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Abstract

It has been suggested (Morris, Shin 2001) that co-ordination failure be-
tween bondholders could produce an effect that would explain the system-
atic mispricing of corporate debt produced by the Merton (1974) frame-
work. In essence, fear of premature foreclosure by other debtors can lead
to pre-emptive action, lowering the value of debt. This paper presents a
continuous-time bond pricing model integrating this effect, and shows that
co-ordination failure can indeed cause bonds to be traded at a discount.

1 Introduction

Some recent research (Morris and Shin 2000) (Morris and Shin 2001) suggests
that co-ordination failure among bond holders can have an effect on the price
of debt. The problem of co-ordination failure is akin to the problem faced by
depositors of a bank which is vulnerable to a run. Even if it is not efficient to
attempt to foreclose, e. g. when the issuer of the bond is likely to have sufficient
funds at maturity, and premature foreclosure produces a high liquidation cost,



co-ordination failures arise in practice depends on the effectiveness of the legal
provisions in bringing structure to formal and informal renegotiation. Empiri-
cally, actual deviations from principles laid down by bankruptcy codes such as
e. g. the absolute priority of the claims of debtors have been well documented
(e. g. Franks and Torous 1994). As such a deviation, co-ordination failure
has only relatively recently become the focus of attention. For example, there
now is evidence that when creditors do not manage to establish co-ordination
arrangements such as e. g. creditor pools, this much decreases the likelihood of
successful reorganisation (Brunner and Krahnen 2001).

Merton (1974) pioneered an approach to pricing defaultable debt sometimes
referred to as the structural, or firm-value based, or contingent claims approach.
Models within this framework explain prices as a function of the process driving
the asset value of a company: Bonds are treated as a ”bull spread” on the asset
value of a firm, and bankruptcy occurs when the face value of debt exceeds the
value of assets at some given date.

Empirically, there is evidence that the simple Merton model seems to over-
predict prices of bonds especially for firms that have a low asset value volatility,
i.e. stable earnings(cf. e.g. Jones, Mason, and Rosenfeld 1984, Anderson and
Sundaresan 2000, Eom, Helwege, and Huang 2001). Often, it seems that the
Merton model relies rather too heavily on a high volatility to generate high
spreads.

Many extensions of the basic Merton model have been suggested, relating
to e. g. sub-ordination arrangements, indenture provisions (Black and Cox
1976), coupon bearing bonds (Geske 1977), stochastic interest rates ( Shimko,
Tejima, and van Deventer 1993, Longstaff and Schwartz 1995) or an optimally
chosen capital structure (e. g. Leland 1994). Recently, strategic issues have
been examined. However, co-ordination failure has not been the focus of much
attention in the bond pricing literature. Typically, research has focussed on
games between creditors and debtors ( Anderson and Sundaresan 1996, Mella-
Barral and Perraudin 1997), rather than on games between creditors, such as
co-ordination failure.

The aim here will be to derive a structural model of bond prices, with the
simplest possible assumptions, integrating co-ordination failure. The model
presented below is intended as a demonstration of how co-ordination failure
could be integrated into a continuous time bond pricing model, and should
easily be extendable to more complicated cases, such as the ones referred to
above. It will be shown that models of this kind can indeed produce a discount
especially for bonds of firms that have a low asset value volatility. The result
is different from that of Morris and Shin (2001), but some of the mechanics
driving it are essentially the same. Morris and Shin produce a model where
the critical asset value or trigger point at which the firm goes bankrupt is a
decreasing function of the asset value. When people ignore this, they underprice
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debt. In the case that will be presented here, the critical asset value or trigger
point will not be a function of the asset value, so this effect does not arise.
However, costs associated with early reorganisation and a non-optimal point at
which reorganisation occurs can produce a discount. A preliminary empirical
calculation indicates that the model presented here can possibly explain some
of the empirical difficulties of the Merton model.

2 The model

2.1 Co-ordination failure in a bond context

In order to produce co-ordination failure, agents have to be able to act in a way
that imposes a (negative) externality on other bondholders. This action will be
related to forcing reorganisation, which will only be possible if the company is
legally insolvent.

Typically, bankruptcy codes stipulate that to qualify for bankruptcy pro-
ceedings, debtors have to be delinquent in servicing their debt (a ’cessation of
payments’ standard). The cessation of payments could be modelled explicitly,
by e.g. postulating that the firm produces a cash-flow that is proportional to
the asset value, and has to make per period payments to creditors that are a
fraction of the par value of debt. In this case, if the asset value falls below a
certain level, the generated cash-flow will be insufficient to make the payments.
If the firm is not able to raise money externally, it would have to default on at
least a part of the payments, and would be legally insolvent. The level of the
asset value at which this would occur would be proportional to the par value
of debt. For simplicity, the ’cessation of payments’ is not modelled explicitly
here - we assume that the firm is deemed insolvent when the asset value reaches
a fraction of the par value of debt - call this the legal insolvency level. Alter-
natively, one could postulate a net worth covenant stipulating that the firm is
insolvent as soon as the asset value falls below the specified fraction of the par
value of debt.

Now suppose that if the firm is insolvent as specified above, it can be forced
into reorganisation by a sufficiently large fraction of the bondholders. Reor-
ganisation in this case would typically involve an exchange of bonds for other
securities or cash.

Suppose the bondholders that force reorganisation are able to extract money
from the firm at the expense of those bondholders who do not participate in
forcing reorganisation. Even in mature markets it seems that bankruptcy pro-
visions are insufficient to prevent this from happening: Take, for instance, the
case of the US. The Trust Indenture Act of 1939 seems to stipulate that holders
of the same class of bonds should be treated on equal terms in a restructuring.
However, there are examples where this was not the case. In the case of Eastern
Airlines, for instance, the court held that a side payment to bondholders voting
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in favour of an exchange (and no side payment to bondholders who did nothing
or voted against the exchange) was not a violation of existing laws (cf. e.g.
Roe 1987). Arguably, the amounts involved here were relatively small (a pay-
ment of USD 35 for every USD 1000 of face value), but one can imagine that in
jurisdictions with a less developed bankruptcy code (e. g. emerging markets),
these kind of events are even more likely to be observed.

Suppose that forcing reorganisation to gain at the expense of others is costly,
e. g. because bondholders need to pay their lawyers to threaten the firm, or
because the firm is forced into a panic sale of some of its assets. Also, assume
that the cost imposed on the bondholders who do not attempt to force reorgan-
isation is stark: their bonds become worthless. This sets the cost imposed on
non-participating bondholders at a very high level, but simplifies the model and
serves to emphasise the results.

