = E
£
e(itx)

¤
=
£
φi
¡

t/n1/2
¢¤n

(A.2.1.)

where −∞ < t < +∞, i2 = −1 and φi (t) is the characteristic function of σ−1 (xi − µ).

Recalling the definition of cumulants (A.1.1.), we must also have, for x:

φ ( t) = e

½
1

2
(it)2 +

1

3!
κ3 (it)

3 +
1

4!
κ4 (it)

4

¾
+ o

¡
t4
¢

(A.2.2.)

where κj , j = [1, ..., 4] , refers to the j-th cumulant of x, with κ1 = 0 and κ2 = 1.

Following the same approach for σ−1 (xi − µ), we get:

φi ( t) = e

½
1

2
(it)2 +

1

3!
κi,3 (it)

3 +
1

4!
κi,4 (it)

4

¾
+ o

¡
t4
¢

(A.2.3.)

where κi,j, (i× j) = (1, .., n)×(1, ..., 4) , refers now to the j-th cumulant of the standardized

random variable σ−1 (xi − µ) , with κi,1 = 0 and κi,2 = 1.
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Using equation (A.2.1.) and equation (A.2.3.), we have:

φ ( t) = e

½
−1
2

t2 + n−1/2
1

3!
κi,3 (it)

3 + n−1
1

4!
κi,4 (it)

¾
+ o

¡
t4
¢

(A.2.4.)

Identifying terms in (A.2.2.) and in (A.2.4.) leads to the desired property, that is:

κj = n1−j/2κi,j (A.2.5.)

with κj the j-th cumulant of x, j ≥ 2 and κi,j the j-th cumulant of σ−1 (xi − µ). ¥

Appendix 3

Under the hypotheses of existence of the five first non-central moments of the underlying

asset terminal price density, the choice of the lognormal as the approximate density of the

underlying asset terminal price density and perfection and completeness of financial markets,

the fair price of an European call CJR can be expressed as:

CJR ' CBS + λ1 Q3 + λ2 Q4 (25)

with: 

Q3 = (St e
rτ )3

³
eσ

2τ − 1
´3/2

e−rτ
3!

P1 (d)
l(K)
K σ

√
τ

Q4 = (St e
rτ )4

³
eσ

2τ − 1
´2

e−rτ
4!
[P2 (d) + 2P1 (d)σ

√
τ − σ2τ ] l(K)

K 2σ2τ

P1 (y) = 2σ
√
τ − y

P2 (y) = y2 − 3 y σ
√
τ + 3σ2τ − 1

and:

λ1 = [γ1 (f)− γ1 (l)]

λ2 = [γ1 (f)− γ1 (l)]

Proof. Under a lognormal Gram-Charlier series expansion, the risk-neutral price of an
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European call written on a stock St with strike price K is:

CJR = C [St, K, τ , r, υGC , f, l, ST ,σ,κ3,κ4]

= e− rτ
Z +∞

ST=K

(ST −K)

·
l (ST )− k3

3!

d3l (ST )

dS3T
(A.3.1.)

+
k4
4!

d4l (ST )

dS4T

¸
dST

where the Gram-Charlier series expansion residual is dropped.

In order to evaluate expression (A.3.1.)



we can derive the first moment of the underlying asset price under the risk-neutral density:

St = e−rτ
Z +∞

0

ST f (ST ) dST

= e−rτ
Z +∞

0

ST

·
l (ST )− k3

3!

d3l (ST )

dS3T
+

k4
4!

d4l (ST )

dS4T

¸
dST

= e−rτ
Z +∞

0

ST l (ST ) dST (A.3.7.)

−k3
3!

e−rτ
Z +∞

0

ST
d3l (ST )

dS3T
dST

+
k4
4!

e−rτ
Z +∞

0

ST
d4l (ST )

dS4T
dST

In order to evaluate expression (A.3.7.), we need to calculate the following integral for

j = [3, 4]:

I∗j =
Z +∞

0

ST
djl (ST )

dSjT
dST (A.3.8.)

Integrating by parts this expression, yields:

I∗j =

·
ST

djl (ST )

dSjT

¸+∞
0

−
·

dj−1l (ST )

dSj−1T

¸+∞
0

= lim
ST→+∞

ST
dj−1l (ST )

dSj−1T

− lim
ST→0

ST
dj−1l (ST )

dSj−1T

(A.3.9.)

− lim
ST→+∞

dj−1l (ST )

dSj−1T

+ lim
ST→0

dj−1l (ST )

dSj−1T

For the lognormal distribution, we also have for j ≥ 1 (see Kendall, 1977, p.180):

lim
ST→+∞

dj−1l (ST )

dSj−1T

= lim
ST→0

dj−1l (ST )

dSj−1T

= 0 (A.3.10.)

So, using the above expression for j = [3, 4] in (A.3.7.) and dividing it by St, we get the

following expression:

1 = e−rτ
Z +∞

0

ST
St

l (ST ) dST

= e−rτ
Z +∞

−∞

³
eµτ+σ

√
τz
´
ϕ (z) dz (A.3.11.)

= e(−rτ+µτ+
1
2
σ2τ)
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where the change of variable z = [ln (ST/St)− µτ ] /σ
√
τ have been performed on ST .

Taking the logarithm of expression (A.3.11.) and rearranging terms, yields:

µτ = rτ − 1
2
σ2τ (A.3.12.)

Using this expression, the risk-neutral expected value and variance of the terminal price

can be written such as: k1 (f) = k1 (l) = Ste
µτ+ 1

2
σ2τ = Ste

rτ

k2 (f) = k2 (l) = [k1 (l)]
2
h
eσ

2τ − 1
i
= (Ste

rτ)2
h
eσ

2τ − 1
i (A.3.13.)

where the definition of the moments of the lognormal and the equality of the two first

cumulants between the true and the approximating distribution have been used.

Substituting (A.3.5.) and (A.3.13.) in equation (A.3.1.), and using the cumulants and the

Fisher parameters definitions (κ3 (.) = µ3 (.) , κ4 (.) = µ4 (.)−3µ2 (.)2 , γ1 (.) = µ3 (.) /µ
3/2
2 (.)

and γ2 (.) = µ4 (.) /µ22 (.)− 3) the value of an European call becomes:

CJR ' CBS + [γ1 (f)− γ1 (l)] (St e
rτ)3 (A.3.14.)

×
³

eσ
2τ − 1

´3/2 e−rτ

3!

¡
2σ
√
τ − d

¢ l (K)

K σ
√
τ

+ [γ2 (f)− γ2 (l)] (St e
rτ)4

³
eσ

2τ − 1
´2 e−rτ

4!

× ¡d2 − 5dσ√τ + 6σ2τ − 1¢ l (K)

K 2σ2τ

where d is defined as in Black and Scholes (1973) formula.

Using P1 (.) and P2 (.) expressions leads to the desired result. ¥

Appendix 4

Under the hypotheses of existence of the five first non-central moments of the underlying

asset log-return density, the choice of a normal as the approximate density of the continuous
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compound return density and perfection and completeness of financial markets, the fair price

of an European call CCS can be expressed as:

CCS ' C∗
BS + γ1 (f) Q

0
3 + γ2 (f) Q

0
4 (31)

with: 

Q
0
3 = [3! (1 + ω)]−1 St σ

√
τP1 (d

∗)ϕ (d∗)

Q
0
4 = [4! (1 + ω)]−1 St σ

√
τP2 (d

∗)ϕ (d∗)

P1 (y) = 2σ
√
τ − y

P2 (y) = y2 − 3 y σ
√
τ + 3σ2τ − 1

and:  d∗ = (σ
√
τ)
−1 £

ln (St/Ke−rτ) + 1
2
σ2τ − ln [(1 + ω)]

¤
ω = γ1(f)

3!
σ3τ 3/2 + γ2(f)

4!
σ4τ 2

Proof. Under a Gram-Charlier Type A series expansion, the risk-neutral price of an

European call written on a stock St with strike price K is:

CCS = e−rτ
Z +∞

z=



Using the definition of Hermite polynomials, we get:

I∗∗j =

Z +∞

ln(K/St)−µτ
σ
√
τ

³
St e

µτ+σ
√
τz −K

´
(−1)j djϕ (z)

dzj
dz (A.4.3.)

