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Abstract

Most of those who take macro and monetary policy decisions are
agents. The worst penalty which can be applied to these agents is
to sack them if they are perceived to have failed. To be publicly
sacked as a failure is painful, often severely so, but the pain is finite.
Agents thus have loss functions which are bounded above, in contrast
to the unbounded quadratic loss functions which are usually assumed
for policy analysis. We find a convenient mathematical form for such
a loss function, which we call a bell loss function. We contrast the
different behaviour of agents with quadratic and bell loss functions in
three settings. Firstly we consider an agent seeking to reach multiple
targets subject to linear constraints. Secondly we analyse a simple
dynamic model of inflation with additive uncertainty. In both these
settings certainty equivalence holds for the quadratic, but not the bell
loss function. Thirdly we consider a very simple model with one target
and multiplicative (Brainard) uncertainty. Here certainty equivalence
breaks down for both loss functions. Policy is more conservative than
in the absence of multiplicative uncertainty, but less so with the bell
than the quadratic loss function.
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1 Introduction

Most of those who take macro and monetary policy decisions are agents,
not themselves principals. The government is an agent of the electorate; the
Central Bank is an agent of the government, and through them of the public
more widely. By the same token many, perhaps most, financial decisions are
similarly taken by agents. Bank and fund managers are agents of those that
have committed funds to them.
The thesis of this paper is that insufficient attention has been given to

this fact in analysing the likely behaviour of such decision-making agents, in
particular to the implications for the shape of such an agent’s loss function.
What is the worst penalty, or sanction, that principals can normally apply

to their agent? The standard answer is to sack them, if they are perceived
to have failed. It is feasible to think of applying more severe penalties, as
the scale of failure rises, but this leads to greater difficulties in attracting
high-quality people to act as agents. Be that as it may, we shall assume
that in the present state of affairs the main sanction for failure is dismissal.
To be (publicly) sacked as a failure is painful, often severely so, especially
for agents with previously established reputations, but the pain is finite. As
the likelihood of being sacked approaches unity, with the outcomes deviating
increasingly from the objective agreed with the principal, so the loss function
will become asymptotically equal to this finite loss.
This contrasts sharply with the implications of the standard quadratic

loss function, where the loss increases towards infinity as the outcome differs
from that desired. This has some natural justification in certain physical
cases (e.g. heat, fluid intake) where deviation from the optimum (in either
direction) at some point leads to death. Being removed from office is only
rarely perceived as being on the same plane!
Indeed the main justification usually given for employing a quadratic loss

function, apart from the fact that everyone else does so, is that it is mathe-
matical tractable, and also that, within limits, it may be a reasonably robust
model of reality, (Chadha and Schellekens 1999; for some recent variants, see
Schellekens, 2002 and al-Nowaihi and Stracca, 2001; for a more generalised
critique of quadratic loss functions on behavioural grounds, see Kahneman
and Tversky, 2000). Our purpose here is to suggest an alternative, and more
realistic, loss function for an agent, which has a reasonably simple mathe-
matical formulation, and to examine how agents’ behaviour, with such a loss
function, will differ from that of someone (e.g. a principal) with a quadratic
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loss function.
Principals will (should) normally be able to specify relatively clearly to

their agents what their objectives may be, though even here a multiplicity
of objectives and horizons may complicate matters. But in a world of uncer-
tainty the ‘best’ results in any time period may occur because the agent is
luckier, less risk-averse, cuts legal corners, or for a variety of other reasons
not directly connected with either ‘effort’ or ability. So how do principals
decide when to abandon (sack) their initial choice of agent, and move their
custom (e.g. money or vote) to another, especially given that frictions (e.g.
information linkages; ‘the devil you know is better than the devil that you
do not know’) cause any such moves to be expensive to the principal?
The standard answer is to apply some form of ‘bench-marking’. (See for

example Basak, Shapiro and Teplá, 2002; Basak, Pavlova and Shapiro, 2002;
Jorion, 2000; Teplá, 2001; Chan, Karceski and Lakonishok, 1999; Chevalier
and Ellison, 1997; Fung and Hsieh, 1997, Grossman and Zhou, 1996). That
is the principal compares the results obtained by the agent either to some
absolute, or to some relative, measure of achievement. So long as the agent
remains on the right side of the benchmark, she is regarded as ‘successful’,
and would as a generality expect to be continued in position as agent. Indeed,
an agent who was summarily sacked without proper cause while still being
on the right side of the agreed benchmark would often be able to sue for
unfair dismissal. In contrast the agent that failed to meet the pre-arranged
benchmark by a large margin might not only be sacked, but even face a legal
suit for negligence; the case in the UK in 2001 of Unilever against Mercury
Asset Management was in point. In the monetary field, the establishment
of publicly-announced ranges for the maintenance of inflation is another ex-
ample; the requirement for the UK’s Monetary Policy Committee to write
a letter to the Chancellor when inflation diverges by more than 1% from its
current objective is again a case.
Such benchmarks are inherently somewhat arbitrary. Why, for example,

was the trigger for the Monetary Policy Committee to write a letter set at
1%, rather than say 11

