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Abstract

We investigate a class of semiparametric ARCH(1) models that includes as a special case
the partially nonparametric (PNP) model introduced by Engle and Ng (1993) and which allows

for both �exible dynamics and �exible function form with regard to the �news impact�function.

We show that the functional part of the model satis�es a type II linear integral equation and

give simple conditions under which there is a unique solution. We propose an estimation method

that is based on kernel smoothing and pro�led likelihood. We establish the distribution theory

of the parametric components and the pointwise distribution of the nonparametric component

of the model. We also discuss e¢ ciency of both the parametric and nonparametric part. We

investigate the performance of our procedures on simulated data and on a sample of S&P500

index returns. We �nd evidence of asymmetric news impact functions, consistent with the

parametric analysis.
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As we know

There are known knowns.

There are things we know we know.

We also know

There are known unknowns.

That is to say

We know there are some things

We do not know.

But there are also unknown unknowns,

The ones we don�t know

We don�t know.

Donald Rumsfeld, U.S. Secretary of Defence

1. Introduction

Stochastic volatility models are of considerable current interest in empirical �nance following

the seminal work of Engle (1982). Perhaps the most popular version of this is Bollerslev�s (1986)

GARCH(1,1) model in which the conditional variance �2t of a martingale di¤erence sequence yt is

(1) �2t = ��2t�1 + �+ y2t�1:

This model has been extensively studied and generalized in various ways. See the review of Bollerslev,

Engle, and Nelson (1994). This paper is about a particular class of nonparametric/semiparametric

generalizations of (1). The motivation for this line of work is to increase the �exibility of the class

of models we use and to learn from this the shape of the volatility function without restricting it a

priori to have or not have certain shapes.

The nonparametric ARCH literature apparently begins with Pagan and Schwert (1990) and Pa-

gan and Hong (1991). They consider the case where �2t = �2(yt�1); where �(�) is a smooth but
unknown function, and the multilag version �2t = �2(yt�1; yt�2; : : : ; yt�d): Härdle and Tsybakov

(1997) applied local linear �t to estimate the volatility function together with the mean function
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and derived their joint asymptotic properties. The multivariate extension is given in Härdle, Tsy-

bakov and Yang (1996). Masry and Tjøstheim (1995) also estimate nonparametric ARCH models

using the Nadaraya-Watson kernel estimator. Fan and Yao (1998) have discussed e¢ ciency issues

in this model. In practice, it is necessary to include many lagged variables. The problem with this

is that nonparametric estimation of multi-dimension regression surface su¤ers from the well-known

�curse of dimensionality�: the optimal rate of convergence decreases with dimensionality d; see Stone

(1980). In addition, it is hard to describe, interpret and understand the estimated regression surface

when the dimension is more than two. Furthermore, even for large d this model greatly restricts

the dynamics for the variance process since it e¤ectively corresponds to an ARCH(d) model, which

is known in the parametric case not to capture the dynamics well. In particular, if the conditional

variance is highly persistent, the non-parametric estimator of the conditional variance will provide

a poor approximation, as reported in Perron (1998). So not only does this model not capture ade-

quately the time series properties of many datasets, but the statistical properties of the estimators

can be poor, and the resulting estimators hard to interpret.

Additive models o¤er a �exible but parsimonious alternative to nonparametric models, and have

been used in many contexts, see Hastie and Tibshirani (1990). Suppose that �2t = cv+
Pd

j=1 �
2
j(yt�j):

The best achievable rate of convergence for estimates of �2j(:) is that of one-dimensional nonpara-

metric regression, see Stone (1985). Yang, Härdle, and Nielsen (1999) proposed an alternative non-

linear ARCH model in which the conditional mean is additive, but the volatility is multiplicative:

�2t = cv
Qd

j=1 �
2
j(yt�j): Their estimation strategy is based on the method of partial means/marginal

integration using local linear �ts as a pilot smoother. Kim and Linton (2002) generalize this model

to allow for arbitrary [but known] transformations, i.e., G(�2t ) = cv +
Pd

j=1 �
2
j(yt�j); where G(:) is

known function like log or level. Horowitz (2001) has analyzed the model where G(:) is also unknown,

but his results were only in a cross-sectional setting. Another possibility is index models of the form

�2t = �2(
Pd

j=1 �jy
2
t�j); where �

2(:) is an unknown function, see for example Xia, Tong, Li, and Zhu

(2002). These separable models deal with the curse of dimensionality but still do not capture the

persistence of volatility, and speci�cally they do not nest the favourite GARCH(1,1) process.

This paper analyses a class of semiparametric ARCH models that has both general functional

form aspects and �exible dynamics. A special case of our model is the Engle and Ng (1993) PNP

model where

�2t = ��2t�1 +m(yt�j);

wherem(:) is a smooth but unknown function. Our semiparametric model nests the simple GARCH(1,1)
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model but permits more general functional form: it allows for an asymmetric leverage e¤ect, and as

much dynamics as GARCH(1,1). A major issue we solve is how to estimate the function m(:) by

kernel methods. Our estimation approach is to derive population moment conditions for the non-

parametric part and then solve them with empirical counterparts. The moment conditions we obtain

are linear type II Fredholm integral equations, and so falls in the class of inverse problems reviewed

in Carrasco, Florens, and Renault (2003). These equations have been extensively studied in the

applied mathematics literature, see for example Tricomi (1957); they also arise a lot in economic

theory, see Stokey and Lucas (1989). The solution of these equations in our case only requires

the computation of two-dimensional smoothing operations and one dimensional integration, and so

is attractive computationally. From a statistical perspective, there has been some recent work on

this class of estimation problems. Starting with Friedman and Stuetzle (1981), in Breiman and

Friedman (1985), Buja, Hastie, and Tibshirani (1989), and Hastie and Tibshirani (1990) these meth-

ods have been investigated in the context of additive nonparametric regression and related models,

where the estimating equations are usually of type II. Recently, Opsomer and Ruppert (1997) and

Mammen, Linton, and Nielsen (1999) have provided a pointwise distribution theory for this speci�c

class of problems. Newey and Powell (1989,2003) studied nonparametric simultaneous equations,

and obtained an estimation equation that was a linear integral equation also, except that it is the

more di¢ cult type I. They establish the uniform consistency of their estimator; see also Darolles,

Florens, and Renault (2002). Hall and Horowitz (2003) establish the optimal rate for estimation

in this problem and propose two estimators that achieve this rate. Neither paper provides point-

wise distribution theory. Our estimation methods and proof technique are purely applicable to the

type II situation, which is nevertheless quite common elsewhere in economics. For example, Berry

and Pakes (2002) derive estimators for a class of semiparametric dynamic models used in Industrial

Organization applications, and which solve type 2 equations similar to ours.

Our paper goes signi�cantly beyond the existing literature in two respects. First, the integral

operator does not necessarily have norm less than one so that the iterative solution method of suc-

cessive approximations is not feasible. This also a¤ects the way we derive the asymptotic properties,

and we can�t directly apply the results of Mammen, Linton, and Nielsen (1999) here. Second, we

have also �nite dimensional parameters and their estimation is of interest in itself. We establish

the consistency and pointwise asymptotic normality of our estimates of the parameter and of the

function. We establish the semiparametric e¢ ciency bound for a Gaussian special case and show

that our parameter estimator achieves this bound. We also discuss the e¢ ciency question regarding
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the nonparametric component and conclude that a likelihood-based version of our estimator can�t be

improved on without additional structure. We investigate the practical performance of our method

on simulated data and present the result of an application to S&P500 data. The empirical results

indicate some asymmetry and nonlinearity in the news impact curve.

Our model is introduced in the next section. In section 3 we present our estimators. In section

4 we give the asymptotic properties. In section 5 we discuss an extension of our basic setting that

accommodates a richer variety of tail behaviour. Section 6 reports some numerical results and section

7 concludes.

2. The Model and its Properties

We shall suppose throughout that the process fytg1t=�1 is stationary with �nite fourth moment.

We concentrate most of our attention on the case where there is no mean process, although we later

discuss the extension to allow for some mean dynamics. De�ne the volatility process model

(2) �2t (�;m) = �t +
1X
j=1

 j(�)m(yt�j);

where �t 2 R; � 2 � � Rp and m 2M, whereM = fm: measurableg. The coe¢ cients  j(�) satisfy
at least  j(�) � 0 and

P1
j=1  j(�) <1 for all � 2 �: The true parameters �0 and the true function

m0(:) are unknown and to be estimated from a �nite sample fy1; : : : ; yTg. The process �t can be
allowed to depend on covariates and unknown parameters, but at this stage it assumed to be known.

In much of the sequel it can be put equal to zero without any loss of generality. It will become

important below when we will consider more restrictive choices ofM. Robinson (1991) is perhaps

the �rst study of ARCH(1) models, although he restricted attention to the quadratic m case.

Following Drost and Nijman (1993), we can give three interpretations to (2). The strong form

ARCH(1) process arises when

(3)
yt
�t
= "t

is i.i.d with mean zero and variance one, where �2t = �2t (�0;m0). The semi-strong form arises when

(4) E(yt jFt�1 ) = 0 and E(y2t jFt�1 ) � �2t ;

where Ft�1 is the sigma �eld generated by the entire past history of the y process. Finally, there is
a weak form in which �2t is de�ned as the projection on a certain subspace. Speci�cally, let �0;m0
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be de�ned as the minimizers of the following population least squares criterion function

(5) S(�;m) = E

"
fy2t �

1X
j=1

 j(�)m(yt�j)g2
#
;

and let �2t =
P1

j=1  j(�0)m0(yt�j): The criterion (5) is well de�ned only when E(y4t ) <1:

In the special case that  j(�) = �j�1; with 0 < � < 1; we can rewrite (2) as a di¤erence equation

in the unobserved variance

(6) �2t = ��2t�1 +m(yt�1); t = 1; 2; : : : ;

and this is consistent with a stationary GARCH(1,1) structure for the unobserved variance when

m(y) = �+ y2 for some parameters �; . It also includes other parametric models as special cases:

the Glosten, Jegannathan and Runkle (1993) model, taking m(y) = �+y2+ �y21(y < 0); the Engle

(1990) asymmetric model, taking m(y) = �+ (y + �)2; and the Engle and Bollerslev (1986) model,

taking m(y) = �+ jyj�:
The function m(:) is the �news impact function�, and determines the way in which the volatility is

a¤ected by shocks to y: Our model allows for general news impact functions including both symmetric

and asymmetric functions, and so accommodates the leverage e¤ect [Nelson (1991)].1 The parameter

�; through the coe¢ cients  j(�); determines the persistence of the process, and we in principle allow

for quite general coe¢ cient values. A general class of coe¢ cients can be obtained from the expansion

of ARMA lag polynomials, as in Nelson (1991).

Our model generalizes the model considered in Carroll, Mammen, and Härdle (2001) in which

�2t =
P�

j=1 �
j�1
0 m0(yt�j) for some �nite � : Their estimation strategy was quite di¤erent from ours:

they relied on an initial estimator of a � -dimensional surface and then marginal integration [Linton

and Nielsen (1995)] to improve the rate of convergence. This method is likely to work poorly when

� is very large. Also, their theory requires the smoothness of m to increase with � . Indeed, a

contribution of our paper is to provide an estimation method for �0 and m(�) that just relies on one-
dimensional smoothing operations but is also amenable to theoretical analysis. Some other papers

can be considered precursors to this one. First, Gouriéroux and Monfort (1992) introduced the

qualitative threshold ARCH (QTARCH) which allowed quite �exible patterns of conditional mean

and variance through step functions, although their analysis was purely parametric. Engle and

Ng (1993) analyzed precisely the semistrong model (2) with  j(�) = �j�1 and called it �Partially

1Hafner (1998) and Carroll et al. (2002) have found evidence in support of the restriction that the news impact

curve is similar across lags, which is implicit in our model.
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Nonparametric�or PNP for short. They proposed an estimation strategy based on piecewise linear

splines.2 Finally, we should mention some work by Audrino and Bühlmann (2001): their model is

that �2t = �(yt�1; �
2
t�1) for some smooth but unknown function �(:); and includes the PNP model

as a special case. However, although they proposed an estimation algorithm, they did not establish

the distribution theory of their estimator.

In the next subsection we discuss a characterization of the model that generates our estimation

strategy. If m were known it would be straightforward to estimate � from some likelihood or least

squares criterion. The main issue is how to estimate m(:) even when � is known. The kernel method

likes to express the function of interest as a conditional expectation or density of a small number

of observable variables, but this is not directly possible here because m is only implicitly de�ned.

However, we are able to show that m can be expressed in terms of all the bivariate joint densities

of (yt; yt�j); j = �1; : : : ; i.e., this collection of bivariate densities form a set of su¢ cient statistics for
our model.3 We use this relationship to generate our estimator.

2.1. Linear Characterization

Suppose for pedagogic purposes that the semi-strong process de�ned in (4) holds, and for sim-

plicity de�ne ey2t = y2t � �t. Take marginal expectations for any j � 1

(7) E(ey2t jyt�j = y ) =  j(�0)m(y) +
1X
k 6=j

 k(�0)E[m(yt�k)jyt�j = y]:

For each such j the above equation implicitly de�nes m(:): This is really a moment condition in

the functional parameter m(:) for each j; and can be used as an estimating equation. As in the

parametric method of moments case it can pay to combine the estimating equations in terms of

e¢ ciency. Speci�cally, we take the following linear combination of these moment conditions:

1X
j=1

 j(�0)E(ey2t jyt�j = y ) =

1X
j=1

 2j(�0)m(y) +

1X
j=1

 j(�0)

1X
k 6=j

 k(�0)E[m(yt�k)jyt�j = y];(8)

which yields another implicit equation in m(:).

2Wu and Xiao (2002) investigate this model too, but they used data on the implied volatility from option prices,

which means they can estimate the function m by standard partial linear regression.
3Hong and Li (2003) recently proposed basing a test for nonlinear dependence on a similar reduction to one

dimensional conditional distributions.
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This equation arises as the �rst order condition from the least squares de�nition of �2t ; given in

(5), as we now discuss. We can assume that the quantities �0;m0(:) are the unique minimizers of (5)

over ��M by the de�nition of conditional expectation, see Drost and Nijman (1993). Furthermore,

the minimizer of (5) satis�es a �rst order condition and in the appendix we show that this �rst order

condition is precisely (8). In fact, if we minimize (5) with respect to m 2 M for any � 2 � and

let m� denote this minimizer, then m� satis�es equation (8) with �0 replaced by �: Note that we are

treating �t as a known quantity.

We next rewrite (8) (for general �) in a more convenient form. Let p0 denote the marginal density

of y and let pj;l denote the joint density of yj; yl: De�ne

H�(y; x) = �
�1X
j=�1

 �j(�)
p0;j(y; x)

p0(y)p0(x)
;(9)

m�
�(y) =

1X
j=1

 yj(�)gj(y);(10)

where  yj(�) =  j(�)=
P1

l=1  
2
l (�) and  

�
j(�) =

P
k 6=0  j+k(�) j(�)=

P1
l=1  

2
l (�); while gj(y) = E(ey2t jyt�j =

y) for j � 1: Then the function m�(:) satis�es

(11) m�(y) = m�
�(y) +

Z
H�(y; x)m�(x)p0(x)dx

for each � 2 � [this equation is equivalent to (8) for all � 2 �]: The operator
Hj(y; x) = p0;j(y; x)=p0(y)p0(x) is well-studied in the statistics literature [see Bickel, Klaassen, Ritov,

and Wellner (1993, p 440)]; our operator H� is just a weighted sum of such operators, where the

weights are declining to zero rapidly. In additive nonparametric regression, the corresponding integral

operator is an unweighted sum of operators like Hj(y; x) over the �nite number of dimensions [see

Hastie and Tibshirani (1990) and Mammen, Linton, and Nielsen (1999)]. Although the operators Hj

are not self-adjoint without an additional assumption of time reversibility, it can easily be seen that

H� is self adjoint in L2(p0) due to the two-sided summation.4

Our estimation procedure will be based on plugging estimates bm�
� and bH� ofm�

� orH�, respectively

into (11) and then solving for bm�. The estimates bm�
� and bH� will be constructed by plugging

estimates of p0;j, p0 and gj into (10) and (9). Nonparametric estimates of these functions only

work accurately for arguments not too large. We do not want to enter into a discussion of tail

behaviour of nonparametric estimates at this point. For this reason we change our minimization

4Speci�cally, with hf; gi =
Z
f(x)g(x)p0(x)dx denoting the usual inner product in L2(p0); we have
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problem (5), or rather restrict the parameter sets further. We consider minimization of (5) over all

� 2 � and m 2 Mc where now Mc is the class of all bounded measurable functions that vanish

outside [�c; c]; where c is some �xed constant [this makes �2t = �t whenever yt�j =2 [�c; c] for all
j].5 Let us denote these minimizers by �c and mc. Furthermore, denote the minimizer of (5) for

�xed � over m 2Mc by m�;c. Then �c and mc minimize E[fey2t �P1
j=1  j(�)m(yt�j)g2] over ��Mc

and m�;c minimizes E[fey2t �P1
j=1  j(�)m�(yt�j)g2] overMc. For now we adopt a �xed truncation

where c and �t are constant and known, but return to this in Section 5 below. Then m�;c satis�es

m�;c(y) = m�
�(y) +

R c
�cH�(y; x)m�;c(x)p0(x)dx for jyj � c and vanishes for jyj > c. For simplicity but

in abuse of notation we omit the subindex c of m�;c and we write

(12) m� = m�
� +H�m�:

For each � 2 �; H� is a self-adjoint linear operator on the Hilbert space of functions m that

are de�ned on [�c; c] with norm kmk22 =
R c
�cm(x)

2p0(x)dx and (12) is a linear integral equation of

the second kind. There are some general results providing su¢ cient conditions under which such

integral equations have a unique solution. See Darolles, Florens, and Renault (2002) for a discussion

on existence and uniqueness for the more general class of type I equations.

We assume the following high level condition:

Assumption A1. The operator H�(x; y) is Hilbert-Schmidt uniformly over �; i.e.,

sup
�2�

Z c

�c

Z c

�c
H�(x; y)

2p0(x)p0(y)dxdy <1:

A su¢ cient condition for A1 is that the joint densities p0;j(y; x) are uniformly bounded for j 6= 0
and jxj; jyj � c and that the density p0(x) is bounded away from 0 for jxj � c.

