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Abstract

One can consider the concept of market neutrality for hedge funds as having breadth and depth:

�breadth� reßects the number of market risks to which a fund is neutral, while �depth� reßects

the �completeness� of the neutrality of the fund to market risks. We focus on market neutral-

ity depth, and propose Þve different neutrality concepts. �Mean neutrality� nests the standard

correlation-based deÞnition of neutrality. �Variance neutrality�, �Value-at-Risk neutrality� and

�tail neutrality� all relate to the neutrality of the risk of the hedge fund to market risks. Finally,

�complete neutrality� corresponds to independence of the fund to market risks. We suggest sta-

tistical tests for each neutrality concept, and apply the tests to a combined database of monthly

�market neutral� hedge fund returns from the HFR and TASS hedge fund databases. We Þnd that

around one-quarter of these funds exhibit some signiÞcant exposure to market risk.
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1 Introduction

The hedge fund industry is one of the fastest-growing sectors of the economy. The value of assets

under the management of hedge funds has grown from $50 billion in 1990 to around $1 trillion

in 20041. In addition to the impressive returns observed on some hedge funds recently, the low

correlation between hedge fund returns and market returns is an oft-cited favorable characteristic

of hedge funds generally, see Brown, et al. (1999), Fung and Hsieh (2001) and Agarwal and Naik

(2002). Indeed, the term �hedge fund� was coined with reference to the goal of the Þrst such

funds, which was to invest in under-valued securities using the proceeds from short-sales of related

securities, thereby creating a �market neutral� strategy, see Caldwell (1995).

Hedge funds are often classiÞed according to their self-described investment strategies or styles,

and the �equity market neutral� strategy is one of the largest such categories, representing about

20% of funds under the management of hedge funds according to Fung and Hsieh (1999). But

despite their size, what exactly is meant by the moniker �market neutral� can be hard to pin down.

Most deÞnitions2 of an equity market neutral strategy include phrases like �neutralize market risk(s)

by combining long and short positions in related securities�, with limited detail on how neutrality

should be measured and what risks should be considered �market� risks. Clarity and precision in

the use of these terms would be beneÞcial. Indeed, the case of Weyerhaeuser vs. Geewax Terker

& Company, which featured several prominent Þnance academics as expert witnesses, centered on

whether Geewax Terker had truly followed a �market neutral� strategy3.

The most commonly used measure of neutrality is based on correlation or beta: a fund may be

said to be �market neutral� if it generates returns that are uncorrelated with the returns on some

market index, or a collection of market risk factors. Several studies, see Fung and Hsieh (2001),

Mitchell and Pulvino (2001) and Agarwal and Naik (2002), have observed the nonlinear relation

between hedge fund returns and market returns and proposed more sophisticated methods for

modeling the expected returns on hedge funds: Fung and Hsieh (2001) suggest using payoffs from

�lookback straddle� options on the market to approximate the pay-off structure of hedge funds.

1Source: The Economist, June 10, 2004.
2See Hedge Fund Research�s Strategy DeÞnitions, Nicholas (2000) and Beliossi (2002) for example.
3Sources: The Wall Street Journal, March 25, 1992, and Pension & Investments, March 30, 1992. Geewax Terker

eventually settled the lawsuit by agreeing to pay Weyerhaeuser $8 million, almost as much as Weyerhaeuser had

originally given Geewax Terker to manage.
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Mitchell and Pulvino (2001) and Agarwal and Naik (2002) similarly suggest using piece-wise linear

models for the hedge fund returns as a function of the market return.

We consider the concept of neutrality more generally than that implied by the use of correlations

or betas. We suggest that one can consider the concept of market neutrality as having �breadth�

and �depth�. The �breadth� of the neutrality of a hedge fund refers to the number of sources

of �market� risk, such as equity market index risk, exchange rate risks and interest rate risks,

etc., to which the returns on the hedge fund are neutral. The �depth� of the neutrality of a

hedge fund refers to the �completeness� of the neutrality of the fund to market risks. We focus

on market neutrality �depth� and propose Þve different neutrality concepts: �mean neutrality�,

which nests the standard correlation- or beta-based deÞnition of neutrality. �Variance neutrality�,

�Value-at-Risk neutrality� and �tail neutrality� all relate to the neutrality of the risk of the hedge

fund returns to market returns. The Þnal concept, �complete neutrality�, corresponds to statistical

independence of the fund and the market returns. We suggest statistical tests for each neutrality

concept, and apply the tests to a combined database of monthly �market neutral� hedge fund

returns from the HFR and TASS hedge fund databases, using the S&P 500 or the MSCI World

indices to represent the market. Focusing solely on a single equity market index may be interpreted

as testing a necessary condition for neutrality to a wider set of market variables.

By presenting a battery of neutrality concepts and tests we hope to aid investors� evaluation

of these funds, in a similar way to the use of the �Greeks� to evaluate the exposure of an option

position, see Hull (2003). The concepts and tests proposed in this paper may be used as methods

of analyzing the non-neutrality of hedge funds, rather than solely as strict tests of their neutrality.

As the neutrality of a �market neutral� fund is one of its selling points, we conjecture that when

comparing a collection of such funds, the risk, reward and the nature of the dependence between

each fund and the market is of interest to investors. Of course, if the investor�s utility function was

known, then funds could be directly ranked by expected utility, however such a case is not common

in practise.

The �market neutral� class of hedge funds has not received a great deal of attention in the

academic literature, though it currently represents a signiÞcant fraction of the hedge fund industry

and has been growing at a rapid rate: from 2% of the hedge fund market in the early 1990�s

to around 20% of the market in the late 1990�s, see Fung and Hsieh (1999) and Nicholas (2000).

Mitchell and Pulvino (2001) focus on �risk arbitrage� hedge funds, Fung and Hsieh (2001) on �trend
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following� hedge funds, and Agarwal and Naik (2002) on �event arbitrage�, �restructuring�, �event

driven�, �relative value arbitrage�, �convertible arbitrage� and �equity hedge4� funds.

This paper makes two main contributions. First, we propose a number of different neutrality

concepts relevant for hedge fund return and risk analysis, and present statistical tests of each neu-

trality concept. We pay particular attention to the types of non-neutral alternatives considered

in each test: we consider either a general non-neutral alternative, or only those non-neutral alter-

natives that are disliked by risk averse investors with some existing exposure to market risk. For

example, a risk averse investor prefers zero correlation to positive correlation, but prefers negative

correlation to zero correlation. Thus we may test zero correlation against non-zero correlation, or

only against positive correlation.

The second contribution of the paper is a detailed study of the neutrality of a combined data-

base of �market neutral� hedge funds from the HFR and TASS hedge fund databases over the

period April 1993 to April 2003. We use monthly data on 194 live and 23 dead �market neutral�

hedge funds to evaluate their neutrality against a market index, the S&P 500. We Þnd that ap-

proximately one-quarter of these funds exhibit some signiÞcant non-neutrality, at the 0.05 level.

These proportions are lower than those found for other categories of hedge funds. Thus our Þndings

suggest that many �market neutral� hedge funds are in fact not market neutral, but overall they

are, at least, more market neutral than other categories of hedge funds. In a series of robustness

checks we verify that our results are not overly affected by our choice of market index, our use of

U.S. dollar returns, or by the last few, or Þrst few, observations on fund returns.

The remainder of the paper is structured as follows. In Section 2 we describe the data used

in this study. In Section 3 we present deÞnitions of different types of neutrality, tests for each

deÞnition, and the results of these tests when applied to our collection of hedge funds. In Section

4 we present robustness checks of our results. Section 5 contains some discussion of extensions of

the neutrality deÞnitions presented in Section 3, and Section 6 concludes. An Appendix contains

details on the bootstrap methods used in the paper.

4Although similar-sounding in name, the �equity hedge� index in the HFR database is distinct from the �eq-

uity market neutral� index. See https://www.hedgefundresearch.com/pdf/HFR_Strategy_DeÞnitions.pdf. Nicholas

(2000) includes some of these categories in the broad category of �market neutral�, and categorises the funds in our

analysis as a subset of �equity market neutral� funds.
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2 Description of the data and results using correlation

Our data set consists of those funds that categorize themselves as being �market neutral� and an

equity market index, the S&P 500. We will focus on the S&P 500 as the market index for most

of this paper, and show in Section 4 that our results do not change greatly if we instead use other

equity market indices. The fund returns are monthly, net of management fees. Summary statistics

on the funds are presented in Table 1, and summary statistics on the number of observations

available on each of the funds are presented in Table 2. The latter of these two tables shows that

we have between 59 and 213 �market neutral� funds available for analysis, depending on the data

requirements of the test being considered.