= −
Z +∞

ln(K/St)−µτ
σ
√
τ

³
St e

µτ+σ
√
τz −K

´ d

dz

·
(−1)j−1 dj−1ϕ (z)

dzj−1

¸
dz

= −
Z +∞

ln(K/St)−µτ
σ
√
τ

³
St e

µτ+σ
√
τz −K

´ d

dz
Hj−1 (z) ϕ (z) dz

and an integration by parts yields:

I∗∗j = −
h³

St e
µτ+σ

√
τz −K

´
Hj−1 (z) ϕ (z)

i+∞
ln(K/St)−µτ

σ
√
τ

(A.4.4.)

+σ
√
τSt

Z +∞

ln(K/St)−µτ
σ
√
τ

eµτ+σ
√
τz Hj−1 (z) ϕ (z) dz

It is readily verified that the first term in the above expression equals zero. Noting also

that lim
z→∞

ϕ (z) = 0, this leaves the expression:

I∗∗j = σ
√
τSt

Z +∞

ln(K/St)−µτ
σ
√
τ

eµτ+σ
√
τz Hj−1 (z) ϕ (z) dz (A.4.5.)

Using once again the definition of Hermite polynomials, we have:

I∗∗j = σ
√
τSt

Z +∞

ln(K/St)−µτ
σ
√
τ

eµτ+σ
√
τz (−1)j−1 dj−1ϕ (z)

dzj−1
dz (A.4.6.)

= −σ√τSt

Z +∞

ln(K/St)−µτ
σ
√
τ

eµτ+σ
√
τz d

dz

·
(−1)j−2 dj−2ϕ (z)

dzj−2

¸
dz

= −σ√τSt

Z +∞

ln(K/St)−µτ
σ
√
τ

eµτ+σ
√
τz d

dz
Hj−2 (z) ϕ (z) dz

and integrating by parts, we get:

I∗∗j = −σ√τSt

h
eµτ+σ

√
τz Hj−2 (z) ϕ (z)

i+∞
ln(K/St)−µτ

σ
√
τ

(A.4.7.)

+
¡
σ
√
τ
¢2

St

Z +∞

ln(K/St)−µτ
σ
√
τ

eµτ+σ
√
τz Hj−2 (z) ϕ (z) dz

= σ
√
τK Hj−2

µ
ln (K/St)− µτ

σ
√
τ

¶
ϕ

µ
ln (K/St)− µτ

σ
√
τ

¶
+
¡
σ
√
τ
¢2

St

Z +∞

ln(K/St)−µτ
σ
√
τ

eµτ+σ
√
τz Hj−2 (z) ϕ (z) dz

53



Then, by induction, we obtain:

I∗∗j = σ
√
τK Hj−2

µ
ln (K/St)− µτ

σ
√
τ

¶
ϕ

µ
ln (K/St)− µτ

σ
√
τ

¶
(A.4.8.)

+ σ
√
τ

·
σ
√
τK Hj−3

µ
ln (K/St)− µτ

σ
√
τ

¶
ϕ

µ
ln (K/St)− µτ

σ
√
τ

¶
+
¡
σ
√
τ
¢2

St

Z +∞

ln(K/St)−µτ
σ
√
τ

eµτ+σ
√
τz Hj−3 (z) ϕ (z) dz

#

= K ϕ

µ
ln (St/K) + µτ

σ
√
τ

¶ j−1X
k=1

¡
σ
√
τ
¢k

Hj−1−k

µ
ln (K/St)− µτ

σ
√
τ

¶
+
¡
σ
√
τ
¢j

St

Z +∞

ln(K/St)−µτ
σ
√
τ

eµτ+σ
√
τz ϕ (z) dz

= K ϕ

µ
ln (St/K) + µτ

σ
√
τ

¶ j−1X
k=1

¡
σ
√
τ
¢k

Hj−1−k

µ
ln (K/St)− µτ

σ
√
τ

¶
+
¡
σ
√
τ
¢j

St e
µτ+σ2τ/2Φ

µ
ln (St/K) + µτ + σ2τ

σ
√
τ

¶
Using the following equality (see Appendix 5):

K ϕ

µ
ln (St/K) + µτ

σ
√
τ

¶
= St e

µτ+σ2τ/2ϕ

µ
ln (St/K) + µτ + σ2τ

σ
√
τ

¶
(A.4.9.)

leads to the following expression for I∗∗j :

I∗∗j = St e
µτ+σ2τ/2

"
j−1X
k=1

¡
σ
√
τ
¢k

Hj−1−k

µ
ln (K/St)− µτ

σ
√
τ

¶
ϕ

µ
ln (St/K) + µτ + σ2τ

σ
√
τ

¶
+
¡
σ
√
τ
¢j
Φ

µ
ln (St/K) + µτ + σ2τ

σ
√
τ

¶¸
(A.4.10.)

From the martingale restriction, that is:

St = e−rτEQ [ST |St ] (A.4.11.)

we can derive the first moment of the underlying asset log-return under the risk-neutral
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density. Indeed, equation (A.4.11.) implies that:

1 = e−rτEQ

·
ST
St
|St
¸

(A.4.12.)

= e−rτEQ

h
eµτ+σ

√
τz |St

i
= e−rτ

Z +∞

−∞

³
eµτ+σ

√
τz
´ ·
1 +

γ1 (f)

3!
H3 (z) +

γ2 (f)

4!
H4 (z)

¸
ϕ (z) dz

In order to evaluate expression (A.4.12), we need to compute the following integral:

I∗∗∗j =

Z +∞

−∞
eµτ+σ

√
τzHj (z) ϕ (z) dz (A.4.13.)

for j = [3, 4].

Note that if the current underlying asset price is unitary, the exercise price is equal to

zero and the limits of integration are taken between minus and plus infinity, then integral

I∗∗∗j is equivalent to the integral I∗∗j . Thus, integrating expression (A.4.13.) by parts yields

for j = [3, 4]:

I∗∗∗j =
¡
σ
√
τ
¢j Z +∞

−∞
eµτ+σ

√
τz ϕ (z) dz (A.4.14.)

Equation (A.4.12.) then becomes:

1 = e−rτ
Z +∞

−∞

³
eµτ+σ

√
τz
´
ϕ (z) dz (A.4.15.)

+
γ1 (f)

3!
σ3τ 3/2e−rτ

Z +∞

−∞

³
eµτ+σ

√
τz
´
ϕ (z) dz

+
γ2 (f)

4!
σ4τ 2e−rτ

Z +∞

−∞

³
eµτ+σ

√
τz
´
ϕ (z) dz

= e−rτ+µτ+
1
2
σ2τ

µ
1 +

γ1 (f)

3!
σ3τ 3/2 +

γ2 (f)

4!
σ4τ 2

¶
Taking the logarithm of expression (A.4.15.) and rearranging terms, yields:

µτ = rτ − 1
2
σ2τ − ln

·
1 +

γ1 (f)

3!
σ3τ 3/2 +

γ2 (f)

4!
σ4τ 2

¸
(A.4.16.)
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Substituting this expression into equation (A.4.10.) and using Hermite polynomials such

as H0 (z) = 1, H1 (z) = z, H2 (z) = z2 − 1, the value of an European call becomes:

CCS =
StΦ (d

∗)³
1 + γ1(f)

3!
σ3τ 3/2 + γ2(f)

4!
σ4τ 2

´ − e−rτKΦ
¡
d∗ − σ

√
τ
¢

(A.4.17.)