Under assumption A1, for each � 2 �; H� is a self-adjoint bounded compact linear operator on

hg;H�mi = �
XX
j 6=k

 j(�) k(�)E [g(yt�j)E [m(yt�k)jyt�j ]]

= �
XX
j 6=k

 j(�) k(�)E [g(yt�j)m(yt�k)]

= hH�g;mi

because the double sum is symmetric in j; k: The de�nition of adjoint operator can be found in Bickel, Klaassen, Ritov,

and Wellner (1993, p416).
5For notational simplicity we have chosen a symmetric interval, but the key requirement is the �niteness of c.
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the Hilbert space of functions L2(p0), and therefore has a countable number of eigenvalues6:

1 > j��;1j � j��;2j � ::::;

with sup�2�
P1

j=1 �
2
�;j <1:

Assumption A2. There exist no � 2 � and m 2Mc with kmk2 = 1 such that
P1

j=1  j(�)m(yt�j) =

0 with probability one.

This condition rules out a certain �concurvity�in the stochastic process. That is, the data cannot

be functionally related in this particular way. It is a natural generalization to our situation of

the condition that the regressors be not linearly related in a linear regression. A special case of

this condition was used in Weiss (1986) and Kristensen and Rahbek (2003) for identi�cation in

parametric ARCH models, see also the arguments used in Lumsdaine (1996, Lemma 5) and Robinson

and Za¤aroni (2002, Lemma 9).

Assumption A3. The operator H� ful�lls the following continuity condition for �; �
0 2 �:

sup
kmk2�1

kH�m�H�0mk2 ! 0 for jj� � �0jj ! 0:

This condition is straightforward to verify.

We now argue that because of assumptions (A2) and (A3) for a constant 0 <  < 1

(13) sup
�2�

��;1 < :

To prove this note that for � 2 � and m 2Mc with kmk2 = 1

0 < E

24 1X
j=1

 j(�)m(yt�j)

!235
= ��

Z c

�c
m2(x)p0(x)dx+ ��

Z c

�c

Z c

�c
m(x)m(y)

X
jkj�1

 �k(�)p0;k(x; y)dxdy

= ��

Z c

�c
m2(x)p0(x)dx� ��

Z c

�c
m(x)H�m(x)p0(x)dx;

where �� =
P1

j=1  
2
j(�) is a positive constant depending on �: For eigenfunctions m 2 Mc of H�

with eigenvalue � this shows that
R
m2(x)p0(x)dx � �

R
m2(x)p0(x)dx > 0: Therefore ��;j < 1 for

� 2 � and j � 1. Now, because of (A3) and compactness of �, this implies (13).
6These are real numbers for which there exists functions e�;j(:) such that H�e�;j = ��;je�;j :

9



From (13) we get that I�H� has eigenvalues bounded from below by 1� > 0. Therefore I�H�

is strictly positive de�nite and hence invertible and (I�H�)
�1 has only positive eigenvalues that are

bounded by (1� )�1:

(14) sup
�2�;m2Mc;kmk2=1

(I �H�)
�1m


2
� (1� )�1:

Therefore, we can directly solve the integral equation (12) and write

(15) m� = (I �H�)
�1m�

�

for each � 2 �: The representation (15) is fundamental to our estimation strategy, as it yields

identi�cation of m�:

We next discuss a further property that leads to an iterative solution method rather than a direct

inversion. If it holds that j��;1j < 1; then m� =
P1

j=0H
j
�m

�
�: In this case the sequence of successive

approximations m[n]
� = m�

� +H�m
[n�1]
� ; n = 1; 2; : : : converges in norm geometrically fast to m� from

any starting point. This sort of property has been established in other related problems, see Hastie

and Tibshirani (1990) for discussion, and is the basis of most estimation algorithms in this area.

Unfortunately, the conditions that guarantee convergence of the successive approximations method

are not likely to be satis�ed here even in the special case that  j(�) = �j�1. The reason is that the

unit function is always an eigenfunction of H� with eigenvalue determined by �
P�1

j=�1 �
jjj1 = �� � 1;

which implies that �� = �2�=(1 � �): This is less than one in absolute value only when � < 1=3:

This implies that we will not be able to use directly the particularly convenient method of successive

approximations [i.e., back�tting] for estimation; however, with some modi�cations it can be applied,

see Linton and Mammen (2003).

2.2. Likelihood Characterization

In this section we provide an alternative characterization of m�; � in terms of the Gaussian likeli-

hood. We use this characterization later to de�ne the semiparametric e¢ ciency bound for estimating

� in the presence of unknown m: This characterization is also important for robustness reasons, since

it does not require fourth moments on yt.

Suppose that m0(:); �0 are de�ned as the minimizers of the criterion function

(16) `(�;m) = E

�
log �2t (�;m) +

y2t
�2t (�;m)

�
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with respect to both �;m(:); where �2t (�;m) = �t +
P1

j=1  j(�)m(yt�j): Notice that this criterion is

well-de�ned in many cases where the quadratic loss function is not.

Minimizing (16) with respect to m for each given � yields the �rst order condition, which is a

nonlinear integral equation in m

(17)
1X
j=1

 j(�)E
�
��4t (�;m)

�
y2t � �2t (�;m)

	
jyt�j = y

�
= 0:

This equation is di¢ cult to work with from the point of view of statistical analysis because of the

nonlinearity, see Horowitz and Mammen (2002). We consider instead a linearized version of this

equation. Suppose that we have some initial approximation to �2t ; then linearizing (17) about �
2
t ; we

obtain the linear integral equation

(18) m� = m�
� +H�m�;

m�
� =

P1
j=1  j(�)g

a
j (y)P1

j=1  
2
j(�)g

b
j(y)

; H�(x; y) =

�
P1

j=1

P1
l=1

l 6=j
 j(�) l(�)g

c
l;j(x; y)

p0;l�j(x;y)
p0(y)p0(x)P1

j=1  
2
j(�)g

b
j(y)

:

Here, gaj (y) = E[��4t y2t jyt�j = y] = E[��2t jyt�j = y]; gbj(y) = E[��4t jyt�j = y ]; and gcl;j(x; y) =

E[��4t jyt�l = x; yt�j = y]: This is a second kind linear integral equation in m�(:) but with a di¤erent

intercept and operator from (12). See Hastie and Tibshirani (1990, Section 6.5) for a similar calcula-

tion. Under our assumptions, see B4 below, the weighted operator satis�es assumptions A1 and A3

also. For a proof of A3 note that

0 < E

"
��4t

1X
j=1

 j(�)m(yt�j)

#2
:

Note that in general m� di¤ers from m�; since they are de�ned as minimizers of di¤erent criteria.

However, for the strong and semistrong versions of our model we get m�0 = m�0 .

3. Estimation

We shall construct estimates of � and m from a sample fy1; : : : ; yTg: We proceed in four steps.
First, for each given � we compute estimates of m�

� and H�; and then estimate m� by solving an

empirical version of the integral equation (12). We then estimate � by minimizing a pro�le least

squares criterion. We then use the estimated parameter to give an estimator of m(:): Finally, we use

our consistent estimators to de�ne likelihood-based estimators that improve e¢ ciency under some

11



conditions. In particular, we solve an empirical version of the linearized likelihood implied integral

equation (18), and then minimize a negative quasi-likelihood criterion to update the parameter

estimate. In 3.1. we discuss how to compute m�
� and H�; while in 3.2 we state our estimation

algorithm; in 3.2 we give further details about solving integral equations of this type.

3.1. Our Estimators of m�
� and H�

We now de�ne local polynomial based estimates bm�
� of m

�
� and kernel density estimates bH� of

H�, respectively. Local linear estimation is a popular approach for estimating various conditional

expectations with nice properties (see Fan (1992, 1993)). De�ne the estimator bgj(y) = ba0; where
(ba0; : : : ;bap) are the minimizers of the weighted sums of squares criterionX

t:1�t�j�T

�
y2t � �t � a0 � a1(yt�j � y)� : : :� ap(yt�j � y)p

	2
Kh (yt�j � y)

with respect to (a0; : : : ; ap); where K is a symmetric probability density function, h is a positive

bandwidth, and Kh(:) = K(:=h)=h. We can allow h = hT (y) but for notational and theoretical

simplicity we shall drop the dependence on y: Our theoretical properties are stated for the case p = 1

but the theory easily extends; in practice other choices may have some advantages.

Select a truncation sequence �T with 1 < �T < T; and compute

bm�
�(y) =

�TX
j=1

 yj(�)bgj(y)
for any jyj � c: To estimate H� we take the following scheme

bH�(y; x) = �
��TX
j=�1

 �j(�)
bp0;j(y; x)bp0(y)bp0(x) ;

bp0;j(y; x) =
1

T � jjj
X

t:1�t�j�T
Kh(y � yt)Kh(x� yt+j);

bp0(x) =
1

T

TX
t=1

Kh(x� yt):

The action of the empirical operator is de�ned as bH�m =
R c
�c
bH�(y; x)m(x)bp0(x)dx: For each � 2 �;bH� is a self-adjoint linear operator on the Hilbert space of functions m that are de�ned on [�c; c]

with norm kmk22 =
R c
�cm(x)

2bp0(x)dx:
12



Suppose that the sequence fb�2t ; t = 1; : : : ; Tg and � are given. Then de�ne bgaj (�) to be the local
linear smooth of b��4t ey2t on yt�j; let bgbj(�) be the local linear smooth of b��4t on yt�j; and let bgcl;j(�) be
the bivariate local linear smooth of b��4t on (yt�l; yt�j). Then de�ne

bm�
�(y) =

P�T
j=1  j(�)bgaj (y)P�T
j=1  

2
j(�)bgbj(y) ; bH�(x; y) =

�
P�T

j=1

P�T
l=1

l 6=j
 j(�) l(�)bgcl;j(x; y) bp0;l�j(x;y)bp0(x)bp0(y)P�T
j=1  

2
j(�)bgbj(y) :

3.2. Our Estimators of � and m

Here we give a formal de�nition of our estimators.

Step 1. De�ne bm�(:) as any sequence of random functions de�ned on [�c; c] that approximately
solves bm� = bm�

� +
bH� bm�: Speci�cally, we shall assume that bm� is any sequence of functions that

satis�es

(19) sup
�2�;y2[�c;c]

���(I � bH�)bm�(y)� bm�
�(y)

��� = op(T
�1=2):

This step is the most di¢ cult and requires a number of choices. In practice, we solve the integral

equation on a �nite grid of points, which reduces it to a large linear system.

Step 2. Choose b� 2 � to be any sequence such that
bST (b�) � argmin

�2�
bST (�) + op(T

�1=2); where bST (�) = 1

T

TX
t=1

�
y2t � b�2t (�)	2 ;

where b�21(�) = T�1
PT

t=1 y
2
t and

b�2t (�) = maxf�t + minft�1;�T gX
j=1

 j(�)bm�(yt�j); �g; t = 2; : : : ; T:

Here, � is a small non-negative number introduced to ensure that b�2t (�) � 0:7 When � is scalar this
optimization can be done by grid search. Otherwise it may be desirable to use some derivative-

based optimization algorithm like Newton-Raphson or its variants, which would require analytical

or numerical derivatives of bST (�).
Step 3. De�ne for any y 2 [�c; c] and t � 2 :

bm(y) = bmb�(y); b�2t = maxf�t + minft�1;�T gX
j=1

 j(�)bm�(yt�j); �g;

7Note that in small samples we can �nd bm�(y) < 0 for some y; even if bm�
�(y) > 0 for all y and bH�(x; y) > 0 for all

x; y: One can replace bm�(y) by a trimmed version to ensure its positivity.

13



and b�21(�) = T�1
PT

t=1 y
2
t : The estimates (bm(:);b�) are our proposal for the weak version of our model.

For the semistrong and strong version of the model the following updates of the estimate may yield

improvements.

Step 4. Given (b�; bm(:)): Compute bm�
� and

bH� using the sequence fb�2t ; t = 1; : : : ; Tg de�ned in
step 3, then solve the linear integral equation

(20) em� = bm�
� +

bH� em�

for the estimator em�; and let e�2t (�) = maxf�t +
P�T

j=1  j(�) em�(yt�j); �g; t = 2; : : : ; T; for each �:

De�ne e� 2 � to be any sequence such that
è
T (e�) � argmin

�2�
è
T (�) + op(T

�1=2); where

è
T (�) =

1

T

TX
t=1

log e�2t (�) + y2te�2t (�) :
To avoid a global search we suppose that e� is the location of the local minimum of èT (�) with smallest
distance to b�. Let em(y) = eme�(y) and e�2t = maxf�t +P�T

j=1  j(
e�)em(yt�j); �g t = 2; : : : ; T:

These calculations may be iterated for numerical improvements. Step 4 can be interpreted as a

version of Fisher Scoring, discussed in Hastie and Tibshirani (1990, Section 6.2).

3.3. Solution of Integral Equations

There are many approaches to computing the solutions of integral equations. Rust (2000) gives

a nice discussion about solution methods for a more general class of problems, with the emphasis on

high dimensional state. The two issues are: how to approximate the integral in bH�m, and how to

solve the resulting linear system.

For any integrable function f on [�c; c] de�ne J(f) =
R c
�c f(t)dt: Let ftj;n; j = 1; : : : ; ng be some

grid of points in [�c; c] and wj;n be some weights with n a chosen integer. A valid integration rule
would satisfy Jn(f)! J(f) as n!1; where Jn(f) =

Pn
j=1wj;nf(tj;n): Simpson�s rule and Gaussian

Quadrature both satisfy this for smooth f . Now approximate (19) by

(21) bm�(x) = bm�
�(x) +

nX
j=1

wj;n bH�(x; tj;n)bm�(tj;n)bp0(tj;n):
In solvability, this is equivalent to the linear system [Atkinson (1976)]

(22) bm�(ti;n) = bm�
�(ti;n) +

nX
j=1

wj;n bH�(ti;n; tj;n)bm�(tj;n)bp0(tj;n); i = 1; : : : ; n:
14



To each solution of equation (22) there is a unique corresponding solution of (21) with which it agrees

at the node points. The solution of the system (22) converges in L2(bp) to the solution of (19) as
n!1; at a rate determined partly by the smoothness of bH�. The linear system (22) can be written

in matrix notation

(23) (In � bH�) bm� = bm�
�;

where In is the n � n identity, bm� = (bm�(t1;n); : : : ; bm�(tn;n))
> and bm�

� = (bm�
�(t1;n); : : : ; bm�

�(tn;n))
>;

while bH� = �
"
wj;n

��TX
`=�1

 �`(�)
bp0;`(ti;n; tj;n)bp0(ti;n)

#n
i;j=1

is an n � n matrix. We then �nd the solution values bm� = (bm�(t1;n); : : : ; bm�(tn;n))
> to this system

(23). Note that once we have found bm�(tj;n), j = 1; : : : ; n; we can substitute back into (21) to obtainbm�(x) for any x 2 [�c; c]; which is called Nyström interpolation. More sophisticated methods also

involve adaptive selection of the grid size n and the weighting scheme fwj;n; tj;ng.
There are two main classes of methods for solving large linear systems: direct methods including

Cholesky decomposition or straight inversion, and iterative methods. Direct methods work �ne

so long as n is only moderate, say up to n = 1000; we have used direct computation of bm� =

(In� bH�)
�1 bm�

� in our numerical work below. For larger grid sizes, iterative methods are indispensable.

In Linton and Mammen (2003) we describe various iterative approaches.

4. Asymptotic Properties

4.1. Regularity Conditions

We will discuss properties of the estimates bm� and b� �rst under the weak form model where we

do not assume that (4) holds but where �0;m0 are de�ned as the minimizers of the least squares

criterion function (5). Asymptotics for bm = bmb� and for the likelihood corrected estimates em and e�
will be discussed under the more restrictive setting that (4) holds. Note that as usual our regularity

conditions are not necessary, only su¢ cient, and our method is expected to work well under more

general circumstances.

De�ne �j;t = y2t+j � E(y2t+jjyt) and �j;t(�) = m�(yt+j)� E[m�(yt+j)jyt]; and let

(24) �1�;t =
1X
j=1

 yj(�)�j;t and �
2
�;t = �

�1X
j=�1

 �j(�)�j;t(�);
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where  yj(�);  
�
j(�) were de�ned below (10). Let � (k) be the strong mixing coe¢ cient of fytg de�ned

as

� (k) � sup
A2F0�1; B2F1k

jP (A \B)� P (A)P (B)j ;

where Fa
b is the sigma-algebra of events generated by fytg

b
a.

B1 The process fytg1t=�1 is stationary with absolutely continuous density p0; and alpha mixing

with a mixing coe¢ cient, �(k) such that for some C � 0 and some large s0; �(k) � Ck�s0 :

B2 E
�
jytj2�

�
<1 for some � > 2:

B3 The kernel function is a symmetric probability density function with bounded support such that

for some constant C; jK(u)�K(v)j � Cju � vj: De�ne �j(K) =
R
ujK(u)du and �j(K) =R

ujK2(u)du:

B4 The function m together with the densities (marginal and joint)-m(�), p0(�), and p0;j(�) are
continuous and twice continuously di¤erentiable over [�c; c]; and are uniformly bounded. p0 (�)
is bounded away from zero on [�c; c]; i.e., inf�c�w�c p0(w) > 0: Furthermore, for a constant

c� > 0 we have that a.s.

(25) �2t > c�:

B5 The density function � of (�1�;0; �
2
�;0) is Lipschitz continuous on its domain.

B6 The joint densities �0;j; j = 1; 2; : : : ; of ((�1�;0; �
2
�;0); (�

1
�;j; �

2
�;j)) are uniformly bounded :

B7 The parameter space � is a compact subset of Rp; and the value �0 is an interior point of �:
Also, A2 holds, and for any � > 0

inf
jj���0jj>�

S(�;m�) > S(�0;m�0):

B8 The truncation sequence �T satis�es �T = C log T for some constant C:

B9 The bandwidth sequence h(T ) satis�es h(T ) = (T )T�1=5 with (T ) bounded away from zero

and in�nity.