[ INSERT TABLES 1 AND 2 ABOUT HERE ]

When computing measures of dependence between the market and a fund we do so using all

data from the period when the fund was in the data base. The database includes both live and

dead funds5 and one may question whether the behavior of some funds in the period leading up to

their dropping out of the database distorts our results. We show in Section 4 that this is not the

case.

Before moving on to consider reÞnements of the deÞnition of market neutrality, we will Þrst

analyze the relationship between the funds and the market index using standard linear correlation.

The average correlation between the 171 hedge funds with 18 or more observations and the market

index was 0.016, and the 5th and 95th sample quantiles of the cross-sectional distribution of corre-

lation coefficients was [-0.64, 0.39] indicating substantial cross-sectional dispersion in the degree of

correlation with the market portfolio.

Using a bootstrap procedure described in detail in the Appendix, which is designed to yield

tests that are robust to serial correlation, volatility clustering and return non-normality, we Þnd

that 29.2% of the funds in our sample exhibit signiÞcant correlation with the market portfolio at

the 0.05 level. This is statistic is surprisingly high: these are funds are (self-) described as �market

neutral�, possibly to more factors than our single market index, and yet almost one-third of them

have signiÞcant correlations with the market. If we instead focus our test only on deviations from
5As Agarwal, et al. (2003) point out, these funds are misnomered, since funds may drop out of the database

for numerous reasons: liquidation (death), mergers, or simply a withdrawal from reporting to the database while

continuing to operate.
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zero correlation to positive correlation with the market, which is the sign of correlation a risk averse

investor seeks to avoid, then we Þnd 28.0% of funds with signiÞcant positive correlation. That is,

over a quarter of the �market neutral� funds in our sample exhibit signiÞcant positive correlation

with the market.

Under a joint null hypothesis that all funds in our sample are correlation neutral we would

expect 5% of funds to be rejected. To determine whether the proportion of rejections we observe

are signiÞcantly different from what we expect under the null hypothesis we consider two methods

of obtaining a critical value. The Þrst is based on the unrealistic assumption that the test statistics

for each fund are independent. In this case the critical value can be obtained from the Binomial

distribution, and it is 7.74% in this case. A bootstrap method for obtaining a critical value that

allows for dependence between the test statistics is discussed in the Appendix, and yields a critical

value of 18.75%, much higher than that obtained assuming independence, but still less than the

observed proportion of rejections. Thus we conclude that we have signiÞcant evidence against

�correlation neutrality� for this collection of funds as a whole.

Correlation neutrality is just one of many types of neutrality that may be of interest to a risk

averse investor. An investor with quadratic utility, or one facing returns that are multivariate

normally distributed, will only require linear correlation as the measure of dependence, and so

this standard concept of market neutrality would suffice. However neither quadratic utility nor

multivariate normality is an empirically reasonable assumption, particularly for hedge fund returns,

and so we now consider alternative types of market neutrality.

3 DeÞnitions and tests of versions of �market neutrality�

In this section we consider reÞnements of the concept of market neutrality, using the preferences of

a generic risk averse investor to motivate each concept and to determine the alternative hypotheses

to consider. Depending on the preferences of the investor, one or more of the following deÞnitions,

or perhaps some �neutrality index� formed by some combination of these, may be of interest. We

will start with the simplest generalization of correlation neutrality, and proceed through to the

strictest form of neutrality: that of independence between the fund return and the market return.
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3.1 Mean neutrality

The simplest neutrality concept, and the one that nests the standard �correlation neutral� concept,

is that of �mean neutrality�. This is deÞned as the expected return on the fund being independent

of the return on the market:

E [rit|rmt] = E [rit] ∀ rmt (1)

or E [rit|Ft−1, rmt] = E [rit|Ft−1] ∀ rmt (2)

and corresponds to the statement that the market return does not Granger-cause the fund return

in mean. The second of the above conditions allows us to consider mean neutrality conditional on

some other information, Ft−1. We will focus primarily on the Þrst of the above two conditions due

to the data limitations we face.

Equation (1) is a stricter statement than correlation neutrality, as it rules out any function, not

just a linear function, of the market return being useful for explaining fund returns. To test mean

neutrality we could employ a number of methods. The most general would employ nonparametric

regression to estimate µi (rmt) = E [rit|rmt]:

rit = µi (rmt) + eit

and then test that µi is equal to a constant. A simple alternative would be to employ a Taylor

series approximation6 ,7 to the conditional mean function:

rit = β0 + β1rmt + β2r2
mt + ...+ eit

To capture the possibility that hedge funds exhibit different dependence on the market during

market downturns than market upturns, as in Longin and Solnik (2001) or Ang and Chen (2002)

for example, we consider a polynomial approximation that differs for positive versus negative market

6Numerous authors have, in various contexts, proposed using a polynomial in the market return to explain asset

returns, see Bansal, et al. (1993), Chapman (1997), Harvey and Siddique (2000) and Dittmar (2002), amongst others.
7Mitchell and Pulvino (2001) and Agarwal and Naik (2002) both use piece-wise linear regressions rather than

polynomials in their approximation of the conditional mean function. Under certain conditions on how the models

expand as the sample size increases both methods can be considered nonparametric models for the conditional mean,

see Andrews (1991) or Chen and Shen (1998). The use of a piece-wise linear speciÞcation with estimated kink points

may lead to parameter identiÞcation problems when testing, however.
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returns:

rit = β0 + β1rmtδt + β2r2
mtδt + ... (3)

+γ1rmt (1− δt) + γ2r2
mt (1− δt) + ...+ eit

where δt =

 1 rmt ≤ 0
0 rmt > 0

and then test

H0 : βi = γi = 0 for all i > 0 (4)

vs. Ha : βi 6= 0 or γi 6= 0 for at least one i > 0

via a standard χ2 test. We estimated a simple second-order polynomial version of the model in

equation (3) on the 150 funds with at least 24 observations, and found that for 23.3% of funds we

could reject the null hypothesis of mean neutrality at the 0.05 level.

The deÞnition above, however, ignores the fact that there are certain types of relations between

the expected return on a fund and the market return that a risk averse investor would desire,

and others that he/she would dislike. For example, a risk averse investor would prefer a negative

relation between the fund and the market when the market return is negative, and a positive

relation when the market return is positive, to zero correlation in both states. Thus it may not

be mean neutrality that investors truly seek, or that �market neutral� hedge funds truly seek to

provide, but rather a restricted type of dependence between the fund and the market. Below we

derive a test of mean neutrality which tests only for violations of mean neutrality that are disliked

by risk averse investors.

Consider the following reÞnement of mean neutrality, which we will call �mean neutrality on

the downside�. This form of neutrality imposes that the expected return on the fund is neutral or

negatively related to the market the market return is negative. That is:

∂µi (rmt)

∂rmt
≤ 0 for all rmt ≤ 0 (5)

where µi (rmt) ≡ E [rit|rmt]. This version of neutrality ignores the relation between the fund and
the market when the market return is positive, focusing solely on the ability of the fund to provide

diversiÞcation beneÞts when the market return is negative. If we use the second-order polynomial

version of equation (3) to approximate the conditional mean function, then

∂µi (rmt)

∂rmt
= β1 + 2β2rmt for rmt ≤ 0
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The Þrst derivative of µi is negative for all values of rmt ≤ 0 if and only if β1 ≤ 0 and β2 ≥ 0. Thus
a test of mean neutrality on the downside may be obtained by testing the following hypothesis:

H0 : β1 ≤ 0 ∩ β2 ≥ 0 (6)

vs. Ha : β1 > 0 ∪ β2 < 0

As a test statistic we use max [β1,−β2], and we compare the observed value of this statistic with

the 95th quantile of the bootstrap distribution of this test statistic. We were able to reject �mean

neutrality on the downside� for only 0.7% of funds at the 0.05 level. Thus while we observe

signiÞcant evidence against mean neutrality for these funds, we see no such evidence when restricting

attention to alternatives that risk averse investors dislike8.