+
γ1 (f) St

3!
³
1 + γ1(f)

3!
σ3τ 3/2 + γ2(f)

4!
σ4τ 2

´ £¡
2σ2τ − d∗ σ

√
τ
¢
ϕ (d∗)

+σ3τ 3/2Φ (d∗)
¤
+

γ2 (f)St ϕ (d
∗)

4!
³
1 + γ1(f)

3!
σ3τ 3/2 + γ2(f)

4!
σ4τ 2

´
h³
3σ3τ 3/2 − 3d∗σ2τ + d∗

2

σ
√
τ − σ

√
τ
´
ϕ (d∗) + σ4τ 2Φ (d∗)

i
that is:

CCS = StΦ (d
∗)− e−rτKΦ

¡
d∗ − σ

√
τ
¢

(A.4.18.)

+
γ1 (f) St

3!
³
1 + γ1(f)

3!
σ3τ 3/2 + γ2(f)

4!
σ4τ 2

´ ¡−d∗ σ
√
τ + 2σ2τ

¢
ϕ (d∗)

+
γ2 (f) St

4!
³
1 + γ1(f)

3!
σ3τ 3/2 + γ2(f)

4!
σ4τ 2

´ ³d∗
2

σ
√
τ − 3d∗σ2τ

+ 3σ3τ 3/2 − σ
√
τ
¢
ϕ (d∗)

with:

d∗ =
log (St/Ke−rτ) + 1

2
σ2τ − ln

h
1 + γ1(f)

3!
σ3τ 3/2 + γ2(f)

4!
σ4τ 2

i
σ
√
τ

Using P1 (.), P2 (.) and ω expressions leads to the desired result. ¥
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Appendix 5

For any European call, the following equality is verified:

K ϕ

µ
ln (St/K) + µτ

σ
√
τ

¶
= St e

µτ+σ2τ/2ϕ

µ
ln (St/K) + µτ + σ2τ

σ
√
τ

¶
(A.4.9.)

Proof. Following Stoll and Whaley (1993, p.245), factoring out σ
√
τ in [ln (St/K) + µτ ] (σ

√
τ)
−1

and taking the square gives:·
ln (St/K) + µτ

σ
√
τ

¸2
=

·
ln (St/K) + µτ + σ2τ

σ
√
τ

− σ
√
τ

¸2
(A.5.1.)

=

·
ln (St/K) + µτ + σ2τ

σ
√
τ

¸2
− 2

·
ln (St/K) + µτ + σ2τ

σ
√
τ

¸
σ
√
τ + σ2τ

=

·
ln (St/K) + µτ + σ2τ

σ
√
τ

¸2
− 2 £ln (St/K) + µτ + σ2τ

¤
+ σ2τ

=

·
ln (St/K) + µτ + σ2τ

σ
√
τ

¸2
− 2

·
ln (St/K) + µτ +

σ2τ

2

¸
=

·
ln (St/K) + µτ + σ2τ

σ
√
τ

¸2
− 2 ln

³
Ste

µτ+σ2τ/2/K
´

Evaluating the standard normal density at [ln (St/K) + µτ ] (σ
√
τ)
−1

, we get:

ϕ

µ
ln (St/K) + µτ

σ
√
τ

¶
=

1√
2π

e
−
n
[ln(St/K)+µτ+σ2τ](σ

√
τ)
−1−σ√τ

o2
/2 (A.5.2.)

=
1√
2π

e
−[ln(St/K)+µτ+σ2τ](σ√τ)

−1
/2+ln

³
Steµτ+σ

2τ/2/K
´

=
1√
2π

e−[ln(St/K)+µτ+σ
2τ](σ

√
τ)
−1
/2e

ln
³
St eµτ+σ

2τ/2/K
´

= ϕ

µ
ln (St/K) + µτ + σ2τ

σ
√
τ

¶
St e

µτ+σ2τ/2/K

Rearranging equation (A.5.2.), we obtain the following identity:

K ϕ

µ
ln (St/K) + µτ

σ
√
τ

¶
= St e

µτ+σ2τ/2ϕ

µ
ln (St/K) + µτ + σ2τ

σ
√
τ

¶
(A.5.3.)
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In the particular case where µτ = rτ−σ2τ/2 (see Black and Scholes, 1973), this expression

becomes:

K ϕ
¡
d− σ

√
τ
¢
= St e

rτϕ (d) (A.5.4.)

where d corresponds to the Black Scholes standardized moneyness. ¥

Appendix 6

Under the hypotheses of existence of the five first non-central moments of the underlying

asset log-return density, the choice of the normal as the approximate density of the continuous

compound return density, and perfection and completeness of financial markets, the fair price

of an European call CR written on a stock St with strike price K can be written as:

CR = C∗∗
BS + γ1 (f) Q

00
3 + γ2 (f) Q

00
4 + γ1 (f)

2Q
00
5 (34)

with: 

Q
00
3 = [3! (1 +$)] −1 St σ

√
τP1 (d

∗∗)ϕ (d∗∗)

Q
00
4 = [4! (1 +$)]−1 St σ

√
τP2 (d

∗∗)ϕ (d∗∗)

Q
00
5 = 10 [6! (1 +$)]−1 St σ

√
τP4 (d

∗∗)ϕ (d∗∗)

P1 (y) = 2σ
√
τ − y

P2 (y) = y2 − 3 y σ
√
τ + 3σ2τ − 1

P4 (y) = y4 − 5y3σ√τ + 10y2σ2τ − 6y2 − 10yσ3τ 3/2 + 15yσ√τ + 5σ4τ 2

−10σ2τ + 3

and:  d∗∗ = (σ
√
τ)
−1 £

ln (St/Ke−rτ) + 1
2
σ2τ − ln [(1 +$)]

¤
$ = γ1(f)

3!
σ3τ 3/2 + γ2(f)

4!
σ4τ 2 + 10 γ1(f)

2

6!
σ6τ 3

Proof. Following the same approach as previously, but using now a normal Egdeworth

series expansion for the risk-neutral density of the underlying asset log-return, with H6 (z) =
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z6 − 15z4 + 45z2 − 15, yields:

CR = StΦ (d
∗∗)− e−rτKΦ

¡
d∗∗ − σ

√
τ
¢

(A.6.1.)

