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Abstract 

This paper investigates the estimation of long-term VaR. It also suggests a simple 

approach to the estimation of long-term VaR that avoids problems associated with the 

square-root rule for extrapolating VaR, as well as those associated with attempts to 

extrapolate day-to-day volatility forecasts over longer horizons.   
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One of the most significant recent developments in the risk measurement and 

management area has been the emergence of Value-at-Risk (VaR).  The VaR of a 

portfolio is the maximum loss that the portfolio will suffer over a defined time 

horizon, at a specified level of probability known as the VaR confidence level. The 

VaR has proven to be a very useful measure of market risk, and is widely used in the 

securities and derivatives sectors: a good example is the RiskMetrics system 

developed by J. P. Morgan. VaR measures based on systems such as RiskMetrics’ 

sister, CreditMetrics, have also shown their worth as measures of credit risk, and for 

dealing with credit-related derivatives. In addition, VaR can be used to measure 

cashflow risks and even operational risks.1 However, these areas are mainly 

concerned with risks over a relatively short time horizon, and VaR has had a more 

limited impact so far on the insurance2 and pensions literatures3 that are mainly 

concerned with longer-term risks.  

 Yet the VaR literature also has relatively little to say on longer-term risk 

 
1 For more on VaR and its applications, see, e.g., Dowd (2002) or Barry Schachter’s website on VaR, 

www.gloriamundi.org. 
2 A notable exception is an article by Panning (1999), which applies VaR to property/casualty insurers. 

The Panning article deals with four main issues: estimation risk, the impact of a changing portfolio, 

franchise risk, and the application of VaR to long-term risk management. By contrast, our paper 

focuses on only one issue (i.e., the estimation of long-term VaR) and covers this issue more 

comprehensively than Panning does (e.g., it examines the effects of the time horizon more closely, and 

has more to say on subsidiary issues such as volatility estimation).  
3 However, the issues involved in VaR are clearly related to the issues that arise in the probability-of-

ruin literature, and there have been some attempts to apply VaR techniques to pension funds (e.g., the 
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 measurement. Perhaps the best-known advice it offers is the square-root rule, and 

even that is usually applied to short time horizons. If VaR(h) is the VaR over a 

horizon of h days, and VaR(1) is the VaR over one day, this rule tells us that we can 

obtain the former from the latter by multiplying it by the square root of h: 

 

hVaRhVaR )1()( =                                                 (1) 

 

Such scaling is widely used, and is enshrined prominently in the Market Risk 

Amendment to the Basle Accord.4 Unfortunately, this rule is unreliable, and can lead 

to considerable overestimates of VaR (see, e.g., Blake et alia (2000)). There also 

seems to be a general feeling among practitioners that the estimation of longer-term 

VaR is more difficult than the estimation of short-term VaR. This perception owes 

much to problems of longer-term volatility forecasting, the argument being that VaRs 

depend on volatility, and volatility is (much) more difficult to forecast over longer 

horizons (e.g., Christoffersen et al. (1998, p. 109)). 

This paper offers a different approach to this problem. Our approach goes 

back to first principles and suggests that the estimation of long-term VaR is actually 

quite straightforward. The idea is to apply a standard quantile formula over the long-

term horizon, and then estimate VaR using estimates of the horizon-average values of 

                                                                                                                                            
PensionMetrics approach of Blake et al. (2001), or Gupta et al. (2000)) 
4 Specifically, the Market Risk Amendment suggests that banks should estimate VaR for a 10-day 

horizon, and banks are allowed to obtain these estimates by scaling up shorter-horizon VaRs using the 

square root rule (Basle Committee (1996, Section B.4, paragraph c, p. 44)). 
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 the parameters on which the VaR depends. This approach does not require us to 

forecast day-to-day volatilities over long horizons, and so avoids the (real) difficulties 

of standard volatility-forecasting approaches. We also suggest that the estimation of 

long-term VaR should not involve the square-root rule, which can be misleading, even 

for relatively short horizons, and is especially misleading for longer ones.  