One concern about the above regressions and the subsequent tests on functions of the estimated

parameters regards omitted variables bias. Consider an example where a single factor, different

from the market portfolio, drives a given fund�s returns. If this factor is positively correlated with

the market, then with sufficient data the above method will reject the null hypothesis that the fund

is market neutral even though the factor driving returns is not the market portfolio. However, if

the factor is correlated with the market then part of its risk is market risk and part is non-market

risk, and so exposure to this factor does indeed involve some exposure to market risk. Thus the

conclusion that this hypothetical fund is not market neutral seems reasonable. If one wanted to

test market neutrality controlling for fund exposure to some other sources of risk, then this could

be done by simply including the returns on the other factors in the above regression as control

variables.

3.2 Variance neutrality

Another form of neutrality that one might expect from a �market neutral� fund is that the risk of

the fund is neutral to market risk. In particular, we might expect that the risk of the fund, while

not constant, does not increase at the same time as the risk of the market index. In this section

8 In a previous version of this paper we used a second-order polynomial that did not allow the parameters to differ

according to the sign of the market return. The proportion of funds that failed the general test of mean neutrality

using this model was qualitatively similar to the Þgure reported here, but the proportion of funds that failed the test

of mean neutrality on the downside was much higher: around 25%. This indicates the importance of allowing the

dependence between funds and the market to depend on the sign of the market return.
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we consider risk as measured by variance, and in the next section we consider risk as measured by

Value-at-Risk. To our knowledge this paper is the Þrst to consider the market neutrality of the risk

of a hedge fund.

In the tests below we will control for mean non-neutrality before testing variance, VaR, or tail

neutrality. This fact, combined with the limited data available, makes it unsurprising that we have

only limited power in these tests. Nevertheless, these tests provide us with an alternative view on

the relationship between a fund and the market and so may offer information not available in more

standard mean-based tests.

Risk averse investors can be shown to have preferences over the dependence between the variance

of the fund and the market return. Non-increasing absolute risk aversion, a property suggested by

Arrow (1971) as being desirable in a utility function, leads to a preference for positive skewness

in the distribution of portfolio returns. Kimball (1993) suggested further that reasonable utility

functions should exhibit decreasing absolute prudence, which can be shown to imply an aversion to

kurtosis in the distribution of portfolio returns9. Together these imply that risk averse investors

prefer

Corr
h
(rit − µi)

2 , rmt − µm

i
≥ 0, and

Corr
h
(rit − µi)

2 , (rmt − µm)
2
i
≤ 0

so that the skewness of a portfolio of the fund and the market is larger and the kurtosis of the

portfolio is smaller. With this motivation, we deÞne �variance neutrality�, controlling for mean

non-neutrality, as

V [rit − µi (rmt) |rmt] = V [rit − µi (rmt)] (7)

or V [rit − µi (rmt) |Ft−1, rmt] = V [rit − µi (rmt) |Ft−1] (8)

In a similar manner to the previous section, we can obtain a test by approximating the true

conditional variance function, σ2
i (rmt), by a Taylor series polynomial:

9Related papers on investor preferences over higher-order moments include Kraus and Litzenberger (1976), Harvey

and Siddique (2000) and Dittmar (2002), amongst many others.
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rit = µi (rmt) + eit (9)

eit = σi (rmt) εit, εit ∼ (0, 1) (10)

µi (rmt) = β0 + β1rmtδt + β2r2
mtδt (11)

+γ1rmt (1− δt) + γ2r2
mt (1− δt) + eit

σ2
i (rmt) = α0 + α1rmtδt + α2r2

mtδt (12)

+α3 (1− δt) rmt + α4r2
mt (1− δt) , or

σ2
i (rmt, eit−1) = α0 + α1rmtδt + α2r2

mtδt (13)

+α3 (1− δt) rmt + α4r2
mt (1− δt) + α5e2

it−1

where δt =

 1 rmt ≤ 0
0 rmt > 0

(14)

where the latter conditional variance speciÞcation is designed to control for an ARCH(1) effect in

the fund return. To test variance neutrality we would then test

H0 : αi = 0 for i = 1, 2, 3, 4 (15)

vs. Ha : αi 6= 0 for some i

We conducted this test on the 150 funds with more than 24 observations, with the ARCH(1)

term as a control, and were able to reject the null at the 0.05 level for only 6.0% of funds. Thus

most of these funds appear to be variance neutral to the market portfolio.

We can also consider �variance neutrality on the downside�, where we use the preferences of a

risk averse investor to determine the desired sign of the Þrst derivative of the conditional variance

function when the market return is negative. The above preferences of a risk averse investor imply

a preference for:
∂σ2

i (rmt)

∂rmt
≥ 0 for all rmt ≤ 0 (16)

Using the above speciÞcation for the conditional variance, we then obtain

∂σ2
i (rmt)

∂rmt
= α1 + 2α2rmt ≥ 0 for rmt ≤ 0

and so the relevant hypotheses are:

H0 : α1 ≥ 0 ∩ α2 ≤ 0 (17)

vs. Ha : α1 < 0 ∪ α2 > 0
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We use max [−α1, α2] as the test statistic, and compare the observed value of this statistic with

the 95th quantile of its bootstrap distribution. We found signiÞcant violations of variance neutrality

on the downside for 4.0% of funds when including an ARCH(1) term in the variance speciÞcation.

Overall, after controlling for violations of mean neutrality, we Þnd no statistical evidence of

violations of variance neutrality. This is in contrast with the widely-known fact that many hedge

funds take �volatility bets�, that is, they take positions that pay off when market volatility is high,

regardless of the direction of the movement. Thus it may be that our failure to Þnd evidence against

variance neutrality is due to a lack of data, and thus limited test power.

3.3 Value-at-Risk neutrality

The second risk-related neutrality concept we propose is that of �Value-at-Risk neutrality�, or �VaR

neutrality�. Given that the VaR of an asset is simply a quantile of its distribution of returns10, this

could also be called �quantile neutrality�. If we set the quantile to be 0.5, we would have a test

of �median neutrality�, though we do not pursue that here. Quantile neutrality is a special case

of complete neutrality, discussed below, which implies that all quantiles of the fund are neutral to

the market, but differs from the previous two neutrality concepts in that it focuses on quantiles

rather than moments. A VaR neutral portfolio is one with a VaR that is unaffected by the market

portfolio return. That is:

V aR (rit|rmt) = V aR (rit) (18)

or V aR (rit|rmt,Ft−1) = V aR (rit|Ft−1) (19)

Violations of mean neutrality or variance neutrality will generally lead to violations of VaR

neutrality, which leads us to consider �conditional VaR neutrality11�:

V aR

µ
rit − µi (rmt)

σi (rmt)

¯̄̄̄
rmt

¶
= V aR

µ
rit − µi (rmt)

σi (rmt)

¶
(20)

where we consider only the VaR of the standardized returns and not the returns themselves. Gupta

and Liang (2003) have used VaR to examine the risk in hedge funds from a regulatory perspective.

10Formally, the Value-at-Risk of an asset is obtained from the following equality: Pr [rt ≤ V aRt|Ft−1] = α, where

α usually equals 0.10, 0.05 or 0.01.
11Note that we use the term �conditional VaR� to refer to the quantile of a conditional distribution.Other

authors have used this term to describe the expected return conditioning on the VaR being breached, that is,

E [rit|rit ≤ V aR (rit)], a quantity otherwise known as �expected shortfall� or �tail conditional loss�.
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Though hedge fund returns are generally not normally or elliptically distributed, see Gupta and

Liang (2003) for example, it is interesting to note that if the market and fund returns were jointly

elliptically distributed then the portfolio VaR would be an affine function of the portfolio variance,

and VaR neutrality would then follow directly from mean and variance neutrality. Under normality,

conditional VaR neutrality would always hold, even if mean and variance neutrality did not, but

for other elliptical distributions this need not be the case. Embrechts, et al. (2001) provide further

discussion on VaR for portfolios, and see Artzner, et al. (1999) for a criticism of VaR as a measure

of risk.