Finally, assume that in order to successfully force reorganisation, those bond-
holders attempting to force reorganisation have to represent a large enough frac-
tion of all bondholders. This mirrors provisions in some bankruptcy codes, or
could represent the weight of the parties in informal negotiations. Below, we will
assume that this fraction has to be bigger than the current asset value divided
by the insolvency level. This assumption implies that it is easier to succeed
in forcing reorganisation the lower the current asset value of the firm (i.e. the
more distressed the firm is). Also, it makes it impossible to force reorganisation
if the firm is not insolvent.

Then co-ordination failure could arise as follows: Even if it is not efficient
to force reorganisation because of direct and indirect costs associated with it,
fear that other bondholders may attempt to force reorganisation may lead to
pre-emptive action. The question to ask in this context is at what critical level
of the asset value bondholders will rush to force reorganisation. We will call
this level the ’trigger point’ or ’reorganisation boundary’, because it is the level
at which bondholders will act.

2.2 The setup

As in the Merton (1974) model, the bond can be priced as a function of the asset
value process. We will first set up a discrete time game, where in every period
agents have to decide whether to attempt to force reorganisation or not. We
will then be able to derive a trigger point for the asset value, for which the firm
will just be reorganised. The asset value changes between periods, such that
when we take the continuous time limit, the asset value process will turn out to
be a geometric Brownian motion. This will then allow us to price the bond as
a combination of barrier options on the asset value using standard procedures,
where the barrier is given by the trigger point.
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2.2.1 Payoffs

Formally, denote the face value of debt by D. Then if the asset value of the
firm falls below the legal insolvency level AD, the holders of the bond can
attempt to reorganise. Actual reorganisation will take place immediately before
t only when the fraction of bond holders who attempt to force reorganisation l
is larger than or equal to Vt

AD , where Vt is the asset value of the firm at time t.
So if the asset value exceeds AD, bond holders cannot force reorganisation, and
as Vt decreases it becomes easier to force reorganisation. Attempting to force
reorganisation produces an immediate cost KVt−∆ (proportional to the value of
the assets). If the firm is actually reorganised, an agent that has participated
in reorganising receives her share of the asset value Vt−∆, whereas agents that
have not participated receive 0. If the firm is not reorganised, both types of
agents still hold the bond, which will be worth Bt.

The table below illustrates the instantaneous payoffs that agents need to take
into account when making the decision to participate in attempting to extract
money or not. Note that both types of agents will still be holding the bond in
the next period if the firm is not reorganised.

firm reorganised firm not reorganised
attempt to reorganise. (1−K)Vt−∆ −KVt−∆
do not attempt to reorganise 0 0

2.2.2 Information content of prices

A necessary ingredient for co-ordination failure to arise is uncertainty about the
actions of other agents. Without common knowledge of the fundamentals (the
asset value in our case) of an issuer, agents will not be completely sure of how
other agents will act. Suppose there is private as well as public information,
then provided that private information is sufficiently precise in relation to public
information, i. e. there is sufficient uncertainty about the actions of others, this
will create co-ordination failure.

In a comment on Morris and Shin’s (2000) paper, Atkeson (2000) doubts that
the co-ordination failure idea is applicable to pricing debt. He argues that if
agents can see prices, there will be no co-ordination failure, because all informa-
tion will be revealed in the prices - there is no role for private information, and
hence uncertainty about the information of other agents. This is not necessarily
the case, depending on the timing assumptions.

Suppose that agents have to make a decision as to whether or not to force re-
organisation after they have received a signal, but before trading occurs and the
information contained in the private signals is integrated into prices. Suppose
that after they have made a decision on reorganising, there is a tatonnement
process that integrates all information into prices - they submit their orders
according to a price set by the Walrasian auctioneer, the auctioneer revises the
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t+∆ 
trading 
Vt revealed Vt+∆ 
Bt formed Vt+∆ 
 
 
 

 

t+∆ 
trading 

Vt+∆ revealed 
Bt+∆ formed 
 
 
 

t+q +∆ 

no trading 
signals received Vt+∆ 
posteriors formed Vt+∆ 
action taken 
 
reorganisation or 
no reorganisation 

Figure 1: Timing assumptions

price and invites new orders etc. Then there might still be co-ordination fail-
ure, basically because private information is not already public at the time the
reorganisation decision needs to be made.

2.2.3 Timing

Time increments are of size ∆. At time t, identical agents know the asset
value of this period, Vt. We will later let the number of agents tend to infinity,
and will subsequently index them by the unit interval. Relative changes in
the asset value are normally distributed. The bonds trade at a price Bt which
incorporates the information Vt. Let q denote a time increment that is smaller
than ∆ (0 < q < ∆). At t + q, agents receive a signal Xi about the increase
in the asset value - subscript i indexes the different agents, we omit the time
subscript to simplify notation. They form a posterior given their information.
Given their posterior, they make a decision as to whether or not to attempt to
force reorganisation.

After it has been determined whether the firm will be reorganised or not
in this period, we proceed to the next period: agents submit their orders to a
Walrasian auctioneer, who then determines the price Bt+∆ incorporating all the
information in the private signals about Vt+∆. Suppose that this reveals Vt+∆.
We see that as a consequence of these timing assumptions, only public infor-
mation will be incorporated into prices, and that there will be no asymmetry
between agents. This is important as it allows pricing by standard martingale
techniques.

At the maturity of the bond, the holders receive the minimum of the face
value or the asset value of the firm. There is no cost to reorganisation (the firm
will be wound up in any case).
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2.2.4 Information

The relative increase in the asset value is normally distributed around a drift.

Vt+∆ − Vt = µV Vt∆+ Vtηt, ηt ∼ NID
µ

0,
1

α

¶
Very shortly afterwards, agents receive a signal Xi (subscript i indexes the

different agents) about this increase with a distribution conditional on the asset
value Vt given by

Xi = Vt+∆ + Vtεi, εi ∼ NID
µ

0,
1

β

¶
,

with Cov(ηt, εi) = 0, i. e. the noise is orthogonal to the innovations in the
fundamental.

From the signal Xi and the public information Vt, agents form a posterior
about the value of the firm in period t +∆, Vt+∆ which is also normally dis-
tributed.

2.3 The solution

2.3.1 Basic procedure

We follow the same procedure as Morris and Shin (2001) to solve the model.
Suppose that agents follow a switching strategy around a certain posterior belief.
Given the posterior belief around which agents switch, we can work out how
many of them will attempt to force reorganisation, given the asset value in the
next period (posterior beliefs will be centered around this asset value in the next
period). We can therefore work out what the critical next-period asset value
is for which the firm will be reorganised, given the belief in this period around
which agents switch. This is the trigger point.