2
%? Historical experience of (absolute and relative)

deviations from the (optimal) target is likely to play a large role, and bench-
marks may well be adjusted in the light of such developing experience. But
even when such benchmarks have been set, it is usually well understood that
they may be broken for reasons that are no ‘fault’ of the agent. In the case
of monetary policya



ment, the manager may have taken a rational, strategic view that the rise
in price of some asset class, e.g. Japanese equities, TMT shares, etc., etc.,
was overdone, and hence be short of that class of assets that was driving the
index up. For whatever reason, an initial, and/or minor, infringement of a
benchmark is usually taken as a trigger for a formal explanation, and dis-
cussion, rather than leading to an immediate dismissal. This is certainly the



At some point the pay-off to the principal is so far from the optimum that
sacking is certain. At that point the loss to the agent (asymptotically) reaches
a maximum, which will usually be finite. Since the agent is concerned with
keeping her (his) job inter-temporally, the starting point for the next play
will usually be the outcome of the current game. So, even though being
within the range of ‘success’ between the benchmark triggers may guarantee
with certainty the agents’ job on the next play, the closer that the outcome
comes to one of the symmetric benchmarks, the greater the likelihood of
(stochastically) triggering the benchmark on the very next play. For example,
if the current rate of (RPIX) inflation in the UK is currently 1.6%, the
likelihood of falling below the trigger of 1.5% next month is much greater
than if the rate of inflation was 21

2
% in the middle of the band.

If we assume a reasonably risk averse agent, then the loss function between
the benchmark triggers, within the region of ‘success’, is convex. But, since
the maximum loss to the agent is, we have argued finite, i.e. loss of position,
then the loss function must eventually flatten out. As the outcomes move
from the region of ‘success’ to the region of ‘failure’, so the loss function
must, logically, pass through a point of inflexion, and the curvature of the
function change from convex to concave.
The mathematical functional form that most closely and simply meets

these desiderata has the functional form 1 − exp (−k(x− a)2). Figure 1
illustrates the curve for a = 0, and k = 1

2
. Mathematically this is closely

related to the bell shaped normal density function 1√
2πσ2

exp
¡− 1

2σ2
(x− µ)2

¢
,

so we call it a bell loss function. Figure 1 plots the quadratic loss function¡
1− exp ¡−1

2

¢¢
x2 and the bell loss function 1−exp ¡−1

2
x2
¢
, which has points

of inflection at 1 and −1. The two functions coincide at x = −1, 0, 1. In the
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Figure 2: The bell loss function 1− exp(−kx2) for k = 1/4, 1/2 and 8.
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2 Attitudes to risk

The key mathematical difference between the quadratic loss function Lq(x) =
(x− a)2 and the bell loss function Lb(x) = 1− exp (−k(x− a)2) is that the
quadratic loss function is convex for all values of x, whereas the bell loss
function is convex for values of x close to a and concave for values of x far
from a (see Figures 1 and 2). The derivative of the quadratic loss function
dLq(x)
dx

= 2 (x− a) increases in size as x moves away from its target a. Thus
with a quadratic loss function the further x is from its target value a, the
larger the gain from moving x towards a. Compare the bell loss function
with first derivative

dLb

dx
= 2k (x− a) exp

¡−k(x− a)2
¢

and second derivative

d2Lb

dx2
=
¡
2k − 4k2 (x− a)2

¢
exp

¡−k(x− a)2
¢
.

The second derivative is positive, so the loss function is convex when the
distance between x and a is less than 1√

2k
; within this region the further x is

from a the greater the gain from moving x towards a. However the second
derivative is negative and the bell loss function is concave, when the distance
between x and a is greater than 1√

2k
; in this case the gain from moving x

towards a becomes smaller as the distance between x and a increases.
This can have major implications for policy. Suppose that there is a very

slight possibility of a major disruption of oil supply, which would push both
inflation and output way outside their target ranges, i.e. x would deviate far
from a. A government with a quadratic loss function would respond to that
slight possibility, perhaps by using taxes to increase the domestic price of
oil in order to maintain oil stocks and encourage the search for substitutes.
With a quadratic loss function the prospective gain in the unlikely event of
a future shock is worth the cost in terms of current output and inflation.
But the resulting self-administered supply side shock might well cause the
government to be regarded as a failure, and voted out of office. With a bell
loss function the prospective gain in the unlikely event of an oil price shock
would be too small to outweigh the current losses from policy measures that
anticipate the shock.
The concavity of the bell loss function once beyond some distance from

the target implies risk-accepting behaviour in certain circumstances. An
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agent with a bell loss function will be willing to take a gamble giving some
probability of hitting the target, and some of missing it by a long way, which
an agent with a quadratic loss function would reject.

3 Targets and Certainty Equivalence

We look at a simple example to gain further insight into the differences
between the behaviour of an agent with a bell loss function, and the behaviour
of an agent with a quadratic loss function. The most important feature of
this example is that the certainty equivalence which holds with a quadratic
loss function breaks down with a bell loss function. In this simple model there
is a manager with a finite amount of resources M trying to hit n different
targets {a1, a2, ...an} . If the manager puts µi resources into meeting the
target i the gap between target and outcome is xi−ai where xi = µi+ei, and
{e1, e2, ...en} are independent normal random variables with mean Eei = 0i
and var ei = σ2i . The manager’s problem is to choose resources {µ1, µ2, ...µn} ,
subject to a constraint

nX
i=1

µi ≤M,

in order to minimize the expectation of either the quadratic loss function

Lq =
nX
i=1

ki (xi − ai)
2

or the bell loss function

Lb = 1− exp
Ã
−

nX
i=1

ki (xi − ai)
2

!
.

