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Abstract

Markets reacted strongly to the World Trade Center attacks both in Europe and in the
United States. The extent of this crisis was difficult to assess at the time, underlining the
need for a specific tool to measure the magnitude of financial crises. A first measure was
recently proposed and applied to the foreign exchange market by Zumbach et al (2000-a
and 2000-b). Their measure relies on an analogy with geophysics; the related Index of
Market Shocks (IMS) that we propose here is also the counterpart of the Richter scale
used for earthquakes. We apply this measure on the French and the American stock
markets to put recent market events into perspective. The crisis triggered by the
September attacks was actually the worst since 1987, and the 9th when compared to major
historical ones.
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How Deep was the September 2001 Stock Market Crisis?
Putting Recent Events on the American and French Markets

into Perspective with an Index of Market Shocks

An Index of Market Shock (IMS) that is easily readable and computable is
proposed by the authors to assess the gravity of a financial crisis and to put
market events into perspectives.

tock markets reacted strongly to the World Trade Center attacks both in Europe
and in the United States. As information reached the market, indexes fluctuated
widely, displaying large swings, often within the same day.  The extent of this
crisis was difficult to assess at the time, emphasizing once more the need for an

accurate measure of turbulence on the financial markets. Widely-used scales exist in
other fields to quantify event or shock strengths. Familiar examples are the Richter scale
in geophysics (Richter, 1958) - which measures the intensity of earthquakes, the Beaufort
scale in sailing - which measures the strength of winds and the condition of the sea, the
International Nuclear Event Scale (INES) - that sums up the on- and off-site impact of a
nuclear incident, the Saffir-Simpson Hurricane Scale – gauging a hurricane's current
intensity… These examples emphasize the advantage of having a simple and intuitive
measure in case of crisis for precautionary purposes. A comprehensive and accurate
measure of market turbulence would likewise greatly benefit regulatory authorities,
clearing firms and risk managers who are primarily concerned with the risk associated
with extreme events and the use of capital to limit risk.

Accordingly, the main goal of this note is to provide a catastrophic scale to
quantify the extent of financial crises following the approach first introduced by
Zumbach et al  (2000-a). An appealing measure should be easily interpretable,
computable from market data and should encompass traditional measures of risk.
Moreover, it should be theoretically sound and compatible with empirical stylized facts
as well as economic features of financial markets - in particular the heterogeneity of
economic agents’ horizons, the strongly time-varying nature of volatility, known
microstructure biases and inaccuracy of measures, and the usual distributional
assumptions regarding return and volatility.

Traditional quantities such as daily historical volatility, implied volatility from
options or tail indexes do not permit to accurately distinguish between normal and
turbulent behaviour since we know that, in the latter case, they do not account for some
of the properties of financial returns such as volatility clustering, leverage effect, increase
in correlation coefficients. Moreover, those quantities do not offer a direct measure of the
probability of occurrence of an event, and there is no universally accepted measure of the
seriousness of crises, in order to assess them in real time, rank them, and put them into
perspective.

The measurements of volatility traditionally used on the market are not well-
suited to apprehend risk in all its dimensions, since they do not take into account the
variability of the amplitude and the duration of crises - from a few hours to several
months. Our measure is designed to deal with the heterogeneity of market participants
by integrating the variability of their horizons of observation and decision. In fact, this
indicator is none over than the analogue of the Richter scale used in geophysics. We
propose an assessment of the September 2001 crisis compared to earlier crashes that
marked the financial history. More precisely, we describe the method used to compute
the proposed Index of Market Shock (IMS hereafter), highlighting how the differences in
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context with the original definition given by Zumbach et al (2000-a and 2000-b) lead to
differences in design. After assessing the adequacy of the IMS, we measure the level of
the recent crisis on the American and the French stock markets using samples with
complementary characteristics. We then compare our diagnosis with the traditional
measures of risk, focusing on the differences rather than on the common elements.