B10 The coe¢ cients satisfy sup�2�;k=0;1;2 jj@k j(�)=@�kjj � C 
j
for some  < 1 and some �nite

constant C; while inf�2�
P1

j=1  
2
j(�) > 0:
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The following assumption will be used when we make asymptotics under the assumption of (4).

B11 The semistrong model assumption (4) holds, so that the variables �t = y2t ��2t form a stationary
ergodic martingale di¤erence sequence with respect to Ft�1: Let "t = yt=�t; ut = (y

2
t � �2t )=�

2
t ;

which are also both stationary ergodic martingale di¤erence sequences.

Note that B1-B11 imply conditions A1-A3. Condition B1 is quite weak, although the value of s0
can be quite large depending on the value of � given in B2: Carrasco and Chen (2002) provide some

general conditions for a class of strong GARCH(1,1)-type processes to be strongly stationary, to have

�nite �moments and to be exponentially ��mixing [which implies �-mixing]; these conditions involve
restrictions on the function m0 and on the distribution of the innovations, in addition to restrictions

on the parameters of the process: Masry and Tjøstheim (1995, Lemma 3.1) also provides conditions

on �nite order but �nonparametric�processes that imply geometric strong mixing.8 We will make use

of the mixing property to apply the exponential inequality of Bosq (1998) and to establish a central

limit theorem for bm� in the weak form case. In this weak form case we can�t apply martingale limit

theory. We need to apply a central limit theorem to (local) averages of the processes �1�;t and �
2
�;t

de�ned in (24). These processes need not be mixing but are near epoch dependent processes on the

�-mixing bases y2t or m�(yt) [see Hansen (1991) for discussion] with exponentially declining weights

under our conditions on  j(�); we apply a CLT due to Lu (2001) for such processes.

The moment condition B2 on yt may appear quite strong: it is common practice now in the

parametric literature to not assume any moments for yt but to make assumptions on the rescaled

error "t = yt=�t; see Lee and Hansen (1994). This is because in many �nancial datasets there is

evidence that the tails preclude fourth moments from existing. Note however that although we

assume more than four moments in B2 and in de�ning (5), the moment conditions (7) and (8) are

well de�ned under only second moments, and so some results like consistency will hold under less

moments. Indeed, the results for likelihood based estimators only require this condition because

it provides a consistent initial estimator; if one is willing to assume the existence of a consistent

estimator (with some rate) like in Horowitz and Mammen (2002), the distribution theory should

follow through without moments on y: Bollerslev (1986) showed that in the strong GARCH(1,1)

model with "t � N(0; 1); it is necessary and su¢ cient for E(y4t ) <1 that 22 + ( + �)2 < 1: Thus

8These include restrictions on the tail of the conditional moments, for example that

lim
jj(y1;:::;yd)jj2!1

var(ytjyt�1 = y1; : : : ; yt�d = yd)

jj(y1; : : : ; yd)jj2
� c < 0:
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only limited dynamics (�; ) are consistent with fourth moments in this model. Because we have

freed up the shape of m; this problem does not arise in our model. In principle any value of the

dynamic parameter � is consistent with � moments existing provided the tails of m increase only

slowly.

Conditions B3 and B4 are quite standard assumptions in the nonparametric regression literature.

Under the assumption of (4), the bound (25) follows if we assume that inf�c�w�cm(w) >

� supt;� �t=
P1

j=1  j(�):

Conditions B5, B6 are used to apply the central limit theorem of Lu (2001) for NED processes

over an �-mixing base.

In B7 we explicitly assume the identi�cation of the parametric part. We make this high level

assumption for three reasons. First, we need identi�cation in the weak ARCH(1) case, and this
seems like a natural assumption to make in view of our de�nition of the process through (5). Second,

we allow the coe¢ cients  j(�) to depend on � in a complicated way. Third, the mapping � 7�! m�

may be quite complicated to analyze. Hannan (1973) used high level conditions [c.f. his condition

(4)] similar to ours. In special parametric ARCH models it has been possible to work from more

primitive conditions: see Lee and Hansen (1994) and Lumsdaine (1996) for the GARCH(1,1) model,

and Robinson and Za¤aroni (2002) for a parametric ARCH(1) model.
The distribution theory for parametric GARCH(1,1) models has only recently been established.

Lumsdaine (1996) established the consistency and asymptotic normality of the quasi-maximum like-

lihood estimator in a strong form model, while Lee and Hansen (1994) established the same results

but for semi-strong form case, i.e., they allowed for martingale di¤erence errors. Both authors make

use of ergodicity in their consistency proof and martingale central limit theorems in the asymptotic

normality. The distribution theory for weak form GARCH processes has not yet been worked out,

to our knowledge.

The truncation rate assumed in B8 can be weakened at the expense of more detailed argumenta-

tion. In B9 we are anticipating a rate of convergence of T�2=5 for bm�; which is consistent with second

order smoothness on the data distribution. Assumption B10 is used for a variety of arguments; it

can be weakened in some cases, but again at some cost. It is consistent with the GARCH case where

 j(�) = �j�1 and @k j(�)=@�
k = (j � 1) � � � (j � k)�j�k�1:

The assumption we made in section 2.1 about the �xed truncation c can also be weakened to

allow c = c(T )!1 as T !1; and we discuss this issue below:

4.2. Properties of bm� and b�
18



We establish the properties of bm� for all � 2 � under the weak form assumption. Speci�cally, we
do not require that (3) holds, but de�ne m� as the minimizer of (5) overMc.

De�ne the functions �j�(y); j = 1; 2; as solutions to the integral equations

�j� = ��;j� (y) +H��
j
�;

in which (with r2 = (@
2=@x2) + 2(@2=@x@y) + @2=@y2):

��;1� (y) =
@2

@y2
m�
�(y);

��;2� (y) =
�1X
j=�1

 �j(�)

�
E(m�(yt+j)jyt = y)

p000(y)

p0(y)
�
Z
[r2p0;j(y; x)]

m�(x)

p0(y)
dx

�
:

Then de�ne ��(y) = �
P�1

j=�1  
�
j(�)E[m�(yt+j)jyt = y]; and

!�(y) =
�0(K)

p0(y)

�
var[�1�;t + �2�;t] + �2�(y)

	
b�(y) =

1

2
�2(K)

�
�1�(y) + �2�(y)

�
;

where �j�;t; j = 1; 2 were de�ned in (24). We prove the following theorem in the appendix.

Theorem 1. Suppose that B1-B10 hold. Then for each � 2 � and y 2 [�c; c]

(26)
p
Th
� bm�(y)�m�(y)� h2b�(y)

�
=) N (0; !�(y)) ;

and bm�(y) and bm�(y
0) are asymptotically independent when y 6= y0: Furthermore,

(27) sup
�2�;jyj�c

jbm�(y)�m�(y)j = op(T
�1=4);

sup
�2�;�T�t�T

��b�2t (�)� �2t (�)
�� = op(T

�1=4);(28)

sup
�2�;�T�t�T

����@b�2t@� (�)� @�2t
@�
(�)

���� = op(T
�1=4);(29)

Both the bias and variance in this result are quite complicated even though a local linear smoother

has been used in estimating gj.

From Theorem 1 we obtain the properties of b� by an application of the asymptotic theory for
semiparametric pro�led estimators, see Severini and Wong (1992) and Newey (1994). This requires

a uniform expansion for bm�(y) and for the derivatives (with respect to �) of bm�(y):
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Theorem 2. Suppose that B1-B10 hold except that in B2 we require � > 4. Then

(30)
p
T (b� � �0) = Op(1):

In Theorem 2 we require stronger moment conditions for the root-T consistency of b� than for the
p
Th consistency of bm�(y): By using the quasi-likelihood criterion these moment conditions can be

reduced to � > 2. These results can be applied to get the asymptotic distribution of bm = bmb�. De�ne:
(31) !(y) =

�0(K)
P1

j=1  
2
j(�0)E [(y

2
t � �2t )

2jyt�j = y]

p0(y)
hP1

j=1  
2
j(�0)

i2
b(y) = �2(K)f

1

2
m00(y) + (I �H�)

�1[
p00
p0

@

@y
(H�m)](y)g:

Theorem 3. Suppose that B1-B10 hold and that b� is an arbitrary estimate (possibly di¤erent
from the above de�nition) with

p
T (b� � �0) = Op(1). Then for y 2 [�c; c]

(32)
p
Th
� bmb�(y)� bm�0(y)

�
= op(1)

and bmb�(y) and bmb�(y0) are asymptotically independent when y 6= y0: Under the additional assumption

of B11 we get that

(33)
p
Th
� bmb�(y)�m�0(y)� h2b(y)

�
=) N (0; !(y)) :

The asymptotic variance has contributions from the estimation of m� and from the estimation of

H� which combine to give a nice simple formula. The bias of bm is rather complicated and it contains

a term that depends on the density p0 of yt. We now introduce a modi�cation of bm that has a simpler

bias expansion. For � 2 � the modi�ed estimate bmmod
� is de�ned as any (approximate) solution of

bmmod
� = bm�

� +
bHmod
� bmmod

� ;

where the operator bHmod is de�ned by use of modi�ed kernel density estimates

bHmod
� (y; x) = �

��TX
j=�1

 �j(�)
bpmod0;j (y; x)bpmod0 (y)bp0(x) ;

bpmod0;j (y; x) = bp0;j(x; y) + bp00(x)bp0(x) 1

T � jjj
X
t

(yt � y)Kh(yt � y)Kh(yt+j � x);

bpmod0 (x) = bp0(x) + bp00(x)bp0(x) 1T
TX
t=1

(yt � y)Kh(yt � y):

20



In the de�nition of the modi�ed kernel density estimates bp00 could be replaced by another estimate of
the derivative of p0 that is uniformly consistent on [�c; c], e.g. T�1

PT
t=1(yt�y)Kh(yt�y)=[h2�2(K)].

The asymptotic distribution of the modi�ed estimate is stated in the next theorem.

Theorem 4. Suppose that B1-B11 hold and that b� is an estimate as in Theorem 3. Then for

y 2 [�c; c] p
Th
� bmmodb� (y)�m�0(y)� h2bmod(y)

�
=) N (0; !(y)) ;

where !(y) is de�ned as in Theorem 3 and where

bmod(y) =
1

2
�2(K)m

00(y):

This bias has a particularly appealing form since it is the bias that would result were m(:) a

one-dimensional regression function and the estimator a local linear kernel smoother. Hence, this

estimator is design adaptive [Fan (1992)].

4.3. Properties of em and e�
We now assume that b� is consistent and so we can con�ne ourselves to working in a small

neighborhood of �0; and our results will be stated only for such �: We shall now assume that (4)

holds, so that the variables �t = y2t � �2t form a martingale di¤erence sequence with respect to Ft�1:
Let "t = yt=�t; and ut = (y2t � �2t )=�

2
t = "2t � 1; which are also both martingale di¤erence sequences

by assumption.

De�ne

!eff (y) =
1

p0(y)

�0(K)
P1

j=1  
2
j(�0)E(�

�4
t u2t jyt�j = y)hP1

j=1  
2
j(�0)E(�

�4
t jyt�j = y)

i2 :

Note that !eff (y) can exist even when the fourth moments of yt do not exist.

Theorem 5. Suppose that B1-B11 hold. Then, for some bounded continuous function beff (y) we

have p
Th
� emb�(y)�mb�(y)� h2beff (y)

�
=) N

�
0; !eff (y)

�
:

The next theorem gives the asymptotic distribution of e�. De�ne the �least favorable�process
�2t (�) = �+

1X
j=1

 j(�)m�(yt�j);

where m�(:) was de�ned below (18). De�ne also

J = E

�
��4t

@�2t
@�

@�2t
@�>

(�0)

�
and I = var

�
��2t ut

@�2t
@�
(�0)

�
:
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Theorem 6. Suppose that B1-B11 hold. Then

p
T (e� � �0) =) N(0;J �1IJ �1):

The result permits inference robust to higher order moment variation and distributional shape.

Consistent standard errors can be obtained by the formula

bJ =
1

T

TX
t=1

b��4t @b�2t
@�

@b�2t
@�>

(b�) and bI = 1

T

TX
t=1

b��4t @b�2t
@�

@b�2t
@�>

(b�)bu2t ;
where hats denote estimated quantities. We show in the next section that when the rescaled errors

are Gaussian, the semiparametric e¢ ciency bound for � is 2J �1; and that our estimator achieves

this bound.

4.4. Semiparametric E¢ ciency

We next investigate the semiparametric e¢ ciency question con�ning our attention to the strong

form model where "t is i.i.d. and in fact standard normal. Our approach to this is heuristic, but is

founded on the work of Bickel, Klaassen, Ritov, and Wellner (1993) and Newey (1990) for i.i.d. data.

There has been some previous work on semiparametric e¢ ciency in related semiparametric ARCH

models. Engle and González-Rivera (1991) considered a semiparametric model with a standard

GARCH(1,1) speci�cation for the conditional variance but allowed the error distribution to be of

unknown functional form. They suggested a semiparametric estimator of the variance parameters

based on splines. Linton (1993) examined the Engle and González-Rivera (1991) model and proved

that a kernel version of their procedure was semiparametrically e¢ cient and even adaptive in the

ARCH(p) model when the error distribution was symmetric about zero. Drost and Klaassen (1997)

extended this work to consider GARCH structures and asymmetric distributions: they compute the

semiparametric e¢ ciency bound for a general class of models.

We will represent our semiparametric model by P�;m = fP�;mg; where P�;m is the probability

distribution of the process with parameters �;m(:). Now suppose that m is a known function but � is

unknown, in which case we have a speci�c parametric model, denoted P� = fP�g; where P� � P�;m.

The log likelihood function is proportional to

`T (�) =
1

2

TX
t=1

log s2t (�) +
y2t
s2t (�)

;
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where s2t (�) =
P1

j=1  j(�)m(yt�j): The score function with respect to � is

@`T (�)

@�
= �1

2

TX
t=1

ut(�)
@ log s2t (�)

@�
= �1

2

TX
t=1

ut(�)
1

s2t (�)

1X
j=1

�
 j(�)m(yt�j);

where ut(�) = (y2t =s
2
t (�)� 1) and

�
 j(�) = @ j(�)=@�: The Cramer-Rao lower bound in the model P�

is then I�1�� = 2(E[
h
@ log �2t
@�

@ log �2t
@�>

]
i
)�1; since E(u2t ) = 2:

Suppose that we parameterize m by a scalar � and write m�; so that we have a parametric model

P�;� = fP�;�g; where P�;� � P�;m. For simplicity we just assume temporarily that � is also a scalar.

The score with respect to � is

@`T (�; �)

@�
= �1

2

TX
t=1

ut(�; �)
@ log �2t (�; �)

@�
= �1

2

TX
t=1

ut(�; �)
1

�2t (�; �)

1X
j=1

 j(�)
@m�(yt�j)

@�
:

The e¢ cient score function @`�T (�; �)=@� is the projection of @`T (�; �)=@� onto the orthocomplement of

span[@`T (�; �)=@�] in P�;�; where span[:] denotes the linear subspace generated by the given element:

It follows that @`�T (�; �)=@� is a linear combination of @`T (�; �)=@� and @`T (�; �)=@� and has variance

(called the e¢ cient information) less than the variance of @`T (�; �)=@�; this re�ects the cost of

estimating the nuisance parameter.

Now consider the semiparametric model P�;m. We compute the e¢ cient score functions for all

such parameterizations of m; and �nd the worst such case: Because of the de�nition of the process

�2t the set of all possible score functions with respect to parameters of m at the true parameters �0 is

Sm =
(

TX
t=1

ut
1

�2t

1X
j=1

 j(�0)g(yt�j) : g measurable

)
:

To �nd the e¢ cient score function in the semiparametric model we �nd the projection of @`T (�0;m)=@�

onto the orthocomplement of Sm: We seek a function g0 that minimizes

(34) E

24(@ log s2t
@�

� 1

s2t

1X
j=1

 j(�0)g(yt�j)

)235
over all measurable g: This minimization problem is similar to that which m�0 solves. We show that

g0 satis�es the linear integral equation (see appendix for details)

(35) g0 = g� +H�0g0;
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where the operator H� was de�ned below (18), while

g�(y) =

P1
j=1  j(�0)E

h
1
s4t

@s2t
@�
jyt�j = y

i
P1

j=1  
2
j(�0)E

�
s�4t jyt�j = y

� .
Note that the integral equation (35) is similar to (18) except that the intercept function g� is dif-

ferent from m�
�0
; it has solution g0 = (I � H�0)

�1g�: The implied predictor of @ log s2t=@� in (34)

is s�2t
P1

j=1  j(�0)g0(yt�j); which we denote by Em(@ log s
2
t=@�): The e¢ cient score function in the

semiparametric model is thus

@`�T (�0;m)

@�
=

1

2

TX
t=1

ut

�
@ log s2t
@�

� Em

�
@ log s2t
@�

��

=
1

2

TX
t=1

ut
1

s2t

1X
j=1

�
�
 j(�0)(I �H�0)

�1m�
�0
�  j(�0)(I �H�0)

�1g�
�
(yt�j)

=
1

2

TX
t=1

ut
1

s2t

1X
j=1

�
(I �H�0)

�1
�
�
 j(�0)m

�
�0
�  j(�0)g

�
��
(yt�j):

By construction @`�T (�0;m)=@� is orthogonal to any element of Sm: The semiparametric e¢ cient
information bound is I��� = var[@`�T (�0;m)=@�]; and generalizing back to the vector � case we have

I��� =
 
E

"�
@ log s2t
@�

� Em

�
@ log s2t
@�

���
@ log s2t
@�

� Em

�
@ log s2t
@�

��>#!
=2:

It follows that any regular estimator of � in this semiparametric model has asymptotic variance not

less than I��1�� : This bound is clearly larger than in the parametric submodel where m is known. It

can be easily checked that
@ log �2t
@�

=
@ log s2t
@�

� Em

�
@ log s2t
@�

�
from which it follows that our estimator achieves the bound.

An alternative justi�cation for our claims comes from working with the least favorable parametric

submodel of P�;m; which is fP�;� : m� = m0 + �g0; � 2 R; � 2 Rpg; where g0 is de�ned in (35).
For this parametric model the asymptotic (e¢ cient) information for � is precisely I���: Since our
estimator, which does not use this parametric structure, has the asymptotic variance I��1�� it must

be semiparametrically e¢ cient.