2.3.2 The discrete time trigger point

In the appendix, section 5.1, the following solution is derived (equation 5):

V ∗t = ADΦ

½
α√
β

µ
V ∗t
Vt−∆

− 1− µV∆
¶

+

√
α+ β√
β

Φ−1 {1−K}
¾

(1)

The trigger point V ∗t is unique if AD
1√
2π

α√
β
1
Vt
< 1 (condition 1). (cf appendix,

section 5.1.8, proposition 2).
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2.3.3 Continuous time limit

Now take the continuous time limit. If we want the asset value process to tend
to a geometric Brownian motion, we need

lim
∆→dt

α =
1

σ2V dt
,

i.e. public information about the innovation in the asset value to be proportional
to time. So the variance of the innovation is O(∆), or the precision is O( 1∆).

Now a sufficient condition for the uniqueness of the equilibrium described in
equation (1) in continuous time, regardless of the asset value, the parameter A
and the face value of debt, is that

β = o(
1

∆2
),

because this ensures that condition (1) (s.a.) is always satisfied. This is just
to say that we need the quality of private information to be sufficiently high in
relation to the quality of public information in order for agents to be sufficiently
uncertain about the actions of others to obtain co-ordination failure. As∆→ dt,
∆2 → 0, and hence β grows at a faster rate than α. Consequently, α√

β
tends to

zero, so condition (1) will be satisfied for any finite Vt. Also,
√
α+β√
β
→ 1. The

resulting trigger point equation then reduces to

V ∗(t) = AD (1−K)

or, since the solution is constant,

V ∗ = AD (1−K) . (2)

The solution to this equation is always unique, of course. If we let the in-
termediate time period tend to period immediately following it, reorganisation
is forced at t whenever V (t) hits AD (1−K), i. e. when the asset value is
a fraction (1−K) of the legal insolvency level, since 0 < K < 1. So here
reorganisation actually occurs at a later point than legal insolvency. The re-
organisation boundary or trigger point is a decreasing function of the cost of
forcing reorganisation - agents are reluctant to force reorganisation if it is costly
to do so.

Due to the special assumptions about the costs of forced reorganisation, this
function turns out to be quite simple here - it is constant. Of course, one could
allow for more general types of costs, but these do not in general produce a
closed form solution.
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2.3.4 Interpretation of the continuous time limit

The way in which limits are taken actually produces a situation where agents re-
ceive the same information in the limit. However, strategic uncertainty remains
in the sense that for the marginal agent, the fraction of bondholders that forces
reorganisation is still a random variable in the limit, which actually turns out
to be uniformly distributed. This type of result has been discussed at length
elsewhere (Morris and Shin 2002). A formal proof is in the appendix, section
5.2.

Suppose that we instead start with the assumption that there is no private
information, and hence no co-ordination failure. All agents now have the same
information, and will therefore either all attempt to force reorganisation, or all
just hold the bond in equilibrium if they follow switching strategies. Suppose
there is a strategy that specifies a path for the switching point. At every node
of the game, it does not pay to deviate from the strategy when it specifies
attempting to force reorganisation (because in this case deviating always implies
loosing V (t) - holding the bond when everyone else forces reorganisation is not
a good idea), and it does not pay to deviate from a strategy when it specifies
holding the bond (deviating always implies incurring −KV (t) - attempting to
force reorganisation alone will not be successful). It follows that all paths of
a trigger point below AD can be supported. Taking the limit of our discrete
time game has allowed us to eliminate all equilibria but one, even though in the
continuous-time co-ordination failure case in the limit, agents also all have the
same information.

2.4 Pricing

Prices are determined ex ante to receiving the signal. This implies that the price
incorporates the ex ante probabilities of incurring the cost and benefits of forcing
reorganisation and of actual reorganisation. Since agents are ex ante identical,
the price will e. g. incorporate the ex ante probability of receiving a signal that



1. Π1(T ) = D −max(D − VT , 0), if s > T
2. Π2(s−∆+q) = 0 or Π2(s−∆+q) = (1−K)Vs−∆, depending on whether
the agent participated in forcing reorganisation or not, if s ≤ T .
Note that (1) and (2) are exclusive.

3. Π2(t − ∆ + q) = −KVt−∆, which is incurred every time an attempt at
forcing reorganisation is made but reorganisation does not actually take
place, for all t < s.

2.4.2 Continuous time payoffs

In continuous time, the pricing will be simpler. Examine the second and third
component. Conditional on the asset value in the next period, the probability
that an agent receives a signal which prompts her to force reorganisation is
Φ
n
1
Vt

√
β(X∗

t − Vt+∆)
o
. We see that as β tends to infinity, this probability

tends either to 1 or to 0. What this means is that because all agents essentially
receive the same information (as the signal becomes infinitely precise), the agents
will either all attempt to force reorganisation, or will all refrain from doing so.
So for any agent, the ex ante probability of forcing reorganisation when the other
agents do not do so tends to zero. Also, the probability of not attempting to
force reorganisation if all other agents are doing so tends to zero. In continuous
time, this makes the pricing of the third component trivial - the probability
of attempting to force reorganisation when others do not do so tends to zero,
hence this probability will also tend to zero under the equivalent martingale
measure, and hence this component has a price of zero. The pricing of the second
component is also simplified, because here the probability of not receiving any
money in the case of early reorganisation tends to zero. Note that due to the
assumption that q → ∆, the payoff to the second component will occur at s in
continuous time. We therefore have two mutually exclusive payoffs:

1. Π1(T ) = D −max(D − VT , 0), if s > T
2. Π2(s) = (1−K)Vs−dt, if s ≤ T .
(In the following, we use replaceVs−dt withVs, arguably this will not produce

a different price.)

2.4.3 Equivalent Martingale Measure

With these payoffs, the model looks very similar to the standard Black and Cox
(1976) case. The difference here is that the absorbing boundary is given by our
trigger point (in their case it is the covenant), and that the payoff upon hitting
this boundary is not equal to the asset value, but to a fraction 1 − K of the
asset value. We know that as long as one ’derivative’ on the underlying (the
asset value) is traded, e. g. equity, then the asset value is implicitly tradeable,
and hence in our simple case its drift under the equivalent martingale measure
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defined by the money market account numeraire will be equal to the risk-free
interest rate.

2.4.4 Bond price

The bond price will be equal to the discounted expected value of the payoffs
under the equivalent martingale measure (Q).