The Index of Market Shocks (IMS) and Its Empirical Validation
Following Zumbach et al (2000-a and 2000-b), we propose a measure integrating

the horizons of the various types of operators. Some are day traders, others observe the
variations between two closing prices while those having a longer horizon focus on
trends. The definition of a crisis should thus not depend on the periodicity of the
observations, since significant movements are undetectable at low frequencies. The
indicator proposed here is therefore based on a multidimensional approach of risk. It
offers several advantages over commonly used single statistics. First, standard measures
of risk, such as empirical volatility or maximum drawdown (see Dacorogna et al, 2001 and
Johansen and Sornette, 2001), are nested in our indicator. By dealing with all return
frequencies, the IMS indeed encompasses traditional (daily or close-to-close) volatility,
the minimum return (which is at some frequency the maximum drawdown on the
observation window), the negative returns as in the semi-volatility case and the VaR
since the whole density is included. In the worst possible case where additional
frequencies do not carry any information, the indicator is a rescaled standard measure. It
should then be preferred to the traditional measures since by construction it incorporates
all sources of risk. Second, as highlighted by Drost and Nijman (1993) in the case of weak
GARCH processes, financial return properties are not identical when measured at
different scales: returns become homoskedastic and Gaussian at a sufficiently low
frequency. The choice of the optimal scheme of observations is then of importance when
estimating models with market data (see Andersen and Bollerslev, 1998-b and Gerhard
and Hautsch, 2002); dealing with all scales in the data is a possible answer. In fact, most
single measures are known to be either biased or inaccurate because of microstructure
effects (see Corsi et al, 2001). The multi-frequency approach extracts relevant information
from each frequency - corresponding to different economic agents’ horizons - and thus
yields a denoised risk estimate. Third, the relations between scales have been shown to
play an important role in the explanation of return distributions, notably in the volatility
cascade hypothesis (Muzy et al, 2000). Fourth, the importance of path dependence in a
definition of a coherent risk measure has been underlined by Artzner et al (1999); a multi-
scale measure of risk incorporates all possible nodes of any decision tree since by
definition it takes into account all historical paths.

The basis for the construction of the index are the recent studies showing that the
empirical variance of returns is log-normally distributed (see Andersen et al, 2001)
irrespective of the scale of observation. Accordingly, for each measurement of the IMS,
we compute the variances of returns from the finest scale (high-frequency) to the
coarsest, and interpret it as the realization of a multi-dimensional random variable1. For
example, in the case of high-frequency data, we compute daily variances using returns
ranging from ten minutes to close-to-close.

These empirical variances are naturally correlated depending on the sampling
frequency selected. In order to avoid biases, we choose to extract the factors underlying

                                                
1 On our samples, the findings of Anderson et al (2001) regarding log-normality of empirical volatilities are
confirmed by the usual normality tests (Jarque-Bera and Goodness-of-fit tests) at a 5% threshold.
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the variance time series by a Principal Component Analysis2. Since variances are
lognormal, the decomposition of log-variances yields normal and independent factors.
Combining probabilities of observing each factor (weighted by their relative importance)
at each point in time yields the probability of observing the corresponding configuration
of the set of variances.

The Richter scale is an increasing function of the total energy dissipated during
an earthquake, and can be written as:









≅

)(
1ln1
Ep

Rt δ
where )(Ep  stands for the probability of exceeding the total energy E and δ  is a scaling
factor.
To transpose this relation to financial markets, we need to define the arguments of this
functional relation. The energy of a system is traditionally measured by the squared
speed multiplied by mass. The speed, being the distance divided by time, corresponds in
our framework to relative price changes per time unit (namely the returns). Thus the
equivalent of energy will be the volatility (or squared price changes), and the Richter
scale becomes:
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where tv  is the aggregated volatility (or a volatility vector in our case) and p(.) its
corresponding probability.
The measure of volatility at all scales can be written as a multinormal vector, thus
yielding:
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where { })(ˆ),...,(ˆ max1 tt τσσ  stands for the vector of volatilities at all scales. These volatilities
are computed at different frequencies for each period with the classical definition of
variance, that is the average of squared deviations from the mean.

