Speculative Attacks and Financial Architecture:
Experimental Analysis of Coordination Games

with Public and Private Information”

Frank Heinemann®, Rosemarie Nagel® and Peter Ockenfels®

First version 7. August 2001. This version 5.7.2002

Abstract

Speculative Attacks can be modeled as a coordination game with multiple equilibria if the state of the
economy is common knowledge. With private information there is a unique equilibrium. This raises
the question whether public information may be destabilizing by allowing for self-fulfilling beliefs.
We present an experiment that imitates a speculative attacks model and compare sessions with public
and private information. In both treatments subjects use so-called threshold strategies that lie in
between the risk dominant and payoff dominant equilibrium of the underlying complete information
game. Our evidence suggests that there are no destabilizing effects due to public information. In
contrary, predictability of attacks is slightly higher with public than with private information, but prior
probability of attacks is also higher with public information. We also test the predictive power of
refinement theories to explain actual behavior and reactions to parameter changes.

Keywords: Coordination game, global game, payoff dominance, private information, public
information, risk dominance, strategic uncertainty, supermodular game.

JEL codes: C72, C 91, E 58.

" We want to thank Werner Giith, Stephen Morris and Hyun Shin for stimulating comments, Dorte
Doémeland, Isabel Godde and various colleges at Goethe-Universitat Frankfurt for helpful discussions
on statistical procedures and tests. All errors remain our own responsibility. We are indebted to Urs
Fischbacher for his fabulous software package z-Tree that we used for our experiments and to Martin
Menner for helping to organize the sessions in Barcelona. Finally, we thank students at Goethe-
Universitdt Frankfurt and Universitat Pompeu Fabra in Barcelona for their participation in our
experiments. Financial support by the Volkswagen Foundation and the Landeszentralbank Hessen is
gratefully acknowledged. Frank Heinemann acknowledges financial support by the TMR network on
“Financial Market Efficiency and Economic Efficiency”. Rosemarie Nagel acknowledges financial
support of Spain’s Ministry of Education under grant PB98-1076.

@ Ludwig-Maximilians-Universitat Minchen.

® Universitat Pompeu Fabra, Barcelona.

¢ Goethe-Universitat Frankfurt am Main.



1. Introduction

Transparency and the optimal way to disclose central bank information are among the main topics
within the current discussion on financial architecture. Speculative attacks and market overreactions
are often interpreted as evidence for systemic indeterminacy and instability. Recent theories attribute
these instabilities to self-fulfilling beliefs caused by public information and suggest that stability can
be increased by more sophisticated schemes of information disclosure. In this paper we present an
experiment designed to test these theories.

Obstfeld (1996) models speculative attacks as a coordination game with strategic complementarities
and common knowledge (public information) about fundamentals among traders. The expected payoff
to speculating on devaluation depends positively on the amount of capital that follows the same
strategy: A central bank pegs the exchange rate of its currency to some other currency or currency
basket. A realignment is associated with fixed costs. Economic decisions by private agents depend on
their expectations about future exchange rates. Agents who expect a devaluation sell the currency, they
“attack” as we say. This increases supply and thereby raises costs for the central bank to maintain the
peg. If a sufficient number of traders expects a devaluation, market pressure may raise costs of
maintaining the peg above the costs of realignment. Here, the central bank devaluates its currency and
traders’ expectations are correct. If traders expect the exchange rate to hold, they do not sell the
currency. Market pressure is lower and the rate can be sustained as expected. The model has multiple
equilibria with self-fulfilling beliefs and attacks are unpredictable.

Applying the global games approach of Carlsson and van Damme (1993a,b), Morris and Shin (1998,
1999) have shown that there may be a unique equilibrium if traders have private instead of public
information on the reactions of the central bank." A global game embeds a coordination game with
strategic complementarities in a stochastic environment, where the true game is selected randomly out
of a class of possible games with differences in the payoff function. Players get private signals on the
true game, but lack knowledge of other players’ signals. Private information lets different traders hold
different beliefs about payoffs and reduces the degree of common knowledge that is responsible for
multiplicity of equilibria. Morris and Shin (1999) and Hellwig (2000) observed, when agents get both,
public and private information, uniqueness requires private information to be sufficiently precise
compared to public information. This has triggered a discussion on optimal mechanisms to release

information to financial markets in order to prevent crises with self-fulfilling features.

Applications of global games have been used to explain speculative attacks (Morris and Shin, 1998),
bank runs (Goldstein and Pauzner, 2002), liquidity crises (Morris and Shin, 2001; Hubert and Schifer,
2001) and competition for order flow (Donges and Heinemann, 2001). One line of theoretical research
concentrates on the impact that different modes of releasing information have on uniqueness versus
multiplicity of equilibria and thereby on stability of financial markets. Heinemann and Illing (1999)
showed that the probability of speculative attacks is reduced when precision of private information is
increased. Metz (2001) observed that precisions of public and private information may have opposing

effects on the probability of crises. While policy makers often claim that a more transparent policy

' Public information is a statement that is common knowledge among players. A statement is private information
to a player, if others do not know the information of this player.
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increases financial stability’, these results raise doubts by academic researchers who emphasize the
endogeneity of default risks and the sensitivity with respect to the modes of information disclosure
(Danielson et al. 2001).

In this paper we present an experiment that imitates the game structure of the speculative attack
models by Obstfeld (1996) and Morris and Shin (1998). We compare sessions with public and private
information. In all sessions, subjects used threshold strategies, i.e. attacked whenever the fundamental
state or signal was beyond some critical state or signal. These critical values were surprisingly stable
within a session and their variance across sessions was the same for both information conditions. Our
evidence suggests that there is no difference in predictability that could be related to self-fulfilling
features of the game with public information. For practical purposes, the interpretation of multiple

equilibria as an indication of a destabilizing effect of public information is not warranted.

The main differences in behavior between the two treatments are that with public information, subjects
rapidly coordinated on thresholds, attacked more successfully and achieved higher payoffs than with
private information. In the model’s interpretation this means that a commitment to provide public
information increases the prior probability of devaluation. We conclude that transparency of the
central bank may increase the probability of speculative attacks, and it does not reduce their

predictability.

We also use the experiment to test the predictive power of various refinement concepts. In the game
with public information, different refinement criteria select different critical states (thresholds) beyond
which attacks occur. In all sessions with public information we observe that subjects coordinated on
thresholds somewhere between those associated with payoff dominant equilibrium and global game
solution. Observed thresholds are never close to the one associated with maximin strategies. Using
treatments with different parameters, we observe that thresholds depend on parameters of the payoff
function as is predicted by comparative statics of the risk dominant equilibrium and by the theory of
global games, even though we can reject their numerical predictions. In sessions with public
information, observed strategies can be explained by independent beliefs on other subjects attacking
with a given (estimated) probability.

Previous experiments on coordination games with strategic complementarities carried out by Van
Huyck, Battaglio and Beil (1990, 1991) have shown that with perfect information subjects coordinate
rather quickly on an equilibrium between maximin strategies and payoff dominant equilibrium.
Efficiency depends on group size and experience. While groups of two players coordinate on the
payoff dominant equilibrium even in unfavorable set-ups, groups of 14 to 16 players reach the payoff
dominant equilibrium only after experiencing efficient coordination in other treatments. Cabrales,
Nagel and Armenter (2002) tested the global game approach by Carlson and Van Damme (1993a)
comparing treatments with either common (=public) or private information about payoffs. They found
no significant difference in behavior between the two information scenarios. In both cases subjects
converged to the equilibrium of the private information game, which (in their experiment) coincides

with maximin strategies and with the risk dominant equilibrium.

Section 2 of this paper explains the speculative attacks model that underlies our experiment. Section 3
lays out the experimental design. Section 4 derives theoretical predictions for the game used in our

experiment. In Sections 5 to 7 we lay out results of the experiment. Section 5 demonstrates the

* See BIS (2001) for a recent call for more transparency in order to avoid banking crises.
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evolution of threshold strategies. Section 6 shows that with public information speculative attacks are
more likely, but there is no evidence for attacks being less predictable. In Section 7 we test the
predictive power of various equilibrium refinements. Section 8 compares our results with previous

experiments and concludes the paper.

2. Speculative Attacks as a Coordination Game

Speculative attacks on a currency peg can be modeled as a coordination game with strategic
complementarities as in Obstfeld (1996). He shows that the existence of multiple equilibria depends
on underlying fundamentals which are public information: If the fundamental state of the economy is
really bad, a devaluation is inevitable, even if nobody attacks. If the shadow exchange rate is far below
the peg, maintaining the peg is associated with an unsustainable outflow of reserves. In that case, there
is a unique equilibrium in which all agents expect devaluation and sell the currency. If fundamentals
are sound, there is not enough capital around to enforce a devaluation, or the peg is so close to the
shadow rate that maximal rewards from a speculative attack are too small to cover transaction costs.
Here, it is irrational to attack. It is only in intermediate situations, in which beliefs may be self-

fulfilling and thus multiple equilibria exist.

Morris and Shin (1998) use a reduced version of this model to show that there is a unique equilibrium
if there is private information on the fundamental state of the economy. They consider a game in
which an infinite number of small traders i [0,1] can decide whether to attack or not. The

fundamental state is denoted by &. If the proportion of attacking traders exceeds a hurdle function
a(0), the attack is successful and each attacking trader receives a reward R(8)—T . Otherwise,
attacking agents loose transactions costs 7. Assuming @'>0 and R'<0, larger @ is interpreted
as a better state of the economy. Morris and Shin assume that fundamental state € has a uniform
distribution with sufficiently large support. Traders get private signals x' that are random with
independent uniform conditional distribution in [ — £,8 + €], where &£ is sufficiently small. Now,
each trader expects other traders to receive higher or lower signals than her own with equal
probability. Common knowledge of the state is replaced by an equilibrium condition, at which agents
compare expected returns from successful attack, weighted with the probability of success, with
transaction costs that they have to pay with certainty. Heinemann (2000) has shown that these
thresholds converge to the unique solution of (1—-a(8)) R(B) =T for € — 0. The limit point for
diminishing variance of private signals 9; is independent from other assumptions on the probability
distributions (Frankel, Morris and Pauzner, 2000). For 2-player games limit point 5; follows the

intuition of risk dominance, introduced by Harsanyi and Selten (1988).> As Morris and Shin (2000)
point out, 6?0* is characterized by some kind of Laplacian beliefs: It is the optimal threshold of a trader

who beliefs that the proportion of other traders who choose to attack has a uniform distribution in
[0,1]. Henceforce, we refer to threshold 9; as the ‘Laplacian belief equilibrium’ of the game with

common knowledge.