We have taken a constructive approach to �nding the information bound, and we acknowledge

that more work is needed to make this rigorous. Perhaps this could be done along the lines of Drost

and Klaassen (1997).
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4.5. Nonparametric E¢ ciency

Here, we discuss the issue about e¢ ciency of the nonparametric estimators. Our discussion is

con�ned to a special case of the strong model. In this case,

!eff (y) =
1

p0(y)

(�4 + 2)�0(K)P1
j=1  

2
j(�0)E(�

�4
j jy0 = y)

;

where �4 is the excess kurtosis of "t:

Our discussion is heuristic and is con�ned to the comparison of asymptotic variances. This

type of analysis has been carried out before in many separable nonparametric models, see Linton

(1996,2000). The general idea is to set out a standard of e¢ ciency against which to measure a given

procedure along with a strategy for achieving e¢ ciency. Horowitz and Mammen (2002) apply this

in generalized additive models. In our model, there are some novel features due to the presence of

the in�nite number of lags.

Horowitz, Klemelä and Mammen (2002) establish the minimax superiority of local linear back-

�tting estimator in an additive nonparametric regression model.

We �rst compare the asymptotic variance of bmb� and bmmodb� with the variance of an infeasible

estimator that is based on certain least squares criteria. De�ne for each j = 1; 2; : : :

(36) Sj(�) =
1

Th

X
t

K

�
y � yt�j

h

��
y2t � �2t;j(�)

�2
;

where �2t;j(�) =
P�T

k=1
k 6=j

 k(�)m(yt�k) +  j(�)�; and let emj(y) = e�j = argmax� Sj(�): This least

squares estimator is infeasible since it requires knowledge of m at fyt�k; k 6= jg points. We suppose
without loss of generality that  j(�) > 0 for each j: It can then be shown that

p
Th[emj(y)�m(y)� h2bj(y)] =) N

 
0;
(�4 + 2)�0(K)E ((y

2
t � �2t )

2jyt�j = y)

 2j(�)p0(y)

!

for all j = 1; 2; : : : with some bounded continuous bias functions bj(:). Furthermore, emj(y); emk(y)

with j 6= k are asymptotically independent. Now de�ne a class of estimators f
P

j wj emj :
P

j wj = 1g;
each of which will satisfy a similar central limit theorem. The optimal (according to variance) linear

combination of these least squares estimators satis�es

(37)
p
Th[emopt(y)�m(y)� h2b(y)] =) N

 
0;

�0(K)

p0(y)
P1

j=1  
2
j(�) [E ((y

2
t � �2t )

2jyt�j = y)]
�1

!
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with some bias function b(y). See Xiao, Linton, Carroll, and Mammen (2003). This is the best that

one could do by this strategy; the question is, does our estimator achieve the same e¢ ciency?

De�ne sj(y) = E (�4tu
2
t jyt�j = y) : By the Cauchy-Schwarz inequality

1 =

1X
j=1

�j =

1X
j=1

�
1=2
j s

1=2
j (y)�

1=2
j s

�1=2
j (y) �

1X
j=1

�jsj(y)

1X
j=1

�js
�1
j (y);

where �j =  2j(�)=
P1

j=1  
2
j(�); which implies thatP1

j=1  
2
j(�)sj(y)

(
P1

j=1  
2
j(�))

2
� 1P1

j=1  
2
j(�)s

�1
j (y)

with equality only when sj(y) does not depend on j. So our estimator with variance (31) would

achieve the asymptotic e¢ ciency bound (37) in the case of constant conditional variances sj(y).

It is generally ine¢ cient when sj(y) are not constant. Because our estimator is motivated by an

unweighted least squares criterion it could not be expected that it corrects for heteroscedasticity. We

next turn to the likelihood criterion, which takes account of the heteroscedasticity in a natural way.

De�ne analogously to (36) the (infeasible) local likelihoods

`j(�) =
1

Th

X
t

K

�
y � yt�j

h

��
log �2t;j(�) +

y2t
�2t;j(�)

�
;

and let emlik
j (y) =

e�j = argmax� `j(�): It can be shown that
p
Th[emlik

j (y)�m(y)] =) N

 
0;

(�4 + 2)�0(K)

 2j(�)p0(y)E
�
��4t jyt�j = y

�!

for each j; and again emlik
j (y); emlik

k (y) with j 6= k are asymptotically independent. As before this

suggests that any single emlik
j (y) is ine¢ cient and can be improved on by taking linear combinations.

It can be shown that the optimal linear combination of emlik
j (y) has asymptotic variance

(�4 + 2)�0(K)

p0(y)

1P
j  

2
j(�)E

�
��4t jyt�j = y

� :
This is precisely the variance achieved by our estimator emb�(y). In other words, our likelihood-based
estimator emb�(y) appears to be as e¢ cient as it can be, at least under Gaussianity.9

9Note that
P1

j=1  
2
j (�)

1
E(�4t jyt�j=y)

�
P1

j=1  
2
j (�)E

�
��4t jyt�j = y

�
by the Cauchy-Schwarz inequality. It follows

that the likelihood based estimator is superior to the least squares one according to asymptotic variance.
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5. Modelling the Tails

In this section we discuss how to select c and �t: A simple method is just to set c at some quantile

of the empirical distribution of the data and let �t = 0. This works well when c is taken pretty large,

and when the tails are not so in�uential. This is the sort of trimming that one �nds in Robinson

(1988) and in much other work in econometrics. It may however be preferable in some cases to allow

for a more sophisticated tail model. We propose below some more re�ned methods, and then give

theoretical results about one of them.

5.1. Estimation Method

We consider �ts of the news impact curve that are of the following form. For jyj � c the �t is

a nonparametric smoother bm and for the tails jyj > c it is chosen as a parametric �t �(y;b�). Here
�(y; �) is a parametric model depending on a vector of unknown parameters �. We also write �c(y; �)

for the function that is equal to �(y; �) for jyj > c and vanishes for jyj � c. Then we have the

following estimate of the volatility: b�2t = �2t (
b�;b�; bm)

where

�2t (�; �;m) =
�X
j=1

 j(�)[m(yt�j) + �c(yt�j; �)]

with parametric estimates b� and b� and a smoothing estimate bm that vanishes for jyj � c. This

generalizes our approach where we have chosen �(y; �) � 0. Parametric speci�cations include

�(y; �) = �1 + �2y
2 which e¤ectively imposes that the news impact curve is quadratic in the tails

(as y ! �1). The Engle and Ng (1993) procedure assumed a linear tail [indeed, they assumed
piecewise linear everywhere].

The estimation strategy for this case is pretty much the same as in Section 3. For given � and

� one can estimate m�; on [�c; c] by putting now ~y2t = y2t � �t(�; �). To estimate � and � one

maximizes the pro�led least squares criterion or the pro�led likelihood with respect to this larger

parameter vector. In practice one has to choose c. One could treat c as an unknown parameter and

try to estimate it or one can select it on a pragmatic basis by setting it to a high empirical quantile.

The resulting estimate bm(y) + �c(y;b�) of the news impact curve is discontinuous at the point
c. This can be repaired by calculating the estimates for a continuum (i.e., for a large number) of

values of c and by taking an average of these estimates. Another possibility would be to calculate

the estimate for two values of c and to smoothly change from the �rst estimate to the second one
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when going to �1. Some heuristics that support the second modi�cation of our estimate will be
given below.

We also consider a slightly di¤erent approach to explicit trimming based on variable bandwidths.

In this method one computes the standard estimators of section 3.2. but uses a variable bandwidth

hT (y) in the local polynomial estimators of gj(:). If hT (y)!1 as jyj ! c, then the local polynomial

estimate of gj and hence m� become global polynomials for all y with jyj � c. Likewise the estimated

operator H becomes proportional to the identity operator in the tails. Therefore, we can expect the

estimated m to be polynomial in the tails. This method therefore achieves a similar objective to

the explicit trimming approach we described above, but it has a nice advantage: provided h�1T (y)

is continuous in y; the resulting estimator of m will also be continuous. We use this method in the

simulations below.

5.2. Asymptotic Properties

In this section we discuss the properties of the trimming-based estimators. We focus on the case

that c!1: The strategy is to analyze the corresponding population problem for given c; and then

to let c!1: We will discuss this for the weak form speci�cation of our ARCH(1) model.
We still suppose that yt is a stationary process. De�ne for �xed � the function m�;1 as minimizer

of E[fy2t�
P1

j=1  j(�)m(yt�j)g2]. The best �t in the trimmed model, with �xed c; is given bym�;c(y)+

�c(y; ��;c); where m = m�;c(y) and � = ��;c minimize E[fy2t �
P1

j=1  j(�)[m(yt�j) + �c(yt�j; �)]g2]
over all functions m with support [�c; c] and over all parameters �. As above it can be checked that
for �xed � the best �t m�;c is uniquely determined by the following integral equations:

m�;c(y) = m�
�(y) +

Z
jxj�c

H�(y; x)�
c(y; ��;c)p0(x) dx+

Z c

�c
H�(y; x)m�;c(x)p0(x) dx;

for jyj � c, if c <1, and

m�;1(y) = m�
�(y) +

Z 1

�1
H�(y; x)m�;1(x)p0(x) dx

for all y. The model bias, caused by trimming, is equal to m�;1(y)�m�;c(y). The bias will depend

on the choice of c and on how well m�;1 is approximated by �c(y; ��;c) in the tails. The following

theorem gives an estimate for the bias. For the theorem we need the following assumptions that are

slightly stronger than Assumptions (A1)-(A3).

28



(C1) It holds that

sup
j 6=0

Z 1

�1

Z 1

�1

p0;j(y; x)
2

p0(x)p0(y)
dx dy < 1;

sup
j 6=0

Z 1

�1

Z
jxj�c

p0;j(y; x)
2

p0(x)p0(y)
dx dy ! 0 for c!1:

In particular, Condition (C1) implies that

sup
�2�

Z 1

�1

Z 1

�1
H�(y; x)

2p0(x)p0(y) dx dy <1:

Note that this is stronger than (A1) where the integral only runs over [�c; c].

(C2) There exist no � 2 � and no function m with
R1
�1m

2(x)p0(x) dx = 1 such thatP1
j=1  j(�)m(yt�j) = 0 with probability one.

(C3) It holds that: sup�2�
P

j�1  j(�) <1; inf�2�
P

j�1  j(�)
2 > 0; and

sup
�;��:jj����jj!0

X
j�1

�� j(�)�  j(�
�)
��! 0:

Theorem 7. Suppose that C1-C3 hold. Then for some constants C1; C2 > 0 (not depending on

c) it holds that Z c

�c
[m�;c �m�;1] (x)

2p0(x) dx � C1��(c)
2;(38)

jm�;c(y)�m�;1(y)j � C2��(y)��(c) for jyj � c(39)

with

��(c)
2 =

Z
jxj�c

�
m�;1(x)� �c(x; ��;c)

�2
p0(x) dx;

��(y)
2 =

Z 1

�1
H�(y; x)

2p0(x) dx:

Condition (C1) can be checked for transformed Gaussian processes yt = G(xt) where xt is a

stationary Gaussian process with variance 1 and autocorrelation function r(j). Then it holds with a

constant C that

��(y)
2 � [(1� �)(1 + �)]�1=2 exp[�(1 + �)�1G�1(y)2]
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with � = supj�1 r(j)
2. Then

R1
�1
R1
�1H�(y; x)

2p0(x)p0(y) dx dy = E[��(yt)
2] < 1. This discussion

shows that (C1) is ful�lled also for heavy tailed processes. Condition (C1) only puts a condition on

the dependence structure of the transformed process xt = G�1(yt). It requires that the conditional

correlation of xt and xs (given jxtj is larger than c) is bounded away from 1 or does not converge to

1 too fast (for c!1).
In this example it holds that ��(c) ! 1 for c ! 1. Thus Theorem 7 does not imply that

m�;c(c) approximates m�;1(c) if ��(c) converges to zero too slowly. This suggests to use m�;c(y) as

an approximation of m�;1(y) only for jyj � c. For �xed y, m�;1(y) can be always approximated

by m�;c(y) with c ! 1. This heuristics also supports the use of the second proposal of smooth
trimming that we had discussed above.

We conjecture that Condition (C1) also holds for (strong form) GARCH(1,1) processes. This

conjecture is supported by Theorem 2.3 of Mikosch and St�aric�a(2000). This theorem gives expansions

for tail probabilities of (yt; yt+j) and of yt and it suggests the following approximations p0;j(y; x) �
(x2 + y2)���2f [(x; y)(x2 + y2)�1=2] and p0(x) � Cx���1 for jxj and jyj large. Here, C is a constant

and f is a function on the sphere. The constant � is determined by the equation E(� + "2t )
�=2 = 1.

Plugging these approximations into the integral
R R

p20;j(x; y)p0(x)
�1p0(y)

�1 dx dy results in a �nite

integral. This suggests that (C1) holds. For �2�(c) we get an approximation that is of order c
�2. It

follows that in this case �2�(c)! 0 for c!1.
We next provide results for a linear parametrization �(y; �) = �>�(y) where � is a vector of known

functions. For doing so we need slightly stronger conditions. In particular, smoothness conditions

for the densities and regression functions have to been stated for the whole real line.

(C4) The trimming threshold c = cT converges to 1 for T ! 1 with cT � CT  for constants

C;  > 0.

(C5) It holds that Ejytj2� <1 for a constant � > 5=2.

Condition C5 is slightly stronger than B2. Note that in the following theorem we show a faster

uniform rate of convergence.

(C6) The function m together with the densities p0 and p0;j are twice di¤erentiable on (�1;1).
The functions p0 and p0;j and their derivatives are uniformly bounded on (�1;1). For p0
it holds that p0(x) � C 0T�

0
for jxj � cT for some positive constants C 0; 0. The function

m(x) and its derivatives are bounded for jxj � cT by C 00T 
00
for some positive constants C 00; 00.

Furthermore, for a constant cw > 0 we have that �2t � cw (a.s.).
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This condition replaces the old condition B4.

(C7) It holds that Ej�j(x)j� < 1 for a constant � > 5=2. Furthermore it holds that the minimal

eigenvalue of the matrix
R
jxj�c �(x)�(x)

>p0(x) dx is larger than C 000T�
000
for C 000; 000 > 0.

Condition C4-C7 hold for the strong GARCH(1,1) process under some conditions on the dynamic

parameters and the moments of the innovation. We now state our result that gives similar results as

Theorem 1. We do not consider asymptotic normality at a �xed point because now we are estimating

a function in a growing interval.

Theorem 8. Choose � > 0 and suppose that C1-C7, B1, B3, B5-B10 hold with ; : : : ; 000 > 0

small enough (depending on �). Then there exist estimators bm�;c(:);b��;c such that
sup

�2�;jyj�cT
jbm�;c(y)�m�;c(y)j = OP (T

�2=5+�);

sup
�2�

kb��;c � ��;ck = OP (T
�2=5+�):

As above, we de�ne �0 as the parameter that minimizes E[fy2t �
P1

j=1  j(�)m�;1(yt�j)g2]. Then
�0 and m0 = m�0 minimize E[fy2t �

P1
j=1  j(�)m(yt�j)g2]. From Theorems 7 and 8 we get the

following result about the accuracy in estimating the target function m0.

Theorem 9. Make the assumptions of Theorem 8 and assume additionally that ��0(cT ) =

O(T�2=5+�). Put bm(y) equal to mb�;cT (y) for jyj �cT and equal to �Tb�;cT �(y) for jyj �cT . Here b� is an
estimate with b� � �0 = OP (T

�2=5+�). Then it holds thatZ 1

�1
[bm(y)�m0(y)]

2 p0(y) dy = OP (T
�4=5+2�);

bm(y)�m0(y) = OP (T
�2=5+�);

for a �xed y.

A possible candidate for the estimate b� is the pro�le least squares estimate.
6. Numerical Results

6.1. Bandwidth Choice and Lag Truncation

One approach is to choose the bandwidth h to minimize the asymptotic mean squared error of bm
derived above. This requires estimation of the second derivatives of m and other quantities, so may

not work well in practice. Instead we develop a rule of thumb bandwidth using the pointwise mean

squared error implied by Theorem 4 when the process is a strong GARCH(1,1), although we will use
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this bandwidth more widely. In this case the bias function is just bmod(y) = �2(K): In the variance

term !(y) we replace E ((y2t � �2t )
2jyt�j = y) by the unconditional average bm4=T

�1PT
t=1(y

2
t � b�2t )2;

where b�2t are estimated from a preliminary GARCH(1,1) �t; as are b and b�. It may be desirable to
replace bm4 by a more robust measure like the median of (y2t �b�2t )2: Then the pointwise mean squared
error optimal bandwidth for the least squares estimator can be approximated by

(40) bhROT (y) = "(1� b�2)�0(K)bm4

4�22(K)b2bp0(y)
#1=5

T�1=5:

For the likelihood based estimator the same formula applies but with bm4 replaced by bm�
4; wherebm�

4= 1=
�
T�1

PT
t=1 b��4t � where b��2t is the GARCH volatility estimator: These bandwidths are de�ned

on [�c; c]. This approach gives moderate increase of bandwidth in the tails; one can magnify the
increase in bandwidth by the following method. Replace b2 in (40) by b2�(y); where � is a function
that decreases to zero rapidly after some threshold c0. Speci�cally, �(y) = 1 for all y with jyj � c0 < c;

while �(y) ! 0 as jyj ! c.10 Note that as jyj ! c; the bandwidth increases to in�nity and so the

local polynomial estimate of E(y2t jyt�j = y) becomes a global polynomial; therefore this estimation

strategy forces bm(y) to have the same polynomial shape in the tails.
For the truncation parameter �T , we have chosen � to make sup�2�

P1
j=�+1  j(�) < � for some

small prespeci�ed tolerance level �: One can also use some formal model selection technique but at

computational cost.

6.2. Simulated Data

We report the results of a small simulation experiment. There are several papers that provide

simulation evidence on the �nite sample performance of GARCH QMLE (and related) estimators.