We can now reduce the information carried in the volatility vector using PCA to
recover the factors driving volatilities3. To ease interpretation and reading, we choose to
use a base 2 logarithm, and then the IMS at time t reads:
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where kα  is the contribution of the k-th factor, denoted kfac , to the total variance of
volatilities and F(.) is the Gaussian cumulative distribution function.
Thus, increasing the index by one point corresponds to a market condition twice less
likely, and the value of one theoretically corresponds to the median state of the market
such that 50% of the observations lie below.

                                                
2 PCA of volatility time series has been already applied by Alexander (2001) on implied volatilities with
different maturities.
3 We do not use the kernel approach of Zumbach et al (2000-a and 2000-b) to compute an aggregate
volatility. Unlike Zumbach et al (2000-a and 2000-b) measure, ours is not continuous and each value of the
IMS uses only data that belongs to the period measured. The drawback of our approach is that the different
scales contain redundant information pertaining to the same events and that the lowest frequency of
analysis is limited to the frequency of IMS updating; the advantages are that there is no overlap between
consecutive measures, no need for seasonal adjustments and that we do not have to specify an arbitrary
smoothing (kernel) method in scale or time-space.
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The ex post validation of the scale confirms that empirical frequencies of the various
values of the index are close to their theoretical frequencies (see Figure 1). Although the
fit between the theoretical distribution and the empirical distribution is not perfect, the
largest discrepancies between both functions occur for small IMS values (which are out
the scope of this analysis)4. For the highest quantiles (90% and more), corresponding to
values of the index of crisis higher than 3, both distributions coincide.

Figure 1: Empirical Distribution of the Indexes of Market Shocks (IMS)
Compared to their Theoretical Distributions
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Source: Euronext and Economagic, computations from authors. Period: 1995-2002 with intra-
day data for the CAC and 1896-2002 with daily data for the Dow Jones Index.

Putting Recent Events into Perspective
The analysis of the high-frequency data was carried out on the French CAC 40

Index, which comprises the forty leading companies on the Paris stock market weighted
by capitalization, with a quote every thirty seconds. For practical considerations, we
sample the data every ten minutes and compute nineteen daily variances from ten minute
to close-to-close. Two factors are needed to take into account the full volatility structure
of the high frequency CAC (together they explain more than 75 % of the variance).
Over the whole period 1995-20025, the most turbulent days were observed last September
according to the IMS. In fact, the two most critical days were September the 11th and 12th;
two days where the US market was suspended. This crisis is approximately 3 points
above the crisis of October 1998 on our scale; in other words it is eight times less likely or
so.

To better appraise the situation, it is necessary to use data spanning a long period,
thus covering many crises. The Dow Jones Index is available at a daily frequency since

                                                
4 The Kolmogorov-Smirnov goodness-of-fit test rejects (at the 10% level) the identity of theoretical and
empirical distributions on the full sample. At the 10% level, the maximum discrepancy between the
distributions tolerated by the test is 3% or so. This happens for an IMS under 1 on the CAC40 and 3 on the
DJI. Thus, for at least the upper 10% of the samples (over 120 points in both cases), the distributions are
close. This inadequacy for small turbulences is also found on the original application of the Richter scale in
geophysics.
5 The samples for the CAC 40 index and the DJI end on the 25th of January 2002.
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1896. We then build a monthly IMS by sampling returns from a daily to a monthly basis
by two-days  increments until we reach the monthly squared return. In the case of the
daily Dow Jones Index, we evaluate monthly IMS using nine frequencies.

In the monthly IMS one factor explains more than 80% of the total variance. In
both cases, there is a common volatility component, with an added high-frequency
volatility component on the CAC data6.

For the Dow Jones Index series, the ranking of monthly market turbulence by the
IMS and each of the volatilities indicates that the IMS incorporates mainly information
present in the highest frequencies (daily to weekly for the Dow Jones Index), while the
low-frequency volatilities appear noisy7. By contrast, using this time the intra-day data on
the CAC40, the correlations between IMS and each volatility are lower and none of the
volatilities contains exactly the same information as the IMS8.