3 With decreasing variance of signals, the equilibrium of the private information game converges to the risk
dominant equilibrium for 2-player games, but not for general games with more than two players (Carlsson and
van Damme, 1993a,b).



Another, naive way to define Laplacian beliefs in this game is to assume that each player believes
other traders to attack independently with probability %. In a game with infinitely many agents this
leads each player to expect that exactly half of all agents attack. Hence an attack is expected to be
successful if and only if a(d)<1/2. A best reply to such beliefs is to attack if and only if

€ <min {5, a”'(1/2)}. We refer to this point as the ‘naive Laplacian belief equilibrium’

In our experiment, we avoided any connotation that might be associated with “speculation” or
“attacking”. Therefore, we asked subjects to choose between two actions A and B. In order to avoid
negative payoffs, Action A was introduced as secure alternative, yielding a positive and constant
payoff that may be interpreted as avoided costs of a speculative attack T . Action B was the risky
action, yielding a payoff of Y, if the number of subjects choosing B exceeds a hurdle function
a(Y) with a'< 0, and zero otherwise. Thus, we reversed the order of states, higher Y being worse
states of the economy in which subjects might gain higher payoffs. This reversal was done to ease
subjects’ understanding of the game.

3. Experimental Design

Sessions were run at a PC pool in the economics department at the University of Frankfurt and in the
LEEX at Universitat Pompeu Fabra, Barcelona, from November 2000 until June 2001. In Frankfurt we
announced our experiment by e-mail to all students with an e-mail account at the department of
business and economics and via leaflets and posters at various places in the university. In order to
participate, students replied by e-mail or phone. In Barcelona students were notified via posters within
the university and signed up on a list at the door of the laboratory. In both places, most of the
participants were business and economics undergraduates. The procedure during the sessions was kept
the same throughout all sessions at both places, besides the languages (German and Spanish,
respectively). All sessions were computerized, using a program done with z-tree (Fischbacher, 1999).
Students were seated in a random order at PCs. Instructions (see Appendix A) were then read aloud
and questions were answered in private. Throughout the sessions students were not allowed to

communicate and could not see others’ screens.

We ran 13 sessions with common information (CI) and 12 sessions with private information (PI), see
Table 1). In each session there were 15 participants. For two sessions with CI we re-invited subjects
with experience in previous sessions. In total, 345 students participated.

Each session consisted of two stages of 8 independent rounds each. In each round all subjects had to
decide between two alternatives A and B for 10 independent situations. For each situation, a state Y,
the same for all subjects, was randomly selected from a uniform distribution in the interval [10, 90]. In
sessions with CI, players were informed about Y. In sessions with PI, each subject received a private
signal, independently and randomly drawn from a uniform distribution in the interval [ Y — 10, Y +
10 ]. Asking for 10 situations in one round we are able to infer more easily the reasoning process of

the subjects. We did not order the states or signals in order not to induce so-called threshold strategies.

The payoff for alternative A was T with certainty. The two stages of each session differed by

parameter T. In half of all sessions we started with T=20 and switched to T=50 in the second stage
and vice versa for the other half. The payoff for B was Y, if at least a(¥Y)=1580-Y)/Z
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subjects chose B, zero otherwise. The formula was written in the instructions, but also explained with

an example and a table (see Appendix A). In four sessions we applied Z=100, in the others Z=60.

All parameters of the game and the rules were common information except for drawn states Y and

private signals in the PI sessions. Table 1 gives an overview of the different sessions.

Experienc

Number of sessions with

Z Secure payoff T Location Public information Private
ed . information
subjects

100 Irst stage 20 /2™ stage 50 | Frankfurt No 1 1

100 50 / 20 Frankfurt No 1 1

60 20 / 50 Frankfurt No 1 2

60 20 / 50 Barcelona No 3 3

60 50 / 20 Frankfurt No 2 2

60 50 / 20 Barcelona No 3 3

60 20 / 50 Frankfurt Yes 1

60 50 / 20 Frankfurt Yes 1

Total number of sessions 13 12

Table 1. Session overview.

Figure 1 shows a sample screen of a subject in a session with private information during the decision
phase. For each period, the secure payoff T was always shown on top of the screen. The left column
displayed the signals (called “hint numbers”) in the PI condition or states Y in the CI condition (where




Once all players had completed their decisions in one round, they were informed for each situation
about their own private signal (in Pl-sessions), about Y (true value), their choice, how many people
had chosen B, whether the decision B was successful or not, their individual payoffs and the
cumulative payoff over all 10 situations (see Figure 2). After all players had left the information
screen a new period started and information of previous periods could not be revisited.* Subjects were

allowed to take notes and many of them did.

Figure 2. Sample screen for information phase of a session with private information, English

translation.

At the end of each session participants had to write in a questionnaire (via computer) their personal

data, respond to four questions



4. Theoretical Predictions

In this section we describe theoretical predictions for the public (CI) and private information (PI)
games, given the parameters used in the experiment. Thereby, we derive solutions of the speculative
attacks model for a finite number of traders ». Figure 3 shows the hurdle to success of action B and
the associated payoffs.

number of B-players

A a(Y) hurdle to success of action B (=attack)
1
N
: >
1
1
1
payoffs : Y = payoff to B in case of success
A |
1
1
1
1
1
1
1
1
1
' T = payoff to A
T . ! bay

I 1

1 1

1 1

1 1

— |
T Y state Y

no attack | multiple equilibria attack

Figure 3. The speculative attack game. If at least a(Y) traders attack (choose option B), the attacking
traders receive a payoff Y. Otherwise they get 0. If a trader does not attack (chooses option A), she
gets T.

If state ¥ is common information (CI), the game has multiple equilibria for some Y. We can
distinguish three regions for Y.

(i) If Y <T,payoffs from action B are always smaller than those from action A. Therefore, all
choosing A is an equilibrium in dominant strategies and it is also Pareto optimal.

(i) If Y>)_’=a_1(l)=80—Z/n, a single agent choosing B is sufficient for success.

Therefore, all choosing B is an equilibrium in dominant strategies and also Pareto optimal.

(iii) fT<Y< I_/, there are two Nash equilibria in pure strategies: Either all players choose A
or all players choose B. The latter is the payoff dominant equilibrium.
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A refinement theory selects a unique threshold state up to which all players choose A and above which
all players choose B.

The payoff dominant equilibrium, recommended by Harsanyi and Selten (1988), prescribes B, if and
only if ¥ > T and hence the threshold state is Y=T.

The maximin strategy prescribes B if and only if success does not depend on other subjects’ decisions.
Thus, the threshold stateis Y =Y .

In the game with private information (PI), there is a unique equilibrium with a threshold signal X 5
such that a risk neutral player with X " is indifferent between choosing A or B provided that all other
players choose B if and only if they receive signals above X . At state ¥ the probability of getting
payoff Y for action B is given by the probability that at least a(Y) —1 out of the other n —1 players
get signals above X " and choose B. This can be described by the binomial distribution. The
probability that a single player gets a signal above X at state ¥ is (Y = X+ £)/(2€). Denoting
the round-up of a(Y) by a(Y), expected utility of an agent choosing B is

UB(X*):XfE Y prob(#{j 2| X7 > X"}z a(r)-1|Y) dY
X -¢
:;[ Y 1- Bin &(Y)—z,n—L%:‘s vy,

where Bin is the cumulative binomial distribution. The equilibrium threshold signal X " is defined

by U,z(X ")=T. For states in an & -surrounding of X~ the number of attacking agents and the

success of an attack depend on the random draws of individual signals. Hence, there is no threshold
state that divides successful from failed attacks for £>0.

There are three further selection theories for the common information game based on players’ beliefs:
For & converging to zero, the threshold signal X " approaches a state Y* that may be interpreted as
global game solution to the game with common information. As we explained in section 2, this state is
the optimal threshold of a player who believes that the proportion of players who choose to attack has
a uniform distribution in [0,1]. Therefore, we call it “Laplacian belief equilibrium”. If the proportion

of other players choosing B has a uniform distribution, the probability of success of choice B by the
aY)-1

remaining player is 1- . At the equilibrium threshold state Y*, an agent is indifferent

n
between A and B. This threshold is the unique solution to Y [n -aY)+ 1] =nT.

The risk dominant equilibrium, as defined by Harsanyi and Selten (1988) differs slightly from the
Laplacian belief equilibrium for n > 2 . Here, each player acts as having second order beliefs, i.e., she

believes that other players believe that the probability of success has a uniform distribution in [0,1]. Its
threshold is given by the solution to Y [1 - Bin(&(Y) -2,n-11- T/Y)] =T.

The threshold of the “naive Laplacian equilibrium” is given by the state at which an agent is
indifferent between A and B, when she believes that other players attack independently with
probability Y4. It is given by the solution to Y[l - Bin(&(Y) -2,n-1, 1/2)] =T.

Table 2 comprises the theoretical equilibrium thresholds mentioned above for PI and CI games, given
the parameters used in our experiments.