A major issue in these studies is the reliability of the results and their robustness to alternative

implementations. This is acknowledged in most of the studies we examined: Lumsdaine (1995),

Fiorentini et al. (1996) etc. Nonlinear estimators in nonconvex optimization problems can have a

variety of problems. To some extent this is a problem with the nature of large scale simulations rather

than with the estimator itself - when one runs 10,000 replications of a procedure one is restricted

to a relatively crude implementation whereas for a single dataset one can modify the procedure as

required for that particular sample. However, there are also studies that report �nding signi�cantly

10This would be consistent with the assumption that: as jyj ! 1 the function m is becoming closer to linear, since

for linear functions the bias is exactly zero.
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di¤erent results for a given single dataset using di¤erent commercial software, see Brooks, Burke and

Persand (2001) and McCullough and Renfro (1999).

The focus of our study is on the news impact curve m(:): In an earlier version of this paper,

Linton and Mammen (2003), we report results for a design where � was estimated along with m(y)

by choosing � from a grid of 100 points on (0; 1): The estimates of � were quite well behaved even for

relatively small sample sizes. In parametric applications one often �nds estimates of � to be strongly

signi�cant. The results we report here address the issue of how well the nonparametric estimate

of the news impact curve m performs in comparison with a parametric method in a situation that

is favourable to the parametric method. Speci�cally, we shall assume that � is known in both

procedures:

We consider two sets of experiments. In the �rst case (model 1) we generated data from (6), where

yt = "t�t and "t is standard normal, with � = 0:45;  = 0:35; � = 0:20: These are the parameter

values chosen in Fiorentini et al. (1996). In the second case (model 2) we consider yt; "t as above

and �2t = ��2t�1 + � + y2t�1 + �y2t�11(yt�1 < 0) with � = 0:9;  = 0:06; � = 0:03 and � as before.

For model 1, E(jytj8) < 1 and so both least squares and likelihood estimates of the parameters

are consistent and asymptotically normal, while for model 2 we have E(jytj4+�) <1 for some small

� > 0 but E(jytj8) = 1. Although model 1 is far from the sort of model one encounters with daily

stock return data it is not a bad match for standardized monthly data. Model 2 is more realistic for

daily data and poses a challenge for the least squares methods because of the approximate violation

of our regularity conditions. We consider T 2 f200; 400; 800g:
We investigate both least squares estimators bm(y) and likelihood estimators em(y): In each case

the intercept functions were estimated with local constant, local linear, and local quadratic smoothers

with a Gaussian kernel. We chose throughout n = 200 grid points equally spaced in quantile space.11

We estimate on the entire sample range of the data12 but use the variable bandwidth method (40)

with the downweighting described directly afterwards with �(y) = exp (�(jyj � 2)2) for jyj > 2:

Although the estimates of m sometimes take negative values, we do not trim them.

To compare the performance of the nonparametric estimators we need a benchmark. Our bench-

mark is the asymptotic variance that would apply to a GARCH maximum likelihood estimator

(assuming � is known). This avoids the tricky implementation issues associated with these estima-

tors as discussed above. It has to be noted that this sets a very high standard, since it is an infeasible

estimator. The GARCH MLE of the news impact curve is bmLik(y) = b� + by2; where (b�; b) are the
11That is, the grid points tj;n are chosen to be the j=n sample quantile, where j = 0; : : : ; n:
12This means that we take c to be the maximum value of yt and �c to be the minimum value of yt:
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MLE�s of (�; ): The asymptotic variance of bmLik(y) is

vLik(y) =
1

T

�
��� + �y

4 + 2��y
2
�
;

where ���; �; �� are the corresponding asymptotic variances and covariances of the parameter

estimates. We compute vLik(y) by simulation to three decimal place accuracy.

We present in Table 1 the bias and standard deviation of the local constant, local linear, and

local quadratic implementations of bm(y) and em(y) along with the (asymptotic) MLE at the 1%, 10%,
25%, 50%, 75%, 90%, and 99% quantiles of the distribution of yt: We summarize the main �ndings

for model 1 are as follows:

1. The results for all implementations seem to improve with sample size, with some exceptions

regarding the biases in the extreme tails.

2. The performance is much better in the centre of the news distribution, but this is also true

with the parametric estimator.

3. The MLE, bmLik(y); performs better according to mean squared error. However, this advan-

tage decreases relatively with sample size, due to the large small sample component in the

performance of the nonparametric estimators.13

4. The local likelihood estimator em generally performs much better than the least squares esti-

mator bm according to mean squared error, regardless of whether local constant, local linear, or

local quadratic smoother is used, except in the tails where it can perform worse.

5. The local constant implementation generally works better in terms of mean squared error than

the local linear or local quadratic implementations of bm: For em the local quadratic method

seems to work best in the center of the distribution, while the local linear method works better

in the tails. The local constant method tends to do better in the small sample sizes.

The poor performance in the tails can perhaps be explained by the fact that the population

moments of bm and em are not guaranteed to exist; robust estimates of the scale of bm and em give

dramatically smaller numbers out in the tail. For example, the local quadratic likelihood estimator

at the 1% quantile has for n=200 a standard deviation of 20.00 across simulated samples but the

13Note that the comparable results in Fiorentini et al. (1996) for an implementation of the MLE show slightly worse

performance due to small sample issues.
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robust scale estimate of interquartile range/1.35 is only 0.497. The median bias is also somewhat

smaller than the mean bias, where this is very large in absolute value. This suggests that the poor

performance is driven by a few �rogue� datasets that perhaps require the special treatment that

could be given to a unique dataset but not across simulations. In Figure 1 we show the q-q plot of

the distribution of the centred estimators em for the 0:01 and 0:50 quantiles. Clearly, in the tails

convergence to the normal distribution is slow in comparison with the median.

*** Figure 1 Here ***

In the interests of space we report brie�y here on our results for model 2 where �2t = 0:2 +

0:90�2t�1+0:06y
2
t�1+0:03y

2
t�11(yt�1 < 0): The least squares methods then exhibit poor mean squared

performance relative to the benchmark - although the standard deviations decrease with sample size

they do so slowly and from a high level, while the biases remain large. By contrast the likelihood

methods generally perform reasonably well. At the median, the benchmark MLE has asymptotic

standard deviations of 0.126, 0.089, and 0.063 for sample sizes 200, 400, and 800. By contrast, the

local quadratic likelihood method has standard deviations 0.268, 0.192, and 0.145 with biases 0.118,

0.065, and 0.038. At the 1% quantile, the benchmark MLE has asymptotic standard deviations of

1.737, 1.228, and 0.868, whereas the local constant likelihood method has standard deviations 6.474,

3.761, and 2.727 with biases 2.303, 1.200, and 0.390. The performance of all estimators is better in

an absolute sense in the right tail, where the news impact curve is smaller, than in the left tail.

6.3. Investigation of the News Impact Curve in S&P500 Index Returns: 1955-2002

We next provide a study of the news impact curve on various stock return series. The purpose here

is to discover the relationship between past return shocks and conditional volatility. We investigate

a sample of daily returns on the S&P500 from 1955 to 2002, a total of 11,893 observations, a sample

of weekly with 2464 and a monthly sample with 570 observations respectively. In an earlier version

of this paper we concentrated on the daily data, while here we give more results for the weekly

estimation. Table 2 gives the unconditional cumulants: the fourth cumulant is quite large for the

daily data, and suggests that the fourth moment may not exist, whereas the fourth cumulants and

�Hill plots�[Hill (1975)] for the weekly data point to much lighter tails.

Below we show nonparametric estimates of the �rst four conditional cumulants, i.e., E(ytjyt�k);
var(ytjyt�k); skew(ytjyt�k); and kurt(ytjyt�k) for the weekly data. These are computed using local
linear smoothers and a rule of thumb bandwidth of Fan and Gijbels (1996). We show the curves for

k = 1; 2; : : : ; 10:
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*** Figure 2 Here ***

There does not appear to be much common structure in the conditional mean: The conditional

variances are signi�cantly di¤erent from constants, and appear to have similar asymmetric U-shapes.

The conditional skewness and kurtosis are large in absolute value and have a variety of di¤erent

shapes, with no common pattern, although the skewness is mostly negative and the kurtosis is

mostly positive. Given the heavy tails in the data, these curves may not be signi�cant relative to the

sampling variability. Similar patterns are observed in the daily and monthly data. Although there

is no necessary relationship between these marginal curves and the corresponding joint cumulants

E(ytjFt�1); var(ytjFt�1); skew(ytjFt�1); and kurt(ytjFt�1); this is suggestive of a common structure
similar to what is imposed in our model.

Following Engle and Ng (1993) we �tted regressions on seasonal dummies, but, unlike them, found

little signi�cant e¤ects. In table 3 we report the results of estimating the Glosten, Jegannathan and

Runkle (1993) model [which we call GJR] parametric �ts on these standardized series. All parameters

appear signi�cant and there is quite strong evidence of asymmetry at all frequencies.

We next applied our methods. We �tted an AR(2) process to the data and then work with the

standardized residual series. We computed our estimators using � = 50 for the daily data and � = 25

for the weekly and monthly data, where the dynamic coe¢ cients were  j(�) = �j�1 with � 2 (0; 1):
We estimated the function m on the entire range of the data14 using local constant, local linear, and

local quadratic smoothers with variable bandwidth selected by the rule of thumb (40) with the tail

modi�cation.15 Speci�cally, we chose �(y) = exp (�(jyj � 3)2) for jyj > 3: In Figure 3 we plot the

bandwidth used for the computation of bm� for weekly data as a function of y. For comparison, the

Silverman rule of thumb bandwidth is 0.224, which is smaller than our bandwidth ever is.

*** Figure 3 Here ***

We �rst show our two semiparametric news impact curve estimates, local quadratic bm� and em�;

along with the parametric alternative, bmGJR for the three data frequencies using the GJR dynamic

parameters, denoted b�GJR; which are taken from table 3. Our graphs show the curves on the interval
de�ned by the 0.01-0.99 quantiles along with the standard errors for the three estimates.

*** Figure 4 Here ***

14That is, we take c to be the maximum value of yt and �c to be the minimum value of yt:
15We do not �nd a substantial di¤erence between the local constant, local linear, or local quadratic methods on the

interior part of the news distribution.
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The main conclusions are:

1. There is evidence of asymmetry for daily, weekly, and monthly frequencies

2. The least squares estimators bm� show the greatest growth on the negative side, while typically

likelihood estimator em� is a bit closer to the parametric curve.

3. The minima of the curves in all cases occurs on the positive side for each frequency

4. The monthly bmGJR is monotonic decreasing on this range, which is unexpected.16

5. The daily standard errors obey the anticipated ordering: the largest are for bm� and the smallest

are for bmGJR: Both semiparametric standard errors increase rapidly when jyj > 2: The weekly
standard errors follow a similar pattern except that the standard errors for em� are larger than

those for bm� when y < �2:5:

6. The magnitudes of the standard errors are such that there are signi�cant di¤erences between

the news impact curves at various points.

7. The monthly standard errors seem a bit erratic: the parametric ones are too large, and those

for em� seem way too small when y > 0.

8. The tail part of the estimation, which is not shown in the graphics, reveal quite substantial

di¤erences between bmGJR; bm�; and em�: This is especially so in the daily data where there is

a single isolated observation at -25 standard deviations (the 1987 crash) and this forces big

di¤erences in the tail functions. Engle and Ng (1993) found similar results.

We next estimated the full semiparametric model on the weekly data. We took the dynamic

coe¢ cients to be  j(�) = �j�1; where � was selected by a grid search on (0; 1) with width 0:001; we

computed bm� and em� as described above. In Figure 6 we report the negative likelihood function on

the range [0:85; 0:95]: The global minimum is at b� = 0:899; which is slightly larger than the value

estimated in the GJR QMLE. The likelihood is a bit �at near the minimum and consequently, the

standard error of e� is quite large at 0:036; more than twice the standard error of the parametric
estimator. The news impact curves are similar in shapes to those reported above and are omitted

for brevity.

16We have recomputed the parametric estimates using Eviews, Gauss, and Matlab, but in all cases �nd qualitatively

similar results.
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*** Figure 5 ***

Finally, we looked at some diagnostics based on the standardized residuals b"t = yt=b�t and e"t =
yt=e�t from the full semiparametrically estimated model, weekly data. The conditional variances of

these series show much less evidence of systematic shapes; the skewnesses and kurtosises are smaller

in absolute value. We report below the correlogram for the squared residuals b"2t and e"2t along with
the Bartlett interval �1:96=

p
T :17 There is very little evidence of autocorrelation in either series.

*** Figure 6 here ***

Our application has con�rmed some of the �ndings of Engle and Ng (1993), namely the asym-

metric news impact curve, on the S&P500 dataset. We acknowledge that we are not able to give a

de�nitive statement of the shape of the news impact curve out in the tails, but our asymptotic theory

better re�ects this uncertainty than the theory for parametric models, which is overly precise. Thus

we are able to provide a better idea of what we know do not know.

7. Conclusions and Extensions

Although we have relied on the least squares criterion to obtain consistency, in practice one can

avoid least squares estimations altogether and just apply an iterated version of the likelihood based

method. We expect that the distribution theory for such a method is the same as the distribution

of our two-step version of this procedure. This is to be expected from results of Mammen, Linton,

and Nielsen (1999) and Linton (2000) in other contexts.

Other estimation methods can be used here like series expansion or splines. However, although

one can obtain the distribution theory for parameters � and rates for estimators ofm in that case, the

pointwise distribution theory for the nonparametric part is elusive. Furthermore, such methods may

be ine¢ cient in the sense of section 4.4. One might want to combine the series expansion method

with a likelihood iteration, an approach taken in Horowitz and Mammen (2002). However, one would

still need to either apply our estimation method and theory or to develop a theory for combining an

increasing number of Horowitz and Mammen (2002) estimators.

In some datasets it may be important to allow a model for the mean of the process so that for

example yt = �>xt + "t�t; where �2t is as in (6) and xt perhaps includes lagged yt. In this case

17It should be noted that these con�dence intervals do not take account of the additional variation induced by the

various estimations; taking account of this estimation error would widen the con�dence intervals considerably.
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one has to estimate the parameters (�; �) jointly for full e¢ ciency. Regarding m; one can estimate

this quantity applying our procedure to the least squares residuals. This generalization will certainly

a¤ect the parametric asymptotics, but should not a¤ect the distributions for the nonparametric part.

One can also handle some ARCH-M cases, for example suppose that yt = ��2t + "t�t: In this case,

one can estimate the pro�led news impact curve m�;�(:) for each �; � from the conditional mean,

since E[yt jFt�1 ] = �
P1

j=1  j(�)m(yt�j): Then compute a pro�led likelihood or least squares as in

the mean-less model.

We can also treat transformation models of the form

(41) E(�(yt;�) jFt�1 ) =
1X
j=1

 j(�)m(yt�j);

where � is monotonic in y for each �; for example the Box-Cox model �(y;�) = jyj�; � � 0: This

would include the logarithmic and standard deviation speci�cations as well as many other cases,

and permits a general class of non-separable news impact curves. We can apply our estimation

procedures to estimate the function m; for any given �; �; and then choose �; � to minimize some

pro�led estimation criterion. Under the strong form conditions it is possible to identify both �; �:

Suppose that yt = �t"t with "t i.i.d. Then,

E(�(yt;�0) jFt�1 ) =
Z
�(�t";�0)f"(")d" = 	�0(�t);

where f" is the (known) density of ": Therefore, (41) is essentially the same model as 	�(�t) =P1
j=1  j(�)m(yt�j); where the function 	�0 is monotonic; which has been studied before in the

parametric literature, Higgins and Bera (1992). In any case, from an estimate of the right hand-

side of (41) we can obtain �t = 	�1�0 (
P1

j=1  j(�) m(yt�j)); from which we could obtain the Gaussian

likelihood and hence estimate the parameters. In practice we would have to compute 	� by numerical

methods.

Finally, we might want to estimate an IGARCH special case of our model where

�2t = ��2t�1 + (1� �)y2t�1 +m(yt�1):

Whenm(y) = � for some constant �, the above model reduces to a standard parametric IGARCH(1,1)

model and when � = 0 it is the JP Morgan model. This process is no longer weakly stationary and

the unconditional variance of yt does not exist, a consequence of which is that our method can not

be applied. Instead, we can estimate the function m(:) using the equations

E
�
y2t � y2t�1jyt�k

�
= E [m(yt�1)jyt�k] ; k = 2; 3; : : :
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provided the di¤erenced process y2t � y2t�1 is weakly stationary. This is a set of Type I linear integral
equations, and can be analyzed by an extension of the methods used in Newey and Powell (2003) or

Darolles, Florens, and Renault (2002).

One application of our model is to computation of value at risk. In the strong ARCH(1) model,
the conditional �-VAR of yt is �tq�; where q� is the �-quantile of the i.i.d. variable yt=�t: In practice,

we would substitute the estimated volatility process for �t and compute the sample quantile of the

standardized residuals. Our theory can be extended to provide con�dence intervals for this point

estimate, at least for moderate quantiles.

APPENDIX A: PROOF OF (8) AND (35)

In the sequel we take �t = 0 without loss of generality.

Proof of (8). It is convenient to break the joint optimization problem down in to two separate

problems: �rst, for each � 2 � let m� be the function that minimizes (5) with respect to m 2 M;

second, let �� be the parameter that minimizes the pro�led criterion E[y2t �
P1

j=1  j(�)m�(yt�j)]
2

with respect to � 2 �: It follows that �0 = �� and m0 = m�0 : We next �nd the �rst order conditions

for this sequential population optimization problem. We write m = m0 + � � f for any function f;
di¤erentiate with respect to � and, setting � = 0; we obtain the �rst order condition

E

"
fy2t �

1X
j=1

 j(�)m0(yt�j)gf
1X
l=1

 l(�)f(yt�l)g
#
= 0;

which can be rewritten as

(42)
1X
j=1

 j(�)E
�
y20f(y�j)

�
�

1X
j=1

1X
l=1

j 6=l

 j(�) l(�)E [m0(y�j)f(y�l)] =
1X
j=1

 2j(�)E [m0(y�j)f(y�j)]

for all f: Taking f(�) = �y(�); where �y(�) is the Dirac delta function, we have

E
�
y20f(y�j)

�
=

Z
E[y20jy�j = y0]f(y0)p0(y

0)dy0

=

Z
E[y20jy�j = y0]�y(y

0)p0(y
0)dy0

= E[y20jy�j = y]p0(y);

while

E [m0(y�j)f(y�j)] =

Z
m0(y

0)�y(y
0)p0(y

0)dy0 = m0(y)p0(y):
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Finally,

E [m0(y�j)f(y�l)] = E [E[m0(y�j)jy�l]f(y�l)]

=

Z
E[m0(y�j)jy�l = y0]�y(y

0)p0(y
0)dy0

= E[m0(y�j)jy�l = y]p0(y):

Next step is to change the variables in the double sum. Note thatE[m0(y�j)jy�l = y] = E[m0(y0)jyj�l =
y] by stationarity: Let t = j � l; then for any function c(:) de�ned on the integers:

1X
j=1

1X
l=1

j 6=l

 j(�) l(�)c(j � l) =

1X
t=�1

1X
l=1

 t+l(�) l(�)c(t) =
1X

t=�1

 1X
l=1

 t+l(�) l(�)

!
c(t):

Therefore, dividing through by p0(y) and
P1

j=1  
2
j(�); (42) can be written

1X
j=1

 yj(�)E(y
2
0jy�j = y)�

�1X
j=�1

 �t (�)E(m0(y0)jyj = y) = m0(y);

which is the stated answer.

