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1 Introduction

The Basel Capital Adequacy Accord, now under revision, forced banks and other

Þnancial institutions to develop models to quantify all their risks accurately. In practice,

most institutions chose the so-called Value at Risk (V@R) framework to determine the

capital necessary to cover their market risk exposure. As is well known, the V@R of a

portfolio is deÞned as the positive threshold value V such that the probability of the port-

folio suffering a reduction in wealth larger than V over some Þxed time interval equals

some prespeciÞed level κ < 1/2. Undoubtedly, the most successful V@R methodology

was developed by the RiskMetrics Group (1996). A key assumption of this methodology,

though, is that the distribution of the returns on primitive assets, such as stocks and

bonds, can be well approximated by a multivariate normal distribution after controlling

for predictable time-variation in their covariance matrix. However, many empirical stud-

ies with Þnancial time series data indicate that the distribution of asset returns is clearly

non-normal even after taking volatility clustering effects into account. And although it is

true that we can obtain consistent estimators of the conditional mean and variance para-

meters irrespective of the validity of the assumption of normality by using the Gaussian

pseudo-maximum likelihood (PML) procedure advocated by Bollerslev and Wooldridge

(1992) among others, the resulting V@R estimates could be substantially biased if the

extreme tails accumulate more density than a normal distribution can allow for. This

is particularly true in the context of multiple Þnancial assets, in which the probabil-

ity of the joint occurrence of several extreme events is regularly underestimated by the

multivariate normal distribution, especially in larger dimensions.

For most practical purposes, departures from normality can be attributed to two dif-

ferent sources: excess kurtosis and skewness. Excess kurtosis implies that extraordinary

gains or losses are more common than what a normal distribution predicts. Analogously,

if we assume zero mean returns for simplicity, positive (negative) skewness indicates a

higher (lower) probability of experiencing large gains than large losses of the same mag-

nitude. Therefore, the effects of non-normality are especially noticeable in the tails of the

distribution. In a recent paper, Fiorentini, Sentana and Calzolari (2003a) (FSC) discuss

the use of the multivariate Student t distribution to model excess kurtosis. Despite its

attractiveness, though, the multivariate Student t distribution, which is a member of the

elliptical family, rules out any potential asymmetries in the conditional distribution of
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asset returns. Such a shortcoming is more problematic than it may seem, because ML

estimators based on incorrectly speciÞed non-Gaussian distributions often lead to incon-

sistent parameter estimates (see Newey and Steigerwald, 1997). In this context, the main

objective of our paper is to assess the adequacy of the distributional assumption made

by FSC and other authors by considering an alternative family of distributions which al-

lows for both excess kurtosis and asymmetries in the innovations, but which at the same

time nests the multivariate Student t and Gaussian distributions. SpeciÞcally, we will

use the Generalised Hyperbolic (GH) distribution (see Barndorff-Nielsen and Shephard,

2001a and Prause, 1998), which is a rather ßexible asymmetric multivariate distribution

that to the best of our knowledge has not yet been used for modelling the conditional

distribution of Þnancial time series. Formally, the GH distribution can be understood as

a location-scale mixture of a multivariate Gaussian vector, in which the positive mixing

variable follows a Generalised Inverse Gaussian (GIG) distribution (see Jørgensen, 1982,

and Johnson, Kotz, and Balakrishnan, 1994, for details, as well as appendix D).

Our approach differs from Bera and Premaratne (2002), who also nest the Student t

distribution by using Pearson�s type IV distribution in univariate static models. However,

these authors do not explain how to extend their approach in multivariate contexts, nor

do they consider dynamic models explicitly. Our approach also differs from Bauwens

and Laurent (2002), who introduce skewness by �stretching� the multivariate Student t

distribution differently in different orthants. However, the larger the dimension of the

random vectors, the more difficult the implementation of their technique becomes, as

the number of orthants is 2N , where N denotes the number of assets.

The rest of the paper is organised as follows. We Þrst give an overview of the original

GH distribution in section 2.1, and explain how to reparametrise it so that it has zero

mean and unitary covariance matrix. Then, in section 2.2 we describe the econometric

model under analysis, while in sections 2.3, 2.4 and 2.5 we discuss the computation of

the log-likelihood function, its score, and the information matrix, respectively. Section

3 focuses on testing distributional assumptions. In particular, we develop tests for both

multivariate normal and multivariate Student t innovations against GH alternatives in

sections 3.1 and 3.2, respectively. Finally we include an illustrative empirical application

to 26 U.K. sectorial stock returns in section 4, followed by our conclusions. Proofs and

auxiliary results can be found in the appendix.
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2 Maximum likelihood estimation
2.1 The Generalised Hyperbolic distribution

If the N × 1 random vector u follows a GH distribution with parameters ν, δ, γ,α,β

and Υ, which we write as u ∼ GHN (ν, δ, γ,α,β,Υ), then its density will be given by

fGH(u) =

¡
γ
δ

¢ν
(2π)

N
2 [β0Υβ + γ2]

ν−N
2 |Υ| 12 Kν (δγ)

np
β0Υβ + γ2δq

£
δ−1(u−α)

¤oν−N
2

×Kν−N
2

np
β0Υβ + γ2δq

£
δ−1(u−α)

¤o
exp [β0 (u−α)] ,

where ν ∈ R, δ, γ ∈ R+, α,β ∈ RN , Υ is a positive deÞnite matrix of order N , Kν (·)
is the modiÞed Bessel function of the third kind (see Abramowitz and Stegun (1965), as

well as appendix C), and q
£
δ−1(u−α)

¤
=
q
1 + δ−2(u−α)0Υ−1(u−α).