B(Vt, t, T ) = EQt

h
e−r(T−t)Π1I (s > T ) + e−r(T−s)Π2I (s ≤ T )

i
(Here, r denotes the constant risk free interest rate and t denotes the present.)

At this stage pricing is straightforward. It was first explored by Black and
Cox (1976). For a good recent treatment, cf. e. g. Ericsson and Reneby (1998).

The bond can be viewed as a portfolio of barrier options. We can view Π1
as a combination of a long position in a down-and-out call with strike price 0
(which is of course just equivalent to a down-and-out position in the underlying
asset value), and a short position in a down-and-out call in with a strike price
of D. This captures the fact that a bond can be viewed as a bull spread on
the asset value. We can view Π2 as a long position in (1−K)V ∗ units of a
dollar-in-boundary claim (a claim that pays one dollar in the case the boundary
is hit before maturity). The price is the sum of prices of these positions:

B(V (t), t, T, V ∗) = FC,DO(V (t), 0, t, T )− FC,DO(V (t),D, t, T )

+ (1−K)V ∗FDIB(V (t), t, T )

where FC,DO(V (t), Z, t, T ) denotes the price of a down-and-out call with
strike price Z on the underlying V at t with maturity T . Similarly, FDIB(V (t), t, T )
denotes the price of a dollar-in-boundary claim. The interested reader is referred
to the appendix, section 5.3 for details of how the components are priced.

2.4.5 Equity price

Similarly, we can interpret equity as a down-and-out call option on the asset
value. Hence the price of equity is given by

E(V (t), t, T, V ∗) = FC,DO(V (t),D, t, T ).

The sum of the value of equity and the value of debt equals the market value
of the firm:

M(V (t), t, T, V ∗) = FC,DO(V (t), 0, t, T ) + (1−K)V ∗FDIB(V (t), t, T )

This is in essence the sum of the price of the down-and-out asset value of the
firm, plus the price of the down-and-in claim representing the recovery value in
the case of default. Also, note that the market value is not equal to the asset
value of the firm.
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2.4.6 Extension to coupon-paying debt

An extension to coupon-paying debt is simple, using methods described by Eric-
sson and Reneby (1998). If we assume that coupon i is paid in case the boundary
is not reached prior to its maturity ti, and not paid if the boundary is reached
and reorganisation takes place at or before maturity, then we can think of the
coupon essentially as a down-and-out binary cash call with the strike price and
barrier equal to the trigger point. If the coupon rate is c of face value D, then
the value of debt will be increased by

Bc = cD
X
i

FBCC,DO (V (t), t, ti, V
∗)

The value of equity will be decreased by

Ec = − (1− κ) cD
X
i

FBCC,DO (V (t), t, ti, V
∗) ,

where FBCC,DO denotes the pricing function of a down-and-out binary cash
call, and κ is the tax rate - this captures the value of the tax shield to equity.

3 Evaluation

3.1 Comparison

3.1.1 Black-Cox and Merton

In the Black and Cox (1976) case, the amount recovered if reorganisation is
forced is simply V (t). It is trivial to show that this is always more than B(t)
(intuitively, this is the case since B(t) represents a claim to V (T ) in some states
of the world, and a claim to a value less than V (T ) in others, whereas V (t)
represents a claim to V (T ) in all states of the world). Reorganisation will
always be forced if it is possible to do so, and B(t) (representing the value of
holding the bond) is smaller than the payoff to reorganisation, which is V (t) in
the Black Cox case. So reorganisation is always forced if the asset value hits the
covenant, basically because there are no bankruptcy costs.

Note that in the co-ordination failure model, if the cost of attempting to
force reorganisation (K) is set zero, the amount recovered in the case of early
reorganisation is V (t), and the trigger point tends to AD, which is simply the
value of the legal insolvency level - if a net worth covenant exists, this will be
the legal insolvency level. So the Black and Cox (1976) model is a special case
of our model. If the cost of attempting to force reorganisation are zero, then
there are sometimes benefits associated with doing so, but never any costs, so
it becomes a dominant strategy. Hence people will force reorganisation as soon
as they can - leading to the Black Cox default point. Given that there are no
costs to forcing early reorganisation, we also have the Black Cox recovery value,
and hence the Black Cox price. Note that the Black Cox price will always be
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higher, as there are no costs to reorganisation and reorganisation occurs when
there is still more of the asset value left (the Black Cox trigger point is higher).

If we set K = 1, it never pays to force reorganisation. The bondholders
never do, so there is no reorganisation before maturity. The pricing formula
reduces to the Merton (1974) formula.

The effect producing the price that differs from Merton price is twofold:
Firstly, the possibility of early default - i.e. receiving money before the matu-
rity of the bond - increases the value of the bond, as in the Black-Cox case. But
secondly, since there is a cost of reorganisation K, this decreases the value of
the bond, ceteris paribus. Because these two effects conflict, the co-ordination
failure model does not produce a discount vis-a-vis the Merton case in all situ-
ations.

We can plot the differences in predicted spreads as a function of the asset
value, the asset value volatility and maturity. All plots assume an asset value
V = 1, an asset value of volatility of σV = 0.1, a time to maturity of T − t = 1,
an interest rate of r = 0.05, a parameter A = 1 and a parameter K = 0.3
unless otherwise specified. This implies a default boundary at 70% of the face
value of debt. We see that for these parameters spreads react more abruptly to
the asset value, they increase stronger in asset value volatility, and they exhibit
more abrupt behaviour with respect to maturity.
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3.1.2 Other cases

Morris-Shin Morris and Shin (2001) refer to a version of equation (5), and
argue that if one assumes the trigger point to be fixed, one would underprice
debt, as the trigger point is actually a decreasing function of the asset value.
So as the asset value decreases, the trigger point moves up. Ignoring this effect
would cause overpricing. The effect mentioned by Morris and Shin (2001) does
not cause the difference in predicted price here, because the continuous time
limit of the trigger point (equation 2) is not a function of the asset value - it is
constant.

Optimal early reorganisation Suppose that agents co-ordinate to force
early reorganisation when it is optimal to do so. Then early reorganisation
will occur when B(t) ≤ (1−K)V (t), i. e. when it is better to liquidate than to
hold the bond. In this situation which is more general than the case examined
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by Black and Cox it is not necessarily the case that early reorganisation will oc-
cur as soon as the asset value hits the covenant. In fact, the bond now resembles
an American-type security, where the holders of the bond have the (American)
option to force reorganisation. It is unlikely that a closed form solution for the
price of such a bond can be found in general.