Figure 2: Evolution of the IMS on the CAC40 Index
over 1995-2002 (daily measurements)
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The market events of September 2001 no longer correspond to the most significant
perturbations of the sample, but only to the biggest since 1987. It ranks as the 28th

greatest shocks since 1896 when comparing the monthly IMS values. However, many
disturbances correspond to the same crisis, as they occur closely in time. To take this
into account, we cluster together the consecutive periods with a high IMS value. The

                                                
6 The other possibility would be the computation the probability of the full volatility vector by a Monte-
Carlo integration of the multi-normal cumulative density function.  The ranking of crises, while very close
(Spearman correlation coefficient of .95) is not strictly identical (significantly different at the 5% threshold).
We choose to use the  PCA because it is both faster and less arbitrary since it does not depend on the
choice of the scaling grid.
7 Spearman rank correlations between the IMS and its volatility components range from 0.94 (P-stat for
equal ranking is 2.5%) for the monthly volatility computed at the daily scale to 0.3 for the squared monthly
return (P-stat for equal ranking is 0.0%).
8 Spearman rank correlations range from 0.87 to 0.39, leading in all cases to the rejection of identity
between IMS and volatility rankings.
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threshold used to decide whether the IMS is high is 3, chosen roughly as the last decile of
the empirical cumulative density function9, as well as a point where the empirical and
theoretical functions coincide (see Figure 1 above).
When grouping consecutive periods with high IMS, the current crisis is now ranked
ninth in one century (see Table 1 below). Note that periods with high IMS initially
correspond to market downturns even if subsequent recoveries can bring the index close
to its starting level. This is in accordance with classical results about the tail asymmetry
of return distribution.

Figure 3: Evolution of the IMS on the Dow Jones Index
over 1896-2002 (monthly measurements)
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A close examination of  the volatility vector for the month of September indicates
that all frequencies equally contribute to the high level of the IMS, except for the monthly
close volatility that is lower. The shock was spread over most market participants within
our frame of reference, from very-short to medium term operators. Extending the
horizons considered in the IMS to up to 6 months (thus computing only 2 values of the
IMS per year) yields the same conclusion: most market participants strongly reacted to
the shock.

On the French market (see Table 2 above), the largest crises over the period have
a duration of 1 to 14 days. Amongst them, we can identify the Asian crisis (Summer 1997),
the Russian turbulence (Fall 1998), the spread of the Brazilian crisis (early 1999), the burst
of the NASDAQ bubble (Spring 2000), the turmoil following the collapse of Argentinean
public debt (Spring 2001) and finally the consequences of the World Trade Center attack
(Fall 2001). Regarding the last event, the crisis lasted 14 days (with an IMS higher than 3)
starting from the 6th - the attacks on the 11th  shocked indeed a market already strongly

                                                
9 Changing slightly the threshold does not change the ranking of the crises. The effect of a lowering of the
threshold is to lengthen the crises by joining several into one. For instance, comparing the same crises with
a threshold of 2 instead of 3 leads to a 40% increase in their length (a decrease of 1 of the threshold leads by
construction to an overall twofold increase of the number of observations above the threshold).
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volatile - with a quieter day on the 13th (where the IMS fell slightly below 3). The values of
the IMS over October and the first days of November - if they still correspond to our ad
hoc definition of a crisis - were no longer among the highest in the sample.

Table 1: Ranking the First 10 Crashes with the IMS
(US market since 1896)

Crisis # Crisis starts in Crisis ends in Maximum IMS
over the period

Crisis duration
(in months)

1. Oct-87 Feb-88 15.68 4
2. Oct-29 Jan-30 13.12 3
3. May-31 Jan-34 11.41 32
4. Dec-1899 Jan-00 9.71 1
5. May-40 Jul-40 8.77 2
6. Sep-37 Feb-38 8.33 5
7. Jun-1896 Dec-1896 7.19 6
8. Jun-30 Jan-31 7.13 7
9. Sep-01 Oct-01 7.00 1
10. Dec-28 Jan-29 6.85 1

Source: Economagic, computations by the authors. Period 1896-2002, daily data.