To gain some intuition on the role that each parameter plays in the GH distribution,

it is useful to write u as the following location-scale mixture of normals

u = α+Υβξ−1 + ξ−
1
2Υ

1
2 r, (1)

where r is a spherical normal random vector, and the positive mixing variable ξ is an

independent GIG with parameters −ν, γ and δ, or ξ ∼ GIG (−ν, γ, δ) for short. Since u

given ξ is Gaussian with conditional mean α+Υβξ−1 and covariance matrix Υξ−1, it is

clear that α and Υ play the roles of location vector and dispersion matrix, respectively.

There is a further scale parameter, δ; two other scalars, ν and γ, to allow for ßexible tail

modelling; and the vector β, which introduces skewness in this distribution.

Given that δ and Υ are not separately identiÞed, Barndorff-Nielsen and Shephard

(2001b) set the determinant of Υ equal to 1. However, it is more convenient to set δ = 1

instead in order to reparametrise the GH distribution so that it has mean vector 0 and

covariance matrix IN . In addition, we must restrict α and Υ as follows:

Proposition 1 (Standardisation) Let ε∗ ∼ GHN (ν, δ, γ,α,β,Υ). If δ = 1, α =
−c (β, ν, γ)β, and

Υ =
γ

Rν (γ)

·
IN +

c (β, ν, γ)− 1
β0β

ββ0
¸
, (2)

where Rν (γ) = Kν+1 (γ) /Kν (γ), Dν+1 (γ) = Kν+2 (γ)Kν (γ) /K
2
ν+1 (γ) and

c (β, ν, γ) =
−1 +

p
1 + 4[Dν+1 (γ)− 1]β0β

2[Dν+1 (γ)− 1]β0β , (3)

then E (ε∗) = 0 and V (ε∗) = IN .
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One of the most attractive properties of the GH distribution is that it contains as

particular cases several of the most important multivariate distributions already used in

the literature. The most important ones are:

� Normal, which can be achieved in three different ways: (i) when ν → −∞ or (ii)

ν → +∞, regardless of the values of γ and β; and (iii) when γ →∞ irrespective of the

values of ν and β.

� Symmetric Student t, obtained when −∞ < ν < −2, γ = 0 and β = 0.

� Asymmetric Student t, which is like its symmetric counterpart except that the
vector β of skewness parameters is no longer zero.

� Asymmetric Normal-Gamma, which is obtained when γ = 0 and 0 < ν <∞.
� Normal Inverse Gaussian, for ν = −.5 (see Eriksson, Forsberg, and Ghysels, 2003).
More generally, the distribution of ε∗ becomes a simple scale mixture of normals,

and thereby spherical, when β is zero, with a coefficient of multivariate kurtosis that is

monotonically decreasing in both γ and |ν| (see appendix E). Like any scale mixture of
normals, though, the GH distribution does not allow for thinner tails than the normal.

Nevertheless, Þnancial returns are very often leptokurtic in practice, as section 4 conÞrms.

Another important feature of the standardised GH distribution is that, although the

elements of ε∗ are uncorrelated, they are not independent except in the multivariate

normal case. In general, the GH distribution induces �tail dependence�, which operates

through the positive GIG variable in (1). Intuitively, ξ forces the realisations of all the

elements in ε∗ to be very large in magnitude when it takes very small values, which

introduces dependence in the tails of the distribution. In addition, we can make this

dependence stronger in certain regions by choosing β appropriately. SpeciÞcally, we can

make the probability of extremely low realisations of both variables much higher than

what a Gaussian variate can allow for, as illustrated in Figures 1a-f, which compare the

densities of standardised bivariate normal with symmetric and asymmetric Student t

distributions. Hence, the GH distribution could capture the empirical observation that

there is higher tail dependence across stock returns in market downturns.

Finally, we can show that linear combinations of GH variables are also GH :

Proposition 2 Let ε∗ be distributed as a N × 1 standardised GH random vector with
parameters ν, γ and β. Then, for any vector w ∈ RN , s∗ = w0ε∗/

√
w0w is distributed

as a standardised GH scalar random variable with parameters ν, γ and

β(w) =
c (β, ν, γ) (w0β)

√
w0w

w0w + [c (β, ν, γ)− 1] (w0β)2/(β0β)
.
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Note that only the skewness parameter, β(w), is affected, as it becomes a function

of the weights of the linear combination, w.