There are a number of ways that one might test the null hypothesis

H0 : V aR (rit|rmt) = V aR (rit) ∀ rmt (21)

vs. Ha : V aR (rit|rmt) 6= V aR (rit) for some rmt

or

H0 : V aR

µ
rit − µi (rmt)

σi (rmt)

¯̄̄̄
rmt

¶
= V aR

µ
rit − µi (rmt)

σi (rmt)

¶
∀ rmt (22)

vs. Ha : V aR

µ
rit − µi (rmt)

σi (rmt)

¯̄̄̄
rmt

¶
6= V aR

µ
rit − µi (rmt)

σi (rmt)

¶
for some rmt

With sufficient data one could use quantile regression, see Koenker and Bassett (1978), to test

for the inßuence of the market return on a quantile of the fund return distribution in a similar way

to our tests for mean and variance neutrality. However hedge fund return histories are notoriously

short and the quantiles of interest are in the tail, so it is likely that data shortages will be a problem.

A simple alternative way of testing a necessary condition for VaR neutrality is via a test of

Christoffersen (1998). This test examines whether the probability of one variable exceeding its

VaR is affected by another variable exceeding or not exceeding its VaR. SpeciÞcally, we test:

H0 : Pr
h

εit ≤ [V aR (εit)
¯̄̄
εmt ≤[V aR (εmt)

i
= Pr

h
εit ≤ [V aR (εit)

¯̄̄
εmt > [V aR (εmt)

i
(23)

vs. Ha : Pr
h

εit ≤ [V aR (εit)
¯̄̄
εmt ≤[V aR (εmt)

i
6= Pr

h
εit ≤ [V aR (εit)

¯̄̄
εmt > [V aR (εmt)

i
where εit ≡ (rit − µi (rmt)) /σi (rmt) and εmt ≡ (rmt − µmt) /σmt. For the fund we again use a

second-order polynomial for the conditional mean, and a second-order polynomial for the condi-

tional variance with an ARCH(1) term. For the market we use a simple AR(1)-ARCH(1) model.

[V aR (εit) and [V aR (εmt) are estimated by the empirical quantiles of εit and εmt.

Due to the data-intensive nature of studies of VaR, we only considered funds that had at least

66 months of observations available, which left us with 59 funds, and we tested the 10% VaR rather

13



than the more common 1% or 5% VaR. We conducted the conditional VaR neutrality test on these

funds and found evidence against VaR neutrality for none of the funds at the 0.05 level. Thus we

have no evidence against VaR neutrality for these funds, having controlled for mean and variance

non-neutrality.

We can also consider a �downside� version of this test, which focusses speciÞcally on testing

whether the probability of the fund breaching its VaR is greater given that the market return has

breached its VaR.

H0 : Pr
h

εit ≤ [V aR (εit)
¯̄̄
εmt ≤[V aR (εmt)

i
≤ Pr

h
εit ≤[V aR (εit)

i
(24)

vs. Ha : Pr
h

εit ≤ [V aR (εit)
¯̄̄
εmt ≤[V aR (εmt)

i
> Pr

h
εit ≤[V aR (εit)

i
This version of VaR neutrality uses the fact that a risk averse investor would be averse to a fund

that has a higher probability of a VaR exceedance given that the market has exceeded its VaR,

and would have a preference for the opposite. Conducting this test on the funds we again Þnd that

none of these funds are rejected at the 0.05 level, and so conclude that we have no evidence against

the downside VaR neutrality of these funds.

3.4 Tail neutrality

Now we consider the concept of neutrality during extreme events, or �tail neutrality�. Intuitively

this can be thought of as an extension of VaR neutrality to the extreme tail: a market neutral fund

should be have a probability of extreme events that is unaffected by the market return. The formal

deÞnition of tail neutrality that we will use is:

τL ≡ lim
q→0

Pr [Fi (ri) < q|Fm (rm) < q] = lim
q→0

Pr [Fi (ri) < q] = 0 (25)

where ri|Ωt−1 ∼ Fi and rm|Ωt−1 ∼ Fm. In words, our deÞnition imposes that the probability of

an extremely low return on the fund is not affected by conditioning on the fact that an extremely

low return on the market is observed. The variable τL is known as the coefficient of lower tail

dependence, see Joe (1997) for example. If the fund return and the market return have zero lower

tail dependence then the probability of an extreme negative return on the fund is unaffected by

an extreme negative return on the market portfolio, and limits to zero as we consider more and

more extreme returns. The alternative to tail neutrality is tail dependence, when τL > 0. If the

tail dependence coefficient is positive then there is a non-zero chance that both the fund and the
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market will simultaneously experience an extremely low return. It is intuitively clear that risk

averse investors would prefer tail neutrality to positive tail dependence: a higher probability of a

joint crash increases the probability of a large negative return on a portfolio of these two assets.

That is, positive lower tail dependence will generally lead to a fatter left tail.

A number of recent studies have proposed methods for detecting dependence in the tails of

joint distributions. Longin and Solnik (2001) propose specifying a speciÞc copula for the joint tails,

Clayton�s copula in Nelsen (1999), and then testing that the parameter of this copula is such that

no tail dependence is present. Bae, et al. (2003) model the probability of the joint occurrence of

large returns across assets using parametric multinomial logistic regression. We employ the method

of Quintos (2003), who proposes a nonparametric approach using extreme value theory, to derive

a statistic to test for tail dependence12. Due to the heavy data requirements of tail analyses we

restricted our sample to the 28 funds in our sample with at least 100 observations. Of these, 9 had

enough observations in the joint tail to complete the test, and only one of these 9 funds rejected the

null of no tail dependence at the 0.05 level13. Thus we conclude that no evidence of violations of tail

neutrality is present for the funds in our database. This conclusion, however, may be overturned

in the future when more data becomes available and our estimates of tail behavior become more

precise.

It should be noted that the heavy data requirements of the VaR neutrality and tail neutrality

tests introduce the possibility that survivorship bias affects our results. It may be that the funds

that survive for a minimum of 66 or 100 months are those that live up to the name �market

neutral�. This may be because surviving funds are those that have maintained a �good� return

regardless of the market (which is a deÞnition of market neutrality) or because investors desire

�market neutral� funds that are truly market neutral and so these funds remain alive. In either of

these scenarios, surviving funds would be more likely to pass VaR and tail neutrality tests, and thus

the low proportion of rejections of VaR neutrality and tail neutrality would not be representative

of the VaR and tail neutrality of �market neutral� funds with a shorter histories. We investigate

fund longevity and market neutrality further in Section 4.

12We also implemented the method of Longin and Solnik (2001) on our hedge funds. While this method is quite

different in implementation from the method of Quintos (2003), we drew similar conclusions using both methods.
13We used the asymptotic theory provided by Quintos (2003) rather than the bootstrap for this test.
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3.5 Complete neutrality

�Complete neutrality� is the strictest form of neutrality, and requires that the distribution of fund

returns is completely independent of the market return. The formal deÞnition is:

ri|rm =d ri (26)

where � =d � indicates equality in distribution. If we let rit ∼ Fi and rmt ∼ Fm, and (rit, rmt) ∼ F ,

this implies that

f (rit, rmt) = fi (rit) · fm (rmt) (27)

whereas in general the joint distribution of the fund return and the market return is written as

f (rit, rmt) = fi (rit) · fm (rmt) · c (Fi (rit) , Fm (rmt)) (28)

where c is the �copula density�14 or �dependence function� of the fund and the market returns.

Under complete neutrality the assets� copula is the �independence copula�, denoted cI , which takes

the value 1 everywhere. We can use the preferences of a risk averse investor to derive a ranking of

copulas between the fund and the market using a result of Epstein and Tanny (1980).

A general alternative to complete neutrality is a dependence function, C∗, that differs from CI

by a �correlation-increasing transformation� (CIT) of Epstein and Tanny (1980). A CIT is the

dependence equivalent of the better-known �mean-preserving spread� of Rothschild and Stiglitz

(1970). A CIT shifts some probability mass towards realizations where both variables are �large�

or �small� and away from realizations where one is �large� and the other is �small� in such a way

that the marginal distributions of the variables are preserved. From Epstein and Tanny (1980) we

know that:

CI (u, v) ≤ C∗ (u, v) ∀ (u, v) ∈ [0, 1]× [0, 1] (29)

and we say that C∗ is �more concordant15� than CI , or simply that CI ≤ C∗. This ordering is a

multivariate Þrst-order stochastic dominance ordering.