+
γ1 (f) St ϕ (d

∗∗)

3!
³
1 + γ1(f)

3!
σ3τ 3/2 + γ2(f)

4!
σ4τ 2 + 10 γ1(f)

2

6!
σ6τ 3

´ ¡2σ2τ − d∗∗ σ
√
τ
¢

+
γ2 (f) St ϕ (d

∗∗)

4!
³
1 + γ1(f)

3!
σ3τ 3/2 + γ2(f)

4!
σ4τ 2 + 10 γ1(f)

2

6!
σ6τ 3

´ ¡3σ3τ 3/2
−3d∗∗σ2τ + d∗∗

2

σ
√
τ − σ

√
τ
´

+
10 γ1 (f)

2 St ϕ (d
∗∗)

6!
³
1 + γ1(f)

3!
σ3τ 3/2 + γ2(f)

4!
σ4τ 2 + 10 γ1(f)

2

6!
σ6τ 3

´ £σ√τ ¡d4 − 6d2
+3) + σ2τ

¡−5d3 + 15d¢+ σ3τ 3/2
¡
10d2 − 10¢− 10dσ4τ 2 + 5σ5τ 5/2¤

with:

d∗∗ =
log (St/Ke−rτ ) + 1

2
σ2τ − ln

h
1 + γ1(f)

3!
σ3τ 3/2 + γ2(f)

4!
σ4τ 2 + 10 γ1(f)

2

6!
σ6τ 3

i
σ
√
τ

Using P1 (.), P2 (.), P3 (.) and $ expressions leads to the desired result. ¥

Appendix 7

When the European call market price is given respectively by the Jarrow-Rudd (1982),

the Corrado-Su (1996) or the Rubinstein (1998) formula, the implied volatility smile function

can be written such as equation (38), (39) or (40):

Proof. The implied volatility smile function ISD corresponds to the volatility Ψ that

equates the market price of the option to the value of the Black and Scholes (1973) formula,

given values of other parameters fixed, that is:

C = e−rτ
Z +∞

ST=K

(ST −K) f (ST ) dST (A.7.1.)

= StΦ [d (Ψ)]−Ke−rτ Φ [d (Ψ)−Ψ]
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where d (Ψ) = [log (St/Ke−rτ) + 0.5Ψ2]Ψ−1 and Φ (.) represent respectively the Black and

Scholes’ measure of moneyness and the standard normal distribution evaluated at the implied

volatility level.

A linear approximation of this expression around the “true” volatility of the underlying

asset σ
√
τ gives:

C ∼= StΦ
£
d
¡
σ
√
τ
¢¤−Ke−rτΦ

£
d
¡
σ
√
τ
¢− σ

√
τ
¤

+ St ϕ
£
d
¡
σ
√
τ
¢¤µ− lnSt/Ke−rτ

σ2τ
+
1

2

¶¡
Ψ− σ

√
τ
¢

(A.7.2.)

−Ke−rτϕ
£
d
¡
σ
√
τ
¢− σ

√
τ
¤µ− lnSt/Ke−rτ

σ2τ
− 1
2

¶¡
Ψ− σ

√
τ
¢

with ϕ (.) the standard normal density function.

Using the following equality (see Appendix 5):

K ϕ
£
d
¡
σ
√
τ
¢− σ

√
τ
¤
= St e

rτϕ
£
d
¡
σ
√
τ
¢¤

(A.7.3.)

equation (A.7.2.) simplifies to:

C ∼= StΦ
£
d
¡
σ
√
τ
¢¤−Ke−rτΦ

£
d
¡
σ
√
τ
¢− σ

√
τ
¤

(A.7.4.)

+ St ϕ
£
d
¡
σ
√
τ
¢¤ ¡

Ψ− σ
√
τ
¢

Rearranging equation (A.7.1.) leads to the following general expression for the implied

volatility smile function:

Ψ = σ
√
τ +

1

St
(C − CBS)ϕ

£
d
¡
σ
√
τ
¢¤−1

(A.7.5.)

with:

CBS = StΦ
£
d
¡
σ
√
τ
¢¤−Ke−rτΦ

£
d
¡
σ
√
τ
¢− σ

√
τ
¤

Depending on the approximate option pricing model C considered in equation (A.7.5.)

leads to expression (38), (39) or (40). ¥
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Appendix 8

When the European call market price is given by the Jarrow-Rudd (1982) formula, the

Greek parameters of the call can be written respectively as equation (41), (42), (43), (44)

and (45).

Proof. Consider the Jarrow-Rudd (1982) formula of an European call option:

CJR ' CBS + λ1 Q3 + λ2 Q4 (A.8.1.)

with:  λ1 = [γ1 (f)− γ1 (l)]

λ2 = [γ2 (f)− γ2 (l)]

and: 

Q3 = (St e
rτ )3

³
eσ

2τ − 1
´3/2

e−rτ
3!

P1 (d)
l(K)
K σ

√
τ

Q4 = (St e
rτ )4

³
eσ

2τ − 1
´2

e−rτ
4!
[P2 (d) + 2P1 (d)σ

√
τ − σ2τ ] l(K)

K 2σ2τ

P1 (y) = 2σ
√
τ − y

P2 (y) = y2 − 3 y σ
√
τ + 3σ2τ − 1

Differentiating the Jarrow-Rudd formula (A.8.1.) with respect to the underlying price,

we get:
∂CJR
∂St

=
∂CBS
∂St

+ λ1
∂Q3

∂St
+ λ2

∂Q4

∂St
(A.8.2.)

with:

∂Q3

∂St
= − (erτ )2

3!K σ
√
τ

³
eσ

2τ − 1
´3/2 £−3 (St)2 P3 (d) l (K) (A.8.3.)

+(St)
3 ∂d

∂St
l (K)− (St)3 P3 (d)

∂l (K)

∂St

¸
= − (Sterτ)2

³
eσ

2τ − 1
´3/2 l (K)

3!K σ2τ

£−P2(d)− 3P1(d)σ
√
τ + σ2τ

¤
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and:

∂Q4

∂St
=

(erτ)3

4!K2 σ2τ

³
eσ

2τ − 1
´2 £

4 (St)
3 £P2(d) + 2P1(d)σ√τ − σ2τ

¤
(A.8.4.)

l (K) + (St)
4

µ
2d

∂d

∂St
− 5 ∂d

∂St
σ
√
τ

¶
l (K)

+ (St)
4 £P2(d) + 2P1(d)σ√τ − σ2τ

¤ ∂l (K)

∂St

¸
= (Ste

rτ )3
³

eσ
2τ − 1

´2 l (K)

4!K2 σ3τ 3/2
[−P3(d)

+ 6P2(d)σ
√
τ + 7P1(d)σ

2τ − 5σ3τ 3/2¤
where: 

∂d
∂St
= 1

Stσ
√
τ

∂l(K)
∂St

=
(d−σ√τ)
Stσ

√
τ

l (K)
(A.8.5.)

Substituting expression (A.8.3.) and (A.8.4.) in equation (A.8.1.) leads to the Delta formula

(41) for the Jarrow and Rudd (1982) model.

Differentiating once again expression (A.8.1.) with respect to the underlying asset price,

we have:

∂∆C
JR

∂St
=

∂∆BS

∂St
+ λ1

·
∂Q

0000
3

∂St

¡−P4 (d)− 3P3 (d)σ
√
τ + σ2τ

¢
(A.8.6.)

+Q
0000
3

µ
−2d ∂d

∂St
+ 6

∂d

∂St
σ
√
τ

¶¸
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·
∂Q

0000
4

∂St

£−P3(d) + 6P2(d)σ
√
τ + 7P1(d)σ

2τ − 5σ3τ 3/2¤
+Q

0000
4

µ
−3d2 ∂d

∂St
+ 20d

∂d

∂St
− 31 ∂d

∂St
σ2τ + 3

∂d

∂St

¶¸
with:

∂Q
0000
3

∂St
= − (erτ)2

3!K σ2τ

³
eσ

2τ − 1
´3/2 ·

2St l (K) + (St)
2 ∂l (K)

∂St

¸
(A.8.7.)

=
¡
Stσ
√
τ
¢−1½− (Sterτ)2 ³eσ

2τ − 1
´3/2 l (K)

3!K σ2τ

£
P1 (d) + σ

√
τ
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and:

∂Q
0000
4

∂St
= − (erτ )3

4!K2 σ3τ 3/2

³
eσ

2τ − 1
´2 ·

3S2t l (K) + (St)
3 ∂l (K)

∂St

¸
(A.8.8.)