The loss functions are symmetric; overshooting a target is as bad as un-
dershooting. We could tell stories about why managers might be penalized
in this way, e.g. for wasting resources. We are not completely convinced
by these stories; even if there are penalties for overshooting we think loss
functions may well not be symmetric. However assuming symmetry makes
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the mathematics much simpler; which is why symmetric loss functions are so
widely used in the literature.
Firstly consider the case with no uncertainty. In this case it makes

no difference whether the loss function is bell or quadratic, because Lb =
1− exp (−Lq) which is a strictly increasing function of Lq. If

Pn
j=1 aj ≤M

and there is no uncertainty the manager is in the happy position of being
able to meet all the targets simultaneously by setting µi = xi = ai for all i
making both loss functions zero. If

Pn
j=1 aj > M it is impossible to meet all

the targets. Minimising
Pn

i=1 ki (µi − ai)
2 subject to

Pn
j=1 µj ≤ M is easily

solved using standard Lagrangian techniques. The Lagrangian is

L = −
nX
i=1

ki (µi − ai)
2 + λ

Ã
M −

nX
i=1

µi

!

the first order conditions −2ki (µi − ai)− λ = 0 imply that

µi = ai − 1
2
λk−1i .

Assuming that the constraint is satisfied as an equality gives

nX
j=1

µj =
nX

j=1

aj − 1
2
λ

nX
j=1

k−1j =M,

so 1
2
λ =

³Pn
j=1 aj −M

´
/
³Pn

j=1 k
−1
j

´
and the solution is

µi = ai − k−1iPn
j=1 k

−1
j

Ã
nX

j=1

aj −M

!
.

There is a shortfall on every target, the size of the shortfall ai − µi is pro-
portional to the gap

Pn
j=1 aj −M between the resources

Pn
j=1 aj needed to

meet all the targets and the resources available M. The constant of propor-
tionality for target i k−1iPn

j=1 k
−1
j

depends inversely upon the weight ki given to

the target in the objective. The shortfall is largest for the targets with the
lowest weight ki.
We now consider the case with uncertainty. Our assumption that xi =

µi + ei Eei = 0i and var ei = σ2i implies that E (xi − ai)
2 = (µi − ai)

2 + σ2i .
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With the quadratic loss function the objective becomes

ELq = E

Ã
nX
i=1

ki (xi − ai)
2

!
=

nX
i=1

ki
£
(µi − ai)

2 + σ2i
¤
,

which is minimised by choosing {µ1, µ2, ...µn} to minimise
Pn

i=1 ki (µi − ai)
2.

This is mathematically the same problem as we solved for the certainty case.
The solution is to set µi = ai if

Pn
j=1 aj ≤ M, the total resources available

and set

µi = ai − k−1iPn
j=1 k

−1
j

Ã
nX

j=1

aj −M

!
(1)

if
Pn

j=1 aj > M. This is an example of the well known phenomenon of cer-
tainty equivalence. The solutions to optimization problems with quadratic
objective functions of random variables with linear constraints are the same
as the solution to the same problem with the random variables replaced by
their mean. However the bell loss function does not give certainty equiva-
lence. The result which makes the bell loss function tractable is Proposition
1, which we prove in the appendix.

Proposition 1 If x is normally distributed with mean µ and variance σ2

and k and a are real numbers

E
£
exp (−k(x− a)2)

¤
=

1√
1 + 2kσ2

exp

Ã
−k (µ− a)2

1 + 2kσ2

!
.

Given our assumptions that {x1, x2, ...xn} are normally distributed and
independent, but not identically distributed, Exi = µi and varxi = σ2i , this
implies that

ELb = 1− E exp

Ã
−

nX
i=1

ki (xi − ai)
2

!

= 1−Πn
i=1

Ã
1p

1 + 2kiσ2i
exp

Ã
−ki (µi − ai)

2

1 + 2kiσ2i

!!

= 1−
Ã
Πn
i=1

1p
1 + 2kiσ2i

!
exp

Ã
−

nX
i=1

¡
k−1i + 2σ2i

¢−1
(µi − ai)

2

!
.
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Thus the solution minimises
Pn

i=1

¡
k−1i + 2σ2i

¢−1
(µi − ai)

2 subject to the re-
source constraint

Pn
i=1 µi ≤ M. This is mathematically the same problem

as before with ki replaced by
¡
k−1i + 2σ2i

¢−1
. The solution is to set µi = ai

i = 1, 2..n if
Pn

j=1 aj ≤M, and if
Pn

j=1 aj > M

µi = ai − k−1i + 2σ2iPn
j=1

¡
k−1j + 2σ2j

¢ Ã nX
j=1

aj −M

!
. (2)