14The copula cdf is denoted with an upper case C while the copula density is denoted with a lower case c. See

Nelsen (1999) for an introduction to copulas.
15Epstein and Tanny (1980) interpret the condition in equation (29) as saying that C∗ exhibits �greater correlation�

than CI but we will refrain from using the term �correlation� unless referring directly to Pearson�s linear correlation

or Spearman�s rank correlation.
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To relate the above statistical ordering of dependence functions to some economic ordering,

Epstein and Tanny (1980) introduce the concept of �correlation aversion�. A utility function

involving two random variables is �correlation averse� if expected utility is reduced by a CIT. This

can be checked directly for utility functions that are twice differentiable by checking whether

∂2u (x, y)

∂x∂y
< 0 (30)

In this paper we consider the case that:

u (rit, rmt) = U (wirit +wmrmt) , where U is some utility function
∂2u (rit, rmt)

∂rit∂rmt
= U 00 (wirit + wmrmt)wiwm

≤ 0 if wi, wm ≥ 0

for any concave utility function U . We rule out short selling either the hedge fund or the market
portfolio, both reasonable restrictions for most investors, and so wi, wm ≥ 0. The weak inequality
above holds strictly if wiwm > 0; of course if either portfolio weight is zero then the investor is

�correlation neutral�. Thus any risk averse investor subject to short selling constraints will be

(weakly) �correlation averse�.

The concept of correlation aversion can be used to derive an economic ranking of dependence

functions for risk averse investors: if F1 and F2 are two possible joint distribution functions for

(rit, rmt) with common marginal distributions, and if

EF1 [u (rit, rmt)] ≤ EF2 [u (rit, rmt)] (31)

for all correlation averse utility functions u, then Epstein and Tanny (1980) write F2 4u F1 and

say that F1 is exhibits greater correlation than F2. The main theorem in Epstein and Tanny (1980)

shows that the ranking obtained from the expected utility of risk averse investors is equivalent to

the purely statistical concordance ordering discussed above. That is,

F2 4u F1 ⇔ F2 ≤ F1 (32)

In terms of dependence functions and neutrality, this implies that

CI 4u C∗ ⇔ CI ≤ C∗ (33)

and so any dependence function that is a CIT away from complete neutrality will be less preferred

by risk averse investors. Epstein and Tanny (1980) thus show theoretically that general risk averse
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investors care about the dependence (not just the correlation) between hedge fund returns and

market returns.

We could use the above results to motivate tests for a concordance ordering of hedge funds, using

tests for multivariate Þrst-order stochastic dominance. Instead we propose the more modest task

of examining the ordering of a scalar measure of dependence, namely Spearman�s rank correlation.

Nelsen (1999) shows that Spearman�s rank correlation will reßect the concordance ordering of two

dependence functions. That is,

C∗∗ ≤ C∗ ⇒ ρS (C
∗∗) ≤ ρS (C

∗) for any copulas C∗∗, C∗ (34)

and so we have

C∗∗ 4u CI 4u C∗ ⇔ C∗∗ ≤ CI ≤ C∗ ⇒ ρS (C
∗∗) ≤ 0 ≤ ρS (C

∗) (35)

Thus we may obtain an approximate ordering of the funds for a general risk averse investor by

categorizing the funds as having signiÞcant negative rank correlation, non-signiÞcant rank corre-

lation or signiÞcant positive rank correlation with the market index. Rank correlation can detect

monotonic nonlinear relationships, in addition to the linear relationships that the usual correlation

coefficient may be used to detect.

Average rank correlation across the 171 funds with at least 18 observations was 0.016; a similar

Þgure to that obtained using linear correlation. From tests for non-zero rank correlation we found

26.3% of funds had signiÞcant rank correlation at the 0.05 level, and 25.1% of funds had signiÞcantly

positive rank correlation at the 0.05 level. Of course, complete neutrality implies neutrality of any

other type, and so all other tests in this paper may also be thought of as tests of necessary conditions

for complete neutrality.

3.6 Summary: are �market neutral� hedge funds really market neutral?

In this section we combine the results of the tests introduced above to draw an overall conclusion

about the market neutrality of funds with the label �market neutral�. Given that so few of the

funds in our sample had sufficient data for the test of tail neutrality to be applied, we will not

consider this test when drawing overall conclusions.

Declaring a fund to be non-neutral if it fails at least one test for market neutrality leads to

a size distortion. For example, the probability that a truly market neutral fund fails at least one
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of Þve independent tests of market neutrality, each with size 0.05, is 0.23. Further, we must take

into account the fact that the test statistics for each of the Þve tests considered here (correlation

neutrality, mean neutrality, variance neutrality, VaR neutrality and complete neutrality) are not

likely to be independent. We deal with these two problems by looking at the number of tests

failed by a set of bootstrapped data series, generated imposing the independence of the fund and

the market returns. If the actual number of tests failed is greater than the 95th percentile of the

number of tests failed by the bootstrapped data sets, then we conclude that the fund fails a joint

test of market neutrality. Further details are in the Appendix. The results obtained for �market

neutral� hedge funds are collected in the Þrst column of Table 4.

At the 0.05 level, we found that 28.1% of funds failed a joint test of market neutrality against

general non-neutral alternatives, while 21.6% of funds failed a joint test of market neutrality against

alternatives that are disliked by risk averse investors. The 95% critical value for the proportion of

funds failing a test of neutrality is 18.75%, and so both of these proportions represent signiÞcant

evidence against market neutrality for these funds as a whole.

A natural question to ask is how the neutral and non-neutral funds differ along various dimen-

sions. In Table 3 we compare some simple summary statistics on two portfolios of these funds: the

Þrst (second) portfolio is constructed as an equally-weighted average of the neutral (non-neutral)

funds for each month in our sample. Table 3 reveals that the non-neutral portfolio yielded a sig-

niÞcantly greater average return than the neutral portfolio, and had signiÞcantly greater standard

deviation. The correlation with the market was signiÞcantly greater for the non-neutral portfolio

(a predictable outcome, given the way the two portfolios were constructed) and the average age of

non-neutral funds was signiÞcantly greater than neutral funds. The fact that non-neutral funds are,

on average, almost twice as old as neutral funds may either reßect the fact that more observations

lead to greater power to reject the null hypothesis of neutrality if it is false, or it may genuinely

reßect the fact that older funds tend to stray from market neutrality more than younger funds.

There was no signiÞcant difference in the average size of neutral and non-neutral funds.

[ INSERT TABLE 3 ABOUT HERE ]

In summary, we conclude that approximately one quarter of �market neutral� funds in our

sample exhibit signiÞcant deviations from market neutrality, of a type that is speciÞcally disliked

by risk averse investors. Our sample sizes are not extremely large (the median sample size is just
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42 observations) which means that the power of the tests employed may be low, suggesting that

the true proportion of non-neutral funds may be even higher. Our Þndings suggest that careful

analysis of fund returns is required to reap the widely-cited diversiÞcation beneÞts of hedge funds.

3.7 Are �market neutral� hedge funds more market neutral than other funds?

In this section we apply the tests introduced above to collections of hedge funds with other styles.

We look at four other hedge fund styles from the HFR data base: equity hedge, equity non-hedge,

event driven, and funds of funds. �Equity hedge� funds hold some exposure to the market, with

the degree of exposure ranging from near zero to over 100%, along with some hedge, either through

short sales of stocks or through stock options. �Equity non-hedge� funds are otherwise known as

�stock pickers�. These funds may also hedge their exposures, though generally not consistently.

�Event driven� funds seek returns from mergers, takeovers, bankruptcies, etc. These funds may or

may not hedge their exposures to the market. Funds of hedge funds invest in multiple funds, which

may or may not be in the same category.

Table 4 reports the results of tests for different versions of neutrality on these four categories

of hedge funds, as well as on the market neutral hedge funds discussed above. This tables shows

that a far higher proportion of funds in the equity hedge, equity non-hedge, event driven, and

funds of hedge funds categories exhibit signiÞcant exposure to equity market risk. Over 80% of

equity non-hedge funds, for example, exhibit some signiÞcant violation of market neutrality at the

0.05 level, and over 88% of these funds have a signiÞcantly positive correlation coefficient with

the market. The average correlation coefficient across the 77 funds in this category with at least

18 observations is 0.51. The funds of funds category is the most market neutral of these four

categories, with about half of these funds exhibiting some signiÞcant violation of market neutrality.

The average correlation coefficient across the 457 funds in this category with at least 18 observations

was 0.25.