However, it is possible to argue that this price, reflecting the optimum point
at which to force reorganisation, will always be equal to or bigger than the price
that is produced by co-ordination failure, where reorganisation is forced at a
point that will not in general be optimal. Hence co-ordination failure would
reduce the price vis-a-vis this kind of bond.

3.2 Testable implications

The co-ordination failure model is observationally equivalent to any geometric
Brownian motion - based model that produces the same trigger point and pay-
offs. The key testable implication of the model is that there is a relationship
between the fraction that is recovered, and the asset value at which the company
goes bankrupt, as specified by the trigger point equation (2) and the recovery
fraction (1−K).

More generally, note that the present model is a special case of a very generic
bond pricing approach (Ericsson and Reneby 1998) that views a bond as a port-
folio of simple and barrier claims. This also goes for other bond pricing models
integrating strategic interaction (Mella-Barral and Perraudin 1997). In essence,
incorporating elements of strategic interaction into bond pricing produces ar-
guments as to what the simple and barrier claims should be that make up the
bond. Strategic interaction produces different payoffs in different states of the
world which determine the price. Of course, any other model that produces the
same payoffs will also produce the same price.

payoffs in different states of the world

bond price

strategic interaction 

3.3 An indicative empirical example

To see whether a model with the payoffs described here could possibly improve
on the predictive performance of the Merton model, the predicted spreads are
compared for the case of Xerox Corp., which underwent major restructuring
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in December 2000 (there are several inaccuracies implicit in the method used,
it is intended merely as a back-of-the-envelope calculation and mirrors what a
practitioner might do).

For weekly data from the end of 1996 to the end of 2000, obtained from
Datastream, Bloomberg and Multex, the above formula for the market value
of equity and the volatility of equity (implied volatilities from call options) is
numerically inverted to obtain the asset value and asset value volatility. Figures
for total liabilities excluding equity are linearly interpolated to obtain a time
series for liabilities. Yields to maturity from one bond picked at random are
calculated. A similar (in terms of maturity and coupon) US Treasury Note is
picked, and its yield also calculated. We can obtain a (coupon) spread as the
difference between the two yields. Assuming a recovery value of about 50% and
a parameter of A = 1, i.e. the firm is insolvent as soon as liabilities exceed
assets, one obtains from the trigger point equation a cost of reorganisation K
of about 30%. This roughly matches the average recovery fraction for a senior
unsecured bond as reported e. g. by Standard & Poor’s for all types of credit
events. Using these values, one can calculate the predicted spread for the co-
ordination failure bond and the Merton bond (ignoring coupons), and can plot
the actual spreads and the predicted spreads as a function of the asset value of
the firm. Note that Xerox Corp. was downgraded by Standard & Poor’s from
A to BBB in April of 1999.
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We see that for the dataset at hand, the Merton model seems to underpredict
spreads close to default, whereas the co-ordination failure model seems to pro-
duce a better fit. Both models underpredict spreads further away from default.
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The error seems to be small, relatively constant and positive for large asset
values. A possible guess as to why this might be is some liquidity advantage of
the underlying benchmark (the T-Note), or a factor related to the calculation
of the spread.

We can calculate the prediction error as the difference in spreads, relative
to the actual spread. The average prediction error is negative for both models
(i.e. the models tend to underpredict spreads on average), and are both in the
range of about -60%.

In terms of squared prediction error, the co-ordination failure model out-
performs the Merton model in 67.36% of the time periods. For the absolute
prediction error, the co-ordination failure model also outperforms the Merton
model in 67.36% of the time periods. The co-ordination failure model itself is
outperformed in 96.89% of the time period by a simple Random Walk model
predicting that the spread today will be equal to the spread tomorrow, both in
terms of squared and absolute error. These results seem to be in line with other
research (Eom, Helwege, and Huang 2001), which generally suggests that includ-
ing a cost to bankruptcy improves fit, but that structural models are generally
worse at predicting spreads than the simple Random Walk model. Comparing
the correlation between predicted and actual spreads is also interesting: Correla-
tion coefficients for the RandomWalk model (i.e. the first-order autocorrelation
coefficient) is 0.8809, the coefficient for the co-ordination failure model is 0.8625
and for the Merton model it is 0.4890. It appears that the co-ordination failure
model is able to pick up quite a large part of at least the non-linear relationship
between variables. An element of linear mis-specification seems to remain. As
indicated above, this might be due to for example a liquidity advantage of the
benchmark.

To see how sensitive the results are to the specification of the parameter K,
the model was also run using K = 0.2, which would correspond to a recovery
fraction (of par value) of about 64%. In this case, the co-ordination failure model
outperforms the Merton model in 67.88% of the time periods both in terms of
squared and absolute error, and the correlation between the co-ordination failure
predicted spreads and actual spreads rises to 0.8628. The performance of the co-
ordination failure model vis-a-vis the random walk model is unchanged. Taking
a parameter of K = 0.4, which would correspond to a recovery fraction of
36%, the co-ordination failure model outperforms the Merton model of 62.18%
of the time in terms of both absolute and squared prediction errors, and the
correlation coefficient between predicted and actual spreads is 0.8615. Again,
the performance vis-a-vis the random walk model is not changed. It appears
that the results are not very sensitive to the parameter K.
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4 Concluding Remarks

When examining cases of reorganisation, it is possible to observe situations in
which holders of the same bond manage to receive different amounts of cash
or different securities in a reorganisation. The extent to which this is possible
differs across jurisdictions, but even in mature markets with elaborate bond-
holder protection legislation like the US, these kind of situations do seem to
arise. Consequently, co-ordination failure is likely to be an issue for holders of
bonds.

This paper attempts to derive a continuous-time structural bond pricing
model incorporating co-ordination failure by postulating private information
between periods in which trading occurs. In the limit, the private information
vanishes, so standard martingale pricing methods are applicable, but strategic
uncertainty and the equilibrium produced by it remain.

Theoretically, the model suggests that there should be a difference between
the legal insolvency level and the point at which firms are actually reorganised,
and that the point at which firms are reorganised depends negatively on the
cost associated with reorganisation. Furthermore, the price produced here is
different from the Merton price. A preliminary empirical back-of-the-envelope
calculation seems to suggest that a model with payoffs as described by the co-
ordination failure model appears to produce a better fit to actual data.

5 Appendix

5.1 Solution of the discrete time model

5.1.1 Basic procedure

We follow the same procedure as Morris and Shin (2001) to solve the model.
Suppose that agents follow a switching strategy around a certain posterior belief.
Given the posterior belief around which agents switch, we can work out how
many of them will attempt to force reorganisation, given the asset value in the
next period (posterior beliefs will be centered around this asset value in the next
period). We can therefore work out what the critical next-period asset value
is for which the firm will be reorganised, given the belief in this period around
which agents switch.