=
¡
Stσ
√
τ
¢−1½− (Sterτ)3 ³eσ

2τ − 1
´2 l (K)

4!K2 σ3τ 3/2
£
P1 (d) + σ

√
τ
¤¾

Substituting expression (A.8.7.) and (A.8.8.) in equation (A.8.6.), factoring out (Stσ
√
τ)
−1

leads to the Gamma formula (42) for the Jarrow and Rudd (1982) model.

Differentiating the Jarrow and Rudd equation (A.8.1.) with respect to the volatility gives:

∂CJR
∂σ

=
∂CBS
∂σ

+ λ1
∂Q3

∂σ
+ λ2

∂Q4

∂σ
− ∂γ1 (l)

∂σ
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¤
+
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eσ
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´2
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= 3στeσ
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·³
eσ
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2
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eσ
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´ 1
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¸
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eσ
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´
+9
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eσ
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´2
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³
eσ
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´3¸ (A.8.12.)

where: 
∂d
∂σ
= −(d−σ

√
τ)

σ

∂l(K)
∂σ

=
(d2−dσ√τ−1)

σ
l (K)

(A.8.13.)

Substituting expression (A.8.10.) and (A.8.11.) in equation (A.8.9.) and factoring out St
√
τ

leads to the Vega formula (43) for the Jarrow-Rudd (1982) model.

Differentiating expression (A.8.1.) with respect to the excess of skewness and to the excess

of the excess kurtosis leads directly to the equation (44) and (45) of the Jarrow-Rudd Khi

and Psi, that is: 
∂CJR
∂ γ1(f)

= χCJR = Q3

∂CJR
∂ γ2(f)

= ΨC
JRQ4

(A.8.14.)

¥

Appendix 9

When the European call market price is given by the Corrado and Su (1996-b and 1997-b)

formula, the Greeks of a call can be written respectively such as equations (46), (47), (48),

(49) and (50).

64



Proof. Consider the Corrado and Su (1996-b and 1997-b) formula of an European call

option:

CCS = C∗
BS + γ1 (f) Q

0
3 + γ2 (f) Q

0
4 (A.9.1.)

with:  Q
0
3 = [3! (1 + ω)]−1 St σ

√
τP1 (d

∗)ϕ (d∗)

Q
0
4 = [4! (1 + ω)]−1 St σ

√
τP2 (d

∗)ϕ (d∗)

Differentiating the Corrado and Su formula (A.9.1.) with respect to the underlying asset

price, we get:
∂CCS
∂St

=
∂C∗

BS

∂St
+ γ1 (f)

∂Q
0
3

∂St
+ γ2 (f)

∂Q
0
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with:
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√
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= Φ (d∗) + Stϕ (d
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¸
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and:
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+StP2 (d
∗)

∂ϕ (d∗)
∂d∗

∂d∗

∂St

¸
= −ϕ (d∗) P3 (d

∗)
4! (1 + ω)
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where: 
∂d∗
∂St
= (Stσ

√
τ)
−1

∂ϕ(d∗)
∂d∗ = −d∗ ϕ (d∗)

Substituting expression (A.9.3.), (A.9.4.) and (A.9.5.) in equation (A.9.2.), factoring out

ϕ (d∗) (1 + ω)−1 leads to the Delta formula (46) for the Corrado-Su (1996-b and 1997-b)

model.

Differentiating once again expression (A.9.1) with respect to the underlying asset price,

we have:
∂∆CS

∂St
=

∂∆∗BS
∂St

+ γ1 (f)
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0
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where:
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(A.9.8.)

and:
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=

1

4! (1 + ω)

·
∂ϕ (d∗)
∂d∗

∂d∗

∂St
P3 (d

∗) (A.9.9.)

+ϕ (d∗)
µ
−3d∗2∂d∗

∂St
+ 8d∗

∂d∗

∂St
σ
√
τ + 3

∂d∗

∂St
− 6∂d∗

∂St
σ2τ

¶¸
=

ϕ (d∗)
£
P4 (d

∗)− P3 (d
∗)σ
√
τ − 2d∗3σ√τ + d∗σ3τ 3/2 + 8σ4τ 2

¤
4!Stσ

√
τ (1 + ω)

Substituting expression (A.9.7.), (A.9.8.) and (A.9.9.) in equation (A.9.6.) and factoring

out ϕ (d∗) [Stσ
√
τ (1 + ω)]

−1 leads to the Gamma formula (47) for the Corrado-Su (1996-b

and 1997-b) model.
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Differentiating the Corrado-Su equation (A.9.1.) with respect to the volatility, we get:

∂CCS
∂σ

=
∂C∗

BS

∂σ
+ γ1 (f)

∂Q
0
3

∂σ
+ γ2 (f)

∂Q
0
4

∂σ
(A.9.10.)

where:

∂C∗
BS

∂σ
= Stϕ (d

∗)
√
τ + σ−1Stϕ (d∗)

d∗ +

³
γ1(f)
2!

σ2τ + γ2(f)
3!

σ3τ 3/2
´

(1 + ω)

 (A.9.11.)

×
·
−1 + 1

(1 + ω)

¸
∂Q

0
3

∂σ
=

St
√
τ

3! (1 + ω)

½·
4σ
√
τϕ (d∗) + 2σ2

√
τ
∂ϕ (d∗)
∂d∗

∂d∗

∂σ
(A.9.12.)

−d∗ϕ (d∗)− σ
∂d∗

∂σ
ϕ (d∗)− d∗σ

∂ϕ (d∗)
∂d∗

∂d∗

∂σ

¸

−
σP1 (d

∗)ϕ (d∗)
³
γ1(f)
2!

σ2τ 3/2 + γ2(f)
3!

σ3τ 2
´

(1 + ω)


=

St
√
τ ϕ (d∗)

3! (1 + ω)

©¡−d∗P2 (d∗) + d∗σ2τ + d∗ + 3σ
√
τ
¢

+

³
γ1(f)
2!

σ2τ 2 + γ2(f)
3!

σ3τ 3/2
´

(1 + ω)

£−P2 (d
∗) + σ2τ

¤
∂Q

0
4

∂σ
=

St
√
τ

4! (1 + ω)

½·
d∗2ϕ (d∗) + 2d∗

∂d∗

∂σ
σϕ (d∗) (A.9.13.)

+ σd∗2
∂ϕ (d∗)
∂d∗

∂d∗

∂σ
− 6d∗ϕ (d∗)σ√τ − 3∂d∗

∂σ
σ2
√
τϕ (d∗)

−3d∗σ2√τ ∂ϕ (d
∗)

∂d∗
∂d∗

∂σ
+ 9σ2τϕ (d∗) + 3σ3τ +

∂ϕ (d∗)
∂d∗

∂d∗

∂σ

−ϕ (d∗)− σ
∂ϕ (d∗)
∂d∗

∂d∗

∂σ

¸

−
σP2 (d

∗)ϕ (d∗)
³
γ1(f)
2!

σ2τ 3/2 + γ2(f)
3!

σ3τ 2
´

(1 + ω)


=

St
√
τ ϕ (d∗)

4! (1 + ω)

©£



where:

∂d∗

∂σ
= −1

σ

d∗ − σ
√
τ +

³
γ1(f)
2!

σ2τ + γ2(f)
3!

σ3τ 3/2
´

(1 + ω)

 (A.9.14.)

Substituting expressions (A.9.11.), (A.9.12.) and (A.9.13.) in equation (A.9.10.), factoring

out St
√
τϕ (d∗) (1 + ω)−1 leads to the Vega formula (48) for the Corrado-Su (1996-b and

1997-b) model.