Recalling that only 25% of �market neutral� funds exhibited signiÞcant violations of market

neutrality, and that the average correlation coefficient across funds was 0.016, we draw the conclu-

sion that while not all �market neutral� funds are truly market neutral, they are, as a category,

substantially more market neutral than other hedge fund categories.

[ INSERT TABLE 4 ABOUT HERE ]
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4 Robustness checks

In this section we conduct robustness checks of the results reported above. Firstly, we consider an

alternative index for the �market� portfolio, the MSCI World index. We then consider changing

the outlook of our hypothetical investor from one who cares about U.S. dollar returns to one who

cares about British pound returns. We then analyze whether our results change when we drop the

last six months, or the Þrst 12 months, of available data on Þrms, and Þnally we look at the relation

between the number of observations available on a fund and its dependence characteristics.

Choice of market portfolio. Obviously the choice of market index is an important input

to tests of market neutrality. In the paper we considered using the S&P 500 index as the market

index, and a summary of results for this case are presented in the Þrst column of Table 5. Corre-

sponding results when the MSCI World index is instead used are presented in the second column

of Table 5. Comparing these two columns shows that our results are robust to this choice. We

also obtained results (not reported) when the MSCI Europe index was employed and again no

substantial differences were found.

[ INSERT TABLE 5 ABOUT HERE ]

Choice of currency. To consider the impact of our choice to examine the neutrality of these

hedge funds from the perspective of a U.S. investor, we re-computed all results from the perspective

of a U.K. investor. The results for a U.K. investor using the MSCI World index are presented in

the third column of Table 5. The differences in the results are small: the proportion of rejected

funds falls from roughly one-quarter to one-Þfth, but remains signiÞcant.

End-game behavior. In the months leading up to a fund dropping out of the HFR or TASS

databases it is conceivable that the behavior of a fund�s returns changes. If a fund is doing poorly

and is about to be liquidated then the investment decisions of the hedge fund manager may place

greater emphasis on objectives other than maintaining the market neutrality of the fund. For this

reason, we re-computed all the results for the U.S. based investor using the S&P 500 index as the

market index, dropping the last six observations on each fund. The results are presented in the

fourth column of Table 5, and are not substantially different from the results for the benchmark

case.
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BackÞll bias. Hedge funds usually enter databases with a history of returns, usually ranging

from 6 to 18 months in length. It might be reasonable to think that the emphasis placed on

maintaining market neutrality during the Þrst year of a fund�s life, relative to simply achieving

positive returns, is lower than for the rest of a �market neutral� fund�s life. Thus a rejection

of market neutrality may come from the fund�s Þrst year of life, and not be representative of its

neutrality following that Þrst year. To allow for this we re-computed all the results for the U.S.

based investor using the S&P 500 index as the market index, dropping the Þrst twelve observations

on each fund. The results are presented in the last column of Table 5 and are not substantially

different from the results for the benchmark case.

Age of the fund and its market neutrality. Above we reported proportions of rejections of

market neutrality concepts, averaging across all funds with sufficient data to conduct the test. But

an interesting, and possibly important, question is whether the older funds have different market

dependence properties to newer funds. As an example, in Figure 1 we plot the linear correlation

between a fund and the S&P 500 market index against the number of observations available on

that fund. This plot indicates a signiÞcant positive relation between the correlation coefficient and

the age of the fund16. The robust t-statistics associated with each of these correlation coefficients

also have a positive relation with the number of observations available. Further, a probit regression

(not reported) of the probability of a t-statistic being greater than 1.96 revealed a positive and

signiÞcant dependence on the number of observations available. A similar picture emerged when

comparing the average age of funds that passed and failed the joint test of market neutrality on

the downside, presented in Table 3.

These Þndings suggest that market neutral hedge funds that survive for a relatively long time

are more positively dependent on the market return than younger funds. This may be related to

the fact that many hedge fund prospectuses commit the fund to a �market neutral� strategy only

for a Þxed period of time (three years seems to be a common choice), if at all. �Material� changes

of investment strategy within that time often require the approval of shareholders, but changes

after that time are not discussed. It is thus possible that hedge funds exhibit �style drift�, and

that funds that were once correctly classiÞed as �market neutral� may not follow such strategies
16The reader may notice two observations in the upper right-hand corner of this plot, representing two funds that

have the maximum number of observations (121) and correlation coefficients of over 0.9. We re-did the regression

without these observations and the relation was still signiÞcantly positive.

22



any more. This observation suggests that a classiÞcation method based on relating fund returns to

various risk factors, as in Brown and Goetzmann (1997) and Fung and Hsieh (1997) for example,

may be more reliable than one based on the self-reported styles of funds.

[ INSERT FIGURE 1 ABOUT HERE ]

5 Extensions

In this section we discuss the issues surrounding two of the more important extensions of the

deÞnitions and tests presented in Section 3. A full treatment of these and other extensions is being

pursued in separate work.

5.1 Time-varying market neutrality

That hedge fund managers employ dynamic trading strategies is widely known, and thus one may

ask whether conducting tests on unconditional correlation coefficients or market betas, for example,

is less interesting than studying the conditional correlations or betas between the return on a fund

and the return on the market index. In this section we propose extending (unconditional) beta

(or correlation) neutrality to �conditional beta neutrality�. We leave the consideration of time

variation in the other forms of neutrality proposed in this paper for future work.

Consider the following simple time-varying �beta� model, in the spirit of Harvey (1989) and

Shanken (1990):

rit = α+ βtrmt + eit (36)

βt = γ0 + γ1r̄it,6 + γ2r̄mt,6 + γ3r̄2
mt,6

where r̄it,6 ≡
P6
j=1 ri,t−j , r̄mt,6 ≡

P6
j=1 rm,t−j , r̄2

mt,6 ≡
P6
j=1 r2

m,t−j . This model is designed to

capture the possibility that �market neutral� hedge fund managers may dynamically adjust their

exposure to the market according to the past performance of their fund, the past performance

of the market, and the recent volatility of the market. We did not conduct an extensive search

of the possible determinants of the conditional betas of these hedge funds; these three variables

seemed reasonable variables to use in this initial investigation. Correlation neutrality, as deÞned in

Section 2, is tested by estimating γ0, under the restriction that γ1 = γ2 = γ3 = 0, and then testing
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that γ0 = 0. But it is conceivable that a fund may have a zero beta on average, but a non-zero



sufficient condition for market neutrality to the wider array of market risks. Greater power may

be obtained by constructing tests of neutrality to multiple sources of market risk.

All of the tests proposed in this paper generalize quite straightforwardly to consider multiple

sources of market risk. However the limited amount of hedge fund returns data available may mean

that the most obvious extensions, where the additional market risks are simply added as additional

explanatory variables, will actually lead to a loss of power rather than a gain; increased estimation

error may dominate the increased information from the additional risk sources. One alternative is

to combine the sources of risk into a single index or portfolio, and then test for neutrality against

this portfolio of market risks. For example, to allow both contemporaneous and lagged market

returns to affect the hedge fund return, we could use the following simple index:

�rmt ≡ 0.4rmt + 0.3rmt−1 + 0.2rmt−2 + 0.1rmt−3 (38)

Using �rmt rather than rmt as the market index allows lagged returns to affect hedge fund risk, as

suggested by Asness, et al. (2001) and Getmansky, et al. (2003), without increasing the number

of parameters that need to be estimated. The above choice of weights is arbitrary, but reßects the

spirit of these two papers, and is roughly in accordance with the median values, across funds, of

the regression coefficients obtained from regressing the fund return on a constant, and lags zero

through three of the market return17. When we applied the tests of the previous sections using

this weighted average of lagged market returns as the market index we found results quite similar

to those obtained just using the contemporaneous value of the market return, see Table 6. This

suggests that lagged market returns do impact these hedge fund returns: if lagged market returns

were unrelated to hedge fund returns then the �rmt variable would simply be a noisier measure of

market risk, and the proportion of rejections would fall. It may be possible to construct alternative

combinations of current and lagged market returns that lead to a greater proportion of rejections,

keeping in mind the strict trade-off between ßexibility and parsimony, but we leave this for future

work.