Also, we can use the fact that agents will switch if they believe that they
will obtain a higher utility from doing so. Once we have defined utilities, this
allows us to derive the critical posterior belief, given a critical next period asset
value for which the firm is reorganised.

So we have two equations in two unknowns, which can then be solved for
the critical asset value for which the firm is reorganised - the trigger point.
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5.1.2 Information

For convenience, the assumptions about information are restated here. The
relative increase in the asset value is normally distributed around a drift.

Vt+∆ − Vt = µV Vt∆+ Vtηt, ηt ∼ NID
µ

0,
1

α

¶
Very shortly afterwards, agents receive a signal Xi (subscript i indexes the

different agents) about this increase with a distribution conditional on the asset
value Vt given by

Xi = Vt+∆ + Vtεi, εi ∼ NID
µ

0,
1

β

¶
,

with Cov(ηt, εi) = 0, i. e. the noise is orthogonal to the innovations in the
fundamental.

5.1.3 Posteriors

From the signal Xi and the public information Vt, agents form a posterior
about the value of the firm in period t +∆, Vt+∆ which is normal with mean
and variance given by

ρi = E(Vt+∆|Xi) =
α(1 + µV∆)Vt + βXi

α+ β

and

V ar(Vt+∆|Xi) =
(Vt)2

α+ β
.

5.1.4 Critical value of Vt+∆ for which there is forced reorganisation

Given the posterior belief around which agents switch, we work out how many
of them will attempt to force reorganisation, given the asset value in the next
period (posterior beliefs will be centered around this asset value in the next
period). We then work out what the critical next-period asset value is for which
the firm will be reorganised, given the belief in this period around which agents
switch.

Suppose agents follow a switching strategy around ρ∗, i. e. agents attempt
to force reorganisation when their posterior is below ρ∗. Then an agent will not
force reorganisation if and only if the private signal is bigger than

X∗ =
α+ β

β
ρ∗ − α

β
(1 + µV∆)Vt.
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Conditional on state Vt+∆, the distribution of Xi is normal with mean Vt+∆
and precision β

V 2
t
. So the ex ante probability for any agent of attempting to

force reorganisation is equal to

Φ

½
1

Vt

p
β(X∗ − Vt+∆)

¾
.

As the number of agents tends to infinity, the fraction of agents that forces
reorganisation will be equal to this ex ante probability for any individual agent
by the law of large numbers.

Since the firm is reorganised if the fraction that forces reorganisation is
l ≥ Vt+∆

AD , the critical value of Vt+∆ (denoted by V ∗t+∆) for which the firm is

reorganised at t is given by V ∗t+∆ = ADΦ
n
1
Vt

√
β(X∗ − V ∗t+∆)

o
or

V ∗t+∆ = ADΦ

½
1

Vt

µ
α√
β

(ρ∗ − (1 + µV∆)Vt) +
p
β
¡
ρ∗ − V ∗t+∆

¢¶¾
. (3)

5.1.5 Utility, budget constraint

The utility function is additively separable across time. Noting that agents
believe that their actions as individuals will not affect the bond price (since
they are atomistic), consumption in any period t in which trading occurs (this
does not apply to the interim period) conditional on the firm not having been
reorganised prior to this period, is equal to:

ct = et + ξt−∆Bt − ξtBt
where et denotes all non-bond-related items and ξt denotes the amount in-

vested in the bond from period t to period t +∆. Note that as a consequence
of the timing assumptions, agents are identical in the periods in which trading
occurs and prices will adjust such that they will hold the same amounts ξ of the
bond.

Consumption in the intermediate period t + q is as described in the payoff
matrix in the main text. Note that retrading is not allowed at t+ q, and hence
the positions ξ will still be the same as at time t. Denote consumption in the
case the agent decides to force reorganisation (f) and the firm is actually forced
into reorganisation (R) by

ct+q [fR] = (1−K)Vtξt,

consumption in the intermediate time period in the case the agent decides to
force reorganisation (f) but the firm is not reorganised (C) by

ct+q [fC] = −KVtξt
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and consumption in the intermediate time period in the case the agent decides
not to force reorganisation (n) (in that case it does not matter whether the firm
is reorganised or not) by

ct+q [nR] = ct+q [nC] = 0.

5.1.6 Critical value of ρ

We now use the fact that agents will switch if they believe that they will obtain
a higher utility from doing so. We then derive the critical posterior belief, given
a critical next period asset value for which the firm is reorganised.

Now the marginal agent (one that is indifferent between forcing reorgani-
sation or not) has a posterior over the asset value which has its mean just at
the switching point (i.e. ρ for this agent is equal to ρ∗). For her the expected
utility of just holding the bond should just equal the expected utility of forc-
ing reorganisation. This defines the switching point. Using u to denote the
instantaneous utility, δ to denote the discount factor from time t + ∆ to the
intermediate time t + q and F to denote the posterior cumulative distribution
(given the belief) over the asset value Vt+∆ we can write:

V ∗
t+∆Z

−∞
u (ct+q [fR]) dF +

∞Z
V ∗
t+∆

u (ct+q [fC]) dF +

∞Z
−∞

δu(ct+∆)dF =

V ∗
t+∆Z

−∞
u (ct+q [nR]) dF +

∞Z
V ∗
t+∆

u (ct+q [nC]) dF +

∞Z
−∞

δu(ct+∆)dF

Note that the utility at t + q does not depend on Vt+∆. We can therefore
write:

u (ct+q [fR]) Pr
¡
Vt+∆ < V

∗
t+∆

¢
+ u (ct+q [fC]) Pr

¡
Vt+∆ > V

∗
t+∆

¢
=

u (ct+q [nR]) Pr
¡
Vt+∆ < V

∗
t+∆

¢
+ u (ct+q [nC]) Pr

¡
Vt+∆ > V

∗
t+∆

¢
We can write this probability as:

Pr
¡
Vt+∆ > V

∗
t+∆

¢
= Φ

½√
α+ β

Vt
(ρ∗ − V ∗t+∆)

¾
¡
= 1− Pr

¡
Vt+∆ < V

∗
t+∆

¢¢
.