Differentiating the Corrado-Su equation (A.9.1.) with respect to the skewness we obtain:

∂CCS

∂γ1 (f)
=

∂C∗
BS

∂γ1 (f)
+Q

0
3 + γ1 (f)

Q



where:
∂d∗

∂γ1 (f)
= − σ2τ

3! (1 + ω)

Substituting expression (A.9.16.), (A.9.17.) and (A.9.18.) in equation (A.9.15.), factoring

out St σ
3τ 3/2ϕ (d∗)

£
3! (1 + ω)2

¤−1
leads to the Khi formula (49) for the Corrado-Su (1996-b

and 1997-b) model.

Differentiating the Corrado-Su equation (A.9.1.) with respect to the kurtosis leads to:

∂CCS

∂γ2 (f)
=

∂C∗
BS

∂γ2 (f)
+ γ1 (f)

∂Q
0
3

∂γ2 (f)
+Q

0
4 + γ2 (f)

∂Q
0
4

∂γ2 (f)
(A.9.19.)

with:

∂C∗
BS

∂γ2 (f)
= St

∂Φ (d∗)
∂d∗

∂d∗

∂γ2 (f)
− e−rτK

∂Φ (d∗ − σ
√
τ)

∂ (d∗ − σ
√
τ)

∂ (d∗ − σ
√
τ)

∂γ2 (f)
(A.9.20.)

=
St σ

3τ 3/2ϕ (d∗)
4! (1 + ω)

·
−1 + 1

(1 + ω)

¸

∂Q
0
3

∂γ2 (f)
=

Stσ
√
τ

3! (1 + ω)2

·µ
2σ
√
τ
∂ϕ (d∗)
∂d∗

∂d∗

∂γ2 (f)
− ∂d∗

∂γ2 (f)
ϕ (d∗) (A.9.21.)

−d∗
∂ϕ (d∗)
∂d∗

∂d∗

∂γ2 (f)

¶
(1 + ω)− σ4τ 2P1 (d

∗)ϕ (d∗)
4!

¸
=

Stσ
4τ 2ϕ (d∗) [−P2 (d

∗) + σ2τ ]

(3!) (4!) (1 + ω)2

and:

∂Q
0
4

∂γ2 (f)
=

Stσ
√
τ

4! (1 + ω)2

·µ
2d∗

∂d∗

∂γ2 (f)
ϕ (d∗) + d∗2

∂ϕ (d∗)
∂d∗

∂d∗

∂γ2 (f)
(A.9.22.)

−3 ∂d∗

∂γ2 (f)
σ
√
τϕ (d∗)− 3d∗σ√τ ∂ϕ (d

∗)
∂d∗

∂d∗

∂γ2 (f)
+ 3σ2τ

∂ϕ (d∗)
∂d∗

∂d∗

∂γ2 (f)

−∂ϕ (d∗)
∂d∗

∂d∗

∂γ2 (f)

¶
(1 + ω)− σ4τ 2P2 (d

∗)ϕ (d∗)
4!

¸
=

Stσ
4τ 2ϕ (d∗)P3 (d

∗)

(4!)2 (1 + ω)2

where:
∂d∗

∂γ2 (f)
= − σ3τ 3/2

4! (1 + ω)
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Substituting expression (A.9.20.), (A.9.21.) and (A.9.22.) in equation (A.9.19.), factoring

out St σ
4τ 2ϕ (d∗)

£
4! (1 + ω)2

¤−1



and:

∂Q
00
5

∂St
=

10σ
√
τ

6! (1 +$)

·
P4 (d

∗∗)ϕ (d∗∗) + St

µ
4d∗∗3

∂d∗∗

∂St
− 15d∗∗2∂d∗∗

∂St
σ
√
τ

+20d∗∗
∂d∗∗

∂St
σ2τ − 12d∗∗∂d∗∗

∂St
− 10∂d∗∗

∂St
σ3τ3/2 (A.10.6.)

+15
∂d∗∗

∂St
σ
√
τ

¶
× ϕ (d∗∗) + StP4 (d

∗∗)
∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂St

¸
= − 10ϕ (d

∗∗)
6! (1 +$)

P5 (d
∗∗)

where: 
∂d∗∗
∂St

= (Stσ
√
τ)
−1

∂ϕ(d∗∗)
∂d∗∗ = −d∗∗ ϕ (d∗∗)

Substituting expressions (A.10.3.), (A.10.4.), (A.10.5.) and (A.10.6.) in equation (A.10.2.)

and factoring out ϕ (d∗∗) (1 +$)−1 leads to the Delta formula (51) for the Rubinstein (1998)

model.

Differentiating expression (A.10.1.) with respect to the underlying asset price, we have:

∂∆CS

∂St
=

∂∆∗∗BS
∂St

+ γ1 (f)
∂2Q

00
3

∂S2t
+ γ2 (f)

∂2Q
00
4

∂S2t
+ γ1 (f)

2 ∂
2Q

00
5

∂S2t
(A.10.7.)

with:
∂∆∗∗BS
∂St

=
ϕ (d∗∗)
Stσ
√
τ
− d∗∗ϕ (d∗∗)

Stσ2τ
+

d∗∗ϕ (d∗∗)
Stσ2τ (1 +$)

(A.10.8.)

and:
∂2Q

00
3

∂S2t
=

ϕ (d∗∗)
£−P3 (d

∗∗)− P2 (d
∗∗)σ
√
τ + d∗∗σ2τ + 6σ3τ 3/2

¤
3!Stσ

√
τ (1 +$)

(A.10.9.)

∂2Q
00
4

∂S2t
=

ϕ (d∗)
h
P4 (d

∗∗) + P3 (d
∗∗)σ
√
τ − 2d∗∗3σ√τ + d∗∗σ3τ 3/2 + 8σ4τ 2

i
4!Stσ

√
τ (1 +$)

(A.10.10.)
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∂2Q
00
5

∂S2t
=

10

6! (1 +$)

·
−∂ϕ (d∗∗)

∂d∗∗
∂d∗∗

∂St
P5(d

∗∗) (A.10.11.)

+ϕ (d∗∗)
µ
−5d4∂d∗∗

∂St
+ 24d∗∗3

∂d∗∗

∂St
σ
√
τ − 45d∗∗2∂d∗∗

∂St
σ2τ

+40d∗∗2
∂d∗∗

∂St
σ3τ 3/2 + 30d∗∗2

∂d∗∗

∂St
− 72d∗∗∂d∗∗

∂St
σ
√
τ − 15∂d∗∗

∂St
σ4τ 2

+45
∂d∗∗

∂St
σ2τ − 15∂d∗∗

∂St

¶
=

10ϕ (d∗∗) [P6 (d∗∗)− 5P4 (d∗∗)− 15d∗∗2σ2τ ]
6!Stσ

√
τ (1 +$)

Substituting expressions (A.10.8.), (A.10.9.), (A.10.10.) and (A.10.11.) in equation (A.10.7.)

and factoring out ϕ (d∗∗) [Stσ
√
τ (1 +$)]

−1 leads to the Gamma formula (52) for the Ru-

binstein (1998) model.

Differentiating the Rubinstein equation (A.10.1.) with respect to the volatility, we get:

∂CR

∂σ
=

∂C∗∗
BS

∂σ
+ γ1 (f)

∂Q
00
3

∂σ
+ γ2 (f)

∂Q
00
4

∂σ
+ γ1 (f)

2∂Q
00
5

∂σ
(A.10.12.)

where:

∂C∗∗
BS

∂σ
= Stϕ (d

∗∗)
√
τ (A.10.13.)