Table 2: Ranking the First 10 Crashes with the IMS
(Paris Market since 1995)

Crisis # Crisis starts in Crisis ends in Maximum IMS
over the period

Crisis duration
(in business days)

1. 09/06/01 09/27/01 15.34 14
2. 09/21/98 10/09/98 12.31 14
3. 01/13/99 01/18/99 8.41 3
4. 05/28/97 05/29/97 8.19 1
5. 08/28/98 09/02/98 7.94 3
6. 03/14/01 03/15/01 7.82 1
7. 04/05/00 04/6/00 7.75 1
8. 09/17/98 09/18/98 7.71 1
9. 06/2/97 06/03/97 6.70 1
10. 04/30/98 05/04/98 6.33 1

Source: Euronext, computations by the authors. Period 1995-2002, intra-day data.

An analysis of the principal components making up the IMS shows that the first
factor explains the full extent of the last crisis; the level of the second factor remaining
normal and carrying little information in this case. Thus there was no complementary
high-frequency element added to the common trend during the peak of the crisis.

Finally, the September turbulence on the French and American markets share
some characteristics: this crisis was the deepest since 1995, but the market recovery was
relatively quick (the crisis did not go beyond October in both markets). The decision to
close the US market might have limited the extent of the crisis, since on the French
market the peak of the crisis occurred on the 12th of September while the US market was
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closed (during the days of market closure, the mean IMS on the French market was 10
corresponding to a probability of 0.1%).

Previous results have shown that the IMS was not reducible to one of its
components. To complement the analysis, we focus in the next section on the
comparison between the IMS assessments of risk and those of several traditional
measures of risk.

Dissimilarities with Traditional Measures of Risk
The IMS should encompass traditional measures of risk, but the use of additional

frequencies in a multivariate probabilistic framework allows for improvements in the
assessment of risk.

Table 3 presents the Spearman and Pearson correlation coefficients corresponding
to competing measures on the US market since 1896 based on daily data, whilst Table 4
gives theses coefficients for the French market since 1995 using intra-day data.
The four measures that we compare to the IMS are the maximum drawdown - that is by
definition the maximum loss an investor could suffer over the period, the realized
volatility corresponding to the empirical variance over the period of the highest frequency
returns, the squared close-to-close return and the volatility forecast given by the
RiskMetrics procedure (see Classic RiskMetrics, J-P Morgan/Reuters, 1996).
The IMS is highly correlated with realized volatility, negatively correlated with maximum
drawdown, and weakly correlated with the two other volatility proxies (Squared Return
and Canonical RiskMetrics estimate). At the 5% threshold, none of the measures is either
independent or perfectly correlated, meaning that each responds to market turbulence
similarly but does not capture the same component of a crisis at the same time.

The strong correlation between the monthly IMS and the realized volatility (the
variance of the daily returns of that month) is explained by the fact that the PCA
decomposition of the variance vector on the US market yields only one principal
component that accounts for most of the daily variance, the rest being noise. With the
daily Paris IMS, the strongest correlation is found with the maximum drawdown,
meaning that the intra-day turbulence determine the value of the IMS.
In both cases, the RiskMetrics forecast is more correlated with the realized volatility than
with the squared return, in accordance with the previous findings by Andersen and
Bollerslev (1998-a) about GARCH forecasting power: dynamic volatility models yield
poor forecasts of instantaneous volatility (squared returns), but relatively accurate ones of
the realized volatility (integrated high-frequency squared returns).
Table 5 below illustrates the differences in the magnitude of the crises, as measured by
the different criteria. Sorting observations on the French market by decreasing IMS, we
compute here 5 different probabilities associated to each event. By construction, the
IMS-based probability is simply IMS−2 . The probability of observing a given maximum
drawdown is estimated by fitting an extreme distribution (in this case the Frechet
distribution10) to the series of maximum drawdowns. The other columns correspond to
the value of the Gaussian distribution for the observed close-to-close returns, using three
different variances: the high-frequency estimate of the realized volatility, the global
variance of the close-to-close returns and the RiskMetrics forecast.