Proof of (35). We write g = g0 + � � f for any function f; di¤erentiate with respect to � and,
setting � = 0; we obtain the �rst order condition

E

"(
1

�2t

@�2t
@�

� 1

�2t

1X
j=1

 jg0(yt�j)

)
1

�2t

1X
l=1

 lf(yt�l)

#
= 0;

which can be rewritten

0 =
1X
l=1

 lE

�
��4t

@�2t
@�

jyt�l = y

�
� g0(y)

1X
j=1

 2jE
�
��4t jyt�j = y

�
�

1X
j=1

1X
l=1

j 6=l

 j lE
�
��4t g0(yt�j)jyt�l = y

�
:

Now use the law of iterated expectations to write

E
�
��4t g0(yt�j)jyt�l = y

�
= E

�
E[��4t jyt�j; yt�l]g0(yt�j)jyt�l = y

�
:

Then

E
�
��4t g0(yt�j)jyt�l = y

�
=

Z
qj;l(x; y)

p0;j�l(x; y)

p0(y)p0(x)
g0(x)p0(x)dx;

where qj;l(y; x) = E[��4t jyt�j = x; yt�l = y]: The result follows.
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APPENDIX B: PROOF OF THEOREMS

Proof of Theorem 1. We �rst outline the approach to obtaining the asymptotic properties

of bm�(:) for any � 2 �: We give some high level conditions A4-A6 below under which we have an
expansion for bm� �m� in terms of bm�

� �m�
� and bH� �H�: Both terms will contribute a bias and a

stochastic term to the expansion. We then verify the conditions A4-A6 and verify the central limit

theorem.

Assumption A4. Suppose that for a sequence �T ! 0:

sup
�2�;kmk2=1;jxj�c

��� bH�m(x)�H�m(x)
��� = op(�T ):

In particular (A4) gives that

sup
�2�;kmk2=1

[ bH� �H�]m

2
= op(�T ):

We now show that by virtue of (A4) that (I� bH�) is invertible for all � 2 �, with probability tending
to one, and it holds that (see also (14))

(43) sup
�2�;kmk2=1;jyj�c

������I � bH�

��1
� (I �H�)

�1
�
m(y)

���� = op(�T ):

In particular,

sup
�2�;kmk2=1

��I � bH�

��1
� (I �H�)

�1
�
m


2

= op(�T ):

For a proof of claim (43) note that for m 2Mc

m =
�
I � bH�

��1
(I �H�)

�1
1X
j=0

h
( bH� �H�) (I �H�)

�1
ij
m

because of
1X
j=0

h
( bH� �H�) (I �H�)

�1
ij
=
h
I � ( bH� �H�) (I �H�)

�1
i�1

=
h
(I � bH�) (I �H�)

�1
i�1

:

This gives �
I � bH�

��1
m� (I �H�)

�1m =
1X
j=0

h
( bH� �H�) (I �H�)

�1
ij
m:

We suppose that bm�
�(y) has an asymptotic expansion where the components have certain prop-

erties.
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Assumption A5. Suppose that with �T as in (A4)

bm�
�(y)�m�

�(y) = bm�;B
� (y) + bm�C

� (y) + bm�;D
� (y);

where bm�;B
� ; bm�C

� ; and bm�;D
� satisfy:

sup
�2�;jyj�c

�� bm�;B(y)
�� = Op(T

�2=5) with bm�;B deterministic(44)

sup
�2�;jyj�c

��� bm�;C
� (y)

��� = Op

�
T�2=5��1T

�
(45)

sup
�2�;jyj�c

���H� (I �H�)
�1 bm�;C

� (y)
��� = op(T

�2=5);(46)

sup
�2�;jyj�c

��� bm�;D
� (y)

��� = op(T
�2=5):(47)

Here, bm�;B
� is the bias term, bm�C

� is the stochastic term and bm�;D
� is the remainder term. For

local linear estimates of gj(y) it follows that under standard smoothness conditions, (44), (45), and

(47) hold. The argument is complicated by the fact that bm�
� depends on a large number of gj(y)�s,

although it e¤ectively behaves like a single smoother. The intuition behind (46) is based on the

fact that an integral operator applies averaging to a local smoother and transforms it into a global

average, thereby reducing its variance.

De�ne now for j = B;C;D the terms bmj
� as solutions to the integral equations bmj

� = bm�;j
� +

bH� bmj
�

and bmA
� implicitly from writing the solution m� + bmA

� to the integral equation

(48)
�
m� + bmA

�

�
= m�

� + bH�

�
m� + bmA

�

�
:

The existence and uniqueness of bmj
� follows from the invertibility of the operator I� bH� (at least with

probability tending to one). It now follows that bm� = m� + bmA
� + bmB

� + bmC
� + bmD

� by linearity of the

operator (I� bH�)
�1. Note that bmj

� = (I� bH�)
�1 bm�;j

� for j = B;C;D; whilem�+ bmA
� = (I� bH�)

�1m�
�:

De�ne also mB
� as the solution to the equation

(49) mB
� = bm�;B

� +H� m
B
� :

We now claim that under (A1)�(A5):

sup
�2�;jyj�c

�� bmB
� (y)�mB

� (y)
�� = op(T

�2=5):(50)

sup
�2�;jyj�c

��� bmC
� (y)� bm�;C

� (y)
��� = op(T

�2=5)(51)

sup
�2�;jyj�c

�� bmD
� (y)

�� = op(T
�2=5)(52)
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Here, claims (50) and (52) immediately follow from (14) and (43). For (51) note that because of

(45)�(46), (43) and (A4)

sup
�2�;jyj�c

���� bH�

�
I � bH�

��1 bm�;C
� (y)

���� = op(T
�2=5):

So we arrive at the following expansion of bm�.

sup
�2�;jyj�c

��� bm�(y)�m�(y)� bmA
� (y)�mB

� (y)� bm�;C
� (y)

��� = op(T
�2=5):

This gives an approximation to bm�(y) � m�(y) in terms of the expansion of bm�
�; the population

operator H� and the quantity bmA
� (y): This latter quantity depends on the random operator bH�:

Next we approximate the quantity bmA
� (y) by simpler terms. By subtracting m� = m�

� + H�m�

from (48) we get bmA
� = (

bH� �H�)m�+ bH� bmA
� :We next write bH� as a sum of terms with convenient

properties.

Assumption A6. Suppose that for �T as in (A4)� bH� �H�

�
m�(y) = bm�;E

� (y) + bm�;F
� (y) + bm�;G

� (y);

where bm�;E
� ; bm�F

� ; and bm�;G
� satisfy:

sup
�2�;jyj�c

�� bm�;E(y)
�� = Op(T

�2=5) with bm�;E deterministic,

sup
�2�;jyj�c

��� bm�;F
� (y)

��� = Op

�
T�2=5��1T

�
;

sup
�2�;jyj�c

���H� (I �H�)
�1 bm�;F

� (y)
��� = op(T

�2=5);

sup
�2�;jyj�c

��� bm�;G
� (y)

��� = op(T
�2=5):

Again, bm�;E
� is a bias term, bm�F

� is a stochastic term and bm�;G
� is a remainder term. For kernel

density estimates of bH� under standard smoothness conditions, the expansion in A6 follows from

similar arguments to those given for A5. De�ne for j = E;F;G the terms bmj
� as the unique solutions

to the equations bmj
� = bm�;j

� + bH� bmj
�: It now follows that bmA

� can be decomposed into bmA
� =bmE

� + bmF
� + bmG

� : De�ne m
E
� as the solution to the second kind linear integral equation

(53) mE
� = bm�;E

� +H�m
E
� :
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As above we get that:

sup
�2�;jyj�c

�� bmE
� (y)�mE

� (y)
�� = op(T

�2=5);

sup
�2�;jyj�c

��� bmF
� (y)� bm�;F

� (y)
��� = op(T

�2=5);

sup
�2�;jyj�c

�� bmG
� (y)

�� = op(T
�2=5):

We summarize our discussion in the following Proposition.

Proposition 1. Suppose that conditions (A1)�(A6) hold for some estimators bm�
� and bH�.

De�ne bm� as any solution of bm� = bm�
� +

bH� bm�. Then the following expansion holds for bm�

(54) sup
�2�;jyj�c

��� bm�(y)�m�(y)�mB
� (y)�mE

� (y)� bm�;C
� (y)� bm�;F

� (y)
��� = op(T

�2=5):

The terms mB
� and m

E
� have been de�ned in (49) and (53), respectively.

Equation (54) gives a uniform expansion for bm�(y)�m�(y) in terms of a deterministic expression

mB
� (y)+m

E
� (y) and a random variable bm�;C

� (y)+ bm�;F
� (y) that is explicitly de�ned. We have hitherto

just made high level assumptions on bm�
� and the operator bH� in A4-A6, so our result applies to any

smoothing method that satis�es these conditions. It remains to prove that A4-A6 hold under our

primitive conditions B1-B7, and that a central limit theorem (and uniform convergence) applies tobm�;C
� (y) + bm�;F

� (y):

Proof of High Level Conditions A1,A3-A6 and CLT: We �rst de�ne the concept of near

epoch dependence for stationary processes, which we will use in the sequel.

Definition. The stationary process fxtg is said to be stable (NED) in L2-norm on the stationary
�-mixing process fztg if there exists measurable functions gm such that, as m!1;

�(m) = E
�
jxt � gm(zt�1; : : : ; zt�m)j2

�
! 0:

This de�nition provides a su¢ cient condition for the more general NED de�nition in say Andrews

(1995). The process �2t (�) =
P1

j=1  j(�)m(yt�j) is stable in L2-norm on the process fm(yt)g [which
is �-mixing] and the stable numbers satisfy �(m) � exp(�cm) for some constant c > 0: Likewise,

the process �1�;t is geometrically stable on fy2t g and �2�;t is geometrically stable on fm�(yt)g: We use
this property below.

Assumptions A1,A3 follow immediately from our conditions on the parameter space and density

functions. We assumed A2 in B7.
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We verify A4-A6 with the choice �T = T�3=10+� with � > 0 small enough. This rate is arbitrarily

close to the rate of convergence of two dimensional nonparametric density or regression estimators.

We will verify A5 and A6 with

bm�;B
� (y) =

h2

2
�2(K)� �1�(y)

bm�;C
� (y) =

1

Tp0(y)

T��TX
t=1

Kh (yt � y) �1�;t

bm�;E
� (y) =

h2

2
�2(K)� �2�(y)

bm�;F
� (y) =

1

Tp0(y)

T��TX
t=1

Kh (yt � y) �2�;t +
1

T

T��TX
t=1

��(y)

p0(y)
[Kh (yt � y)� EKh (yt � y)] ;

where �1�;t =
P1

j=1  
y
j(�)�j;t and �2�;t = �

P�1
j=�1  

2
j(�)�j;t(�), while �j;t = y2t+j � E(y2t+jjyt) and

�j;t(�) = m�(yt+j)� E[m�(yt+j)jyt]:
Proof of A4. It su¢ ces to show that

sup
jxj;jyj�c
1�j��T

jbp0;j(x; y)� p0;j(x; y)j = op(�T )(55)

sup
jxj�c

jbp0(x)� p0(x)j = op(�T ):(56)

Note that by assumption B4 the density p0 is bounded from below on jxj � c: For the proof of (55)

we make use of an exponential inequality. Using Theorem 1.3 in Bosq (1998) one gets

Pr
���T 3=10�� [bp0;j(x; y)� Ebp0;j(x; y)]�� � C

�
� Pr

 �����T 3=10
T�jX
t=1

Kh(yt � x)Kh(yt+j � y)� EKh(yt � x)Kh(yt+j � y)

����� � T

2
T �

!

� 4 exp

�
� T 2�

32v2(q)
q

�
+ 22

�
1 + 8T��b

�1=2
q�

��
T

2q

�
� j

�
;

where [x] denotes the largest integer smaller or equal to x; and where

q = T � with
7

10
< � < 1; j2 � T 1��;

b = CT 7=10 for a constant C;

v2(q) = 8
q2

T 2
�2(q) +

b

4
T �;

�2(q) = E

24[T=2q]+1X
t=1

Kh(yt � x)Kh(yt+j � y)� EKh(yt � x)Kh(yt+j � y)

352 :
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The variance �2(q) can be bounded by use of Corollary 1.1. in Bosq (1998). This gives �2(q) �
C 0T 2��+(2=5) for 0 <  < 1 with a constant C 0 depending on : This gives with constants C1; C2; : : : >

0 for jxj; jyj � c; 1 � j � �T

Pr
���T 3=10 [bp0;j(x; y)� Ebp0;j(x; y)]�� � T �

�
� C1 exp(�C2TC3) + C4T

C5�(TC6):

De�ne z = (x; y) and let Vj(z) = bp0;j(z) � Ebp0;j(z): Let B(z1; �T ); : : : ; B(zQ; �T ) be a cover of
fjxj � c; jyj � cg; where B(zq; �) is a ball centered at zq of radius �; while Q(T ) is a su¢ ciently large
integer, and Q(T ) = 2c2=�T . By the triangle inequality

Pr

264 sup
jxj�c;jyj�c
1�j��

jVj(z)j � 2c�T

375 � Pr

�
max

1�q�Q;1�j��
jVj(zq)j > c�T

�

+Pr

"
max

1�q�Q;1�j��
sup

z2B(zq ;�T )
jVj(zq)� Vj(z)j > c�T

#
for any constant c: By the Bonferroni and Exponential inequalities:

Pr

�
max

1�q�Q;1�j��
jVj(zq)j > c�T

�
�

�X
j=1

QX
q=1

Pr [jVj(zq)j > c�T ]

� Q(T )�(T )
�
C1 exp(�C2TC3) + C4T

C5�(TC6)
�
= o(1);

provided s0 in B1 is chosen large enough. By the Lipschitz continuity ofK; jKh(yt � x)�Kh(yt � xq)j �
K jx� xqj =h; where K is �nite, and so

T 3=10�� jVj(zq)� Vj(z)j � T 3=10��
1

h2
[c1 jx� xqj+ c2 jy � yqj] � c�TT

7=10��

for some constants c1; c2: This bound is independent of j and uniform over z; so that provided

�TT
7=10�� ! 0; this term is o(1): This requires that Q(T )=T 7=10�� !1:

We have given the detailed proof of (55) because similar arguments are used in the sequel.

Equation (56) follows by the same type of argument.

Proof of A5. Claim (44) immediately follows from assumption B4. For the proof of (47) we

use the usual variance+bias+remainder term decomposition of the local linear estimates bgj as in
Masry (1996). Write M(y) = p0(y)diag(1; �2(K)) and

MTj(y) =
1

Th

TX
t=1

K

�
y � yt�j

h

�"
1

�y�yt�j
h

��y�yt�j
h

� �y�yt�j
h

�2
#
:
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Then bgj(y)� gj(y) = bBjy + bVjy; where bBjy = e01M
�1
Tj (y)BTj(y); and BTj(y) is a vector

BTj(y) =

"
BTj;0(y)

BTj;1(y)

#
; where BTj;l(y) =

1

Th

TX
t=1

�
y � yt�j

h

�l
K

�
y � yt�j

h

�
�tj(y);

where �tj(y) = gj(yt�j)�g0j(y)(yt�j�y) = g00j (y
�
t;j)(yt�j�y)2=2 for some intermediate point y�t;j: The

variance e¤ect is bVjy = e01M
�1
Tj (y)UTj(y): The stochastic term UTj(y) is

UTj(y) =

"
UTj;0(y)

UTj;1(y)

#
; where UTj;l(y) =

1

Th

TX
t=1

�
y � yt�j

h

�l
K

�
y � yt�j

h

�
�j;t�j:

We have bm�
�(y)�m�

�(y) =
P�

j=1  
y
j(�)[bgj(y)� gj(y)]�

P1
j=�+1  

y
j(�)gj(y); where

sup�2� supjyj�c j
P1

j=�+1  
y
j(�) gj(y)j � c0

P1
j=�+1  

j�1
= inf�2�

P1
j=1  

2
j(�) for some �nite constant c

0;

and
P1

j=�+1  
j�1 �  

�
=(1�  ) = o(T�1=2): Therefore,

bm�
�(y)�m�

�(y) =
�X
j=1

 yj(�)
bVjy + �X

j=1

 yj(�)
bBjy + op(T

�1=2):

We then use the fact that

sup
jyj�c

1�j��T

kMT;j(y)�M(y)k = op(1);

which follows by the same reasoning as for (55) and (56). De�ning Vjy and Bjy as bVjy and bBjy with

MTj(y) replaced by M(y); we have

bm�
�(y)�m�

�(y) =
�X
j=1

 yj(�)Vjy +
�X
j=1

 yj(�)Bjy +RT1(y; �) +RT2(y; �) + op(T
�1=2);

where RT1(y; �) =
P�

j=1  
y
j(�) [

bVjy � Vjy] and RT2(y; �) =
P�

j=1  
y
j(�) [

bBjy �Bjy]: We have

�X
j=1

 yj(�)Vjy =

�X
j=1

 yj(�)
1

T

TX
t=�T+1

Kh (y � yt�j)
�j;t�j
p0(y)

=
�X
j=1

 yj(�)
1

T

T��TX
s=1

Kh (y � ys)
�j;s
p0(y)

=
1

T

T��TX
s=1

Kh (y � ys)

P�
j=1  

y
j(�)�j;s

p0(y)

=
1

Tp0(y)

T��TX
t=1

Kh (yt � y) �1�;t +
1

Tp0(y)

T��TX
t=1

Kh (yt � y)

1X
j=�+1

 yj(�)�j;t
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by changing variable t 7! t� j = s and interchanging summation.