[ INSERT TABLE 6 ABOUT HERE ]

17The median values of these four coefficients, across funds, were 0.51, 0.20, 0.14, 0.15, when the coefficients were

normalised to sum to one.
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6 Concluding remarks

�Market neutral� hedge fund manage about 20% of the $1 trillion currently under the management

of hedge funds. One of the attractions of a �market neutral� fund is a low degree of dependence

between the fund and the market. We considered generalizing the concept of �market neutrality�

to reßect both �breadth� and �depth�. The �breadth� of neutrality of a fund reßects the number

of market-type risks to which the fund is neutral. The �depth� of neutrality of a fund reßects the

completeness of the fund�s neutrality to market risks. We proposed Þve new neutrality concepts

for hedge funds: �mean neutrality�, which nests the standard correlation-based deÞnition of neu-

trality; �variance neutrality�, �Value-at-Risk neutrality�, and �tail neutrality�, which examine the

neutrality of the risk of a fund to market risk; and �complete neutrality� which corresponds to

independence of the fund and the market returns.

We proposed statistical tests of each of these neutrality concepts. These tests take neutrality

as the null hypothesis and compare it with either a general non-neutral alternative hypothesis, or



proposed in this paper may help investors to learn more about the relationship between a given

hedge fund and the market index.

The work in this paper leaves unanswered many interesting questions. It is well-known that

hedge fund managers employ dynamic trading strategies and so it would be interesting to extend

the tests in this paper to allow for time-varying neutrality. Further, allowing for multiple sources of

�market� risk, rather than just a single source as considered in this paper, is an important direction

for future work. We discussed some of the issues surrounding these two extensions but we have by

no means solved those problems completely. Another open problem relates to forming portfolios of

market neutral hedge funds that attain some desired degree of neutrality to the market. Funds of

hedge funds are a fast-growing sector of the hedge fund industry and currently account for about

30% of invested funds. Clearly the problem of combining �market neutral� funds to form a market

neutral (no quotation marks) fund would be of interest to this sector.
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7 Appendix: Details of the bootstrap tests

Concerns about short sample sizes, serial correlation, volatility clustering, and non-normality of

asset returns prompted the use of a block bootstrap to obtain critical values for the various tests

proposed in this paper. We used the stationary bootstrap of Politis and Romano (1994), and the

algorithm of Politis and White (2004) to determine the optimal average block size for each asset.

SpeciÞcally, for the fund and the market, we applied the Politis and White algorithm to the return,

squared return, and the product of the fund return and the market return. We then selected the

largest of these three lengths to use as the block length for that asset. The block lengths selected

ranged from 1 to 10, and averaged 2.4. We used 1000 bootstrap replications.

To obtain the distribution of each test statistic under the null hypothesis of neutrality we

re-sampled the fund and market returns separately, rather than re-sampling the vector of fund

and market returns. By using the stationary bootstrap and imposing independence between the

bootstrapped fund and market data we ensure that the null hypothesis in each of the tests is

satisÞed, while not changing the univariate distributions of the fund and market returns, at least

asymptotically. For all but the test of complete neutrality, independence is a sufficient but not

necessary condition for the null hypothesis to hold.

Obtaining a joint test. Using Þve individual tests (correlation neutrality, mean neutrality,

variance neutrality, VaR neutrality and complete neutrality) and obtaining a �joint test� by simply

checking whether at least one test was failed clearly leads to a size distortion. Instead we employed

a method related to that of Westfall and Young (1993): on each bootstrap sample we conduct the

Þve tests, we then count the number of tests that lead to a rejection of a null hypothesis. If the test

statistics were independent then we would expect 0.05×5 = 0.25 tests to be failed for each sample,
however these test statistics are almost certainly not independent, and by using this bootstrap

procedure we capture this dependence. We then compute the 95th percentile of the distribution

of the number of tests failed. Across all funds this quantile ranged from 0 to 2, with a median of

1 and a mean of 0.8, though for each fund the quantile is of course an integer between 0 and 5.

(If the tests were independent then the 95th percentile would be 1: the cdf of a Binomial(5, 0.05)

evaluated at 1 is 0.98.) We conclude that a fund failed the joint test of market neutrality if it failed

more tests than the 95th percentile of the distribution of the number of tests failed by the bootstrap

data. This test controls the size of the joint test, and enables us to draw an overall conclusion about
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the neutrality of a fund.

Obtaining critical values on the proportion of funds failing a test. Under the null

hypothesis that all funds are neutral the expected proportion of funds to fail a given test is 0.05,

but in order to conclude that the proportion of funds that fail a given test is signiÞcantly more

than we would expect under the null we must obtain the 95th percentile of the distribution of the

proportion of funds that fail a given test under the null hypothesis. We consider two approaches.

The Þrst approach relies on the assumption that the test statistics are independent across funds,

and so the number of funds that fail a given test is a Binomial (K, 0.05) random variable, where

K is the number of funds that are tested. The 95th percentile of this distribution, divided by K,

ranged from 0.077 to 0.102 depending on the test (which affected the value for K).

The assumption that the test statistics are independent across funds is not realistic, and we

considered a second approach again using the bootstrap to estimate the joint distribution of these

test statistics under the null. Ideally, we would employ a vector bootstrap using all K funds to

obtain this distribution. However because some of the funds have missing observations, either

because they entered the sample late or left the sample early, we cannot use this method: it would

generate bootstrap samples that have missing observations in the middle of the sample, which would

mean that we could not employ all of our tests (the estimation of a GARCH model, for example,

requires a contiguous sample). We employed an alternative approach, using a vector bootstrap only

for the K∗ funds that are present for the full sample18. For each bootstrap sample we compute the

proportion of these funds that failed each test, and then use the 95th percentile of the bootstrap

distribution of these proportions as the critical value. This method relies on the assumption that

the proportion of the K∗ funds that fail each test has the same distribution as the proportion of

all K that fail each test, which may or may not be a reasonable assumption, but is likely a more

reasonable assumption than that of independence between all test statistics. For �market neutral�

hedge funds this method yielded a critical proportion of 0.125 for the VaR-neutrality test, and

0.188 for the remaining tests.

18The number of funds that were present for the full sample was 16, 51, 20, 14 and 49 for the Þve hedge fund styles

considered here: market neutral, equity hedge, equity non-hedge, event driven, and funds of funds.

29



Table 1
Summary statistics of fund and market index returns

This table presents descriptive statistics on the monthly fund and market index returns over the
sample period, April 1993 to April 2003. The column headed �median fund� presents the median
of the statistic in the row across the 213 funds with more than 6 observations. The �Jarque-
Bera statistic� refers to the Jarque-Bera (1980) test of normality, the p-value for this test is also
reported. �The mean and standard deviation statistics have been annualized to ease interpretation.
The annualized standard deviation was computed using a Newey-West estimate of the variance, to
take into account serial correlation in returns.

Median fund S&P 500 MSCI World
Mean� 8.11 10.16 6.63
Standard deviation� 8.01 15.22 14.73
Skewness 0.02 -0.54 -0.5425
Kurtosis 3.65 3.26 3.28
Minimum -4.54 -14.44 -13.35
Maximum 5.87 9.78 9.02
Jarque-Bera statistic 2.56 5.99 6.04
Jarque-Bera p-value 0.28 0.05 0.05
Number of obs 42 121 121

Table 2
Summary statistics on the number of observations available

This table presents descriptive statistics on the number of monthly return observations available
on each of the Þve categories of hedge funds used in this paper. The sample period is April 1993
to April 2003 and so the maximum number of observations is 121. The bottom four rows present
the number of funds available for analysis in the tests of the various types of market neutrality.

Market Equity Equity Event Funds of
Neutral Hedge Non-hedge Driven Funds

Minimum 1 1 1 6 1
0.25 quantile 19 23 40 28 18
Median 42 44 79 58 40
Mean 49.5 52.9 74.1 61.6 48.6
0.75 quantile 69 77 114 90 73
Maximum 121 121 121 121 121
Number of funds with ≥ 6 obs 213 543 84 110 569
Number of funds with ≥ 18 obs 171 466 77 90 463
Number of funds with ≥ 24 obs 150 422 77 86 414
Number of funds with ≥ 66 obs 59 182 58 47 169
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Table 3
Comparison of neutral and non-neutral hedge funds

This table presents descriptive statistics on two portfolios constructed using the results of the
joint test of neutrality on the downside, reported in Section 3.6. The Þrst (second) portfolio is
constructed as an equally-weighted average of the neutral (non-neutral) funds for each month in
our sample period, April 1993 to April 2003. 21.6% of the 171 funds studied failed the joint test
of neutrality on the downside, and so the �neutral� portfolio contains up to 134 funds, while the
�non-neutral� portfolio contains up to 37 funds. The fact that some funds dropped out of the
database and others joined sometime after April 1993 implies that the two portfolios contained
varying numbers of funds. The bottom two rows report the median age and size (in millions of
U.S. dollars, as at the last available observation for each fund) of the funds that comprise the
two portfolios. The third column reports the difference between the �neutral� and �non-neutral�
portfolios, and an asterisk denotes a difference that is signiÞcantly different from zero at the 0.05
level. �The mean and standard deviation statistics have been annualized to ease interpretation.
The annualized standard deviation was computed using a Newey-West estimate of the variance, to
take into account serial correlation in returns.