                                                
10 The choice of Frechet as the limit distribution of extreme returns is documented for instance in Jansen
and de Vries (1991) or Longin (1996); see Johansen and Sornette (2001) for an alternative.
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Table 3: Correlation Coefficients between Measures of Risk
(US market since 1896)

Spearman [Pearson] Coefficients

IMS Maximum
Drawdown

Realized
Volatility

Squared
Return

Canonical
RiskMetrics

IMS 1.00
[1.00]

-0.71
[-0.79]

0.94
[0.96]

0.27
[0.51]

0.30
[0.50]

Maximum
Drawdown

-0.71
[-0.79]

1.00
[1.00]

-0.71
[-0.8]

-0.68
[-0.83]

-0.21
[-0.36]

Realized
Volatility

0.94
[0.96]

-0.71
[-0.8]

1.00
[1.00]

0.29
[0.54]

0.32
[0.50]

Squared
Return

0.27
[0.51]

-0.68
[-0.83]

0.29
[0.54]

1.00
[1.00]

0.07
[0.22]

Canonical
RiskMetrics

0.30
[0.50]

-0.21
[-0.36]

0.32
[0.5]

0.07
[0.22]

1.00
[1.00]

Source: Economagic, computations by the authors. Period 1896-2002, daily data.

Table 4: Correlation Coefficients between Measures of Risk
(Paris Market since 1995)

Spearman [Pearson] Coefficients

IMS Maximum
Drawdown

Realized
Volatility

Squared
Return

Canonical
RiskMetrics

IMS 1.00
[1.00]

-0.83
[-0.87]

0.69
[0.78]

0.39
[0.45]

0.49
[0.49]

Maximum
Drawdown

-0.83
[-0.87]

1.00
[1.00]

-0.70
[-0.76]

-0.46
[-0.56]

-0.49
[0,49]

Realized
Volatility

0.69
[0.78]

-0.70
[-0.76]

1.00
[1.00]

0.30
[0.38]

0.70
[0.68]

Squared
Return

0.39
[0.45]

-0.46
[-0.56]

0.30
[0.38]

1.00
[1.00]

0.20
[0.27]

Canonical
RiskMetrics

0.49
[0.49]

-0.49
[-0.48]

0.70
[0.68]

0.20
[0.27]

1.00
[1.00]

Source: Euronext, computations by the authors. Period 1995-2002, intra-day data.

Table 5: Comparison of Probabilities assigned to the Most Turbulent Days
by the IMS and Different Risk Measures

(Paris Market since 1995)

Dates IMS Maximum
Drawdown

Realized
Volatility

Global
Variance

Canonical
RiskMetrics

1. 09/12/2001 0.002% 0.208% 64.293% 82.728% 80.102%

2. 09/11/2001 0.006% 0.028% 3.005% 0.000% 0.000%

3. 09/21/2001 0.007% 0.101% 22.878% 4.085% 10.786%

4. 10/02/1998 0.020% 0.472% 49.801% 49.517% 50.724%

5. 10/01/1998 0.099% 1.903% 1.811% 0.007% 0.278%

Source: Euronext, computations by the authors. Period 1995-2002, intra-day data
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The most turbulent day according to the IMS corresponds to a close-to-close change of
+1.13 %, and thus is unremarkable by low-frequency measures. Moreover, the Gaussian
with low-frequency variance, whether using traditional or RiskMetrics definitions, proves
unable to cope with extreme events. The realized volatility measure may on the contrary
overestimate the daily volatility in those cases, as seen from the example of the 11th of
September 2001. Traditional measures based on close-to-close returns miss important
intra-day turbulence, and either underestimate the frequency of extreme close-to-close
events or overestimate it in the realized volatility case.