Treatments | T=20, Z=100 T=20, Z=60 T=50, Z=100 T=50, Z=60
Refinements
Payoff dominant equilibrium 20 20 50 50
of CI game
Maximin equilibrium of the 73.33 76.00 73.33 76.00
CI game
Unique equilibrium of PI 32.36 41.84 60.98 66.03
game
Laplacian belief equilibrium 33.33 44.00 60.00 64.00
of CI game
Risk dominant equilibrium 34.55 44.00 62.45 67.40
of CI game
‘naive’ Laplacian belief 33.07 48.00 51.48 56.00
equilibrium of CI game

Table 2. Theoretical equilibrium threshold states or signals for the parameters T and Z, and n=15. .

5. Threshold Strategies

Each period subjects had to choose between A and B in 10 different situations that were given in
random order. With this design, we are able to infer whether or not they used threshold strategies
without imposing those strategies on the subjects. A subject’s behavior is consistent with a threshold
strategy, if the highest state (in Cl-treatments) or signal (in PI-treatments), for which the subject chose
A, is smaller then the lowest state or signal, at which he or she chose B. Some subjects chose the same
action for all signals/states in some periods, even when this action was dominated by the other for
some signals/states. E.g. some subjects chose B when they should have known that Y <7 . In CI-
treatments action B is dominated by A if Y < T and A is dominated by B if ¥ > Y . In Pl-treatments B
is dominated by A if signal X' < T — & and A is dominated by B if X' > Y +£. In most sessions,
subjects who chose dominated actions in some rounds were the same as subjects whose behavior was
inconsistent with a threshold after the second round. We call a subject’s behavior ‘consistent with
undominated thresholds’ in some period, if her or his behavior in that period was consistent with

existence of a threshold and did not exhibit any dominated actions.

Table 9 in Appendix B gives detailed account for the average number of subjects, whose behavior was
consistent with undominated thresholds. In treatments with inexperienced subjects only, an average
92% of all strategies was consistent with undominated thresholds. We could not find any significant
difference in the proportion of threshold strategies between sessions with common and private
information, nor between treatments with different parameter values (see Table 9 and Regression 1 in
Appendix C.3). In Barcelona the percentage of undominated threshold strategies appears to be
significantly smaller than in Frankfurt using a simple Regression. Here, the location dummy is
significant at the 5%-level and can explain 23% of the data variation (see Regression 2 in Appendix




C.3). We do not have an explanation for this difference. Table 9 in Appendix B shows, however, that
in first and final rounds the difference between locations was small.

In the first round the number of inexperienced subjects employing undomintated thresholds varied
from 5 to 14 for different sessions with an average of 10.78. In the second round, after they received
information about their achieved payoffs and about aggregate behavior of other subjects, the number
of undominated threshold strategies varied from 10 to 15. The average increased to 12.70. Some
subjects seemed to need first feedback to understand the advantage of threshold strategies. Figure 4
shows that the proportion of undominated threshold strategies increased over time, although with the
change of treatment in period 9, we observed this number to drop, especially in Barcelona. This may
be due to confusion stemming from the parameter change. In all sessions we observed that during the
last four periods at least 13 out of 15 participants employed undominated thresholds.

Evolution of Threshold Strategies

100%
000, | M

»n
2
)]
[
b
©
=
»n  80%
K /
2
7} % ) . .
9 70% —e— private information
et
—— common information
60% 1 1 1 1 1 1 1 1 T T T T T T 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
period

Figure 4. Percentage of inexperienced subjects, whose behavior was consistent with undominated

threshold strategies.

Two sessions with subjects, who had participated in one of the other sessions before (experienced
subjects), showed a higher proportion of threshold strategies (97%) than sessions with subjects, who
participated for the first time (see Table 9 in Appendix B). However, the selection of subjects, who

agreed to participate a second time, is endogenous, and results must be compared with caution.

On one hand, it is not surprising that most participants played threshold strategies: The hurdle for
success of B is decreasing in Y, the payoff to B in case of success is increasing. However, deductive
reasoning needs very strong assumptions to get this result: In games with private information, theory
predicts threshold strategies but requires common knowledge of the game structure. In games with
common information non-threshold strategies may even occur in Nash equilibria.

10



In experimental economics, we distinguish between common information and common knowledge
(Smith, 1991). As we know from other experiments by Stahl and Wilson (1994), Nagel (1995) and
Kiibler and Weizsicker (2001), real subjects fail to reason more than 3 levels of beliefs over beliefs
and therefore common information does in general not become common knowledge.

The strength of threshold strategies lies in their robustness. If a subject expects others to play threshold
strategies or to randomize, her/his best response is a threshold strategy. Even though other strategies
might form an equilibrium in common knowledge games, the best response to any reasonable belief
deviating from common knowledge is a threshold strategy. As there is strategic uncertainty at least in
the first rounds of a treatment, threshold strategies are a natural way to play that is immediately
rewarded in the feedback. Once a sufficient number of subjects plays threshold strategies, the best
response is again a threshold strategy. Other strategies are not robust against even slightest deviations

5
from common knowledge.

6. Probability and Predictability of Attacks

To answer the question whether public information raises or lowers predictability and probability of

attacks, we analyze and compare the states of successful and failed attacks in PI and CI treatments.

6.1. Thresholds to Successful Attacks

In all sessions, subjects tended to choose A for low signals or states and B for high signals or states. In
consequence, the total number of players, who chose B, was rising with rising Y. Combining the data
from all 8 rounds of one treatment, we find treatment specific thresholds from which on action B

(attack) is likely to be successful.

In most sessions with common information (CI) subjects coordinated on thresholds that clearly
divided successful from failed attacks. These thresholds were surprisingly stable during the course of a
treatment, so that even combined data from all 8 rounds of one treatment show a clear separation of
states at which action B was rewarding from those, where it was not in 24 out of 26 cases. Often these
thresholds can be identified as one of the steps of the hurdle function @(Y). An example is shown in

Figure 5.

In most sessions with private information (PI) there is an overlap of states with successful and failed
attacks. Because random signals may deviate from the state by 10 units on the Y-scale, success or
failure of an attack at any given state is unpredictable even if all individual strategies are known. At
low states an attack may occur just because many subjects got much higher signals or reverse. In
addition, the lack of common information hinders subjects to coordinate on the same strategy. With 15

subjects however, aggregate results are fairly predictable and even with PI, combined data of all

> This is different in entry games with different market capacities (Seale and Rapoport, 2000). Best response to
threshold strategies might be reverse threshold strategies (enter when nobody might like to enter (for small
capacities) and do not enter when everybody enters (for large capacities)), or even enter with a specific mixture
in every possible market, which produces highly nonmonotonic strategies, if everybody mixes.
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periods of one treatment show complete separation of states with successful and failed attacks in 9 out
of 24 cases. In all other sessions with PI, such as shown in Figure 6, we have an interval of states

where some attacks failed and others succeeded.

Session 0607P9 - Stage 1: Z=60 ClI T=50
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*» ¢ o0 s 0 B
D 1o —0 06 006000000 ¢ ¢ — - — ‘

10 20 30 40 50 60 70 80 90 Y

& number of players choosing B

= hurdle function for success a(Y)

A largest Y without success for B 54,67
A smallest Y with success for B 56,26

Figure 5. Combined data from all eight periods of one stage of a session with common information.
There are 80 Y-values selected in one stage. Dots indicate the associated number of subjects, who
chose B. The hurdle function is the minimal number of B-players needed for getting a reward at B.
Dots below the hurdle function indicate states at which there was no successful attack. Dots on or
above the hurdle indicate successful attacks. Two vertical lines indicate the highest state, up to which
action B always failed, and the lowest state, from which on B was always successful. In this example

there is complete separation of states with failed and successful attacks.
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= hurdle function for success a(Y)
A highest state up to which B always failed 43,39
A lowest state from which on B was always succesful 48,25

Figure 6. Combined data from all eight periods of one stage of a session with private information. In
this example states with successful and failed attacks overlap, i.e. there are dots above and below the

hurdle function within this interval.

Tables 3 and 4 give an indication of the states where action B was successful in different sessions. For
each treatment we give an interval: the smaller number is the highest state, up to which action B
always failed. The larger number is the state, from which on action B was always successful. A star
indicates treatments, where states with successful and failed attacks can be clearly divided. In other
treatments there were states within this interval with both outcomes. We use the midpoint of the
interval to measure how thresholds depend on exogenous conditions. The width of the interval gives
us a measure of predictability of attacks. Although it does also depend on random numbers, we can

use it to ask how the information condition influences predictability within a session.

Sessions with Common Information

Thresholds to success

Session | Z Location Experience | Order | T=20 T=50

001206 100 | Frankfurt no 20/50 33.08 -33.40 * | 52.57—53.62
010131 100 | Frankfurt no 50/20 18.35-21.51 * | 49.59-50.74
010207 60 Frankfurt no 20/50 | 40.47 —46.67 55.98 — 56.68
010321b | 60 Frankfurt no 50/20 | 35.12-38.07 * | 50.67-52.17
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010530b | 60 Frankfurt no 50/20 | 31.14-35.54 47.03 - 51.74
0531PB | 60 Barcelona | no 20/50 | 39.96 —40.74 51.98 -52.71
0606PA | 60 Barcelona | no 20/50 | 39.34-41.61 49.95 -53.62
0608PE | 60 Barcelona | no 20/50 | 47.17—-48.24 52.08 — 55.48
0607P9 60 Barcelona | no 50/20 | 31.50-42.44 54.67 - 56.26
0614L9 | 60 Barcelona | no 50/20 | 44.37-45.70 53.29 - 53.56
0614P9 | 60 Barcelona | no 50/20 | 39.01 —41.35 50.28 —51.87
010516b | 60 Frankfurt yes 20/50 | 32.15-36.36 55.83 - 56.69
010516a | 60 Frankfurt yes 50/20 | 30.75-32.86 * | 49.83-51.05

Table 3. Thresholds to success in sessions with common information. A star indicates treatments,

where states with successful and failed attacks can be clearly divided.