Contrast the policy function for the quadratic loss function (equation 1) and
the bell loss function (equation 2). In both cases the shortfall ai−µi between
the target ai and the expected value µi of xi is proportional to the overall
shortfall

Pn
j=1 aj −M. With the quadratic loss function there is certainty

equivalence, the coefficient k−1iPn
j=1 k

−1
j

depends only on the weights {ki} in the
loss function. With the bell loss function there is no certainty equivalence,
the coefficient k−1i +2σ2iPn

j=1(k
−1
j +2σ2j)

now depends both on the weights {ki} and the
variances {σ2i } . There is a large shortfall for targets with small weights ki
and large variances σ2i , so considerable uncertainty about whether the target
will be met even if resources are provided.
In the quadratic case only the relative sizes of {k1, k2, ...kn} matter; with-

out loss of generality we can assume that
Pn

i=1 ki = 1. In the bell case both
the relative and absolute values of {k1, k2, ...kn} matter. Let K =

Pn
i=1 k



4 Inflation Targeting

We now turn to a very simple dynamic model of inflation,

xt = −β (it − πt) + ut (3)

πt+1 = αxt + πt + et+1

where xt is the output gap, it the interest rate, and πt the inflation rate.
We assume that the disturbance terms ut and et+1 are uncorrelated normal
random variables with zero mean, and no serial correlation; varut = σ2u and
var et+1 = σ2e. We consider a quadratic loss function

EtLq
t = Et

∞X
τ=0

δτ
£
a (πt+τ − π∗)2 + bx2t+τ

¤
and a bell loss function

EtLb
t = Et

(
1− exp

"
−

∞X
τ=0

δτ
¡
a (πt+τ − π∗)2 + bx2t+τ

¢#)
.

We prove propositions 2 and 3 in the appendix using dynamic program-
ming.

Proposition 2 The optimal policy interest rate policy at date t with the
quadratic loss function minimises

Et

£
a (πt − π∗)2 + bx2t + δcq (πt+1 − π∗)2

¤
and is implemented by setting

it = πt +mq (πt − π∗) (4)

where

mq =
αδcq

β (b+ δcqα2)

13



and cq is the unique positive root of the equation

c = a+
bδc

b+ δcα2
. (5)

The optimal policy rule 4 depends upon the weights a and b given to output
and inflation only through the ratio a/b. In the policy rule given by equation
4 the real interest rate it − πt is proportional to the deviation of inflation
from target πt − π∗.



There is no certainty equivalence with the bell loss function; the variance
of the disturbance term in the inflation equation σ2e affects the value the
solution of 7 cb, and the policy rule 6. As with the quadratic loss function
the optimal policy rule with a bell loss function makes the real interest rate
it − πt proportional to the gap between actual and target inflation πt − π∗.
The constant of proportionality mb depends upon the parameters α and β of
the inflation and output equations, the weights a and b given to output and
inflation and the variance σ2e. Someone observing policy without knowing
the policy weights would not be able to tell whether it stemmed from a
quadratic or bell loss function. Agents, for example politicians in office and
fund managers, are often accused of being myopic becuase of a wish to remain
in office. In this section we have demopnstrated why this follows formally
from the inherent nature of their loss function.

5 Multiplicative (Brainard) Uncertainty

Up to now we have looked at situations where uncertainty is additive, policy
choices affect the mean, but not the variances of random variables. However
if β is a random variable in equation 3, uncertainty is multiplicative, both
mean and variance being affected by the interest rate (Brainard 1967). This
makes the problemmuch less tractable; we cannot solve for the value function
in the dynamic programming problem and characterise the optimal policy as
we can with solely additive uncertainty. We can however say something
about a simpler problem. Consider the simplest case of multiplicative un-
certainty, minimising either the expected quadratic loss Lq = (βx+ u− α)2

or the expected bell loss Lb = 1−exp ¡−k (βx+ u− α)2
¢
where x is a policy

variable, and β and u are independent normal variables, Eβ = βo, varβ = σ2β,
Eu = 0, varu = σ2u. Firstly consider the quadratic loss function.

ELq = x2
¡
β20 + σ2β

¢− 2αβ0x+ α2 + σ2u,

which is minimised by setting x = αβ0

(β20+σ2β)
. If there is no uncertainty, σ2β =

0, and x = α
β0
, as σ2β tends to infinity x tends to 0. The policy is more

conservative than in the absence of multiplicative uncertainty, that is closer
to the value of x (in this case 0) which minimises uncertainty.
Now consider the bell loss function. From proposition 1 in the appendix
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ELb = 1− 1p
1 + 2k var (βx+ u)

exp

Ã
−k (E (βx+ u)− α)2

1 + 2k var (βx+ u)

!