2.2 The dynamic econometric model

Barndorff-Nielsen and Shephard (2001a) use the (non-standardised) GH distribu-

tion in the previous section to capture the unconditional distribution of returns on as-

sets whose price dynamics are generated by continuous time stochastic volatility models

in which the instantaneous volatility follows an Ornstein-Uhlenbeck process with Lévy

innovations. Discrete time models for Þnancial time series, in contrast, are usually

characterised by an explicit dynamic regression model with time-varying variances and

covariances. Typically, the N dependent variables in yt are assumed to be generated as

yt = µt(θ) +Σ
1
2
t (θ)ε

∗
t ,

µt(θ) = µ (zt, It−1;θ) ,
Σt(θ) = Σ (zt, It−1;θ) ,

 (4)

where µ() and vech [Σ()] are N and N(N+1)/2-dimensional vectors of functions known

up to the p × 1 vector of true parameter values, θ0, zt are k contemporaneous condi-

tioning variables, It−1 denotes the information set available at t − 1, which contains
past values of yt and zt, Σ

1/2
t (θ) is some N × N �square root� matrix such that

Σ
1/2
t (θ)Σ

1/20
t (θ) = Σt(θ), and ε∗t is a vector martingale difference sequence satisfying

E(ε∗t |zt, It−1;θ0) = 0 and V (ε∗t |zt, It−1;θ0) = IN . As a consequence, E(yt|zt, It−1;θ0) =
µt(θ0) and V (yt|zt, It−1;θ0) = Σt(θ0).
In this context, FSC assumed that ε∗t followed a standardised multivariate Student

t distribution with ν0 degrees of freedom conditional on zt and It−1. Instead, we will

assume that the conditional distribution of the standardised innovations belongs to the

more general GH class. Hence, we will be able to assess the adequacy of their assumption

by allowing for both skewness and more ßexible excess kurtosis in the distribution of ε∗t .

However, we must be particularly careful in making sure that our parametrisation is

invariant to the choice of �square root� factorisation of Σt(θ) because ε∗t is not generally

observable. In particular, we do not want the conditional distribution of yt to depend

on whether Σ1/2t (θ) is a symmetric or lower triangular matrix, nor in the order of the

observed variables in the latter case. Although such a dependence does not arise in

univariate GH models, or in multivariate GH models in which either Σt(θ) is time-

invariant or β = 0, it is a problem that previous efforts to model multivariate skewness
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have not fully solved (see e.g. Bauwens and Laurent, 2002). In this paper, we circumvent

this undesirable feature by making β a function of past information and a new vector of

parameters b in the following way:

βt(θ,b) = Σ
1
2
0

t (θ)b. (5)

It is then straightforward to see that the resulting GH log-likelihood function will not

depend on the choice of Σ
1
2
t (θ).

1

Finally, it is analytically convenient to replace ν and γ by η and ψ, where η = −.5ν−1

and ψ = (1 + γ)−1.2 An undesirable aspect of this reparametrisation is that the log-

likelihood is continuous but non-differentiable with respect to η at η = 0, even though

it is continuous and differentiable with respect to ν for all values of ν. The problem

is that at η = 0, we are pasting together the extremes ν → ±∞ into a single point.

Nevertheless, it is still worth working with η instead of ν when testing for normality.

2.3 The log-likelihood function

Let φ = (θ0, η, ψ,b)0 denote the parameters of interest. The log-likelihood func-

tion of a sample of size T takes the form LT (YT |φ) =
PT

t=1 l (yt|zt, It−1;φ), where
l (yt|zt, It−1;φ) is the conditional log-density of yt given zt, It−1 and φ. Given the non-

linear nature of the model, a numerical optimisation procedure is usually required to

obtain maximum likelihood (ML) estimates of φ, àφT say. Assuming that all the ele-

ments of µt(θ) and Σt(θ) are twice continuously differentiable functions of θ, we can use

a standard gradient method in which the Þrst derivatives are numerically approximated

by re-evaluating LT (φ) with each parameter in turn shifted by a small amount, with an

analogous procedure for the second derivatives. Unfortunately, such numerical derivat-

ives are sometimes unstable, and moreover, their values may be rather sensitive to the

size of the Þnite increments used. This is particularly true in our case, because even if

the sample size T is large, the GH log-likelihood function is often rather ßat for values of

the parameters that are close to the Gaussian case (see FSC). Fortunately, in this case it

is possible to obtain analytical expressions for the score vector (see appendix B), which

should considerably improve the accuracy of the resulting estimates (McCullough and

1Nevertheless, it would be fairly easy to adapt all our subsequent expressions to the alternative
assumption that βt(θ,b) = b ∀t (see Mencía, 2003).

2We continue to use ν and γ in some equations for notational simplicity. However, we always interpret
them as functions of η and ψ, and not as parameters of interest.
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Vinod, 1999). Moreover, a fast and numerically reliable procedure for the computation

of the score for any value of φ is of paramount importance in the implementation of the

score-based indirect estimation procedures introduced by Gallant and Tauchen (1996).