We insert this and rearrange to obtain
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ρ∗ − V ∗t+∆ =
Vt√
α+ β

Φ−1
½
u (c [fR])− u (ct [nR])

u (ct [fR])− u (ct [fC])

¾
Now take limits as the number of agents goes to infinity. This will imply

that the amount any individual agent holds goes to zero, ξt → 0. Note that we
have a fraction of functions of ξt, and can apply l’Hopital’s rule. In the limit,
ct+q [fR] = ct+q [fC] = ct+q [nL] = ct+q [nC] = ct+q, so

lim
ξt→0

u (ct+q [fR])− u (ct+q [nR])

u (ct+q [fR])− u (ct+q [fC])
=

u0 (ct+q) (1−K)Vt
u0 (ct+q) (1−K)Vt + u0 (ct+q)KVt

= 1−K.

So the limit of our equation is

ρ∗ − V ∗t+∆ =
Vt√
α+ β

Φ−1 {1−K} . (4)

We need 0 < K < 1 for this function to be well defined. Note that 1 −K
is the fraction of the asset value recovered in the case of early reorganisation, if
the agent has attempted to force reorganisation.

This equation together with (3) pins down the critical value of beliefs and
the asset value.

5.1.7 Equilibrium forced reorganisation

Combining equations (4) and (3) we can solve for the failure point at which the
asset value in the next period causes failure in this period:

V ∗t+∆ = ADΦ

½
α√
β

µ
V ∗t+∆
Vt

− 1− µV∆
¶

+

√
α+ β√
β

Φ−1 {1−K}
¾

(5)

Reorganisation at time t+ q will occur when V hits V ∗ at t+∆.

5.1.8 Uniqueness

To simplify notation, define

Z =
α√
β

µ
V ∗t+∆
Vt

− 1− µV∆
¶

+

√
α+ β√
β

Φ−1 {1−K}

and

Condition 1 AD 1√
2π

α√
β
1
V < 1

Proposition 2 The trigger point V ∗t+∆ is unique if condition (1) is satisfied.
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Proof. This is a version of the proof in Morris and Shin (2001). A sufficient
condition for a unique solution is that the slope of

ADΦ {Z}

is less than one everywhere. This slope is equal to

ADϕ {Z} α√
β

1

Vt
.

It reaches a maximum where the argument of the normal density is 0, the
maximum there will be 1√

2π
. Hence a sufficient condition for a unique solution

is that
AD

1√
2π

α√
β

1

Vt
< 1.

5.2 Uncertainty in the limit

It can be shown that the marginal or pivotal agent views the fraction of bond-
holders that attempt to force reorganisation as a random variable that is uni-
formly distributed in the continuous-time limit, and hence that strategic uncer-
tainty remains. Note that these kind of results have been discussed at length
elsewhere (Morris and Shin 2002).

Proposition 3 The distribution of l given the belief ρ∗ of the marginal agent
is uniform in the limit

Proof. The proportion of people who receive a lower signal X∗ is

l = Φ

µ√
β

Vt
(X∗ − Vt+∆)

¶
.

The question to ask is: What is the probability that a fraction less than z of
the other bondholders receive a signal higher than that of the marginal agent,
conditional on the marginal agent’s belief, or what is Pr ((1− l) < z | ρ∗)?

Now the event
1− l < z

is equivalent to

1−Φ
µ√

β

Vt
(X∗ − Vt+∆)

¶
< z

or (rearranging)

Vt+∆ < X
∗ +

Vt√
β
Φ−1 (1− z) .
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So the probability we are looking for is Pr
³
Vt+∆ < X

∗ + Vt√
β
Φ−1 (1− z) | ρ∗

´
.

The posterior of the marginal agent over Vt+∆ has mean ρ∗ and variance
V 2
t

α+β ,
hence this probability is

Pr ((1− l) < z | ρ∗) = Φ

µ√
α+ β

Vt

µ
X∗ +

Vt√
β
Φ−1 (1− z)− ρ∗

¶¶
.

Now as we take limits, ρ∗ → X∗, since private information becomes infinitely



fM(Y (t), s) ≡ Y (t)q
2π (s− t)3

e−
1
2

1
(s−t) (Y (t)+µ

M
Y (s−t))

2

. (7)

The point mass for the first passage time is given by

M
Pr (s ≤ T ) =

Z T

t

fM(Y (t), s)ds = Φ

µ−Y (t)− µMY (T − t)√
T − t

¶
(8)

+ e−2µ
M
Y Y (t)Φ

µ−Y (t) + µMY (T − t)√
T − t

¶
where Φ is the normal cumulative density. The density of Y (T ), given that

Y has not hit 0 before maturity, is given by

fM (Y (T );Y (t), t, T ) =
1p

2π (T − t)e
− 1
2

µ
Y (T)−Y (t)−µMY (T−t)√

T−t

¶
(9)

− e−2µMY Y (t) 1p
2π (T − t)e

− 1
2

µ
Y (T )+Y (t)−µMY (T−t)√

T−t

¶

Using the definition of Y (t), we can change variables and work out the

corresponding results under Q, where µQY =
r−1

2σ
2
V

σ , or the measure G, where

µGY = −r− 1
2σ

2
V

σ .

Use r̃ to denote r − 1
2σ

2
V , x to denote

V ∗
V (t) and θ to denote

r+ 1
2σ

2
V

σ2V
, then:

G

Pr (s ≤ T ) = Φ (d5) + x−2θΦ (d6) (10)

where

d5 =
lnx+

¡
r + 1

2σ
2
¢
(T − t)

σV
√
T − t (11)

and

d6 =
lnx− ¡r + 1

2σ
2
¢
(T − t)

σV
√
T − t . (12)

Also,

fQ (lnV (T ); lnV (t)t, T ) (13)

=
1p

2π (T − t)e
− 1
2

³
ln V (T )−lnV (t)−r̃(T−t)

σV
√
T−t

´

−
µ
V ∗

V (t)

¶ 2r̃

σ2
V 1p

2π (T − t)e
−1
2

Ã
lnV (T )−ln(V (t)x2)−r̃(T−t)

σV
√
T−t

!
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5.3.3 Prices of constituent claims

Dollar-in-boundary claim The price of a claim that pays 1 when the bound-
ary is hit (dollar-in-boundary claim) is

FDIB (V (t), t) = EQ
h
e−r(T−s)I (s ≤ T )

i
=

Z T

t

e−r(s−t)fQ(Y (t), s)ds

which (completing the squares and integrating) yields (see e.g. Ericsson and
Reneby 1998, in the appendix)

FDIB (V (t), t) = e−(µQY−µGY )Y (t)
G
Pr (s ≤ T ) . (14)

Noting that Ã
µQY +

r³
µQY

´2
+ 2r

!
σV

=
2r

σ2V

we can write this as

FDIB (V (t), t) = x
2r

σ2
V

¡
Φ (d5) + x−2θΦ (d6)

¢
or

FDIB (V (t), t) =
V (t)

V ∗
©
x2θΦ (d5) +Φ (d6)

ª
(15)

Down-and-out claim Define the payoff ΠTr(V (T )) as the payoff Π(V (T ))
truncated at V ∗:
Then we can derive the price of the down-and-out claim in terms of the

prices of the truncated down-and-out claims with starting values for the process
of V (t) and V (t)x2, using the distribution given in (9):

FΠ,DO (V (t), t) = FΠTr (V (t), t)− x
2r̃

σ2
V FΠTr

¡
V (t)x2, t

¢
(16)

For a good exposition, see e. g. Björk (1998).