= 1− 1q
1 + 2k

¡
σ2βx

2 + σ2u
¢ exp

Ã
− k (β0x− α)2

1 + 2k
¡
σ2βx

2 + σ2u
¢! , (8)

we have been able to prove

Proposition 4 If α/β0 > 0 the optimal policy x∗ lies in the interval
³

αβ0
σ2β+β

2
0
, α
β0

´
,

is decreasing in σ2u and increasing in k; 0 < αβ0
σ2β+β

2
0
< limk→∞ x∗ < α

β0
If

α/β0 < 0, x∗ lies in the interval
³

α
β0
, αβ0
σ2β+β

2
0

´
, is increasing in σ2u and de-

creasing in k; 0 > αβ0
σ2β+β

2
0
> limk→∞ x∗ > α

β0
. In either case

lim
k→0

x∗ = lim
σ2u→∞

x∗ =
αβ0

σ2β + β20

and

lim
σ2β→0

x∗ =
α

β0
.

The optimal policy with multiplicative uncertainty and a quadratic loss
function is x∗ = αβ0

σ2β+β
2
0
. This is a compromise between the most conservative

policy x∗ = 0, which eliminates the effects of multiplicative uncertainty, and
the policy x∗ = α

β0
which would be optimal in the absence of multiplicative

uncertainty when σ2β = 0. Proposition 4 establishes that the optimal policy
with a bell loss function lies between the quadratic loss policy x∗ = αβ0

σ2β+β
2
0

which is optimal with multiplicative uncertainty, and the policy x∗ = α
β0

which would be optimal in the absence of of multiplicative uncertainty. As
k increases from zero towards infinity the optimal policy moves from αβ0

σ2β+β
2
0

towards α
β0
; but contrary to our original intuition it is bounded away from

α
β0
. Policy with a bell loss function and multiplicative uncertainty is to

some degree conservative, but less so than with a quadratic loss function.
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Figure 3: The expected loss function ELb =

E
©
1− exp ¡−k (βx+ u− α)2

¢ª
= 1− 1q

1+2k(σ2βx2+σ2u)
exp

µ
− k(β0x−α)2
1+2k(σ2βx2+σ2u)

¶
with σ2β = σ2u = α = β0 = 1, plotted as a function of the policy variable x
for different values of k.
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Figure 3 illustrates this point, showing the value of the expected loss 1 −
1q

1+2k(σ2βx2+σ2u)
exp

µ
− k(β0x−α)2
1+2k(σ2βx2+σ2u)

¶
, for different values of x∗ and k, with

σ2β = σ2u = α = β0 = 1. The higher the value of k the greater the loss for
all values of x, and the higher the loss minimising policy, which is, however,
always less than than α

β0
= 1.

In summary, a bell loss function can, at one extreme, when k = 0, mimic a
quadratic loss function; not surprisingly, therefore, under these circumstances
the optimal policy under multiplicative uncertainty remains the same in both
cases. As k increases, the width of the convex range (of success) narrows.
Since, outside that range, one might as well be hung for a sheep as a lamb, so
policy in conditions of multiplicative uncertainty becomes more aggressive,
less conservative, than under a quadratic loss function. We had, at one
stage, thought that as k became infinitely large, i.e. that the region of success
became restricted to a point, that policy would just aim to hit that one point,
ignoring multiplicative uncertainty altogether. In practice, however, there is
always sufficient curvature in the relationships to trade-off some variance
against some chance of hitting the mean, i.e. the optimal policy is bounded
away from α/β0.

6 Conclusion

We set out to compare policy making behaviour with a bell loss function and a
conventional quadratic loss function. The most important difference is that
certainty equivalence no longer holds with a bell loss function, even with
additive uncertainty. In the two linear examples we studied behaviour with
the policy rules have the same linear functional form with both loss functions,
but the weights differ with the bell loss function and depend on variances.
Brainard uncertainty is much less tractable with a bell loss function; in even
the simplest case the optimal policy is characterised by a cubic equation.
However we were able to show that in this case a bell loss function and
Brainard uncertainty makes for conservative policy, although not as much so
as with a quadratic loss function.
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A Appendix.

A.1 Proof of Proposition 1

We are evaluating

E exp
¡−k (x− a)2

¢
=

1√
2πσ2

Z +∞

−∞
exp

Ã
−k (x− a)2 − (x− µ)2

2σ2

!
dx.

Expanding and then completing the square implies that

k (x− a)2 +
(x− µ)2

2σ2

=
1

2σ2
£¡
1 + 2kσ2

¢
x2 − 2 ¡µ+ 2kaσ2¢x+ µ2 + 2kσ2a2

¤
=

1

2σ2

"¡
1 + 2kσ2

¢µ
x− µ+ 2kaσ2

1 + 2kσ2

¶2
+ µ2 + 2kσ2a2 − (µ+ 2kaσ

2)
2

1 + 2kσ2

#

=

"
(1 + 2kσ2)

2σ2

µ
x− µ+ 2kaσ2

1 + 2kσ2

¶2
+

k (µ− a)2

1 + 2kσ2

#
so

E exp
¡−k (x− a)2

¢
=

1√
2πσ2

exp

Ã
−k (µ− a)2

1 + 2kσ2

!Z +∞

−∞
exp

Ã
−(x− bµ)2

2bσ2
!
dx

where bµ = µ+2kaσ2

1+2kσ2
and bσ2 = σ2

1+2kσ2
. But as 1√

2πbσ2 exp
³
− (x−bµ)2

2bσ2
´
is a normal

density function

1√
2πbσ2

Z +∞

−∞
exp

Ã
−(x− bµ)2

2bσ2
!
dx = 1.
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Hence

E exp
¡−k (x− a)2

¢
=

√
2πbσ2√
2πσ2

exp

Ã
−k (µ− a)2

1 + 2kσ2

!