+σ−1Stϕ (d∗∗)

d∗∗ +

³
γ1(f)
2!

σ2τ + γ2(f)
3!

σ3τ 3/2 + 10γ1(f)
2

5!
σ5τ 5/2

´
(1 +$)


×
·
−1 + 1

(1 +$)

¸
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∂Q
00
3

∂σ
=

St
√
τ

3! (1 +$)

© £
4σ
√
τϕ (d∗∗) (A.10.14.)

+2σ2
√
τ
∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂σ
− d∗∗ϕ (d∗∗)− σ

∂d∗∗

∂σ
ϕ (d∗∗)− d∗σ

∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂σ

¸

−
σP1 (d

∗∗)ϕ (d∗∗)
³
γ1(f)
2!

σ2τ 3/2 + γ2(f)
3!

σ3τ 2 + 10γ1(f)
2

5!
σ5τ 3

´
(1 +$)


=

St
√
τ ϕ (d∗∗)

3! (1 +$)

©£−d∗∗P2 (d∗∗) + d∗∗ + d∗∗σ2τ + 3σ
√
τ
¤

+

³
γ1(f)
2!

σ2τ 2 + γ2(f)
3!

σ3τ 3/2 + 10γ1(f)
2

5!
σ5τ 5/2

´
(1 +$)

£−P2 (d
∗∗) + σ2τ

¤
∂Q

00
4

∂σ
=

St
√
τ

4! (1 +$)

© £
d∗∗2ϕ (d∗∗) (A.10.15.)

+2d∗∗
∂d∗∗

∂σ
σϕ (d∗∗) + σd∗∗2

∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂σ
− 6d∗ϕ (d∗∗)σ√τ

−3∂d∗∗

∂σ
σ2
√
τϕ (d∗∗)− 3d∗∗σ2√τ ∂ϕ (d

∗∗)
∂d∗∗

∂d∗∗

∂σ
+ 9σ2τϕ (d∗∗)

+3σ3τ +
∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂σ
− ϕ (d∗∗)− σ

∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂σ

¸
−σP2 (d

∗∗)ϕ (d∗∗)

×
³
γ1(f)
2!

σ2τ 3/2 + γ2(f)
3!

σ3τ 2 + 10γ1(f)
2

5!
σ5τ 3

´
(1 +$)


=

St
√
τ ϕ (d∗∗)

4! (1 +$)

©£
d∗∗P3(d∗∗) + P2(d

∗∗)− 7d∗∗σ√τ − 3σ2τ¤
+

³
γ1(f)
2!

σ2τ 2 + γ2(f)
3!

σ3τ 3/2 + 10γ1(f)
2

5!
σ5τ 5/2

´
(1 +$)

P3 (d
∗∗)


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and:

∂Q
00
5

∂σ
=

10St
√
τ

6! (1 +$)

© £
d∗∗4ϕ (d∗∗) (A.10.16.)

+4d∗∗3
∂d∗∗

∂σ
σϕ (d∗∗) + d∗∗4σ

∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂σ
− 10d∗∗3σ√τ ϕ (d∗∗)

−15d∗∗2∂d∗∗

∂σ
σ2
√
τϕ (d∗∗)− 5d∗∗3σ2√τ ∂ϕ (d

∗∗)
∂d∗∗

∂d∗∗

∂σ
+ 30d∗∗2σ2τϕ (d∗∗)

+20d∗∗σ3τ
∂d∗∗

∂σ
ϕ (d∗∗) + 10d∗∗2σ3τ

∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂σ
− 6d∗∗2ϕ (d∗∗)

−12d∗∗∂d∗∗

∂σ
σϕ (d∗∗)− 6d∗∗2σ∂ϕ (d

∗∗)
∂d∗∗

∂d∗∗

∂σ
− 40d∗∗σ3τ 3/2ϕ (d∗∗)

−10∂d∗∗

∂σ
σ4τ 3/2ϕ (d∗∗)− 10d∗∗σ4τ 3/2∂ϕ (d

∗∗)
∂d∗∗

∂d∗∗

∂σ
+ 30d∗∗σ

√
τϕ (d∗∗)

+15
∂d∗∗

∂σ
σ2
√
τϕ (d∗∗) + 15d∗∗σ2

√
τ
∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂σ
+ 25σ4τ 2ϕ (d∗∗)

+5σ5τ 2
∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂σ
− 30σ2τϕ (d∗∗)− 10σ3τ ∂ϕ (d

∗∗)
∂d∗∗

∂d∗∗

∂σ
+ 3ϕ (d∗∗)

+3σ
∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂σ

¸
− σP4 (d

∗∗)ϕ (d∗∗)

×
³
γ1(f)
2!

σ2τ 3/2 + γ2(f)
3!

σ3τ 2 + 10γ1(f)
2

5!
σ5τ 3

´
(1 +$)


=

10St
√
τ ϕ (d∗∗)

6! (1 +$)
[P6 (d

∗∗)

−
³
γ1(f)
2!

σ2τ 2 + γ2(f)
3!

σ3τ 3/2 + 10γ1(f)
2

5!
σ5τ 5/2

´
(1 +$)

P5 (d
∗∗)


where:

∂d∗∗

∂σ
= −1

σ

"
d∗∗ − σ

√
τ +

γ1(f)
2!

σ2τ + γ2(f)
3!

σ3τ 3/2 + 10γ1(f)
2

5!
σ5τ 5/2

(1 +$)

#

Substituting expression (A.10.13.), (A.10.14.), (A.10.15.), (A.10.16.) in equation (A.10.12.),

factoring out St
√
τϕ (d∗∗) (1 +$)−1 leads to the Vega formula (53) for the Rubinstein (1998)

model.
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Differentiating the Rubinstein equation (A.10.1.) with respect to the skewness we obtain:

∂CR
∂γ1 (f)

=
∂C∗∗

BS

∂γ1 (f)
+Q

00
3 + γ1 (f)

∂Q
00
3

∂γ1 (f)
+ γ2 (f)

∂Q
00
4

∂γ1 (f)
+ 2γ1 (f)Q

00
5 + [γ1 (f)]

2 ∂Q
00
5

∂γ1 (f)

(A.10.17.)

with:

∂C∗∗
BS

∂γ1 (f)
= St

∂Φ (d∗∗)
∂d∗∗

∂d∗∗

∂γ1 (f)
− e−rτK

∂Φ (d∗∗ − σ
√
τ)

∂ (d∗∗ − σ
√
τ)

∂ (d∗∗ − σ
√
τ)

∂γ1 (f)
(A.10.18.)

=
St σ

2τ
³
1 + γ1(f)

6
σ3τ 3/2

´
ϕ (d∗∗)

3! (1 +$)
×
·
−1 + 1

(1 +$)

¸

∂Q
00
3

∂γ1 (f)
=

Stσ
√
τ

3! (1 +$)2

·µ
2σ
√
τ
∂ϕ (d∗∗)
∂d∗∗

(A.10.19.)

× ∂d∗∗

∂γ1 (f)
− ∂d∗∗

∂γ1 (f)
ϕ (d∗∗)− d∗∗

∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂γ1 (f)

¶
× (1 +$)

−
σ3τ 3/2

³
1 + γ1(f)

6
σ3τ 3/2

´
P3 (d

∗∗)ϕ (d∗∗)

3!


=

Stσ
3τ 3/2

³
1 + γ1(f)

6
σ3τ 3/2

´
ϕ (d∗∗) [−P2 (d

∗∗) + σ2τ ]

(3!)2 (1 +$)2

∂Q
00
4

∂γ1 (f)
=

Stσ
√
τ

4! (1 +$)2

·µ
2d∗∗

∂d∗∗

∂γ1 (f)
ϕ (d∗∗) + d∗∗2

∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂γ1 (f)
(A.10.20.)