2.4 The score vector

We can use EM algorithm - type arguments to obtain analytical formulae for the

score function st(φ) = ∂l (yt|zt, It−1;φ) /∂φ. The idea is based on the identity:

l (yt, ξt|zt, It−1;φ) ≡ l (yt|ξt, zt, It−1;φ) + l (ξt|zt, It−1;φ)
≡ l (yt|zt, It−1;φ) + l (ξt|yt, zt, It−1;φ) ,

where l (yt, ξt|zt, It−1;φ) is the joint log-density function of yt and ξt (given zt, It−1 and

φ); l (yt|ξt, zt, It−1;φ) is the conditional log-likelihood of yt given ξt (zt, It−1 and φ);

l (ξt|yt, zt, It−1;φ) is the conditional log-likelihood of ξt given yt (zt, It−1 and φ); and

Þnally l (yt|zt, It−1;φ) and l (ξt|zt, It−1;φ) are the marginal log-densities of yt and ξt

(given zt, It−1 and φ), respectively. If we differentiate both sides of the previous identity

with respect to φ, and take expectations, then we will end up with:

st(φ) = E

µ
∂l (yt|ξt, zt, It−1;φ)

∂φ

¯̄̄̄
YT ;φ

¶
+E

µ
∂l (ξt|zt, It−1;φ)

∂φ

¯̄̄̄
YT ;φ

¶
(6)

because E [∂l (ξt|yt, zt−1, It−1;φ) /∂φ|YT ;φ] = 0 by virtue of the Kullback inequality.

In this way, we decompose st(φ) as the sum of the expected values of (i) the score of

a multivariate Gaussian log-likelihood function, and (ii) the score of a univariate GIG

distribution, both of which are easy to obtain (see appendix B for details).

For the purposes of developing our testing procedures in section 3, it is convenient

to obtain closed-form expressions for st(φ) under the two important special cases of

multivariate Gaussian and Student t innovations.

2.4.1 The score under Gaussianity

As we saw before, we can achieve normality in three different ways: (i) when η → 0+

or (ii) η → 0− regardless of the values of b and ψ; and (iii) when ψ → 0, irrespective

of η and b. Therefore, it is not surprising that the Gaussian scores with respect to

η or ψ are 0 when these parameters are not identiÞed, and also, that lim
η·ψ→0

sbt(φ) = 0.

Similarly, the limit of the score with respect to the mean and variance parameters,

limη·ψ→0 sθt(φ), coincides with the usual Gaussian expressions (see e.g. Bollerslev and
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Wooldridge (1992)). Further, we can show that for Þxed ψ > 0,

lim
η→0+

sηt(φ) = − lim
η→0−

sηt(φ) =

·
1

4
ς2t (θ)−

N + 2

2
ς t(θ) +

N (N + 2)

4

¸
+b0 {εt(θ) [ςt(θ)− (N + 2)]} , (7)

where εt(θ) = yt − µt(θ), ε∗t (θ) = Σ
− 1
2

t εt(θ) and ς t(θ) = ε∗0t (θ)ε
∗
t (θ), which conÞrms

the non-differentiability of the log-likelihood function with respect to η at η = 0. Finally,

we can also show that for Þxed η 6= 0, lim
ψ→0

sψt(φ) is exactly one half of (7).

2.4.2 The score under Student t innovations

In this case, we have to take the limit as ψ → 1 and b → 0 of the general score

function. Not surprisingly, the score with respect to π, where π = (θ0, η)0, coincides with

the formulae in FSC. But our more general GH assumption introduces two additional

terms: the score with respect to b,

sbt (π, 1, 0) =
η [ς t(θ)− (N + 2)]
1− 2η + ης t(θ) εt(θ), (8)

which we will use for testing the Student t distribution versus asymmetric alternatives;

and the score with respect to ψ, which in this case is identically zero despite the fact

that ψ is locally identiÞed. We shall revisit this issue in section 3.2.

2.5 The information matrix

Given correct speciÞcation, the results in Crowder (1976) imply that the score vector

st(φ) evaluated at the true parameter values φ0 has the martingale difference property.

In addition, his results also imply that under additional regularity conditions (which in

particular require that φ0 is locally identiÞed and belongs to the interior of the parameter

space), the ML estimator will be asymptotically normally distributed with a covariance

matrix which is the inverse of the usual information matrix

I(φ0) = p lim
T→∞

1

T

TX
t=1

st(φ0)s
0
t(φ0) = E[st(φ0)s

0
t(φ0)]. (9)

The simplest consistent estimator of I(φ0) is the sample outer product of the score:

�IT (àφT ) =
1

T

TX
t=1

st(àφT )s
0
t(àφT ).