=
1√

1 + 2kσ2
exp

Ã
−k (µ− a)2

1 + 2kσ2

!
.

A.2 Proof of Proposition 2

We are seeking to solve the dynamic programming problem of minimising
the expectation of

Lq
t = Et

∞X
τ=0

δτ
£
a (πt+τ − π∗)2 + bx2t+τ

¤
by choosing the interest rate it+τ at dates t+ τ when

xt = −β (it − πt) + ut

and

πt+1 = αxt + πt + et+1.

We conjecture that the value function is of the form v (πt) = c (πt − π∗)2+ d
in which case the Bellman equation is satisfied if there are numbers c and d
with c ≥ 0 such that

c (πt − π∗)2 + d

= min
it

E
£
a (πt − π∗)2 + bx2t + δ

¡
c (πt+1 − π∗)2 + d

¢¤
= min

it
E
£
a (πt − π∗)2 + bx2t + δ

¡
c (αxt + πt − π∗ + et+1)

2 + d
¢¤

= min
it

E
£
a (πt − π∗)2 +

¡
b+ δcα2

¢
x2t + 2αδcxt (πt − π∗) + δc (πt − π∗)2 + δcσ2e + δd

¤
= min

it

£¡
b+ δcα2

¢ ¡
β2 (it − πt)

2 + σ2u
¢− 2αδcβ (it − πt) (πt − π∗)

¤
+a (πt − π∗)2 + δc (πt − π∗)2 + δcσ2e + δd.

Differentiating with respect to it to get the minimum implies that the optimal
policy satisfies

it = πt +mq (πt − π∗) (A1)
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where

mq =
αδc

β (b+ δcα2)

and

c (πt − π∗)2 + d

= − α2δ2c2

(b+ δcα2)
(πt − π∗)2 + a (πt − π∗)2 + δc (πt − π∗)2

+
¡
b+ δcα2

¢
σ2u + δcσ2e + δd.

Our conjecture holds and the Bellman equation is satisfied if left hand and
right hand sides of this expression are the same function of πt, that is provided
the coefficients of (πt − π∗)2 are the same so

c = a− α2δ2c2

(b+ δcα2)
+ δc

or equivalently

c = a+
bδc

(b+ δcα2)
(A2)

and

d =
¡
b+ δcα2

¢
σ2u + δcσ2e + δd.

or equivalently

d =
(b+ δcα2)σ2u + δcσ2e

1− δ
.

Equation A2 can be written as

f q (a, b, c) = (c− a)
¡
b+ δcα2

¢− bδc = 0.

Considering f q (a, b, c) as a function of c it is quadratic with a positive coef-
ficient on c2 whilst f q (a, b, 0) = −ab < 0 if a and b are both positive. Then
there is a unique positive root cq and ∂f q/∂c > 0 when c = cq. We have
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indeed got a solution to the Bellman equation. The optimal policy is given
by A1 where

mq =
αδcq

β (b+ δcqα2)
(A3)

and cq is the unique positive root of (c− a) (b+ δcα2)− bδc = 0.
As f q (a, b, c) is homogeneous of degree 2 in (a, b, c) if f q (a, b, c) = 0 then

f q (λa, λb, λc) = 0, so the root cq is homogeneous of degree 1 in (a, b) . Then
equation A3 implies that the coefficient mq of the policy response of the real
interest rate to deviations of inflation from its target value is homogeneous of
degree 0 in (a, b) , only the ratio of the weights a/b matters to policy. When
a = 0 so no weight is given to inflation c = 0 solves f q (a, b, c) = 0,mq = 0, the
optimal policy is to set it = πt so the real interest rate is zero which minimises
the output gap. When b = 0 no weight is given to output, the optimal policy
response has mq = 1

αβ
, so it − πt =

1
αβ
(πt − π∗) which makes expected

inflation at t + 1 equal to the target π∗. We now show that a/b increases
from zero to infinity the coefficient mq increases, interest rate policy becomes
more aggressive. As only the ratio a/b matters this can be done by showing
that mq is an increasing function of a. As ∂cq/∂a = − (∂f q/∂a) / (∂f q/∂c)
at c = cq, and we have already argued that ∂f q/∂c > 0 when c = cq, it is
enough to show that ∂f q/∂a = − (b+ δcα2) < 0.