Sessions with Private Information

Thresholds to success

Session Z Location Experience | Order | T=20 T=50

001115 100 | Frankfurt no 20/50 | 29.74 -34.11 51.68 —54.25
001207 100 | Frankfurt no 50/20 | 26.85—-27.06 51.90 - 53.35
010201 60 Frankfurt no 20/50 | 43.39-48.25 56.35 - 60.05
010321a | 60 Frankfurt no 50/20 | 47.23 -52.79 54.70 — 56.60
010523 60 Frankfurt no 50/20 | 43.26 —46.03 53.82 —58.25
010530a | 60 Frankfurt no 20/50 | 46.69 —51.21 5491 -55.24
0529 60 Barcelona | no 20/50 | 41.91 —45.61 47.33 - 56.20
0530L1 60 Barcelona | no 50/20 | 35.22-41.52 52.47 - 55.44
0530PE | 60 Barcelona | no 20/50 | 43.14-49.34 47.80 - 51.60
0607L6 | 60 Barcelona | no 50/20 | 39.80—41.88 49.90 — 54.43
0606L8 | 60 Barcelona | no 20/50 | 43.67 —46.19 57.38 = 59.67
0608LA | 60 Barcelona | no 50/20 | 35.66 —40.48 55.09 - 57.54

Table 4. Thresholds to success in sessions with private information. A star indicates treatments, where

states with successful and failed attacks can be clearly divided.
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6.2. Probabilities of Successful Attacks

The higher the threshold to success, the smaller is ex ante probability for states, at which subjects
succeed to play B. This is interpreted as a lower prior probability for speculative attacks that enforce a
devaluation. Table 5 contains a statistic of midpoints of the intervals of indeterminacy as a measure of
thresholds to success® that may be compared to theoretical predictions in Table 2. For sessions with
common information Laplacian belief and risk dominant equilibria seem to be good approximations
for T=20, but payoff dominant and ‘naive’ Laplacian belief Equilibria fit better for T=50. As predicted
by most refinement concepts mean thresholds rise from left to right column. In addition, Table 5 gives
the average width of the intervals of indeterminacy that will be used as a measure of predictability in
Section 6.3 below.

Treatment T=20, Z=100 T=20, Z=60 T=50, Z=100 T=50, Z=60

Sessions with CI

Mean threshold to success 26.58 40.47 51.63 52.78
Standard deviation 94 4.5 2.1 2.2
Average width of the 1.74 3.59 1.10 2.02

interval of indeterminacy

(Number of sessions) 2) ) 2) )

Sessions with PI

Mean threshold to success 29.44 44.16 52.80 54.74
Standard deviation 3.5 4.0 0.2 2.8
Average width of the 2.29 4.43 2.01 3.53

interval of indeterminacy

(Number of sessions) 2) (10) 2) (10)

Table 5. Observed mean thresholds to success from sessions with inexperienced subjects and average
width of the interval between the highest state, up to which action B always failed and the lowest state,
from which on action B was always successful. Numbers in brackets indicate number of observations.

Standard deviations are only stated for mean thresholds.

Table 5 shows that the mean threshold to success is always higher in private information conditions
than in otherwise equal treatments with common information, while the standard deviation is the same
in both conditions. Comparing treatments with T=20 with otherwise equal treatments with T=50, the
threshold clearly rises in T. This means that opportunity costs of an attack reduce the probability of
devaluation. Higher Z values lead to lower threshold values. The difference is especially large (about

6 We also used logistic estimates of the mean threshold to success and midpoints between the highest state or
signal without success for B and the lowest at which an attack was successful instead. These estimates showed
the same patterns and regressions delivered similar results to the ones we got from analyzing midpoints of the
intervals stated in Tables 3 and 4.
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14) for T=20 and Z=100 compared to T=20 and Z=60 (see first and second column); with T=50 the
difference is only 2 (third and fourth column). This is partially due to the non-linear payoff function.
In the interpretation by Morris and Shin (1998) and Heinemann (2000) the effect of the hurdle

function means that capital controls reduce the probability of successful attacks.

For a systematic analysis of the influence of information and other controls variables on mean
thresholds we use linear regressions (see Appendix C.2). To control for the non-linearity in the payoff
function, our regressions include an interaction variable TZ that equals one if and only if T=50 and
7Z=60. Regression 3 shows that T and Z explain 82% of all data variation. Regression 4 shows that
information, location, and the order of treatments increase this to 89%.

With common information thresholds tend to be 2.45 units lower than with private information. This
difference is numerically small, but significant at 2%. Given the stochastic framework used for our
experiment, a commitment to provide public information at any state increases the prior probability of
devaluation by 3.1%’.

In sessions with private information, thresholds were higher in Frankfurt than in Barcelona. In sessions

with common information it was the other way round, but not significant (see Regressions 5 and 6).

Surprisingly, thresholds tend to be higher in sessions, where we started with a low payoff for the
secure action (T=20) than in sessions, where we started with a high payoff (T=50). Originally we
expected the opposite result. With numerical inertia, the threshold for T=20 should be higher after a
treatment with T=50 than in a session that starts with T=20. After a treatment with T=20 the threshold
for T=50 should be lower than in a session that starts with T=50. But, we observe thresholds in
treatments with T=20 to be lower after a treatment with T=50 by some 5 units. In treatments with
T=50 thresholds are about 1 unit higher, when they were preceded by a treatment with T=20.® There
are different possible explanations: The order effect could be due to subjects having more trust in the
ability of the group to coordinate after observing coordination close to T in treatments with T=50,
where the hurdle to success a(Y) requires a smaller number of players. A formal way to express this is
suggested by answers in the questionnaire. Many subjects reported that they played B for all signals or
states that were some increment 0’ above T, where d' was sometimes reported as being 10 or 20 and
gradually adjusted with experience. The order effect is consistent with a numerical inertia in these
increments O’ . After observing a threshold close to T=50, where the hurdle to success a(Y) requires a
smaller number of B-players, the increment was low and subjects may have tried to attack at states
close to T=20 in the second stage. Subjects who start with T=20 do not get that close to the payoff
dominant equilibrium, because here, the hurdle is higher. Taking their experience in form of a high
increment to the second stage, at which T=50, thresholds to attack are higher than for subjects who
start with T=50.

7 Since states have a uniform distribution on [10,90], a reduction of the threshold by 2.45 increases the
probability of states exceeding the threshold by 2.45 /80 =3.1%

¥ The difference in the numerical impact that the order of treatments has on thresholds for T=20 and T=50,
respectively, is accounted for by the interaction variable TO in the regressions.
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6.3. Predictability of Attacks

Here, we ask whether there is any difference in predictability of thresholds related to the information
condition. Comparing the standard deviations of average thresholds in Table 5 above, it seems that the
information condition has no big impact on the dispersion of observed thresholds among otherwise
equal treatments. This impression is supported by separate regressions of thresholds for both
information conditions. In sessions with common information 91% of all data variation can be
explained by the other controlled variables (see Regression 5). In sessions with private information
other controlled variables explain 93% of data variation (see Regression 6). However, the standard
variation of residuals is 2.84 in sessions with common and 4.63 in sessions with private information. If
thresholds have a normal distribution, they can be predicted within an interval of four standard
deviations with a probability of 95%. We see clearly that this interval is larger with private than with

common information.

Even though thresholds are fairly predictable for both scenarios, there may be differences in
predictability within a session. This can be measured by the width of the interval between the highest
state, up to which action B always failed, and the lowest state, from which on action B was always
successful (see Table 5 in Section 6.2). These intervals tend to be wider for a steep hurdle function
(Z=60) and also for private information. Note that average distance between two neighbouring states is
0.99.”

On average over all treatments with common information the interval of states for which there is no
clear indication of whether attacks fail or succeed has width 2.55. In treatments with private
information its width is 3.68 on average. Regressions 7 and 8 (Appendix C.3) show that this difference
in information conditions is just on the edge to significance at a 10%-level. If this difference is real,
private information increases the range of states for which we cannot predict whether an attack is
successful or not by 1.13. Accordingly, with PI the prior probability that a state falls into the region of
indeterminacy rises from 3.2% to 4.6%.

In fact, this method underestimates predictability in Cl-conditions and overestimates it in PI-
conditions. In sessions with CI, subjects consciously coordinate on a common threshold. In at least 18
out of 26 treatments with CI, we have the impression that subjects coordinated on a step of the hurdle
function. With a high degree of coordination the probability that an attack is successful at any state
below the given interval (or fails at a state above it) is zero. With random signals in the PI setting, this
probability is inevitably positive. Thus, with private information predictability is even lower than the

width of the interval indicates.

With public information the central bank has more control on the beliefs of traders than if they get
private information from other sources. Uncontrolled information reduces the ability of the central
bank to predict an attack. This loss in predictability that is modelled by the random nature of private
information in our experiment outweighs the loss of predictability that might occur with public
information due to self-fulfilling beliefs. The results of our experiment indicate that both effects are
small when the number of traders is sufficiently large. For games with fewer players, both effects

might gain importance and it is an open question which one is bigger with fewer subjects.

? With 80 values of Y, independently drawn from a uniform distribution on [10,90].
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6.4. Coordination Failures

When individual behaviour is not perfectly coordinated, subjects experience mistakes in the
information phase and learn to adjust their thresholds towards each other. There are two possible
situations in which a subject could regret her decision: (i) she chose B and received 0 (a failed attack),
(i1) she chose A, when B would have given a higher reward (a missed opportunity to attack). These
situations should not occur, when a subject can predict whether an attack will be successful or not. The
total number of cases where subjects could regret their decisions give us a measure for their ability to

predict whether an attack will be successful or not.