The outline of this paper is as follows. Section 1 provides the basic analytical 

framework. Section 2 then looks at how VaR varies with the holding period, and 

section 3 carries out some sensitivity analysis and, in particular, looks at the 

sensitivity of VaR estimates to changes in the mean and volatility of returns. Section 4 

discusses the derivation of the return parameters for long-term VaR, and suggests that 

extrapolating traditional day-to-day forecast techniques is effectively useless in this 

context. Instead, the best approach is simply to take a view about the values of the 

mean long-term parameters involved. Some conclusions are offered in section 5. 

  

1. Basic Analysis 

Suppose we have a portfolio that generates a random daily real log-return with mean 

0>µ  and standard deviation (or volatility) σ . Positive return observations 

correspond to profits, and negative ones to losses, and we assume for convenience 

that any interim profits/losses are ploughed back into the portfolio and that the 
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 composition of our portfolio does not change over our investment horizon.5 The VaR 

confidence level is cl  and we consider VaR over a horizon of h days.  

To illustrate the method, assume that daily log-returns are normally 

distributed. This lognormal assumption is very convenient for VaR analysis, but we 

also get similar results if we make the alternative assumption that log-returns are 

Student-t distributed.6 The VaR associated with normally distributed log-returns is: 

 

           ]lnexp[)( PhhPPPh clcl ++−=−= σαµVaR                            (2) 

 

where  is the current value of our portfolio,  is the (1- ) percentile (or critical 



 

 

so =clα -1.645 if we have a 95% confidence level; see, e.g., Dowd (2002, p. 43)).  

 

 

2. VaR and Time Horizon 

 

We now consider how the VaR alters with the time horizon. A typical example is 

shown in Figure 1, based on annualized parameter values of 075.0=µ  and 25.0=σ  

and an initial portfolio value of $1. This illustrates how VaR changes with both time 

horizon and confidence level. For any given confidence level, as the time horizon 

increases, the VaR rises initially but then peaks and turns down; after that it keeps 

falling, becomes negative at some point, and thereafter remains negative and moves 

further and further away from zero.7 The behaviour of the VaR also depends on the 

confidence level: for relatively low confidence levels, the VaR peaks quickly and then 

rapidly falls; but for relatively high confidence levels, the VaR peaks slowly and stays 

at or near its maximum value – which is bounded above by, and sometimes close to, 

the value of the investment itself – for a long time. Note, too, that whilst the VaR has 

this natural upper bound, it has no corresponding lower bound, and will fall 

indefinitely as the horizon continues to rise. 

 

                                                 
7 A negative VaR simply means that the likely worst outcome at the specified level of confidence is a 

profit, rather than a loss.  
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Figure 1: VaR and the Time Horizon 

Note: Based on assumed parameter values of 075.0=µ  and 25.0=σ , and an assumed initial 
investment of $1.  

 

 

The VaR surface always retains this same shape provided that µ  and σ  are 

both positive. However, if 0=µ , the VaR surface takes the rather different shape 

shown in Figure 2: the VaR approaches its ceiling asymptotically, and stays in that 

region indefinitely; and it approaches this maximum more quickly for the higher 

confidence levels. The story is therefore obvious: the VaR will initially rise, and will 

rise to its maximum possible value; however, when 0>µ , the compounding of the 
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 mean return over the time horizon will eventually bring it down, and it will continue 

to fall thereafter. 

 

Figure 2: VaR and Time Horizon with a Zero Mean Return 

 

Note: Based on assumed parameter values of 0=µ  and 25.0=σ , and an assumed initial investment 



 

 

example, the VaR at the 95% confidence level rises to 0.830 when the horizon 

reaches 20 years, and is still increasing with the horizon. 