However, the resulting standard errors and tests statistics can be badly behaved in Þnite

samples, especially in dynamic models (see e.g. Davidson and MacKinnon, 1993). We
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can evaluate much more accurately the integral implicit in (9) in pure time series models

by generating a long simulated path of size Ts of the postulated process ày1, ày2, · · · , àyTs,
where the symbol � indicates that the data has been generated using the GH maximum

likelihood estimates àφT . Then, if we denote by sts(àφT ) the value of the score function

for each simulated observation, our proposed estimator of the information matrix is

�ITs(àφT ) =
1

Ts

TsX
ts=1

sts(àφT )s
0
ts(

àφT ),

where we can get arbitrarily close in a numerical sense to the value of the asymptotic

information matrix evaluated at àφT , I(àφT ), as we increase Ts. Our experience suggests

that Ts = 100, 000 yields reliable results. In this respect, the simplest way to simulate

a GH variable is to exploit its mixture-of-normals interpretation in (1) after sampling

from a multivariate normal and a scalar GIG distribution (see Dagpunar, 1989).

In some important special cases, though, it is also possible to estimate I(φ0) as the

sample average of the conditional information matrix It(φ) = V ar [st(φ)| zt, It−1;φ]. In
particular, analytical expressions for It(φ) can be obtained in the case of Gaussian and
Student t innovations.

2.5.1 The conditional information matrix under Gaussianity

In principle, we must study separately the three possible ways to achieve normality.

First, consider the conditional information matrix when η → 0+,· Iθθt (θ, 0
+, ψ,b) Iθηt (θ, 0

+, ψ,b)
I 0θηt (θ, 0

+, ψ,b) Iηηt (θ, 0
+, ψ,b)

¸
= lim

η→0+
V

·
sθt (θ, η, ψ,b)
sηt (θ, η, ψ,b)

¯̄̄̄
zt, It−1;φ

¸
, (10)

where we have not considered either sbt(φ) or sψt(φ) because they are identically zero

in the limit. As expected, the conditional variance of the component of the score corres-

ponding to the conditional mean and variance parameters θ coincides with the expression

obtained by Bollerslev and Wooldridge (1992). Moreover, we can show that

Proposition 3 Iθηt (θ, 0
+, ψ,b) = 0 and Iηηt (θ, 0+, ψ,b) = (N + 2) [.5N + b0Σt(θ)b].

Not surprisingly, these expressions reduce to the ones in FSC for b = 0.

Similarly, when η → 0− we will have exactly the same conditional information matrix

because limη→0− sηt (θ, η, ψ,b) = − limη→0+ sηt (θ, η, ψ,b), as we saw before.
Finally, when ψ → 0, we must exclude sbt(φ) and sηt(φ) from the computation of

the information matrix for the same reasons as above. However, due to the propor-

tionality of the scores with respect to η and ψ under normality, it is trivial to see that

Iθψt (θ, η, 0,b) = 0, and that Iψψt (θ, η, 0,b) = 1
4
Iηηt (θ, 0+, ψ,b) = 1

4
Iηηt (θ, 0−, ψ,b).
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2.5.2 The conditional information matrix under Student t innovations

Since sψt (π, 1,0) = 0 ∀t, the only interesting components of the conditional in-
formation matrix under Student t innovations correspond to sθt(φ), sηt(φ) and sbt(φ).

In this respect, we can use Proposition 1 in FSC to obtain Iππt(θ, η > 0, 1,0) =

V [sπt(π, 1,0)|zt, It−1;π, 1,0]. As for the remaining elements, we can show that:

Proposition 4 Iηbt (θ, η > 0, 1,0) = 0,

Iθbt (θ, η > 0, 1,0) =
−2 (N + 2) η2

(1− 2η) (1 + (N + 2) η)
∂µ0t(θ)
∂θ

,

Ibbt (θ, η > 0, 1,0) =
2 (N + 2) η2

(1− 2η) (1 + (N + 2) η)Σt(θ).

3 Testing the distributional assumptions
3.1 Multivariate normality versus GH innovations

The derivation of a Lagrange multiplier (LM) test for multivariate normality versus

GH -distributed innovations is complicated by two unusual features. First, since the

GH distribution can approach the normal distribution along three different paths in the

parameter space, i.e. η → 0+, η → 0− or ψ → 0, the null hypothesis can be posed

in three different ways. In addition, some of the other parameters become increasingly

unidentiÞed along each of those three paths. In particular, η and b are not identiÞed in

the limit when ψ → 0, while ψ and b are unidentiÞed when η → 0±.

There are two standard solutions in the literature to deal with testing situations with

unidentiÞed parameters under the null. One approach involves Þxing the unidentiÞed

parameters to some arbitrary values, and then computing the appropriate test statistic

for those given values. This approach is plausible in situations where there are values

for the unidentiÞed parameters which make sense from an economic or statistical point

of view. Unfortunately, it is not at all clear a priori what values for b and ψ or η are

likely to prevail under the alternative of GH innovations. For that reason, we follow here

the second approach, which consists in computing the LM test statistic for the whole

range of values of the unidentiÞed parameters, which are then combined to construct

an overall test statistic (see Andrews, 1994 for a formal justiÞcation). In our case, we

compute LM tests for all possible values of b and ψ or η for each of the three testing

directions, and then take the supremum over those parameter values. As we will show in

the next subsections, we can obtain closed-form analytical expressions for the supremum
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of the LM test statistics, as well as for its asymptotic distribution, in contrast to what

happens in the general case (see again Andrews, 1994).