Figure 7 shows the average number of decisions where a subject could have improved her payoff by
deciding differently. In sessions with CI this number has a clear trend to decrease over time. Subjects
learn to coordinate on or better predict a common threshold. They learn to play a Nash Equilibrium.
When their behavior is fully coordinated, they never regret any decision. The change of treatment in
period 9 increases again the number of regrets and subjects have to find a new coordination point. In
sessions with private information the average number of regrets decreases for the first 3 periods and
bounces around 1.0 thereafter.

With private information there are more regrettable decisions than with common information from the
second round of a treatment onwards. This tells us that once subjects gained some experience with a
treatment, they could better predict the outcome in CI sessions. This is mainly due to randomness of
signals. Random nature of signals in the Pl-condition leads to an expected number of regrettable
decisions of about 0.6-0.7, even if all subjects play the same threshold strategy.'” The difference
between observed and expected number of regrets under perfect coordination is of the same size as in
the CI condition. Surprisingly, with PI this number does not even increase after the change of
treatment. So, given the external conditions, subjects ability to predict an attack is not affected by the
information condition. There is no publicity multiplier associated with CI that might increase their
ability to predict aggregate behavior of other subjects beyond the reduction in exogenous uncertainty.

' The expected number of failures in the Nash equilibrium of a PI game depends on parameters T and Z and can
be estimated by Monte Carlo simulations. It varies in the range 0.6-0.7 for our treatments.
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Figure 7. Average number of situations in which a subject could have achieved a higher
payoff by a different decision.

7. Testing Equilibrium Refinements

In this section we test the explanatory power of various refinement concepts. For this we first estimate
mean individual thresholds with logistic regressions.

7.1. Mean Thresholds of Individual Strategies

When all subjects employ threshold strategies, the proportion of agents who are choosing B is an
increasing function in states or signals that can be estimated by fitting a distribution function to these
data. The logistic distribution is more appropriate than the normal distribution, because we observe
‘fat tails’ due to irrational behavior of few subjects who do not play threshold strategies.

We estimate the distribution of thresholds for each session using a logistic estimation. Estimates based
on single periods do not show much variation after the first three periods of each treatment. This is in
line with a general impression that individual behavior does not change much after the first periods.
Therefore, we can improve the quality of estimates by combining data of the last four rounds of each
treatment. Results are logistic distributions that may be interpreted in two ways: (i) as estimated
probabilities for subjects choosing B conditional on state Y or signal X, respectively, (ii) as estimated
distribution of individual thresholds. Figures 8 and 9 give an impression of the data fit obtained by
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logistic estimation for two sample sessions. The cumulative logistic distribution is given by

prob(B) = m. The mean is %, standard deviation is \/gb .
Session 001206 Common Information Z=100 T=50
prob(B)
1 | S0 ® e e o
*
Mean +/- two estimated
standard deviations
¢ decisions
0,5 . .
—log. estimation
.
O - ! T T T T Y
0 10 20 30 40 50 60 70 80 90 100
estimated mean threshold a/b = 53.25

Figure 8. Data and logistic estimation of probability to choose B for given states during the last four
rounds of a treatment with common information. There are 40 data points indicating the proportion of
subjects who chose B at the respective states. The displayed treatment was the one with the smallest
estimated standard deviation in subjects’ behavior.
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Session 010201 Private Information Z=60 T=20
prob(B)
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estimated mean threshold a/b =46.40

Figure 9. Data and logistic estimation of probability to choose B for given signals during the last four
rounds of a treatment with private information. There are 600 data points indicating subjects’
decisions (B=1) at their respective signals. The displayed treatment was the one with the largest
estimated standard deviation in subjects’ behavior.

Detailed results of logistic regressions (based on decisions in the last four rounds of each treatment)
for all sessions and treatments are displayed in Appendix C.4. Table 6 gives a summery statistic of

estimated means a/b and estimated standard deviations ——=— of individual thresholds for

b

distinguished treatments.

Treatment T=20, Z=100 T=20, Z=60 T=50, Z=100 T=50, Z=60
Sessions with CI

Average estimated mean of 26.30 37 84 5706 5756
individual thresholds

Ave_rage estimated standard 530 794 571 756
deviation

Number of sessions 2 9 2 9
Sessions with PI

Average estimated mean of 2976 41.95 5597 57.02
individual thresholds

Ave'ra'ge estimated standard 381 10.05 946 977
deviation

Number of sessions 2 10 2 10

Table 6. Average estimated means and standard deviations of individual thresholds to action B in
sessions with inexperienced subjects.
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Similar to the analysis of thresholds to successful attacks in Section 6.2, we run linear regressions
using the controlled variables to explain mean thresholds and standard deviations of individual
thresholds within each treatment. Appendix C.5 displays results for two of these regressions.
Regression 9 shows significant influence on the estimated mean threshold (a/b) by the parameters of
the payoff function T and Z, by the information scenario, and by the order of treatments. All of these
effects are very similar to their influence on the threshold to success in Regression 2. The information
condition has an even stronger impact on the mean of individual thresholds than on the critical state to
success. Note, that the mean of individual thresholds depends on the behavior of subjects with extreme
strategies, while the threshold state to success does not.

Non-parametric tests also show a significant difference between sessions with different information
and order of treatments. Here, we had to use separate tests for each T. While information and order of
treatments were significant at 5% in Mann-Whitney-Tests for both T-values, information failed to be
significant at 5% for Kolmogoroff-Smirnov-Tests.

Regression 10 shows that the estimated dispersion of individual thresholds as measured by the
standard deviations of the logistic distributions is significantly larger with private than with common
information. It is also larger in sessions starting with T=20 than in the second stage of a session that
had started with T=50. The standard deviation of individual thresholds within a session is another
measure of coordination. The higher this standard deviation is, the less are subjects’ decisions
coordinated. This is another proof that CI improves the ability of subjects to coordinate their
strategies.

When we include sessions with experienced subjects, we observe that experience lowers the mean
threshold by about 2.6. But, with only four data points for experienced subjects, this difference fails to
be significant.

7.2. Testing Theoretical Equilibria

As mentioned in section 4, different theoretical equilibrium concepts define different threshold states
or signals. In this section we ask whether observed behavior is in line with any of the theoretical
equilibrium concepts. We have seen already that there is some dispersion in actual individual
strategies that should not occur in equilibrium, when all subjects employ the same strategy. But, there
is another interpretation of equilibria: Even if individual strategies differ, refinement theories might
succeed in describing the average behavior of individuals. We test whether mean individual thresholds
are either of the theoretically predicted equilibrium thresholds.

We use a two sided F-test on the difference between estimated mean individual thresholds as derived
by logistic regressions in Appendix C.4 and theoretical predictions given in Section 4, Table 2.
Appendix D lays out an example of the test procedure. We have 11 sessions of 2 stages each with
common information and inexperienced subjects, generating 22 data points for these treatments. We
use these data to test payoff dominance, Laplacian beliefs, risk dominance, ‘naive’ Laplacian beliefs
and maximin strategies. In 12 sessions inexperienced subjects had private information, generating 24
data points for testing the equilibrium of the private information game. Appendix D exhibits precise
results of these tests.

The hypothesis that subjects play Maximin strategies can be most clearly rejected, as all estimated
mean thresholds are far below the thresholds associated with Maximin strategies.

22



The hypothesis that subjects play the payoff dominant equilibrium in sessions with common
information is rejected at the 1% level if we jointly use data from treatments with T=20 and T=50.
However, for T=50 estimated thresholds come rather close to the payoff dominant equilibrium. Using
data from treatments with T=50 only, the p-value for rejection is at 4%.

The hypotheses that subjects play the Laplacian belief or the risk dominant equilibrium can be rejected
at a p-level of 1%. Table 14 (Appendix C.4) reveals that estimated mean thresholds are below these
equilibria in a/l treatments with common information.

The hypotheses that subjects play the ‘naive’ Laplacian belief equilibrium can be rejected for all data
with Z=60 and for all data with T=20. For data with T=50, the p-value was at 6.8% and does not allow
rejection.

The hypothesis that subjects play the unique equilibrium in games with private information is rejected
at the 1% level when we use all data from sessions with Z=60. However, for data from treatments
with T=20, we can not reject it. In fact, it seemed a pretty good predictor here with estimated mean
thresholds being distributed around the equilibrium. For T=50 these estimates are all clearly below
the equilibrium.

In Section 6.2 above, we pointed out that average thresholds were higher for higher T or lower Z. This
is actually another reason to reject payoff dominance or minimax strategies, because the payoff
dominant equilibrium does not depend on Z and the minimax strategy does not depend on T. The other
theoretical equilibria follow these parameter changes in the observed direction.

Finally, we test the predictive power of refinements on aggregate by comparing whether observed
thresholds to successful attacks (see Section 6.1) are in a neighborhood of various theoretical
equilibria. Results of this heuristic procedure are summarized in Table 7. The success rate indicates
the percentage of treatments from sessions with CI and inexperienced subjects, in which revealed
threshold intervals given in Table 3 overlap with a neighborhood of 2 around theoretical equilibria
from Table 2.

Equilibrium All 22 observations T=20 (11 obs.) T=50 (11 obs.)
Payoff dominant equilibrium 36% 9% 64%
Laplacian belief equilibrium 18% 36% 0

Risk dominant equilibrium 18% 36% 0
‘naive’ Laplacian belief equil. 32% 18% 45%
Maximin Strategy 0 0 0
neither of the above 27% 45% 9%

Table 7. Success rates of theoretical equilibrium thresholds in CI-games +/— 2.

While observed behavior came rather close to payoff dominance in treatments with T=50, risk
dominance and Laplacian beliefs were a better approximation to behavior for T=20. The reason might
be the higher number of subjects needed for success at low values of Y.