Neutral fund Non-neutral fund
portfolio portfolio Difference

Mean� 3.15 6.49 -3.34∗

Standard deviation� 0.79 1.48 -0.69∗

Skewness 0.20 -0.33 0.53
Kurtosis 3.19 3.14 0.04
Correlation with market -0.06 0.78 -0.85∗

Median size $23m $15m $8m
Median age 46 months 88 months -42 months∗
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Table 4
Proportion of funds that fail tests of neutrality, by hedge fund style

This table presents the results of tests of various types of market neutrality presented in the
paper, applied to Þve different hedge fund styles. These styles are described in Section 3.7. The
tests are conducted on monthly hedge fund returns over the period April 1993 to April 2003. The
S&P 500 is used as the market index. Panel I reports the proportion of funds for which the null
hypothesis of market neutrality could be rejected at the 0.05 level in favour of a general alternative.
Panel II reports the proportion of funds for which the null hypothesis of market neutrality could
be rejected at the 0.05 level in favour of a dependence structure of a type that is disliked by U.S.-
based risk averse investors with a pre-existing exposure to the S&P 500. An asterisk indicates that
the proportion of rejected funds is signiÞcantly different from zero (using the bootstrap procedure
described in the appendix) and thus that collection of funds taken as a whole are signiÞcantly
non-neutral.

Hedge fund style
Market Equity Equity Event Funds of
neutral hedge non-hedge driven funds
Panel I: Proportion rejected null of neutrality

Correlation neutrality 0.298∗ 0.562∗ 0.870∗ 0.667∗ 0.497∗

Mean neutrality 0.233 0.481∗ 0.766∗ 0.640∗ 0.531∗

Variance neutrality 0.060 0.024 0.000 0.012 0.031
VaR neutrality 0.000 0.033 0.052 0.064 0.024
Complete neutrality 0.263∗ 0.584∗ 0.883∗ 0.589∗ 0.492∗

Joint test 0.281∗ 0.554∗ 0.870∗ 0.644∗ 0.503∗

Panel II: Proportion rejected null of neutrality on the downside
Correlation neutrality 0.269∗ 0.573∗ 0.883∗ 0.744∗ 0.534∗

Mean neutrality 0.007 0.012 0.065 0.012 0.007
Variance neutrality 0.040 0.000 0.000 0.035 0.000
VaR neutrality 0.000 0.033 0.052 0.064 0.024
Tail neutrality 0.039 0.005 0.417∗ 0.077 0.029
Complete neutrality 0.251∗ 0.577∗ 0.883∗ 0.711∗ 0.523∗

Joint test 0.216∗ 0.537∗ 0.805∗ 0.644∗ 0.486∗
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Table 5
Results from robustness checks

This table presents the results of tests of various types of market neutrality presented in the
paper, applied to variations on the original data set to check the robustness of the conclusions in
various dimensions. The tests are conducted on monthly hedge fund returns over the period April
1993 to April 2003. The S&P 500 is used as the market index. Panel I reports the proportion of
funds for which the null hypothesis of market neutrality could be rejected at the 0.05 level in favour
of a general alternative. Panel II reports the proportion of funds for which the null hypothesis of
market neutrality could be rejected at the 0.05 level in favour of a dependence structure of a type
that is speciÞcally disliked by U.S.-based risk averse investors with a pre-existing exposure to the
S&P 500. An asterisk indicates that the proportion of rejected funds is signiÞcantly different from
zero (using the bootstrap procedure described in the appendix) and thus that the collection of funds
taken as a whole are signiÞcantly non-neutral. The Þrst column of results are for the benchmark
case, and are the same as those reported in the Þrst column of Table 4. The second column considers
the impact of switching the market index from the S&P 500 to the MSCI World index. The third
column considers the MSCI World index as the market index, from the perspective of a U.K. based
investor, and so all US dollar returns are converted to British pound returns. The fourth and Þfth
columns check the robustness of the results to �end-game� behavior and to �backÞll bias�, by using
all but the last 6 months of data, or all but the Þrst 12 months of data.

Home country U.S.A. U.S.A. U.K. U.S.A. U.S.A.
Market index S&P 500 MSCI World MSCI World S&P 500 S&P 500
Dropped obs None None None Last 6 First 12

Panel I: Proportion rejected null of neutrality
Correlation neutrality 0.298∗ 0.269∗ 0.211∗ 0.252∗ 0.280∗

Mean neutrality 0.233∗ 0.180 0.267∗ 0.167 0.154
Variance neutrality 0.060 0.027 0.060 0.047 0.037
VaR neutrality 0.000 0.017 0.017 0.000 0.000
Complete neutrality 0.263∗ 0.292∗ 0.193∗ 0.216∗ 0.280∗

Joint test 0.281∗ 0.240∗ 0.199∗ 0.199∗ 0.253∗

Panel II: Proportion rejected null of neutrality on the downside
Correlation neutrality 0.269∗ 0.251∗ 0.252∗ 0.246∗ 0.260∗

Mean neutrality 0.007 0.013 0.007 0.013 0.007
Variance neutrality 0.040 0.033 0.033 0.033 0.037
VaR neutrality 0.000 0.017 0.017 0.000 0.000
Tail neutrality 0.039 0.039 0.000 0.039 0.000
Complete neutrality 0.251∗ 0.257∗ 0.246∗ 0.222∗ 0.280∗

Joint test 0.216∗ 0.240∗ 0.222∗ 0.205∗ 0.247∗
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Table 6
Results using a weighted average of lagged market returns

This table presents the results of tests of various types of market neutrality presented in the
paper. The tests are conducted on monthly �market neutral� hedge fund returns over the period
April 1993 to April 2003. We present results for the benchmark case when the market index is
the contemporaneous return on the S&P 500, rmt, and for the case when the market index is a
weighted average of current and lagged returns on the S&P 500 index: �rmt =

P3
j=0 λjrmt−j =

0.4rmt + 0.3rmt−1 + 0.2rmt−2 + 0.1rmt−3. The Þrst two columns report the proportion of funds for
which the null hypothesis of market neutrality could be rejected at the 0.05 level in favour of a
general alternative. The third and fourth columns report the proportion of funds for which the
null hypothesis of market neutrality could be rejected at the 0.05 level in favour of a dependence
structure of a type that is speciÞcally disliked by U.S.-based risk averse investors with a pre-existing
exposure to the S&P 500. An asterisk indicates that the proportion of rejected funds is signiÞcantly
different from zero (using the bootstrap procedure described in the appendix) and thus that the
collection of funds taken as a whole are signiÞcantly non-neutral.

Proportion rejected null of Proportion rejected null of
neutrality neutrality on downside

Market index rmt
P3
j=0 λjrmt−j rmt

P3
j=0 λjrmt−j

Correlation neutrality 0.298∗ 0.246∗ 0.269∗ 0.216∗

Mean neutrality 0.233∗ 0.153 0.007 0.013
Variance neutrality 0.060 0.033 0.040 0.033
VaR neutrality 0.000 0.017 0.000 0.017
Tail neutrality - - 0.039 0.000
Complete neutrality 0.263∗ 0.275∗ 0.251∗ 0.304∗

Joint test 0.281∗ 0.222∗ 0.216∗ 0.211∗
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Figure 1: The relation between linear correlation and the number of available observations on a
hedge fund. The circles represent the number of observations/linear correlation with the market
return observations for each fund in our sample with at least 18 observations. The solid line is the
result of a linear regression of correlation on a constant and the number of observations available.
The dashed lines are simple Bartlett 95% conÞdence bounds for testing a null of zero correlation, and
equal ±1.96/√n (For formal tests we use serial correlation and heteroscedasticity robust conÞdence
intervals based on a block bootstrap.)
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