We show that

sup
jyj�c;�2�

jRT1(y; �)j = op(T
�2=5)(57)

sup
jyj�c;�2�

jRT2(y; �)j = op(T
�2=5)(58)

sup
jyj�c;�2�

����� 1

Tp0(y)

T��TX
t=1

Kh (yt � y)
1X

j=�+1

 yj(�)�j;t

����� = op(T
�2=5):(59)

It follows that

bm�
�(y)�m�

�(y) =
1

Tp0(y)

T��TX
t=1

Kh (yt � y) �1�;t +
�X
j=1

 yj(�)Bjy + op(T
�2=5):

We establish next (59). De�ne Tn = T�1
PT��T

t=1 Kh (yt � y)
P1

j=�+1  
y
j(�)�j;t=p0(y): First note

that E(Tn) = 0; and

var(Tn) =
1

T 2h2p20(y)

T��TX
t=1

T��TX
s=1

1X
j=�+1

1X
l=�+1

 yj(�) 
y
l (�)E

�
KtKs�j;t�l;s

�
� C

1

Th2(1�1=�)p20(y)

1X
j=�+1

1X
l=�+1

 yj(�) 
y
l (�)

1X
s=1

�(j � (s+ l))1�1=2�

� C 0
1

Th2(1�1=�)
 
2(�+1)

= o(T�1h�1)

by Davydov�s inequality, the mixing condition B1, and the decay conditions B10. Here, Kt =

K ((yt � y)=h) and C;C 0 are generic �nite constants: This establishes the pointwise rate of Tn: The

uniformity of the bound in (59) can be achieved by application of the exponential inequality in

Theorem 1.3 of Bosq (1998) used also in the proof of (55). The proofs of (57) and (58) are similar.

For the proof of (45) we apply this exponential inequality to bound

Pr

 �����T 2=5
TX
t=1

Kh(yt � y)
e��;t
p0(y)

����� � T

2
T 3=10+�

!
;

where e��;t = �TX
j=1

 yj(�)
�
minfy2t+j; T 1=�g � E(minfy2t+j; T 1=�gjyt)

�
:

The truncated random variables e��;t can be replaced by ��;t using the fact that
1� Pr

�
y2t � T 1=� for 1 � t � T

�
� T Pr

�
y2t > T 1=�

�
� E

�
y2�t 1(y

2
t > T 1=�)

�
! 0:
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It remains to check (46). De�ne the operator L�(x; y) by

H�(I �H�)
�1m(x) =

Z c

�c
L�(x; y)m(y)p0(y)dy:

The L�(x; y) can be constructed by use of the eigenfunctions fe�;jg1j=1 of H�: Denote as above the

corresponding eigenvalues by ��;j: Then

H�(x; y) =

1X
j=1

��;je�;j(x)e�;j(y) and L�(x; y) =
1X
j=1

��;j
1� ��;j

e�;j(x)e�;j(y):

Note that for a constant 0 <  < 1 we have sup�2�;j�1 ��;j < : This shows thatZ c

�c
L2�(x; y)p0(y)p0(x)dxdy =

1X
j=1

�2�;j
(1� ��;j)2

� 1

(1� )2

1X
j=1

�2�;j <1:

Furthermore, it can be checked that L�(x; y) is continuous in �; x; y: This follows from A3 and the

continuity of H�(x; y):

Therefore, we write

H�(I �H�)
�1 bm�;C

� (x) =
1

T

TX
t=1

��(yt; x)�
1
�;t

with

��(z; x) =

Z c

�c
L�(x; y)

1

p0(y)
Kh(z � y)dy:

The function ��(z; x) is continuous in �; z; x: Using this fact, claim (46) can be easily checked, e.g.,

again by application of the exponential inequality in Theorem 1.3 of Bosq (1998).

Proof of A6. WriteZ bH�(y; x)m�(x)bp0(x)dx� Z H�(y; x)m�(x)p0(x)dx

= �
��TX
j=�1

 �j(�)

Z �bp0;j(y; x)bp0(y) � p0;j(y; x)

p0(y)

�
m�(x)dx

= �
��TX
j=�1

 �j(�)

Z �bp0;j(y; x)� p0;j(y; x)

p0(y)

�
m�(x)dx

+

��TX
j=�1

 �j(�) (bp0(y)� p0(y))

Z �
p0;j(y; x)

p20(y)

�
m�(x)dx+ op(T

�2=5):

Using this expansion one can show that bm�;G
� (y) = ( bH� �H�)m�(y)� bm�;E

� (y)� bm�;F
� (y) is of order

op(T
�2=5): The other conditions of A6 can be checked as in the proof of A5.
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Proof of CLT for bm�;C
� (y) + bm�;F

� (y): This follows by an application of a central limit the-

orem for triangular arrays of NED processes along the lines of Lu (2001). The argument is �rst

to replace, for example, �1�;t by the logarithmic truncation �
1;�
�;t =

P�
j=1  

y
j(�)�j;t: Then divide the

sum
PT

t=1Kh (yt � y) �1;��;t into the usual Bernstein large block/small blocks. Then apply Davydov�s

inequality for random variables with �nite p moments. Because of the exponential decline of the

stability numbers �(m); the CLT follows. This concludes the proof of (26).

Proof of (27) and (28). The only additionality here is to show that

sup
�2�;jyj�c

jbm�;C
� (y) + bm�;F

� (y)j = op(T
�1=4):

This follows by applying the exponential inequality again.

Finally,

sup
�2�;1�t

��b�2t (�)� �2t (�)
�� � sup

�2�

1X
j=1

 j(�) sup
�2�;jyj�c

jbm�(y)�m�(y)j+ sup
�2�

1X
j=1

 j(�) sup
jyj�c

m�(y)

+�T
1

T

TX
t=1

y2t

� 1

1�  

"
sup

�2�;jyj�c
jbm�(y)�m�(y)j+  

�+1
sup
jyj�c

m�(y)

#
+Op(�TT

�1=2)

= op(T
�1=4)

by the summability conditions on  j(�); the boundedness of m�(y) on [�c; c] and the uniform con-

vergence result (27).

Proof of Theorem 2

Consistency. We apply some general results for semiparametric estimators. Write

ST (�) =
1

T

TX
t=1

�
y2t � �2t (�)

	2
; where �2t (�) =

1X
j=1

 j(�)m�(yt�j);

and let S(�) = EST (�): We show that ST (�) � S(�) = op(1) by applying a law of large num-

bers for near epoch dependent functions of mixing processes. Let m(y) = sup�2�m�(y) and
�
m`(y) =

sup�2� j@m�(y)=@�`j; which are bounded continuous functions on [�c; c]: It follows that sup�2� �2t (�) �
C
P1

j=1  
j�1
m(yt�j) and sup�2� j@�2t (�)=@�`j � C

P1
j=1  

j�1
(m(yt�j)+

�
m`(y)); which are both bounded
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processes. Therefore, the law of large numbers can be made uniform over � 2 �. In conclusion we
have

(60) sup
�2�

jST (�)� S(�)j = op(1):

Then, letting �t(�) = y2t � �2t (�); we have for each � 2 ���� bST (�)� ST (�)
���

� 2

T

TX
t=1

j�t(�)j max
1�t�T

��b�2t (�)� �2t (�)
��+ �max

1�t�T

��b�2t (�)� �2t (�)
���2 + 1

T

�TX
t=1

�2t (�)

= op(1)

because of (28). In fact, this order is uniform in � and we have

(61) sup
�2�

��� bST (�)� ST (�)
��� �!p 0:

Therefore, by (60) and (61) we have sup�2� jbST (�) � S(�)j = op(1): By assumption B7, S(�) is

uniquely minimized at � = �0; which then implies consistency of b�:
Root-N consistency. Consider the derivatives

@ bST (�)
@�

= � 2
T

TX
t=1

b�t(�)@b�2t (�)@�

@2 bST (�)
@�@�>

=
2

T

TX
t=1

@b�2t (�)
@�

@b�2t (�)
@�>

� b�t(�)@2b�2t (�)
@�@�>

;

where b�t(�) = (y2t � b�2t (�)). We have shown that b� �!p �0; where �0 is an interior point of �: We

make a Taylor expansion about �0;

op(1) =
p
T
@ bST (b�)
@�

=
p
T
@ bST (�0)
@�

+
@2 bST (�)
@�@�>

p
T (b� � �0);

where � is an intermediate value. We then show that for all sequences �T ! 0; we have for a constant

C > 0

(62) inf
k���0k��T

�min

 
@2 bST (�)
@�@�>

!
� C + op(1)
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(63)
p
T
@ bST (�0)
@�

= Op(1):

This implies that (30) holds.

To establish the results (62) and (63) we use some expansions given in Lemma 1 below.

Proof of (62). By straightforward but tedious calculation we show that

sup
k���0k��T ;1�t�T

@2 bST (�)@�@�>
� @2ST (�)

@�@�>

 = op(1):

Speci�cally, it su¢ ces to show that

sup
k���0k��T ;1�t�T

@jb�2t (�)@�j
� @j�2t (�)

@�j

 = op(1); j = 0; 1; 2:

For j = 0; 1 this follows from (28)-(29). For j = 2 this follows by similar arguments using Lemma 1.

Note also that by (B4) for a constant c > 0; infk���0k��T ;1�t�T �
2
t (�) > c: Furthermore,

sup
k���0k��T

@2ST (�)@�@�>
� E

�
@�2t (�0)

@�

@�2t (�0)

@�>

� = op(1)

by standard arguments. Therefore, by the triangle inequality

sup
k���0k��T

@2 bST (�)@�@�>
� E

�
@�2t (�0)

@�

@�2t (�0)

@�>

� = op(1):

Proof of (63). Write

@ bST (�0)
@�

= � 2
T

TX
t=1

�
y2t � �2t (�0)�

�b�2t (�0)� �2t (�0)
�� �@�2t (�0)

@�
+
@b�2t (�0)
@�

� @�2t (�0)

@�

�
and let with �t = �t(�0)

p
TET (�0) = ET1 + ET2;

ET1 = � 1p
T

TX
t=1

�t
@�2t (�0)

@�
;

ET2 =
1p
T

TX
t=1

�b�2t (�0)� �2t (�0)
� @�2t (�0)

@�

� 1p
T

TX
t=1

�t

�
@b�2t (�0)
@�

� @�2t (�0)

@�

�
:
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Then�����pT @ bST (�0)@�
�
p
TET (�0)

����� �
����� 1pT

TX
t=1

�b�2t (�)� �2t (�0)
� �@b�2t (�0)

@�
� @�2t (�0)

@�

������
�

p
T max
1�t�T

��b�2t (�0)� �2t (�0)
��� max

1�t�T

@b�2t (�0)@�
� @�2t (�0)

@�


= op(1)

by (28)-(29).

The termET1 is asymptotically normal with mean zero and �nite variance by central limit theorem

for (geometric) NED processes over �-mixing base. Note that E[�t(@�
2
t (�0)=@�)] = 0 by de�nition of

�0.

For the treatment of ET2 we now use that

ET2 =
h2p
T

TX
t=1

(
�TX
j=1

 j(�0)b
0(yt�j)

@�2t
@�
(�0) + �t

�TX
j=1

 0j(�0)b
0(yt�j)

)

+
h2p
T

TX
t=1

(
�t

�TX
j=1

 j(�0)b
1(yt�j)

)
(64)

+
1p
T

TX
t=1

(
�TX
j=1

 j(�0)s
0(yt�j)

@�2t
@�
(�0)

)

+
1p
T

TX
t=1

(
�t

�TX
j=1

 0j(�0)s
0(yt�j)

)

+
1p
T

TX
t=1

(
�t

�TX
j=1

 j(�0)s
1(yt�j)

)
+ oP (1);

where b�(y) = h�2
�
mB
� (y) +mE

� (y)
�
; s�(y) = (I � H�)

�1(m�;C
� +m�;F

� )(y); bj(y) = @j

(@�)j
b�0(y); and

sj(y) = @j

(@�)j
s�0(y): By tedious calculations it can be shown that the last three terms on the right

hand side of (64) are of order oP (1). For this purpose one has to plug in the de�nitions of s0 and s1

as local weighted sums of mixing mean zero variables. For the �rst two terms on the right hand side

of (64) note that b0 and b1 are deterministic functions. Furthermore, we will show that

E

" 1X
j=1

 j(�0)b
0(yt�j)

@�2t
@�
(�0) + �t 

0
j(�0)b

0(yt�j)

#
= 0;(65)

E

"
�t

1X
j=1

 j(�0)b
1(yt�j)

#
= 0:(66)
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Note that in (65)-(66) we have replaced the upper index of the sum by1. Thus, with (65)-(66) we see
that the �rst two terms on the right hand side of (64) are sums of variables with mean geometrically

tending to zero. The sums are multiplied by factors h2T�1=2. By using mixing properties it can be

shown that these sums are of order OP (h
2) = op(1): It remains to check (65)-(66). By de�nition for

each function g; E[fy2t �
P1

j=1  j(�)�g(yt�j)g2] is minimized for � = 0. By taking derivatives with
respect to � we get that

(67) E

(�
y2t � �2t (�)

� 1X
j=1

 j(�)g(yt�j)

)
= 0:

With g = b0 and �0 this gives (66). For the proof of (65) we now take the di¤erence of (67) for � and

�0. This gives

E
�
y2t � �2t (�0)

� 1X
j=1

�
 j(�)�  j(�0)

�
g(yt�j)� E

�
�2t (�)� �2t (�0)

� 1X
j=1

 j(�)g(yt�j) = 0:

Taking derivatives with respect to � gives

E

(
ut

1X
j=1

 0j(�0)g(yt�j)�
@�2t
@�
(�0)

1X
j=1

 j(�0)g(yt�j)

)
= 0:

With g = b0 this gives (65).

Proof of Theorems 3 and 4: We only give a proof of Theorem 3. Theorem 4 follows along

the same lines. For a proof of (32) one shows that for C > 0

sup
k���0k�CT�1=2

jbm�(y)� bm�0(y)j = oP [(Th)
�1=2]:

This claim follows by using appropriate bounds on bH� � bH�0 and bm�
� � bm�

�0
.

Because of (32) for a proof of (33) it su¢ ces to show

(68)
p
Th
� bm�0(y)�m�0(y)� h2b(y)

�
=) N (0; !(y)) :

So it remains to show (68). Put

bp10(y) = 1

T

TX
t=1

(yt � y)Kh(yt � y);

bp20(y) = 1

T

TX
t=1

(yt � y)2Kh(yt � y):
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Then, by using similar arguments as in the proof of Theorem 1, we have for  > 0

sup
jyj�c

��bp10(y)� h2 �2(K) p
0
0(y)

�� = Op(h
1=2 T�1=2+ + h3);

sup
jyj�c

��bp20(y)� h2 �2(K)p0(y)
�� = Op(h

3=2

T�1=2+ + h3):

Furthermore, supjyj�c jbp0(y)� p0(y)j = Op(h
2 + h�1=2T�1=2+):

These results can be applied to show that uniformly in jyj � c and j � �T

ĝj(y) =
1

T

TX
t=1

Kh(yt�j � y)�2tut
p0(y)(y)

+
1

T

TX
t=1

Kh(yt�j � y)

p0(y)

1X
`=1

 `(�0)m(yt�`)

+
bp10(y)2bp0(y)2bp20(y) 1T

TX
t=1

Kh(yt�j � y)
1X
`=1

 `(�0)m(yt�`)

� bp10(y)2bp0(y)bp20(y) 1T
TX
t=1

(yt�j � y)Kh(yt�j � y)
1X
`=1

 `(�0)m(yt�`) + op(T
�1=2)

=
1

T

TX
t=1

Kh(yt�j � y)

p0(y)
�2tut +

1

T

TX
t=1

Kh(yt�j � y)bp0(y)
1X
`=1

 `(�0)m(yt�`)

+h2

(
�2(K)

p00(y)
2

p0(y)3

1X
`=1;` 6=j

 `(�0)

Z
m(u)pj;`(y; u)du

��2(K)
p00(y)

p0(y)2

1X
`=1;` 6=j

 `(�0)

Z
m(u)

@

@y
pj;`(y; u)du

� �2(K) j(�)
p00(y)m

0(y)

p0(y)

�
+ op(T

�1=2):

By plugging this into

bm�
�0
(y)� (I � bH�0)m0(y) =

�TX
j=1

 yj(�0)bgj(y)�m0(y)�
X

0<jjj<�T

 �j(�0)

Z bp0;j(y; x)bp0(y) m0(x)dx;
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we get

bm�
�0
(y)� (I � bH�0)m0(y) =

1

T

TX
t=1

1X
j=1

 yj(�0)
Kh(yt�j � y)

p0(y)
�2tut

+
1

T

TX
t=1

1X
j=1

1X
`=1

 yj(�0) `(�0)
Kh(yt�j � y)bp0(y) m0(yt�`)

+h2�2(K)
p10(y)

p0(y)
[
@

@y
(H�0m0(y)�m0(y))]

�
X
j 6=0

 �j(�0)

Z bp0;j(y; x)bp0(y) m(x)dx�m0(y) + op(T
�1=2)

� S1 + S2 + S3 + S4 �m0(y) + op(T
�1=2):

We have

S2 + S4 �m0(y) =
1

T

TX
t=1

�TX
j=1

 j(�0) 
y
j(�0)

Kh(yt�j � y)bp0(y) [m0(yt�j)�m0(y)]

+
1

T

TX
t=1

�TX
j 6=0

 �j(�0)
Kh(yt�j � y)bp0(y) m0(yt�j)�

�TX
j 6=0

Z
 �j(�0)

bp0;j(y; x)bp0(y) m0(x)dx

= h2�2(K)