A.3 Proof of Proposition 3

We are seeking to solve the dynamic programming problem of minimising
the expectation of

EtLb
t = 1−Et exp

Ã
−

∞X
τ=0

δτ
£
a (πt+τ − π∗)2 + bx2t+τ

¤!

by choosing the interest rate it+τ at dates t+ τ when

xt = −β (it − πt) + ut

and

πt+1 = αxt + πt + et+1.
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We conjecture that the value function is of the form v (πt) = 1−exp
¡−c (πt − π∗)2 − d

¢
in which case the Bellman equation is satisfied if

exp
¡−c (πt − π∗)2 − d

¢
= max

it
E
£
exp

¡−a (πt − π∗)2 − bx2t − δ
¡
c (πt+1 − π∗)2 + d

¢¢¤
= max

it
E
£
exp

¡−a (πt − π∗)2 − bx2t − δc (αxt + πt − π∗ + et+1)
2 − δd

¢¤
which from Proposition 1 is equal to

max
it

1p
1 + 2δcσ2e

E [exp (−Z)]

where

Z = a (πt − π∗)2 + bx2t +
bδc (αxt + πt − π∗)2 + δd

and bδ = δ

1 + 2δcσ2e
. (A4)

Since xt = −β (it − πt) + ut the expression Z can be written as

Z = a (πt − π∗)2 +
³
b+ bδcα2´x2t + 2αbδcxt (πt − π∗) + bδc (πt − π∗)2 + δd

=
³
b+ bδcα2´

−β (it − πt) + ut +
αbδc (πt − π∗)³
b+ bδcα2´

2

− α2bδ2c2 (πt − π∗)2³
b+ bδcα2´

+a (πt − π∗)2 + bδc (πt − π∗)2 + δd.

From Proposition 1

E exp (−Z) = 1r
1 + 2

³
b+ bδcα2´σ2u exp (−Y )

where

Y =

³
b+ bδcα2´

1 + 2
³
b+ bδcα2´σ2u

−β (it − πt) +
αbδc (πt − π∗)³
b+ bδcα2´

2

−α
2bδ2c2 (πt − π∗)2³

b+ bδcα2´ + a (πt − π∗)2 + bδc (πt − π∗)2 + δd.
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The optimal interest rate policy minimises Y by setting

it = πt +mb (πt − π∗) (A5)

where

mb =
αbδc

β
³
b+ bδcα2´

implying that

Y = −α
2bδ2c2 (πt − π∗)2³

b+ bδcα2´ + a (πt − π∗)2 + bδc (πt − π∗)2 + δd

so the Bellman equation is satisfied if

exp
¡−c (πt − π∗)2 − d

¢
= max

it

1p
1 + 2δcσ2e

E [exp (−Z)]

=
1r³

1 + 2
³
b+ bδcα2´σ2u´ (1 + 2δcσ2e) exp (−Y ) .

Equating coefficients of (πt − π∗)2 implies

c = a− α2bδ2c2³
b+ bδcα2´ + bδc (A6)

or equivalently

c = a+
bbδc³

b+ bδcα2´
whilst equating the other terms

exp (−d) = 1r³
1 + 2

³
b+ bδcα2´σ2u´ (1 + 2δcσ2e) exp (−δd) . (A7)
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Using A4 equation A2 can be written as

c = a+
bbδc³

b+ cbδα2´ = a+
bδc

b (1 + 2δcσ2e) + cδα2

or

f (a, b, c) = (c− a)
¡
b
¡
1 + 2δcσ2e

¢
+ δcα2

¢− bδc = 0.

Considered as a quadratic function of c has a positive coefficient on c2 whilst
if c = 0 f = −ab < 0 if a and b are both positive, in which case there is a
unique positive root cb. Equations A4 and A7 imply

d =
1

2 (1− δ)

·
ln

µ
1 + 2

µ
b+

δcα2

1 + 2δcσ2e

¶
σ2e

¶
+ ln

¡
1 + 2δcσ2e

¢¸
Our conjecture is satisfied, we have a solution to the Bellman equation. From
A1 the optimal policy at t can be written as

it = πt +mb (πt − π∗)

where

mb =
αδcb

β (b (1 + 2δcbσ2e) + δcbα2)
(A8)

and cb is the unique positive root of (c− a) (b (1 + 2δcσ2e) + δcα2)− bδc = 0.
The optimal policy minimises the expectation of

exp
£− ¡a (πt − π∗)2 + bx2t + δcb (πt+1 − π∗)2

¢¤
.

When a = 0 so no weight is given to inflation c = 0 solves f b (a, b, c) = 0,
mb = 0, the optimal policy is to set it = πt so the real interest rate is zero
which minimises the output gap. When b = 0 no weight is given to output,
the optimal policy response has mb = 1

αβ
, so it − πt =

1
αβ
(πt − π∗) which

makes expected inflation at t+1 equal to the target π∗. In both these polar
cases the optimal policy is the same with the bell and the quadratic loss
functions. For all other cases the policy differs.
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The last step in the proof is establishing that less weight is given to the
future with bell loss function, that is cb < cq and mb < mq. Given the
definition of cq as the positive root of

fq (c) = (c− a)
¡
b+ δcα2

¢− bδc = 0

cq − a > 0 and

(cq − a)
¡
b+ δcqα2

¢− bδcq = 0

so subtracting this expression from fb (c
q) = (cq − a) (b (1 + 2δcqσ2e) + δcqα2)−

bδcq implies that

fb (c
q) = 2δcqσ2e (c

q − a) > 0.

As fb (c) is a quadratic, with fb (0) < 0 and a positive coefficient on c2 this
implies that cq > cb. From A8

mb =
αδcb

β (b (1 + 2δcbσ2e) + δcbα2)
<

αδcb

β (b+ δcbα2)
<

αδcq

β (b+ δcqα2)
= mq

since αδc
β(b+δcα2)

is an increasing function of c. Hence mb < mq interest rate
policy with a bell loss function is less aggressive than with the corresponding
quadratic loss function.