3.1.1 LM test for Þxed values of the unidentiÞed parameters

Let òθT denote the ML estimator of θ obtained by maximising a Gaussian log-

likelihood function. For the case in which normality is achieved as η → 0+, we can

use the results in sections 2.4.1 and 2.5.1 to show that for given values of ψ and b,

the LM test will be the usual quadratic form in the sample averages of the scores cor-

responding to θ and η, s̄θT

³
òθT , 0

+, ψ,b
´
and s̄ηT

³
òθT , 0

+, ψ,b
´
, with the inverse of

the unconditional information matrix as weighting matrix, which can be obtained as

the unconditional expected value of the conditional information matrix (10). But since

s̄θT

³
òθT , 0

+, ψ,b
´
= 0 by deÞnition of òθT , and Iθηt (θ0, 0

+, ψ,b) = 0, we can show that

LM1

³
òθT , ψ,b

´
=

h√
T s̄ηT

³
òθT , 0

+, ψ,b
´i2

E[Iηηt (θ0, 0+, ψ,b)]
.

We can operate analogously for the other two limits, thereby obtaining the test

statistic LM2

³
òθT , ψ,b

´
for the null η → 0−, and LM3

³
òθT , η,b

´
for ψ → 1. Somewhat

remarkably, all these test statistics share the same formula, which only depends on b:

Proposition 5 (LM normality test)

LM1

³
òθT , ψ,b

´
= LM2

³
òθT , ψ,b

´
= LM3

³
òθT , η,b

´
= LM

³
òθT ,b

´
= (N + 2)−1

µ
N

2
+ 2b0àΣb

¶−1(√
T

T

X
t

·
1

4
ς2t (òθT )−

N + 2

2
ς t(òθT ) +

N (N + 2)

4

¸

+b0
√
T

T

X
t

εt(òθT )
h
ς t(òθT )− (N + 2)

i)2
,

where àΣ is some consistent estimator of Σ(θ0) = E [Σt(θ0)].

Under standard regularity conditions, LM
³

òθT ,b
´
will be asymptotically chi-square

with one degree of freedom for a given b under the null hypothesis of normality, which

effectively imposes the single restriction η · ψ = 0 on the parameter space.
3.1.2 The supremum LM test

By maximising LM
³

òθT ,b
´
with respect to b, we obtain the following result:

Proposition 6 (Supremum test)

sup
b∈RN

LM(òθT ) = LMk(òθT ) + LMs(òθT ),

11



LMk(òθT ) =
2

N (N + 2)

(√
T

T

X
t

·
1

4
ς2t (òθT )−

N + 2

2
ς t(òθT ) +

N (N + 2)

4

¸)2
, (11)

LMs(òθT ) =
1

2 (N + 2)

(√
T

T

X
t

εt(òθT )
h
ς t(òθT )− (N + 2)

i)0
àΣ−1

×
(√

T

T

X
t

εt(òθT )
h
ς t(òθT )− (N + 2)

i)
, (12)

which converges in distribution to a chi-square random variable with N + 1 degrees of
freedom under the null hypothesis of normality.

The Þrst component of the sup test, i.e. LMk(òθT ), is numerically identical to the

LM statistic derived by FSC to test multivariate normal versus Student t innovations.

These authors reinterpret (11) as a speciÞcation test of the restriction on the Þrst two

moments of ς t(θ0) implicit in

E

·
N(N + 2)

4
− N + 2

2
ς t(θ0) +

1

4
ς2t (θ0)

¸
= E[mkt(θ0)] = 0, (13)

and show that it numerically coincides with the kurtosis component of Mardia�s (1970)

test for multivariate normality in the models he considered (see below). Hereinafter, we

shall refer to LMk(òθT ) as the kurtosis component of our multivariate normality test.

In contrast, the second component of our test, LMs(òθT ), arises because we also allow

for skewness under the alternative hypothesis. This symmetry component is asymptotic-

ally equivalent under the null and sequences of local alternatives to T times the uncentred

R2 from either a multivariate regression of εt(òθT ) on ς t(òθT )− (N +2) (Hessian version),
or a univariate regression of 1 on

h
ςt(òθT )− (N + 2)

i
εt(òθT ) (Outer product version).

Nevertheless, we would expect a priori that LMs(òθT ) would be the version of the LM

test with the smallest size distortions (see Davidson and MacKinnon, 1983).