 

• If µ  is relatively high and σ  relatively low, the VaR rises and then falls 

relatively quickly. The comparable VaR – at the 95% confidence level and 20-

year horizon period – in this case has already peaked and fallen to -1.451, and 

continues to fall with the time horizon. 

 

Table 1: VaR and Time Horizon 

Horizon (years) 1 2.5 5 10 20 40 

Low µ , high σ   

VaR at 95% cl 0.415 0.555 0.663 0.758 0.830 0.870  

VaR at 99% cl 0.539 0.695 0.802 0.886 0.942 0.971  

High µ , low σ   

VaR at 95% cl 0.137 0.131 0.050 -0.246 -1.451 -10.468  

VaR at 99% cl 0.220 0.261 0.244 0.098 -0.552 -5.010  

Note: Figures are VaRs based equation (1), an initial investment of $1, and assumed 
parameter values of 04.0=lowµ , , 10.0=µ 15.0high =lowσ  and .  35.0=σ high

 

It is also clear that the square-root VaR will generally be very inaccurate over 

longer periods. Equation (1) indicates that the square-root VaR will rise indefinitely, 

proportionately to the square root of the time horizon, if we make the reasonable 

assumption that the initial, one-day VaR, is positive. At some point, it will therefore 

break through the VaR’s (usual) natural upper barrier – the value of the investment – 
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 and grossly over-estimate the VaR. By contrast, the true VaR will rise toward the 

barrier and then fall again, and ought never to exceed the value of the investment 

given limited liability. The magnitude of the error associated with the square-root rule 

thus rises with the time horizon. In addition, this error rises with µ , because the 

square-root formula makes no proper allowance for the impact of the compounding of 

µ  in the VaR. 8  

 

3. Sensitivity Analysis 

 

Sensitivity of VaR estimates to mean return 

The next stage in our analysis is to examine the sensitivity of our VaR estimates to 

changes in various assumptions, and we begin by looking at their sensitivity to mean 

returns. To do so, we increase the assumed daily mean return by 1% of its value, and 

derive the associated percentage change in VaRs. Our results indicate that the 

sensitivity of VaR to estimated mean return is generally low over short time horizons. 

However, the sensitivity of our VaRs to the estimated mean also tends to rise in 

                                                 
8 It is clear from the VaR equation that this result depends in part on the assumption that 0>µ , and 

that for any given h, the degree of over-estimation increases directly with µ . We would also argue that 

the assumption that 0>µ  is not unreasonable if we are considering investments, although it might be 

problematic in some insurance contexts (e.g., dealing with loss reserves). However, we would 

emphasize that the basic VaR approach is not contingent on any particular assumptions about the mean 

return, and we can easily estimate VaRs assuming zero or negative mean returns if we ever wanted to. 
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 absolute terms, and eventually changes sign. Thus, broadly speaking, the VaR 

estimates become more sensitive to assumed mean returns, the longer the time 

horizon on which the VaRs are based. 

 

Table 2: Sensitivity of VaR to Mean Return 

 Percentage Change in VaR 

Horizon (Years) = 1 2.5 5 10 20 40 

% Change in VaR at 95% cl -0.2% -0.3% -0.5% -1.0% -3.8% 9.0% 

% Change in VaR at 99% cl -0.1% -0.2% -0.3% -0.4% -0.8% -3.0% 

Note: Based on assumed parameter values of 075.0=µ  and 25.0=σ , and a +1% change in µ . 

 

 

Sensitivity of VaR estimates to return volatility 

We now look at the sensitivity of VaR to the volatility of returns. Table 3 reports 

some illustrative results showing percentage changes in VaR conditional on a 1% 

increase in volatility. Generally speaking, we tend to find that the sensitivity of the 

VaR to volatility increases with the holding period and, at least for low confidence 

levels, eventually changes sign as well. These results show that VaR is sensitive to 

volatility assumptions, and that the effect of a change in volatility on VaR depends 

importantly on the length of the time horizon9.  