A.4 Proof of Proposition 4

If αβ0 is positive and x is negative replacing x by −x does not change x2
and increases (β0x− α)2 so increases the expected loss, thus the optimal x
is non-negative A similar argument implies that if αβ0 < 0 the optimal x is
non-positive. Assume temporarily that αβ0 is positive. From equation 8

ELb = 1− 1q
1 + 2k

¡
σ2βx

2 + σ2u
¢ exp

Ã
− k (β0x− α)2

1 + 2k
¡
σ2βx

2 + σ2u
¢! .

∂ELb

∂x
=

2k¡
1 + 2k

¡
x2σ2β + σ2u

¢¢5/2 exp
Ã
− k (β0x− α)2

1 + 2k
¡
x2σ2β + σ2u

¢! f (x) (A9)
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where

f (x) =
¡
1 + 2kσ2u + 2kσ

2
βx

2
¢ ¡

x
¡
σ2β + β20

¢− αβ0
¢− 2xk (β0x− α)2 σ2β.

(A10)

The first two terms on the right hand side of A9 are strictly positive, so the
stationary points are the roots of the cubic function f (x) . When x = αβ0

σ2β+β
2
0

f (x) is negative, and when x = α
β0

f (x) is positive, so by continuity there is

at least one positive root in the interval
³

αβ0
σ2β+β

2
0
, α
β0

´
. Let bx be the largest

positive root. Expanding f (x) gives

f (x) = −αβ0 − 2kσ2uαβ0 + x
¡
σ2β + β20 + 2kσ

2
uσ

2
β + 2kσ

2
uβ

2
0 − 2kσ2βα2

¢
+2kσ2βx

2αβ0 + 2kσ
4
βx

3. (A11)

implying that

∂2f (x)

∂x2
= 4kσ2βαβ0 + 12kσ

4
βx

which is positive for positive x. Hence f (x) is a convex function for positive
x. From 9 f (0) = −αβ0 which is by our temporary assumption negative.
For any x in the interval (0, bx) convexity of f implies that

f (x) = f
³xbxbx+ ³1− xbx´ 0´ ≤ xbxf (bx) + ³1− xbx´ f (0)

=
xbx0 + ³1− xbx´ f (0) < 0

so f (x) cannot have any roots in the interval (0, bx) . As we assumed that bx
is the largest positive roots, and there cannot be any smaller positive roots,bx must be the unique positive root of f (x) = 0. We have argued that given
our temporary assumption that αβ0 is positive, the optimal policy is positive;

we have also argued that there is a root in the interval
³

αβ0
σ2β+β

2
0
, α
β0

´
, so this

root must be the optimal policy. Use notation x∗ for the optimal policy. As
f
³

αβ0
σ2β+β

2
0

´
< 0, and f

³
α
β0

´
> 0, fx (x

∗) > 0. Thus as

∂x∗

∂k
= −fk (x

∗)
fx (x∗)
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∂x∗
∂k
has the opposite sign to fk (x∗) . From A10

f (x) =
¡
x
¡
σ2β + β20

¢− αβ0
¢
+ 2kg (x) (A12)

where

g (x) =
¡
σ2u + σ2βx

2
¢ ¡

x
¡
σ2β + β20

¢− αβ0
¢− x (β0x− α)2 σ2β. (A13)

As x∗ > αβ0
σ2β+β

2
0
the term x∗

¡
σ2β + β20

¢−αβ > 0, thus from A12, as f (x∗) = 0,

g (x∗) < 0. But A12 and A13 also imply that fk (x∗) = 2g (x∗) . Thus
fk (x

∗) < 0, and so ∂x∗
∂k

> 0, the optimal policy is an increasing function of
k. A similar argument implies that ∂x∗

∂σ2β
is opposite in sign to fσ2 (x∗) . From

A12 and A13 fσ2 (x∗) =
¡
x∗
¡
σ2β + β20

¢− αβ
¢
> 0, so the optimal policy is a

decreasing function of σ2β.
To get the limits as k tends to 0, note that the first order condition with

k = 0 is x
¡
σ2β + β20

¢ − αβ = 0. As we have shown that the optimal policy
x∗ is increasing in k and bounded above by α/β0, x

∗ must tend to a finite
limit as k tends to infinity. At this limit the first order condition becomes
g (x) = 0. Note from A13 that g (α/β0) > 0, so the upper limit is strictly less
than α/β0. Finally note that as σ

2
β tends to zero, so the Brainard uncertainty

disappears, the interval
³

αβ0
σ2β+β

2
0
, α
β0

´
and thus the optimal policy collapses to

the point α/β0.
Now suppose that contrary to our temporary assumption αβ0. As (β0x− α)2 =

(β0 (−x)− (−α))2 and (−x)2 = x2, we can consider −x as the policy vari-
able, and note that −αβ0 is positive. Then everything we have proved about
x and α applies to −x and −α, in particular the limiting arguments hold,
and increasing functions become decreasing functions.
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