−3 ∂d∗∗

∂γ1 (f)
σ
√
τϕ (d∗∗)− 3d∗∗σ√τ ∂ϕ (d

∗∗)
∂d∗∗

∂d∗∗

∂γ1 (f)

+3σ2τ
∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂γ1 (f)
− ∂ϕ (d∗∗)

∂d∗∗
∂d∗∗

∂γ1 (f)

¶
× (1 +$)

−
σ3τ 3/2

³
1 + γ1(f)

6
σ3τ 3/2

´
P2(d

∗∗)ϕ (d∗∗)

3!


=

Stσ
3τ 3/2

³
1 + γ1(f)

6
σ3τ 3/2

´
ϕ (d∗∗)P3(d

∗∗)

(3!) (4!) (1 +$)2
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and:

∂Q
00
5

∂γ1 (f)
=

10Stσ
√
τ

6! (1 +$)2

·µ
4d∗∗3

∂d∗∗

∂γ1 (f)
ϕ (d∗∗) + d∗∗4

∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂γ1 (f)
(A.10.21.)

−15d∗∗2σ√τ ∂d∗∗

∂γ1 (f)
ϕ (d∗∗)− 5d∗∗3σ√τ ∂ϕ (d

∗∗)
∂d∗∗

∂d∗∗

∂γ1 (f)
− 12d∗∗

+20d∗∗σ2τ
∂d∗∗

∂γ1 (f)
ϕ (d∗∗) + 10d∗∗2σ2τ

∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂γ1 (f)
ϕ (d∗∗)

−6d∗∗2∂ϕ (d
∗∗)

∂d∗∗
∂d∗∗

∂γ1 (f)
− 10σ3τ 3/2 ∂d∗∗

∂γ1 (f)
ϕ (d∗∗)− 10d∗∗σ3τ 3/2

×∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂γ1 (f)
+ 15σ

√
τ

∂d∗∗

∂γ1 (f)
ϕ (d∗∗) + 15d∗∗σ

√
τ
∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂γ1 (f)

+5σ4τ 2
∂ϕ (d∗∗)
∂d∗∗

∂d∗∗

∂γ1 (f)
− 10σ2τ ∂ϕ (d

∗∗)
∂d∗∗

∂d∗∗

∂γ1 (f)
+ 3

∂ϕ (d∗∗)
∂d∗∗

× ∂d∗∗

∂γ1 (f)

¶
(1 +$)−

σ3τ 3/2
³
1 + γ1(f)

6
σ3τ 3/2

´
ϕ (d∗∗)

3!
P4 (d

∗∗)


= −

10Stσ
3τ 3/2

³
1 + γ1(f)

6
σ3τ 3/2

´
ϕ (d∗∗)

(3!) (6!) (1 +$)2
P5 (d

∗∗)

where: 
∂ϕ(d∗∗)
∂d∗∗ = −d∗∗ ϕ (d∗∗)

∂d∗∗
∂γ1(f)

= −σ2τ
³
1+

γ1(f)
6

σ3τ3/2
´

3!(1+$)

Substituting expression (A.9.18.), (A.9.19.), (A.9.20.) and (A.9.21.) in equation (A.10.17.),

factoring out
n

St σ
3τ 3/2

³
1 + γ1(f)

6
σ3τ 3/2

´
ϕ (d∗∗)

£
3! (1 +$)2

¤−1o
leads to the Khi formula

(54) for the Rubinstein (1998) model.

Differentiating the Rubinstein equation (A.10.1.) with respect to the kurtosis leads to:

∂CR

∂γ2 (f)
=

∂C∗∗
BS

∂γ2 (f)
+ γ1 (f)

∂Q
00
3
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(A.10.22.)

with:
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¸
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Substituting expressions (A.10.23.), (A.10.24.), (A.10.25.) and (A.10.26.) in equation

(A.10.22.), factoring out St σ
4τ 2ϕ (d∗∗)

£
4! (1 +$)2

¤−1
leads to the Psi formula (55) for the

Rubinstein (1998) model.

¥
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Appendix 11

All the following Figures result from simulations considering an at-the-money price of 2250 (FRF), an
annualized implied volatility of 23%, an annualized skewness parameter of -.7, an annualized kurtosis
index of 3.53 and an annualized risk-free rate of 3.41%. These values happen to be approximately the mean
values considering market data and backed-out parameters for the Jarrow-Rudd (1982) model on the
French market on the sample 01/1997-12/1998 for Long Term CAC 40 options (see Capelle-Blancard et al.,
2001-a and 2001-b, for details). The considered option maturity is three months and the moneyness varies
from -.35% to .35 %; with these different values, simulated option prices range from 7 to 511 (FRF)
according to the various models and parameters.

Figure 1: Sensitivities of Option Price to the Excess Moments
for the Jarrow-Rudd (1982) Model
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Figure 2: Sensitivities of Option Price to the Excess Moments
for the Revisited Corrado-Su (1996-c and 1997-c) Model
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Figure 3: Sensitivities of Option Price to the Excess Moments
for the Revisited Rubinstein (1998) Model
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Figure 4: Impacts of Higher Moments on Option Prices
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Figure 5: Implied Density Functions
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Figure 6: Implied Volatility Smile Functions30
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30 Note that no significant difference can be highlighted between Corrado-Su and Rubinstein models for the considered values in the
simulation.
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Figure 7: Effects of Excess Skewness on Implied Volatility Functions
(When the Kurtosis Adjustment Coefficient is Zero)31
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Figure 8: Effects of Excess Kurtosis on Implied Volatility Functions
(When the Skewness Adjustment Coefficient is Zero)32
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31 Note that no significant difference can be highlighted between Corrado-Su and Rubinstein models for the considered values in the
simulation.
32 Note that analytical formulae for Revisited Corrado-Su and Rubinstein models are strictly identical.
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Figure 9: The Deltas33
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33

 Not e t ha t  no signif icant  diff er ence can be hig hl ig ht ed bet w een Bl a ck-Scholes and Ja r r ow -Rudd m odel s a nd bet w een Cor r a do-Su

a nd R ubinst ein model s in t erm of Del t a s f or  t he considered va l ues in t he simul a t ion.

34

 This simulation exhibits some degenerated negative – bu t low – values  of Gamma for the consid ered values  in the simulation. No t e

t ha t  no signif icant  diff er ence ca n be hig hl ig ht ed bet ween Bl a ck -Scholes a nd Ja r r ow-Rudd m odels a nd bet ween Cor r ado-Su a nd
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Figure 11: The Vegas35

Price Sensitivities to Changes in Volatility

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

- 0 . 3 5 - 0 . 2 5 - 0 . 1 5 - 0 . 0 5 0 . 0 5 0 . 1 5 0 . 2 5 0 . 3 5

M o n e y n e s s V e g a

B la c k -S c h o le sJ a rro w -R u d dC o rra d o -S uR u b in s te in Figure812: The Khis36Price Sensitivities to Changes in Skewness-3-2-101
2

-0 .3 5 -0 .2 5 -0 .1 5 -0 .0 5 0 .0 5 0 .1 5 0 .2 5 0 .3 5
M o n e y n e s s K h i

J a rro w -R u d dC o rra d o -S uR u b in s te in                                                35 Note that no significant difference can be highlighted between Corrado-Su and Rubinstein models for the considered values in thesimulation.36 For practical reasons, Jarrow-Rudd Khi parameters have been multiplied by 105 .



85

Figure 13: The Psis37

Price Sensitivities to Changes in Kurtosis
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