It is also useful to compare our symmetry test with the existing ones. In particular,

the skewness component of Mardia�s (1970) test can be interpreted as checking that

all the (co)skewness coefficients of the standardised residuals are zero, which can be

expressed by the N(N + 1)(N + 2)/6 non-duplicated moment conditions of the form:

E[ε∗it(θ0)ε
∗
jt(θ0)ε

∗
kt(θ0)] = 0, i, j, k = 1, · · · , N (14)

But since ςt(θ0) = ε∗0t (θ0)ε
∗
t (θ0), it is clear that (12) is also testing for co-skewness.

SpeciÞcally, LMs(òθT ) is testing the N alternative moment conditions

E{εt(θ0)[ςt(θ0)− (N + 2)]} = E[mst(θ0)] = 0, (15)

12



which are the relevant ones against GH innovations.

A less well known multivariate normality test was proposed by Bera and John (1983),

who considered multivariate Pearson alternatives instead. However, since the asymmetric

component of their test simply assesses whether (14) holds for i = j = k = 1, · · · , N , we
shall not discuss it separately.

All these tests were derived for nonlinear regression models with conditionally ho-

moskedastic disturbances estimated by Gaussian ML, in which the covariance matrix of

the innovations, Σ, is unrestricted and does not affect the conditional mean, and the

conditional mean parameters, % say, and the elements of vech(Σ) are variation free.

In more general models, though, they may suffer from asymptotic size distortions, as

pointed out in a univariate context by Bontemps and Meddahi (2004) and Fiorentini,

Sentana, and Calzolari (2004). An important advantage of our proposed normality test

is that its asymptotic size is always correct because both (13) and (15) are orthogonal

by construction to the Gaussian score corresponding to θ evaluated at θ0.

By analogy with Bontemps and Meddahi (2004), one possible way to adjust Mardia�s

(1970) formulae is to replace ε∗3it (θ) by H3[ε
∗
it(θ)] and ε

∗2
it (θ)ε

∗
jt(θ) by H2[ε

∗
it(θ)]H2[ε

∗
it(θ)]

(i 6= j) in the moment conditions (14), where Hk(·) is the Hermite polynomial of order k.
Unfortunately, this will make his test numerically dependent on the chosen orthogonal-

isation of εt(θ). In this respect, note that both LMk(òθT ) and LMs(òθT ) are numerically

invariant to the way in which the conditional covariance matrix is factorised, unlike the

statistics proposed by Lütkephohl (1993), Doornik and Hansen (1994) or Kilian and

Demiroglu (2000), who apply univariate Jarque and Bera (1980) tests to ε∗it(òθT ).

3.1.3 A one-sided, Kuhn-Tucker multiplier version of the supremum test

As we discussed in section 2.1, the class of GH distributions can only accommodate

fatter tails than the normal. In terms of the kurtosis component of our multivariate

normality test, this implies that as we depart from normality, we will have

E [mkt(θ0)|θ0, η0 > 0, ψ0 > 0] > 0. (16)

In view of the one-sided nature of the kurtosis component, we will follow FSC and suggest

a Kuhn-Tucker (KT) multiplier version of the supremum test that exploits (16) in order

to increase its power (see also Andrews, 2001). SpeciÞcally, we recommend the use of

KT (òθT ) = LMk(òθT )1
³
m̄kT (òθT ) > 0

´
+ LMs(òθT ),
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where 1(·) is the indicator function, and m̄kT (θ) the sample mean of mkt(θ0). Asymp-

totically, the probability that m̄kT (òθT ) becomes negative is .5 under the null. Hence,

KT (òθT ) will be distributed as a 50:50 mixture of chi-squares with N and N +1 degrees

of freedom because the information matrix is block diagonal under normality. To obtain

p-values for this test, we can use the expression Pr (X > c) = 1− .5Fχ2N (c)− .5Fχ2N+1 (c)
(see e.g. Demos and Sentana, 1998)

3.1.4 Power of the normality test

It is interesting to study the power properties of the multivariate normality tests de-

rived in the previous sections. However, given that the block-diagonality of the informa-

tion matrix between θ and the other parameters is generally lost under the alternative of

GH innovations, and its exact form is unknown, we can only get closed form expressions

for the case in which the standardised innovations ε∗t are directly observed. Thus, for the

purposes of this exercise we will only consider models in which µt(θ) = 0, Σt(θ) = IN ,

and ε∗t is a standardised GH variable with parameters η, ψ and b. In more realistic

cases, though, the results are likely to be qualitatively similar.

In addition, we only consider alternatives in which b is proportional to a vector of

ones. Although this may seem a restrictive assumption, we can show that the power of

the test only depends on b through its Euclidean norm when the residuals are observed.

The results at the usual 5% signiÞcance level are displayed in Figures 2a to 2f for

ψ = 1 and T = 100 (see appendix F for details). In Figures 2a to 2d, we have represented

η on the x-axis. We can see in Figure 2a that for N = 1 and |b| = 0, the test with the
highest power is the one-sided kurtosis test, followed by the KT test. On the other hand,

if we consider asymmetric alternatives, the skewness component of the normality test

becomes important, and eventually makes the KT test more powerful than the kurtosis

test (see e.g. Figure 2b for |b| = 1). Note also that the KT test displays higher power
than the supremum test, which is its two-sided counterpart, under alternatives very

close to the null. Not surprisingly, we can also see from Figures 2c and 2d that power

increases with the dimension N .3 Those Þgures also conÞrm our previous conclusions on

the relative power of the kurtosis and supremum tests continue to hold for N > 1.