Surprisingly, ‘naive’ Laplacian beliefs did not bad in this comparison. We can even do better, if we
replace the belief that other players choose B with probability 4 by higher probabilities. Maximizing
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the success rate (as defined above) leads to beliefs of some 0.6 — 0.7 for other players choosing B. To
be more precise, if each player beliefs that each other player chooses B with probability p, the best
response is a threshold Y, solving Y[l - Bin(&(Y) -2,n— l,p)] =T. If we take p=2/3, we get

equilibrium thresholds and according success rates as displayed in Table 10.

Parameters Z=100, T=20 7Z=60, T=20 Z=100, T=50 Z=60, T=50
Best response threshold 23515 40.00 50.035 52.00

to p=2/3

Success cases 0 outof 2 6 outof 9 1 outof 2 7 outof 9
Success rate 54% 73%

Table 8. Best response thresholds to belief that other players choose B with probability 2/3 and
success rates of these thresholds +/— 2.

The overall success rate of thresholds that are a best response to p = 2/3 is 64%. Table 8 shows, how
this success rate varies between treatments. The overall success rate does not change for p  [0.6,
0.68] and is lower for any p outside this interval. In F-tests the hypothesis that subjects play a best
response to p=2/3 could not be rejected, while all the other theoretical equilibria could (see Appendix
D). However, this is not a fair test, as we did not plan to test this equilibrium beforehand, but rather
arrived at it endogenously.

Thresholds, associated with a best response to subjects believing that others choose B with probability
p=2/3 can explain observed behavior in sessions with common information very well. This might be
an artifact of our experiment and might just hold for sessions with Z=60. But, it might also be possible
that this opens a way to measure strategic uncertainty in binary choice games by maximum likelihood
estimates of first order beliefs.

8. Comparison with Previous Experiments and Conclusions

Previous experiments on coordination games with strategic complementarities have shown that we
should distinguish between two kinds of coordination: Coordination on an equilibrium and
coordination on the efficient equilibrium. Comparing our results with those of Van Huck, Battaglio
und Beil (1990, 1991), we find some similarities and some additional insights:

- As in their experiment, we find a fast convergence towards an equilibrium in sessions with
common information.

- Groups of 14 — 16 did never succeed to reach an equilibrium better than maximin-strategies in
the experiment of Van Huyck et al. (1990), where all members were needed to coordinate for
this purpose, while coordination by two players was achieved even in a random matching. In
our experiment, we never observed an equilibrium that needed coordination of more than 12
out of 15 subjects.

- In their median treatments, behavior always converged to an equilibrium determined by the
median of the first round, hinting at strong inertia effects. In our game, it should be easier to
observe changes in the equilibrium played, because of random draws, continuous strategy
space and information on the number of B-players at various states. Even so, in 24 out of 26
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treatments with CI, we do not observe the threshold for success of action B to move. In only
two sessions, there is a slight change of the threshold after the first round of a treatment.

- A change of treatment and associated experience with coordination, led subjects to play more
efficient equilibria in Van Huyck et al. (1991). We observed similar effects: Experience
lowered average thresholds and the order effect might also be explained by experience with
coordination as explained at the end of Section 6.2.

- Van Huyck et al. found that subjects coordinate on equilibria that are somewhere between
maximin-strategies and the payoff dominant equilibrium. However, in their game maximin-
and risk dominant strategies coincide. In our experiment, all observed equilibria were between
the risk dominant and the payoff dominant equilibrium.

In a previous experiment on global games by Cabrales, Nagel and Armenter (2002) subjects reached
the risk dominant equilibrium and there were no apparent differences in behavior between sessions
with common and private information. However, their stage game had only five possible states and
signals and may have been too discrete to discover the subtle effects of information. In our game, with
a continuous space for states and signals, we observe that with common information, coordination of
agents was much better than with private information. In addition, the average threshold, and thus, the
prior probability of failure of the risky action, was significantly higher with private information. On
the other hand, we do not find any significant difference in the proportion of subjects using threshold
strategies or in the dispersion of achieved mean thresholds across different sessions. This leads us to
conclude that the interpretation of multiple equilibria as an indication for a destabilizing effect of
public information is not warranted.

Thresholds respond to variations in payoff parameters T and Z in the same direction as thresholds of
the global game solution, risk dominant equilibrium, and ‘naive’ Laplacian beliefs, while payoff
dominance fails to predict a response to Z and maximin strategies do not respond to T. This shows that
even though we can reject numerical predictions of all of these refinements, some of them can be used
for qualitative comparative statics. While theory points at a discontinuity in the set of equilibria as the
variance of private information approaches zero, our results give rise to the conjecture that behavior
changes continuously. The theory of global games predicts that the probability of crises rises in the
variance of private information (Heinemann and Illing, 1999). Interpreting the common information
setting as a situation with particular small variance in private signals, our results display the opposite
reaction. Thus, theoretical predictions on the impact of information structure fail empirically.

In our view, limited levels of reasoning about other players' strategies and strategic uncertainty are the
major force that drive subjects to play threshold strategies, explain the low variation of observed
equilibria in common information games, and also explain most of the comparative statics. With
private information we observe higher thresholds than with public information. This effect may also
be due to strategic uncertainty that adds to exogenous uncertainty in these games. At higher states,
success of the risky action requires coordination of a smaller number of players and is thereby
associated with smaller strategic risk. When subjects face exogenous uncertainty in addition to
strategic uncertainty, they engage in strategies that bear a lower strategic risk and attack at higher
states only.

The current discussion on the optimal modes of information disclosure concentrates on the multiplicity
of equilibria associated with public information. Our experiment suggests that this may be a
subordinate effect. Thresholds to successful speculative attacks were fairly predictable for both
information conditions. The major effect might be that public information reduces the threshold to
attack, and a commitment to provide public information raises the prior probability of currency crises.
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Public information directs strategies towards the payoff dominant equilibrium. Payoff dominance may
be desirable for some coordination games. For others, it may be the opposite. In order to avoid
speculative attacks, a central bank should minimize expected gains from speculation and therefore
avoid public information. However, preventing an attack may not necessarily be good for the
economy. If fundamentals are bad, a surrender of an unsustainable peg may be welfare improving
(Heinemann and Illing, 1999). Clearly, public information reduces efficiency losses stemming from
coordination failures which is an argument in favor of public information.

Liquidation games, in which a firm faces multiple lenders and is threatened by an inefficient
liquidation due to coordination failure, as modeled by Hubert and Schéfer (2001) or Morris and Shin
(2001), basically have the same structure as the game in our experiment, except for a constant payoff
for action B if B is successful. Our results indicate that here as well, public information is likely to
improve coordination of players. In the liquidation game, the payoff dominant equilibrium is also
optimal for the firm, but ex post (after knowing the state) the firm has an incentive to hide bad
outcomes. Hence, regulation should require that firms always provide precise and common
information to their lenders.
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Appendix A. Instructions

Instructions to participants varied according to different treatments. Here, we present an English
translation of instructions for a session with private information, Z=60 and starting with T=20 in full
length. For the other sessions instructions were adapted accordingly.

General information

Thank you for your participation in an economic experiment, in which you have the chance to earn
money. We ask you not to communicate from now on. If you have a question, then raise your hand,
and one of the instructors will come to you.

You are one of 15 persons, who interact with another. The rules are the same for all participants. The
experiment consists of 2 stages with 8 independent rounds in each stage. In each round you will
receive 10 independent situations, in each of which you have to make a decision (A or B).

Rules of the first stage (the two stages differ only by the payoff for decision A):
Decision situation:

For each situation a number called Y is selected randomly from the interval 10 to 90. This number is
the same for all participants. All numbers in the interval [10, 90] have the same probability to be
drawn. When you make your decision, you will not know the drawn number Y.

However, each participant will receive a hint number for the unknown number Y. This hint number is
randomly selected from the interval [Y-10, Y+10]. All numbers in this interval have the same
probability to be drawn. Hint numbers of different participants are drawn independently from the same
interval

On basis of your hint number you can decide in each situation between two different decisions: A or
B.

If you decide for A, then an amount of 20 ECU (Experimental Currency Unit) is credited to your
account. This amount is the same for all rounds of the first stage and for all participants (in the second
stage the amount is raised to 50 ECU).

If you decide for B, then your payoff depends on how many participants select the same decision B
and also depends on how large is the unknown number Y. Decision B is the more successful, the
more participants decide for B and the larger the number Y is. If the number of participants who
decide for B is at least 20 — Y /4, then each participant, who decided for B, receives the amount of Y
ECU. A more exact explanation of this formula is given with the help of an example and the table at
the end of the instructions. If fewer participants decided for B, then those choosing B receive zero
ECU.

Once all participants made their 10 decisions for the 10 games, a round is terminated. (Remember
there are 8 rounds in each of the two stages)

Information after each round
Each participant will be informed after each round for each of the 10 games on

(1) the number Y,

(2) how many participants decided for A or B,
(3) the own payoff and also the total sum of the own payoffs over all 10 games.
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Example:

The number of participants is 15. The payoff for A is always 20. The unknown number Y, which was
drawn, is 48,65.

The hint numbers drawn for the fifteen participants are: 38.89, 45.24, 42.67, 56.40, 52.92, etc.

The participant with the hint number 38.89 knows that Y is between 28,89 and 48,89,
the participant with the hint number 45.24 knows that Y is between 35,24 and 55,24, etc.

Six participants decide for A, nine participants decide for B.

The participants, who chose A, receive 20 ECU.

In order to receive a positive payoff for B, at least 20-48.65/4 = 7.84 (remember the formula (20-y/4))
participants have to decide for B (that is 8 or more). Since 9 participants selected B, each of them
receives Y = 48.65.

For the calculation of the minimum number of the participants needed such that payoff for B is
positive see attached table:

Since Y = 48.65, the number of participants must be 8 in order to get a positive payoff for decision B.
Note: You don't know the true value of Y, but you receive a hint number, which is an approximation
of Y. Therefore you cannot exactly determine, how many players must select B, in order to get a

positive payoff.