The maximum drawdown, by contrast, seems to yield reasonable estimates,
whereas the IMS  might slightly underestimate the extreme probabilities. The lowest
probability according to the Frechet distribution of maximum drawdowns is 0.028% on
September 11th, translating into a probability of 37% of observing such an event in a 1692
day sample (under the simplifying hypothesis of i.i.d. returns). For the same event, the
IMS yields a 0.002% probability that only has a 4% chance of being observed for that
sample size. Thus the accuracy of the IMS appears inferior in the most extreme cases.

Figure 4 represents the estimated quantiles of the IMS and the corresponding
Frechet quantiles for each observation. Globally, the two measures, while close in many
cases, are not identical. In the extreme cases (bottom left of Figure 4), the relation is
slightly asymmetric: low probability IMS values correspond to low probability
drawdowns, but low probability drawdowns can be associated with a relatively large
range of IMS probabilities (up to 40 %). This likely corresponds to localized drops in
prices within otherwise quiet days that do not match the traditional definition of
turbulence. Such price patterns do not correspond to strong variability in agents’
anticipations, have no lasting consequences and should not be singled out by the crash
indicator.

Figure 5 compares the IMS with the implied volatility backed out from option
market prices11. Unlike the previous measures, this one is not computed from the same
market data and relies on different assumptions. Both indicators - corresponding to the
spot and the option markets - are seemingly related - especially when strong turbulence
happen - but do not lead to the same ranking in terms of crisis assessment. Large crises
are detected in both cases but, like in the drawdown case, large ISD values can
correspond to a range of IMS measures (an ISD higher than 35%  can correspond to IMS
values from 4 to 15).

All measures converge when market turbulence is generalized, but not all
perturbations are detected by traditional measures. Specifically, the daily IMS is strongly
linked to measures that incorporate intra-day information, that we believe important to
assess the extent of crises. When these indicators signal crises, the IMS still displays a
variety of values, meaning it can permit to draw finer distinctions between events. Unlike
most measures, the IMS allows for plausible estimation of the probability of shocks, even
if the accuracy of extreme events estimation can be refined by specific techniques.

                                                
11 These statistics are provided since 01/2000 by DatastreamTM and correspond to the inverted Black-
Scholes formula for at-the-money options (on the French CAC 40 index for the shortest maturity) traded on
the same business day.
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Figure 4: Q-Q Plot of IMS versus Maximum Drawdown
(Paris Market since 1995)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
IMS Quantile

D
ra

w
n-

D
ow

n 
Q

ua
nt

ile

Source: Euronext, computations by the authors. Period 1995-2002, intra-day data

Figure 5: Plot of IMS versus ISD
(Paris Market since 2000)
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Conclusion
The main goal of the paper was to develop and apply a simple measure of risk for

the purpose of historical comparisons. The Index of Market Shocks presented here fulfills
the requirements of a universal risk measure: it is easily computable and interpretable,
provides a satisfactory quantitative assessment, encompasses traditional risk approaches
and has an intuitive economic interpretation. The underlying method is a counterpart of
the widely-used Richter Scale and the statistical assumptions are compatible with
theoretical representations of return dynamics and well-known stylized facts. The IMS
empirically scales close to the theoretical prediction for large events, it yields
probabilities of observing risk conditions by filtering the noise and redundant
information in each of the frequencies it includes and provides a better appraisal of the
main factor(s) of risk.

The application shows that the September 2001 events in New York caused a
major crisis - far more significant in France than the Asian and Russian crises were.  We
nevertheless see  from the US market data that these turbulence are not of the same order
of magnitude than the historical crises of October 1987 and October 1929. If we interpret
the scale strictly, the crisis of 1987 would be 400 times less likely than the last one. More
generally, while our index seems to indicate that the amplitude of turbulence increases
since 1995, the long term American data does not confirm this observation since the IMS
on the Dow Jones Index does not have a higher level now on average.

The applications of the IMS on two samples having different characteristics (daily
data and long sample period, high-frequency data and short sample period) lead to
similar interpretations, in particular with respect to the amplitude of the September 2001
crisis. The robustness of the indicator should allow for natural extensions as a risk scale
on single stocks or stock portfolios. Thus, it should be of primary interest for investors,
risk managers and regulators.
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