Down-and-out call For example, consider a down-and-out call. For pricing
a down-and-out call with strike price Z, we need to know what the price of a
truncated call is. For a call whose price is truncated at V ∗, with a starting
value of the process equal to S, the price will be the simple Black-Scholes price
if V ∗ ≤ Z, i. e. if the truncated payoff is just equal to the normal call payoff:

FC (S,Z, t) = SΦ (d1)− e−r(T−t)ZΦ (d2) (17)

where
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d2 (S) =
ln
¡
S
Z

¢
+ r̃ (T − t)

σV
√
T − t (18)

and

d1 (S) = d2 + σV
√
T − t. (19)

If V ∗ > Z, the price will be different. Denote the price of the truncated call
as FC,Tr. It is given by

FCTr (S,Z, t) = SΦ(d3)− e−r(T−t)ZΦ(d4) (20)

where now

d4 (S) =
ln
¡
S
V ∗
¢

+ r̃ (T − t)
σV
√
T − t (21)

and

d3 (S) = d4 + σV
√
T − t (22)

We can now insert these pricing functions into the equation for a down-and-
out-price to obtain the pricing functions FC,DO.

Down-and-out call with strike price 0 By the above formulas, this is given
by

FC,DO (V (t), 0, t) = V (t)
£
Φ{d3(V (t)}− x2θ ¡Φ©d3 ¡V (t)x2

¢ª¢¤
(23)

Down-and-out call with strike price D, price of equity Suppose we
have a call with a strike price of D, which is bigger than V ∗, so that the payoff
function is not truncated, then its price is

FC,DO (V (t),D, t) = V (t)
¡
Φ {d1(V (t)}− x2θΦ©d1 ¡V (t)x2

¢ª¢
(24)

+ e−r(T−t)D
µ
x

2r̃

σ2
V Φ

©
d2
¡
V (t)x2

¢ª−Φ {d2(V (t)}
¶

This is also the value of equity (E).

Note that the derivative of the value of equity with respect to the asset value
is
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∂E

∂V
= Φ {d1 (V )}+ 2r̃

σ2V

Ã
x

(V ∗)2

!³
V x2Φ

©
d1
¡
V x2

¢ª− e−r(T−t)DΦ©d2 ¡V x2¢ª´
(25)

So using Ito’s lemma, we can now find the volatility of equity as

σE =
V

E

∂E

∂V
σV (26)

This is a necessary ingredient for using the market value and volatility of
equity to obtain the implied asset value and asset value volatility.

Bond price Recall that the dollar-in-boundary claim is

FDIB (V (t), t) =
V (t)

V ∗
£
x2θΦ {d5}+Φ {d6}

¤
. (27)

We will need (1−K)V ∗ of these - this is what we get for holding the bond
in case of early default.

Putting it all together, we can calculate the price of the bond as

B(V (t), t, T, V ∗) = FC,DO(V (t), 0, t, T ) (28)

− FC,DO(V (t),D, t, T )

+ (1−K) (V ∗)FDIB (V (t), t)

B(V (t), t, T, V ∗) = V (t)
£
Φ{d3(V (t)}− x2θ ¡Φ©d3 ¡V (t)x2

¢ª¢¤
(29)

− V (t)
¡
Φ {d1(V (t)}− x2θΦ©d1 ¡V (t)x2

¢ª¢
− e−r(T−t)D

µ
x

2r̃

σ2
V Φ

©
d2
¡
V (t)x2

¢ª−Φ {d2 (V (t))}
¶

+ (1−K)V ∗
V (t)

V ∗
£
x2θΦ {d5}+Φ {d6}

¤
Now note that −d3(V (t)) = d6, and d5 = d3

¡
V (t)x2

¢
(see list below).

So we can write

B(V (t), t, T, V ∗) = e−r(T−t)D
·
Φ{d2 (V (t))}− x

2r̃

σ2
V Φ

©
d2
¡
V (t)x2

¢ª¸
(30)

+ V (t)
£
Φ {−d1(V (t)}+ x2θΦ

©
d1
¡
V (t)x2

¢ª¤
− V (t)

£
K
¡
x2θΦ{d5}+Φ {d6}

¢¤
(31)

where
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x =
V ∗

V (t)

θ =
r + 1

2σ
2
V

σ2V

r̃ = r − 1

2
σ2

d1(V (t)) =
ln
³
V (t)
D

´
+
¡
r + 1

2σ
2
V

¢
(T − t)

σV
√
T − t

d2(V (t)) =
ln
³
V (t)
D

´
+
¡
r − 1

2σ
2
V

¢
(T − t)

σV
√
T − t

d3(V (t)) =
− lnx+

¡
r + 1

2σ
2
V

¢
(T − t)

σV
√
T − t

d1(V (t)x2) =
ln
³
V (t)
D

´
+ 2 lnx+

¡
r + 1

2σ
2
V

¢
(T − t)

σV
√
T − t

d2(V (t)x2) =
ln
³
V (t)
D

´
+ 2 lnx+

¡
r − 1

2σ
2
V

¢
(T − t)

σV
√
T − t

d3(V (t)x2) =
lnx+

¡
r + 1

2σ
2
V

¢
(T − t)

σV
√
T − t

d5 =
lnx+

¡
r + 1

2σ
2
V

¢
(T − t)

σV
√
T − t (= d3(V (t)x2))

d6 =
lnx− ¡r + 1

2σ
2
V

¢
(T − t)

σV
√
T − t (= −d3(V (t)))

as before.

5.3.4 Relation to Merton price

Note that the bond price is equal to the Merton price plus the difference between
the price of a normal call option with strike D and a down-and-out call option
with strike D (this will always be positive), minus KV (t) units of a dollar-in-
boundary claim. We can interpret the call options as Merton-type equity and
co-ordination failure equity respectively. If we set K = 0, we obtain the Merton
price: because there is no benefit to early reorganisation, it will never occur,
and we are back at the Merton model, where there is no early default.

B(V (t), t, T, V ∗) = BMerton (V (t), t, T ) (32)
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