For the calculation of the minimum number of participants who have to choose B in order to get
a positive payoff for B:

Participants who choose B, receive a positive payoff, only if at least 20-Y/4 participants choose B.

In the right hand column you find the minimal number of participants and in the left column the
according intervals for Y.

If the unknown number Y is in the interval, Then at least ... of the 15 participants
(Note: Y is between 10 and 90) (including yourself) have to select B, in order
to get a positive payoff

20,00 to 23,99 15

24,00 to 27,99 14

28,00 to 31,99 13

32,00 to 35,99 12

36,00 to 39,99 11

40,00 to 43,99 10

44,00 to 47,99

48,00 to 51,99

52,00 to 55,99

56,00 to 59,99

DN | N | 0| O

60,00 to 63,99
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64,00 to 67,99 4
68,00 to 71,99 3
72,00 to 75,99 2
76,00 to 90,00 1

Instructions for PC:

Each round is divided into a decision phase and into an information phase. During the decision phase
the screen shows the current round in the heading line (period). The second line informs you about the
sure payoff for decision A. The following table shows your hint number for each game in the left
column. In the right column you must click which decision you want to select. Once you decided for
all 10 games, you must press the red OK button. As long as you have not pressed the red button, you
can still modify your decisions. When exceeding the time limit you are reminded to make your
decisions.

When all participants have pressed the OK-button, the decision phase of a round is terminated and the
information phase begins. The display in the information phase indicates line by line for each situation
of this round the true value Y, the number of players, who decided for B, your own decision, and the
change of your account balance. After the time limit the next round starts. In addition you can leave
the information phase beforehand through the gray OK button. After leaving the information screen
you have no more possibility to inform yourself about passed decisions.

Questionnaire:

At the end of the experiment (after the second stage) we ask you to fill out a questionnaire. The
personal data asked for are treated strictly confidential and used for research purposes only.

Payoffs:

Also at the end of the experiment the ECUs you have obtained are converted into DM [Pesetas] and
paid in cash. 1 ECU corresponds to 0,5 Pfennig [3.5 Pesetas], so that 200 [100] ECU are converted to
1 DM [35 Pesetas].

In Sessions with common information, the first part of the description of the decision situation was
replaced by

For each situation a number called Y is drawn randomly from the interval 10 to 90. This number is the
same for all participants. All numbers in the interval [10, 90] have the same probability to be drawn.

On the basis of your this number you can decide in each situation between two different decisions: A
or B.

The remaining text was adapted to common information accordingly.

In sessions that started with T=50, we only changed these parameters.
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Appendix B: Threshold Strategies

Location Barcelona Barcelona Frankfurt Frankfurt Frankfurt
Information Private Common Private Common Common
Experience no No no no Yes

No. of sessions 6 6 6 54 2

Round 1 11.50 9.67 11.00 11.00 12.50

Round 2 12.50 11.67 12.83 14.00 14.50

Round 3 12.83 12.33 14.17 13.60 15.00

Round 4 12.50 13.00 14.33 14.60 15.00

Round 5 13.50 13.33 13.83 14.20 14.00

Round 6 13.67 13.83 14.33 14.40 15.00

Round 7 14.00 13.83 14.67 14.40 15.00

Round 8 14.00 14.00 14.50 14.40 15.00

Round 9 12.83 13.17 14.33 14.20 14.00

Round 10 14.00 13.33 14.50 14.00 15.00

Round 11 13.83 14.17 14.67 14.60 15.00

Round 12 14.17 13.67 14.17 14.40 15.00

Round 13 14.33 14.50 14.50 14.80 15.00

Round 14 14.50 14.50 14.50 15.00 14.50

Round 15 14.00 14.67 14.33 15.00 14.50

Round 16 14.50 14.67 14.00 15.00 14.50

Average 13.54 13.40 14.04 14.18 14.59

Table 9: Average number of subjects, whose behavior was consistent with undominated threshold
strategies. The total number of subjects was 15 in each session.

Appendix C: Regression Results

Appendix C lays out regression results on which various statements in the main text of the paper are
based. We use linear regressions to explain the average number of subjects, whose behavior is
consistent with an undominated threshold strategy, for the thresholds to success and predictability of
attacks and to explain the summery statistics of individual behavior obtained by logistic regressions
for each session and treatment. For these regressions, we use only the data from sessions with
inexperienced subjects. Explaining variables are the control variables of our experiment. Table 10
explains the variables.

Name Nature Definition

T dummy | 0: payoff for secure action T=20 1: T=50

V4 dummy | O: session with Z=100 1: session with Z=60
TZ dummy | 0: if T=20 or Z=100 1: if T=50 and Z=60

"' Because of computer problems one session with common information in Frankfurt stopped after 13 rounds,
another one lost data of round 16.
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Loc(ation) dummy | 0: session in Barcelona 1: session in Frankfurt

Info(rmation) | dummy | 0: session with common 1: session with private
information information

Ord(er) dummy | O: session starting with T=50 1: session starting with T=20

TO dummy | 0: if Order=0 or T=20 1: if Order=1 and T=50

TS number | Average (per session) number of subjects whose behavior is consistent

with an undominated threshold strategy

Y* number | Mean between highest state up to which all attacks failed and lowest state
from which on all attacks succeeded in all 8 periods.

AY* number | Distance between the two states defining Y*

A number | Results from logistic estimation on basis of last four period
B number | Results from logistic estimation on basis of last four periods
Mean number | a/b = estimated mean threshold

Table 10. Variables used in linear regression.

C.1. Threshold Strategies

In all sessions, the number of subjects, whose behavior is consistent with an undominated threshold
strategy, tends to increases over time. The average differs across sessions. Regression 1 shows that the
information condition is not significant. Regression 2 shows that there may be a significant difference
in behavior of subjects from Barcelona and Frankfurt.

Regression 1: TS =+ pB;Z + B, Loc + B3 Info + f,Ord +u .

Regression 2: TS = +p,Loc+u.
No. | Datasource | Explaining variables: estimated B-coefficients R
(Number of (t-values) Adjusted R>
observations) | Intercept V4 Location Information | Order

1 All sessions 13.39 0.33 0.50 -0.04 0.18 0.27
(23) (51.43) (0.82) (1.64) (-0.14) (0.69) 0.11

2 All sessions 13.47 0.63 0.23
(23) (76.69) (2.48) 0.19

Table 11. Regressions explaining the average number of subjects, whose behavior is consistent with
undominated threshold strategies.

C.2. Thresholds to Success

Threshold states Y* from which on an attack is likely to occur depend on various of the exogenous
conditions.

Regression 3: Y* =yo+ 71 TH+yZ+vy;TZ+u.
Regression 4: Y* =vyo+v1 T+7vy,Z+vy;TZ + y4Loc + ysInfo + v, Ord + y; TO +u.
Regression 5-6: Y* =yo+71 T+v,Z+7vy;TZ +vy4L0c +v60rd+7vy;, TO+u.
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No. | Datasource | Explaining variables: estimated coefficients v; R
(number of (t-values) Adj. R?
observations) |Intercept T Z TZ Loc Info | Ord TO
3 All 28.01 24.20 1437 | -12.78 0.82
treatments (14.57 | (8.90) | (6.79) | (-4.27) 0.81
4 (46) 22.88 26.34 15.30 | -12.89 1.35 2.45 5.10 -4.29 0.89
(11.12) | (10.92) | (8.23) | (-5.26) | (1.27) | (2.63) | (3.87) | (-2.31) 0.87
5 Treatments 2524 | 27.30 13.12 | -12.99 | -1.65 6.00 -4.51 0.91
with CI (22) | (8.01) | (7.47) | (4.57) | (-3.49) | (-0.97) (2.93) | (-1.57) 0.87
6 Treatments 23.55 25.33 17.05 | -12.73 3.95 3.87 -3.96 0.93
with PI1 (24) | (10.04) | (8.90) | (7.87) | (-4.41) | (3.29) (2.54) | (-1.84) 0.90

Table 12. Regressions explaining thresholds to success.

C.3. Width of the Interval with Indeterminate Outcomes

The difference between the lowest state, from which on all attacks succeeded, and the highest state, up
to which all attacks failed, has no clear relation to exogenous conditions. If any, the information
condition is on the edge to significance at 10%. But, note that it explains only 6% of data variation.