�
p00(y)

p0(y)
m0
0(y) +

1

2
m00
0(y)

�
+
X
j 6=0

 �j(�0)
1

T

TX
t=1

Kh(yt � y)bp0(y)
�
m0(yt+j)�

Z
Kh(yt+j � x)m0(x)dx

�
+ op(T

�1=2)

= h2�2(K)

"
p00(y)

p0(y)
m0
0(y) +

1

2
m00
0(y) +

1

2

X
j 6=0

 �j(�0)

Z
m00
0(u)p0;j(y; u)du

1

p0(y)

#
+op(T

�1=2)

= h2�2(K)

�
p00(y)

p0(y)
m0
0(y) +

1

2
m00
0(y)�

1

2
H�0m

00
0(y)

�
+ op(T

�1=2):
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Therefore we get uniformly in j y j� c

bm�0(y)�m�0(y) = (I � bH�0)
�1[bm�

�0
(y)� (I � bH�0)m�0(y)]

= (I �H�0)
�1[bm�

�0
(y)� (I � bH�0)m�0(y)] + op(T

�1=2)

=
1

T

TX
t=1

(I �H�0)
�1

"
�TX
j=1

 yj(�0)
Kh(yt�j � y)

p0(y)

#
�2tut + h2�2(K)(I �H�0)

�1

�
�
p00(y)

p0(y)

�
@

@y
H�0m0(y)�m0

0(y) +H�0m
0
0(y)

�
+
1

2
m00
0(y)�

1

2
H�0m

00
0(y)

�
+op(T

�1=2)

=
1

T

TX
t=1

K�
t �

2
tut + h2�2(K)

�
1

2
m00
0(y) + (I �H�0)

�1
�
p00(y)

p0(y)
(H�0m0)

�
(y)

�
+ op(T

�1=2)

with K�
t =

P�T
j=1  

y
j(�0)Kh(yt�j � y)=p0(y):From this stochastic expansion we immediately get an

expansion for the asymptotic bias. For the calculation of the asymptotic variance note that

hEK�2
t = h

1

p20(y)
f
X
j 6=`

 yj(�0) 
y
`(�0)E

�
Kh(yt�j � y)Kh(yt�` � y)E[�4tu

2
t jyt�j; yt�`]

	
+

1X
j=1

 yj(�0)
2E
�
K2
h(yt�j � y)E[�4tu

2
t jyt�j = y]

	
=

1

p0(y)
�0(K)

1X
j=1

 yj(�0)
2E(�4tu

2
t jyt�j = y)] + o(1)

=
1

p0(y)

" 1X
l=1

 l(�0)
2

#�1
�0(K)

1X
j=1

 j(�0)
2E[�4tu

2
t jyt�j = y] + o(1):

Proofs of Theorems 5 and 6: The proof make use of similar arguments as in Theorems

1-4. For this reason we only give a short outline. We �rst discuss em�0. Below we will show thate���0 = OP (T
�1=2). This can be used to show that supjyj�c jem�0(y)� eme�(y)j = oP (T

�2=5). Thus, up to

�rst order the asymptotics of both estimates coincide. We compare em�0 with the following theoretical

estimate em�. This estimate is de�ned by the following integral equation: em� = em�
� +

eH�
em�; where

em�
�(y) =

P�T
j=1  j(�)egaj (y)P�T
j=1  

2
j(�)egbj(y) ; eH�(x; y) =

�
P�T

j=1

P�T
l=1

l 6=j
 j(�) l(�)egcl;j(x; y) bp0;l�j(x;y)bp0(y)bp0(y)P�T
j=1  

2
j(�)egbj(y) :
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Here egaj is the local linear smooth of ��4t y2t on yt�j, egbj is the local linear �t of ��4t on yt�j, and egcl;j is
the bivariate local linear �t of ��4t on (yt�l; yt�j). Note that egaj ; egbj ; egcl;j are de�ned as bgaj ; bgbj ; bgcl;j, but
with b�2t replaced by �2t . Furthermore, em� is de�ned as em� but with bgaj ; bgbj ; bgcl;j replaced by egaj ; egbj ; egcl;j.
By tedious calculations one can verify for a constant C > 0 that there exist a bounded function

b such that uniformly for jyj � c; k� � �0k � CT�1=2; em�(y)� em�(y)� h2b(y) = oP (T
�1=2): The bias

term b is caused by bias terms of b�2t � �2t . So up to bias terms the asymptotics of em�(y) and em�(y)

coincide.

The estimate em�0(y) can be treated as bm�0(y) in the proof of Theorem 3. As stochastic term ofem�0(y) we get

1

T

TX
t=1

Kt(y)�
�4
t (y

2
t � �2t ) =

1

T

TX
t=1

Kt(y)�
�2
t ut;

where

Kt(y) =

P�T
j=1  j(�0)Kh(yt�j � y)

p0(y)
P�T

j=1  
2
j(�0)E[�

�4
t jyt�j = y]

:

Asymptotic normality of this term can be shown by use of central limit theorems as in the proof of

Theorem 1. For the calculation of the asymptotic variance it can be easily checked that

hE
�
Kt(y)

2��4t u2t
�
=

1

p0(y)

�0(K)
P1

j=1  
2
j(�0)E(�

�4
j u2j jy0 = y)hP1

j=1  
2
j(�0)E(�

�4
j jy0 = y)

i2 + o(1);

from which the result follows. In the special case of homokurtosis, the numerator simpli�es as stated.

Use of the above arguments give the statement of Theorem 5. For the proof of Theorem 6 one

shows

@el
@�
(�0) = � 1

T

TX
t=1

��2t ut
@�2t
@�
(�0) + oP (T

�1=2);(69)

@2el
@�2

(�) = �E
�
��4t

@�2t
@�

@�2t
@�>

(�0)

�
+ oP (1);(70)

uniformly for j�� �0j < CT�1=2 for all C > 0. This shows that for cT !1 slowly enough there exist

a unique local minimizer e� of el(�) in a cTT�1=2 neighborhood of �0 with
e� = �0 �

�
E

�
��4t

@�2t
@�

@�2t
@�>

(�0)

���1
1

T

TX
t=1

��2t ut
@�2t
@�
(�0) + oP (T

�1=2):

This expansion can be used to show the desired asymptotic normal limit for e�. It remains to show
(69)-(70). This can be done by using similar arguments as for the proof of (62) and (63).
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Proof of Theorem 7: For 0 < c � 1 we de�ne the operator

H�;cm(y) =

Z c

�c
H�(y; x)m(x)p0(x) dx:

We write jjmjj1;2 for the L2(p0)-norm

jjmjj21;2 =

Z 1

�1
m(x)2p0(x) dx:

For a linear operator A :L2(p0)!L2(p0) we write jjAjj1;2

jjAjj1;2 = sup
jjmjj1;2�1

jjAmjj1;2:

We have added the subindex 1 to indicate that integration now runs from �1 to 1. For Hilbert-
Schmidt operators A :L2(p0) !L2(p0) we denote the maximal eigenvalue by �max(A). Using the
same arguments as in Section 2.1 we get from (C2) that for 0 < c � 1, � 2 �; �max(H�;c) < 1:

With the help of (C1) and (C3) we conclude that there exist constants c� > 0 and 0 < � < 1 with

�max(H�;c) < � for c� � c � 1, � 2 �. This implies that k(I � H�;c)
�1k1;2 � (1 � �)

�1: By

de�nition we have with ��(y) = �c(y; ��;c)�m�;1(y)

(71) m�;c(y)�m�;1(y) = H�;c(m�;c �m�;1)(y) + (H�;1 �H�;c)��(y):

This implies

jjm�;c �m�;1jj1;2 � k(I �H�;c)
�1k1;2kH�;1 �H�;ck1;2�(c):

This shows claim (38). For the proof of claim (39) note that we get from (71)

m�;c �m�;1 =
�
I +H�;c +H2

�;c (I �H�;c)
�1� [H�;1 �H�;c] ��:

Proof of Theorem 8 and 9: We �rst de�ne explicitly the estimators bm�;c;b��;c; to do this we
obtain a population characterization of m�;c; ��;c: Write �

c for the function vector that vanishes on

[�c; c] and is equal to � outside of [�c; c]. The functions are then elements of a linear subspace L2
of L2(p0). This subspace consists in all functions m of L2(p0) that ful�ll m(y) = �>�(y) for jyj � c

for some parameter �. We also write m = (mc; �) for elements of L2. As above we now consider

the target function (m�;c; ��;c) that minimizes E[fy2t �
P1

j=1  j(�)[mc(yt�j) + �>�c(yt�j)]g2] over all
elements (mc; �) of L2. This tuple is uniquely determined by the following linear operator equation:

(m�;c; ��;c) = (m
�
�;c; �

�
�;c) +H�

�;c(m�;c; ��;c):
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Here for jyj � c the function m�
�;c(y) is de�ned as m

�
�(y). The parameter �

�
�;c is given by �

�
�;c =

E[y2t
P1

k=1  
y
k(�)�(yt�k)]. The operator H�

�;c is de�ned by H�
�;c(mc; �) = (m

H
c ; �

H) with

mH
c (y) =

Z
jxj�c

H�(y; x)mc(x)p0(x) +

Z
jxj>c

H�(y; x)�
>�(x)p0(x) dx for jyj � c;

�H =

�Z
jxj�c

�(x)�(x)>p0(x) dx

��1 �Z
jxj�c;jyj�c

�(x)�(y)>�H�(y; x)p0(x)p0(y) dx dy

+

Z
jxj�c;jyj�c

�(x)H�(x; y)mc(x)p0(x)p0(y) dx dy

�
:

Estimates of (m�;c; ��;c) are given by the solution (bm�;c;b��;c) of the following linear equation
(72) (bm�;c;b��;c) = (bm�

�;c;
b���;c) + bH�

�;c(bm�;c;b��;c):
Here bm�

�;c is de�ned as in Section 2.1. The parameter �
� can be estimated by b�� =P�T

k=1  
y
k(�)(T �

k)�1
PT

t=k+1 y
2
t �(yt�k). The operator bH�

�;c is de�ned by bH�
�;c(mc; �) = (m

bH
c ; �

bH) with
m

bH
c (y) =

Z
jxj�c

bH�(y; x)mc(x)p0(x) + �>b�H(y) for jyj � c;

�
bH = bA�1� � bB�� +

Z
jyj�c

b�H(y)mc(y)p0(y) dy

�
:

Here bA� = T�1
PT

t=1 �
c(yt)�

c(yt)
> and bB� =

P
1<jlj��T  

�
l (�)(T � l)�1

PT
t=l+1 �(yt)�(yt�l)

>. The

function b�H(y) is de�ned as b�H(y) = P
1<jlj��T  

�
l (�)brl(y) where brl(y) is a local linear �t of the

conditional expectation E[�(yt+l)jyt = y]. Equation (72) can be solved by �rst eliminating the

unknown b��;c. Then one has a linear integral equation with unknown bm�;c. The integral equation can

be solved by the numerical methods discussed above. The random operator bH�
�;c can be discussed as

the operator bH� in the proof of Theorem 1. This leads to quite analogous results for the estimatesb��;c and bm�;c. The proofs of Theorems 8 and 9 follow now directly along the line of Theorem 1.

APPENDIX C: ADDITIONAL LEMMA

Lemma 1. We have for j = 0; 1; 2

sup
jyj�c;�2�

���� @j@�j
hbm�(y)�mB

� (y)�mE
� (y)� (I �H�)

�1
�bm�;C

� + bm�;F
�

�
(y)
i���� = op(T

�1=2):

Proof of Lemma 1. For j = 0 the claim follows along the lines of the proof of Theorem 1. Note

that in the expansions of the theorem now (bm�;C
� + bm�;F

� )(y) is replaced by (I �H�)
�1 (bm�;C

� + bm�;F
� )(y).
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The di¤erence of these terms is of order OP (T
�1=2). For the proof for j = 1 we make use of the

following integral equation for bm1
� =

@
@�
bm�

bm1
� =

@

@�
bm�
� +

�
@

@�
bH�

� bm� + bH� bm1
�:

Thus with bm�;1
� =

@

@�
bm�
� +

�
@

@�
bH�

� bm�

the derivative bm1
� ful�lls bm1

� = bm�;1
� + bH� bm1

�: This is an integral equation with the same integral

kernel bH� but with another intercept. An expansion for the solution can be achieved by the same

approach as for bm. Similarly, one proceeds for j = 2. These arguments use condition B10.
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TABLE 1. Fiorentini et al. (1996) �2t = 0:2 + 0:45�
2
t�1 + 0:35y

2
t�1

Quantile 1% 10% 25% 50% 75% 90% 99%
n bias std bias std bias std bias std bias std bias std bias stdbm 200 0.598 3.712 0.089 0.363 -0.086 0.210 -0.122 0.213 -0.079 0.212 0.039 0.307 0.462 2.054

Quadratic 400 0.619 2.524 0.062 0.243 -0.092 0.147 -0.124 0.142 -0.085 0.146 0.025 0.222 0.575 1.559
800 0.608 1.750 0.029 0.170 -0.091 0.100 -0.117 0.092 -0.090 0.100 0.013 0.168 0.540 1.100
200 -2.349 3.453 0.152 0.422 -0.013 0.138 -0.057 0.127 -0.012 0.133 0.105 0.357 -0.046 1.749

Linear 400 -1.396 2.213 0.127 0.267 -0.024 0.100 -0.063 0.084 -0.022 0.096 0.104 0.240 0.371 1.288
800 -0.398 1.435 0.088 0.168 -0.028 0.068 -0.057 0.054 -0.025 0.069 0.087 0.176 0.528 1.011
200 -3.332 2.955 -0.035 0.222 0.026 0.104 0.042 0.077 0.031 0.096 -0.035 0.194 -1.100 1.221

Constant 400 -2.804 2.004 -0.016 0.159 0.018 0.078 0.025 0.054 0.019 0.077 -0.017 0.149 -0.927 0.782
800 -2.218 1.325 -0.014 0.113 0.009 0.055 0.014 0.041 0.011 0.058 -0.005 0.118 -0.683 0.540em 200 -0.746 20.000 -0.109 0.278 0.025 0.082 0.073 0.055 0.027 0.063 -0.096 0.186 -0.460 1.960

Quadratic 400 -0.445 3.159 -0.102 0.145 0.015 0.048 0.058 0.036 0.017 0.041 -0.091 0.103 -0.344 1.034
800 -0.441 3.143 -0.092 0.060 0.009 0.030 0.046 0.025 0.010 0.028 -0.083 0.058 -0.339 0.683
200 -0.562 12.504 -0.092 0.223 0.034 0.074 0.079 0.052 0.036 0.067 -0.081 0.200 -0.422 2.232

Linear 400 -0.404 3.527 -0.072 0.173 0.032 0.060 0.068 0.036 0.032 0.045 -0.066 0.107 -0.221 1.127
800 -0.047 1.765 -0.057 0.065 0.028 0.030 0.058 0.025 0.030 0.031 -0.046 0.065 -0.200 0.773
200 -1.022 10.612 -0.154 0.137 0.029 0.066 0.089 0.056 0.033 0.059 -0.130 0.112 -0.730 1.814

Constant 400 -0.951 3.040 -0.146 0.092 0.029 0.047 0.081 0.039 0.028 0.042 -0.130 0.073 -0.744 0.663
800 -0.921 1.508 -0.144 0.042 0.023 0.027 0.075 0.026 0.025 0.028 -0.127 0.042 -0.845 0.458bmLik 200 0.534 0.095 0.036 0.048 0.036 0.096 0.539

MLE 400 0.378 0.067 0.025 0.035 0.025 0.068 0.381
800 0.267 0.047 0.018 0.024 0.018 0.047 0.267

Notes. The quantiles are of the distribution of yt; bias and std denote bias and standard deviation respectively. MLE
results are taken from the simulated asymptotic distribution, hence there is no bias.



Figure 1. Shows q-q plots of local constant em from Model 1. Panel (a) shows
results for y-quantile equal to 0:01; while (b) shows results for y-quantile equal

to 0:50: (i) corresponds to n = 200; (ii) n = 400; (iii) n = 800:



S&P500 Data
Parametric Estimation and Sample Statistics

Table 2. Cumulants by Frequency
Daily Weekly Monthly

Mean (�100) 0.029 0.141 0.606
Std (�100) 0.038 0.200 0.903
Skewness -1.546 -0.375 -0.589
Excess Kurtosis 43.334 6.521 5.588
Minimum -25.422 -6.577 -5.984
Maximum 9.623 6.534 3.450

Note: Descriptive statistics for the returns on the S&P500 index for the period
1955-2002 for three di¤erent data frequencies. Minimum and maximum are mea-
sured in standard deviations and from the mean.

Table 3. Parametric Estimation
Daily Weekly Monthly

�1 0:138788
(0:009524)

0:007065
(0:022000)

0:14661
(0:045131)

�2 �0:01906
(0:009449)

0:051815
(0:022044)

�0:018694
(0:045083)

�(�1000) 0:0000721
(0:0000064)

0:00130
(0:000242)

0:862000
(0:249000)

� 0:920489
(0:002243)

0:850348
(0:015580)

0:442481
(0:176365)

 0:034018
(0:002613)

0:047885
(0:013504)

�0:076662
(0:042047)

� 0:078782
(0:003302)

0:140013
(0:020349)

0:266916
(0:094669)

Note: Standard errors in parentheses. These estimates are for the raw data series
and refer to the AR(2)-GJR-GARCH(1,1) model
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Figure 2. Conditional cumulants of weekly S&P500 returns for lags
k = 1; : : : ; 10. (a) Mean ; (b) Variance ; (c) Skewness ; (d) Kurtosis



Figure 3. Shows the bandwidth hT (y) used in the computation of bm�(y) for the
weekly S&P500 returns data.



Figure 4. Shows estimated News Impact Curves for (a) daily, (b) weekly, and (c)
monthly S&P500 returns along with Standard errors in second panel. Solid line

is bmGJR, dashed is bmb�GJR ; dotted is emb�GJR :



Figure 5. S&P500 weekly data. Negative of Log Likelihood as a function of �:



Figure 6. Residual diagnostics of estimated semiparametric model for weekly
S&P500 data. Shows estimated ACF along with 95% Bartlett intervals: (a) forb"2t ; (b) for e"2t .