                                                 

9 The length of the time horizon also influences the way in which volatility is estimated. For example, 
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Table 3: Sensitivity of VaR to Return Volatility 

 Percentage Change in VaR 

Horizon (Years) = 1 2.5 5 10 20 40 

% Change in VaR at 95% cl 1.0% 1.1% 1.3% 1.8% 4.5% -7.8% 

% Change in VaR at 99% cl 0.9% 0.9% 0.9% 0.9% 1.3% 3.7% 

Note: Based on assumed parameter values of 075.0=µ  and 25.0=σ , and a +1% change in σ . 

 

4. Deriving the Return Parameters for Long-Term VaR 

 

We have assumed so far that we already have estimates of the mean and volatility of 

returns that apply over our time horizon. But how do we derive these?  

One approach is to forecast them using conventional forecasting methods. We 

could break up our horizon into a series of successive sub-periods (e.g., days) and 

forecast our mean return or volatility for each day in our horizon period. We could 

then use these forecasts to construct an estimate of the mean return or volatility for 

our whole horizon period or feed them into a more complex multi-period VaR 

analysis (e.g., such as a Monte Carlo simulation).  

                                                                                                                                            
it is reasonable to estimate monthly volatility using daily data. But it would not be sensible to estimate 

annual volatility using daily data: a more reliable estimate would be based on monthly data. 
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Unfortunately, this approach runs into various difficulties. One problem is 

that any long-run forecasting rule will eventually give implausible forecasts if the 

variable being forecasted has a trend and our horizon is long enough. If the variable 

concerned has a trend – however small – then the forecasted variable will eventually 

become implausibly high or low, and any results based on such forecasts will lose 

their credibility. When forecasting variables in the long run, we must therefore rule 

out trends or impose arbitrary bounds on the variables being forecasted. However, if 

we impose arbitrary bounds, then the forecasting procedure becomes irrelevant, as we 

know the forecasted variable will eventually hit one of its bounds, and we may as well 

impose arbitrary values in the first place. 

The implication is that we can only forecast our variables as they move around 

a zero trend, but in that case, why not just assume that the variable being forecasted 

takes its current value, or perhaps some typical recent value? Even if we had day-to-

day forecasts, their fluctuations will tend to cancel out as the forecasted variable 

keeps returning toward its zero trend; a horizon-average of day-to-day forecasts 

would give us much the same result as projecting some recent value over our horizon 

period, and particularly so over longer horizons where the averaging-out process has 

more scope. Attempting to forecast these variables on a day-to-day basis is therefore 

pointless.10 

 
10 Forecasting volatility is also very difficult and, as Christoffersen et al. (1998, p. 109) conclude in a 

recent study, “Volatility forecastability seems to decline quickly with horizon, and seems to have 

largely vanished beyond horizons of ten or fifteen trading days.” As the same study also points out, the 

temporal aggregation properties of existing volatility-forecasting models are not well understood, so 
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The foregoing discussion suggests that attempts to forecast the mean or 

volatility of returns over successive small periods are likely to be both difficult and 

unnecessarily complex. If forecasting with trends leads to explosive results over long 

horizons, and if fluctuations around a zero trend tend to cancel out, then we might as 

well use a simplistic approach and take a view about the average long-term values of 

the relevant parameters – which is exactly the approach adopted in the previous 

section. 

5. Conclusions 

This paper offers an easily implementable approach to the estimation of long-term 

VaR. This approach also provides some useful insights about the factors that 

determine long-term VaR and, in particular, about the impact of mean and volatility 

assumptions on estimates of long-term VaR. Our approach avoids problems 

associated with the square-root rule, as well as those associated with attempting to 

extrapolate day-to-day volatility forecasts over long horizons. Nonetheless, we should 

keep in mind that estimates of long-term VaR, like those of its short-term counterpart, 

are likely to be subject to considerable model and parameter risk. 

 
we can rarely, if ever, rely on the alternative of temporal aggregation to obtain volatility forecasts. 
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