Regression 7: AY*=080+06,T+0,Z+38;TZ + 84Loc + 65 Info + 6, Ord +u .
Regression 8: AY* =9, +dsInfo+u.
No. | Data source | Explaining variables: estimated coefficients d; R?
(number of (t-values) Adj. R?
observations) |Intercept T Z TZ Loc Info | Ord TO
7 All 1.81 -1.00 1.96 -0.73 -0.02 1.11 -0.66 -1.08 0.21
treatments (1.25) | (-0.59) | (1.50) | (-0.42) | (-0.02) | (1.69) | (-0.72) | (-0.83) 0.06
8 (46) 2.55 1.12 0.06
(5.33) (1.70) 0.04
Table 13. Regressions explaining the width of the interval of indeterminate outcomes.
C.4. Logistic Estimation of Individual Thresholds
Table 14 gives statistical information on individual behavior for all sessions and treatments.
1 2 3 4 5 6 7 8 9 10 11 12
Session | Z | locatio | Exper- | Infor- | order | T | Average Parameter Estimated | Estimated
n ience | mation numf‘?er estimation mean standard
. (.) deviation
rational a b a/b
’subject
s
001115 | 100 | Frankf. | no PI 20/50 | 20 | 14.25 4.78 | 0.146 32.75 12.43
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50 | 14 10.54 | 0.185 56.91 9.79
001207 | 100 | Frankf. | no PI 50/20 | 50 | 14.5 10.63 | 0.199 53.53 9.13
20 | 14.875 9.35 | 0.349 26.77 5.19
001206 | 100 | Frankf. | no CI 20/50 120 | 14 8.96 | 0.271 33.03 6.68
50 | 14.75 62.18 | 1.168 53.25 1.55
010131 | 100 | Frankf. | no CI 50/20 | 50 | 13.625 9.67 | 0.184 52.66 9.87
20 | 14.6 9.04 | 0.462 19.57 3.93
010201 | 60 | Frankf. | no PI 20/50 | 20 | 13.5 543 0.117 46.40 15.50
50 | 13.625 7.48 | 0.124 60.21 14.59
010321a | 60 | Frankf. | no PI 50/20 | 50 | 12.375 7.67 | 0.131 58.45 13.82
20 | 14.125 7.05 | 0.151 46.62 11.99
010523 | 60 | Frankf. | no PI 50/20 | 50 | 14 12.75 | 0.210 60.75 8.64
20 | 14.875 10.18 | 0.246 41.42 7.38
010530a | 60 | Frankf. | no PI 20/50 | 20 | 13.625 742 | 0.167 44.59 10.89
50 | 14.75 14.86 | 0.247 60.10 7.34
010207 | 60 | Frankf. | no CI 20/50 | 20 | 14.375 8.18 | 0.212 38.52 8.54
50 | 14.625 | 24.74 | 0.434 56.96 4.18
010321b | 60 | Frankf. | no CI 50/20 | 50 | 12.5 7.60 | 0.166 45.75 10.92
20 | 14 9.27 | 0.285 32.57 6.38
010530b | 60 | Frankf. | no Cl 50/20 | 50 | 14.625 13.19 | 0.280 47.16 6.49
20 | 14.875 4.90 | 0.154 31.90 11.82
0529LN | 60 | Barcel. | no PI 20/50 | 20 | 12375 | 7.80 | 0.183 42.72 9.93
50 |13 7.79 | 0.144 54.07 12.60
0530L1 | 60 | Barcel. | no PI 50/20 | 50 | 13.875 12.62 | 0.234 54.00 7.76
20 | 145 9.26 | 0.255 36.28 7.11
0530P3 | 60 | Barcel. | no PI 20/50 | 20 | 11.375 | 7.48 | 0.167 44.77 10.85
50 | 14.375 13.41 | 0.262 51.19 6.93
0607L6 | 60 | Barcel. | no PI 50/20 | 50 | 13.5 947 |0.173 54.73 10.48
20 | 14 9.63 | 0.252 38.25 7.20
0606L8 | 60 | Barcel. | no PI 20/50 | 20 | 13.75 7.51 | 0.173 43.48 10.51
50 | 14.125 12.24 | 0.238 59.87 7.62
0608LA | 60 | Barcel. | no PI 50/20 | 50 | 13.5 13.01 | 0.229 56.83 7.92
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20 | 14.125 6.94 | 0.198 35.02 9.15
0531PB | 60 | Barcel. | no CI 20/50 | 20 | 12.5 6.44 | 0.165 38.93 10.97
50 | 13.25 9.67 |0.193 50.16 9.41
0607P9 | 60 | Barcel. | no CI 50/20 | 50 | 12.5 15.78 | 0.289 54.55 6.27
20 | 14.625 |9.33 |0.249 37.50 7.29
0606PA | 60 | Barcel. | no CI 20/50 | 20 | 14.25 18.99 | 0.472 40.24 3.84
50 | 14.875 | 33.32 | 0.618 53.88 2.93
0614L9 | 60 | Barcel. | no CI 50/20 | 50 | 11.375 | 9.05 | 0.164 55.16 11.05
20 | 14.25 12.21 | 0.288 42.36 6.29
0608PE | 60 | Barcel. | no CI 20/50 | 20 | 12.375 | 6.11 | 0.149 41.14 12.21
50 | 12.875 |9.88 |0.173 57.30 10.51
0614P9 | 60 | Barcel. | no CI 50/20 | 50 | 13.25 15.09 | 0.290 52.08 6.26
20 | 14.625 16.30 | 0.436 37.41 4.16
010516b | 60 | Frankf. | yes CI 20/50 | 20 | 14.375 12.18 | 0.370 32.94 491
50 | 14.625 19.87 | 0.346 57.38 5.24
010516a | 60 | Frankf. | yes CI 50/20 | 50 | 14.625 | 57.50 | 1.146 50.19 1.58
20 | 14.75 16.04 | 0.516 31.08 3.51

Table 14. The first row is the session number. The next five rows give session specific conditions.
Row 7 indicates the treatment specific payoff to action A. Row 8 gives the average number of subjects
per period, whose behavior was consistent with undominated threshold strategies. Rows 9 and 10 are
results of logistic regressions based on data of the last four periods of each treatment. Rows 11 and 12
show the estimated mean and standard deviation of individual thresholds, calculated from estimates a
and b.

The closer the estimated mean a/b came to the payoff for the secure action T, the closer came
subjects towards the payoff dominant equilibrium. A low estimated standard deviation indicates a high
degree of coordination across subjects within the last periods of a treatment.

C.5. Mean and Dispersion of Individual Thresholds

Estimated mean thresholds of subjects during the last four period of a treatment depend on exogenous
conditions in a similar way as thresholds to success.

Regression 9: ab =0yt T+wZ+o;TZ + asLoc + osInfo + ag Ord + o7, TO +u
Estimated standard deviation of individual thresholds during the last four period of a treatment is

larger for private than for common information. The impact of other exogenous variables is less
evident.

Regression 10: /T/(b\/§) =vo+vT+wZ+v;TZ+v,sLoc + vsInfo + v¢ Ord + v; TO +u
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No. | Datasource | Explaining variables: Coefficients R
(number of (t-values) Adj. R?
observations) |Intercept T Z TZ Loc Info | Ord TO
9 All 22.75 27.70 12.50 | -11.25 0.77 3.84 5.17 -3.29 0.90
treatments | (10.28) | (10.68) | (6.25) | (-4.27) | (0.68) | (3.82) | (3.65) | (-1.65) 0.89
10 (46) 2.97 2.53 2.95 -0.96 1.49 2.29 2.90 -4.00 0.36
(1.67) | (1.21) | (1.83) | (-0.45) | (1.62) | (2.84) | (2.54) | (-2.48) 0.24

Table 15. Regressions 9 and 10.

Appendix D: Testing Equilibrium Theories

We test, whether the means of individual thresholds can be explained by any theory of equilibrium
selection in games with CI or by the unique equilibrium in games with PI.

We describe the test procedure in detail for tests of the payoff dominant equilibrium. The payoff
dominant equilibrium depends on T, but not on Z. Using all 22 data from CI sessions with
inexperienced subjects, we use the model Mean;= a+ [ T . tu;, with 7} being the numerical payoff
to the secure action instead of the dummy variable defined in Table 10 above. The payoff dominant
equilibrium predicts o = 0 and § = 1. Thus our null Hypothesis is H jo =T ;. Estimated coefficients

A

a=24.486 and L=
(Mean, -H")* - i°
Z J J Z J m- k
~2
Z i; k
J
of regressors in the model. The distribution of the test statistic is assumed to be F ~ F(k,m—k).

Let ®(F,k,m—k) be the value of the cumulative F-distribution at F. We reject Hypothesis H°,
if ®(F,k,m—k) <5%.

are 0.563. The test statistic is defined by F =

, where m is the number of observations and % is the number

Tables 16 and 17 summarize the results of tests of various equilibrium concepts. Note, that maximin
strategies do only depend on Z. Other theoretical equilibria depend on both, T and Z. Here, we test
hypotheses accordingly using either all data with the same Z or all data with the same T.

Data from CI
Hypothesis SCSSIONS with m | Model k | ®(F,k,m—k) |Result
inexperienced
subjects
Payoff All 22 | Mean;= a+ 8 T, +u, 2 0.000 Reject
dominant .
equilibrium | T=20 11| Meany= ar+u, 1 0.000 Reject
T=50 11| Mean;= a + u; 1 0.040 Reject
Laplacian 7=60 18 | Meanj= a+B T, +u, 2 0.000 Reject
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belief T=20 11 |\Mean=a+B Z, +u, |2 0.005 Reject
equilibrum ' ;o
T=50 11 | Mean;= a+ [ Z, +u, 2 0.000 Reject
Risk dominant | £=60 18 | Mean;j= a+B T, +u, 2 0.000 Reject
equilibrium -
T=20 11 Mean;= a+ f3 Z_/ +u, 2 0.004 Reject
T=50 11 Mean;= a+ f3 Zj +u, 2 0.000 Reject
‘naive’ 7=60 18 | Meanj= a+B T, +u, 2 0.000 Reject
Laplacian
belief T=20 11 Meanjz a+ IB Z_/ + uj 2 0.000 Reject
equilibrium
T=50 11 Mean;= a+pf Zj tu, 2 0.068 Accept
Best response to | Z=60 18 Mean;= a+ B T/, +u. 2 0.252 Accept
belief that others ' : ’
play B with T=20 11| Mean;= a+ f3 Zj +tu, 2 0.309 Accept
probability 2/3 :
T=50 11| Mean;= a+ [ Z, +u, 2 0.542 Accept
Maximin All 2 |Mean=a+BZ +u, |2 0.000 Reject
Strategy it
Table 16. F-tests for selection criteria in sessions with common information.
Data from PI
Hypothesis SCSS10MS. m | Model k | P(F,k,m-k) |Result
(inexperienced
subjects)
Private 7=60 20 Mean;= a+ B Zj +u, 2 0.000 Reject
information
equilibrium T=20 12 Mean;= a+ f3 Zj tu, 2 0.682 Accept
T=50 12 Meanjz a-i—ﬂ Z_/ + u; 2 0.000 Reject

Table 17. F-tests for equilibrium in sessions with private information.
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