In contrast, we have represented the norm of b on the x-axis in Figures 2e and 2f.

3We do not report the power of the one-sided tests for N greater than 1 due to the numerical
unreliability in higher dimensions of the quadrature integration methods described in appendix F.
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Let π̄T = (θ̄
0
T , η̄T )

0 denote the parameters estimated by maximising the symmetric

Student t log-likelihood function. The statistic that we propose to test for H0 : ψ = 1

versus H1 : ψ 6= 1 under the maintained hypothesis that b = 0 is given by

τkT (π̄T ) =

√
T s̄ψψT (π̄T , 1,0)
�V [sψψt (π̄T , 1,0)]

, (17)

where �V [sψψt (π̄T )] is a consistent estimator of the asymptotic variance of sψψt (π̄T , 1,0)

that takes into account the sampling variability in π̄T . Under the null hypothesis of

Student t innovations, it is easy to see that the asymptotic distribution of τkT (π̄T ) will

be N (0, 1). The required asymptotic variance is given in the following result:

Proposition 8 (Student t symmetric test) If ε∗t is conditionally distributed as a
standardised Student t with η−10 degrees of freedom, then

√
T s̄ψψT (π̄T , 1,0)

d→ N
©
0, V [sψψt(π0, 1,0)]−M0(π0)I−1ππ(π0, 1,0)M(π0)

ª
,

where Iππ(π0, 1,0) = E[Iππt(π0, 1,0)] is the Student t information matrix in FSC,

V [sψψt(π0, 1,0)] =
8N (N + 2) η60

(1− 2η0)2 (1− 4η0)2 (1 + (N + 2) η0) (1 + (N − 2) η0)
,

and

M(π0) = E

· Mθt(π0)
Mηt(π0)

¸
= E

·
E [sθt(π0, 1,0)sψψt(π0, 1,0)| zt, It−1;π0, 1,0]
E [sηt(π0, 1,0)sψψt(π0, 1,0)| zt, It−1;π0, 1,0]

¸
,

where

Mθt(π0) =
4 (N + 2) η40 (1− 2η0)−1 (1− 4η0)−1
[1 + (N + 2) η0][1 + (N − 2) η0]

∂vec0[Σt(θ0)]
∂θ

vec[Σ−1t (θ0)],

Mηt(π0) =
−2N (N + 2) η30 (1− 2η0)−2 (1− 4η0)−1

(1 +Nη0) [1 + (N + 2) η0]
.

But since E [sψψt (θ0, η0, 1,0) |π0, ψ0 < 1,b0 = 0] > 0 (see Proposition 7), and ψ can

only be less than 1 under the alternative, a one-sided test against H1 : ψ < 1 should

again be more powerful in this context (see Andrews, 2001). SpeciÞcally, we should use

τkT (π̄T )1
h√
T s̄ψψT (π̄T , 1,0) > 0

i
.

Finally, it is also important to mention that although sψt (π0, ψ,b) = 0 ∀t, we can
combine Propositions 7 and 8 to show that ψ is third-order identiÞable at ψ = 1, and

therefore locally identiÞable, even though it is not Þrst- or second-order identiÞable (see

Sargan, 1983). More speciÞcally, we can use the Barlett identities to show that

E

·
∂2sψt(π0, 1,0)

∂ψ2
|π0, 1,0

¸
= −E

·
∂sψt(π0, 1,0)

∂ψ
· sψt(π0, 1,0)|π0, 1,0

¸
= 0,
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but

E

·
∂3sψt(π0, 1,0)

∂ψ3
|π0, 1,0

¸
= −3V

·
∂sψt(π0, 1,0)

∂ψ
|π0, 1,0

¸
6= 0.

3.2.2 Student t vs asymmetric GH innovations

By construction, the extremum test discussed in the previous subsection maintains

the assumption that b = 0. However, it is straightforward to extend it to incorporate this

symmetry restriction as an explicit part of the null hypothesis. In particular, the only

thing that we need to do is to include E[sbt (π, 1,0)] = 0 as an additional condition in

our moment test, where sbt (π, 1,0) is deÞned in (8). The asymptotic joint distribution

of the two moment conditions that takes into account the sampling variability in π̄T is

given in the following result

Proposition 9 (Student t asymmetric test) If ε∗t is conditionally distributed as a
standardised Student t with η−10 degrees of freedom, then· √

T s̄bT (π̄T , 1,0)√
T s̄ψψT (π̄T , 1,0)

¸
d→ N [0,V(π0)] ,

where

V(π0) =

· Vbb (π0) Vbψ (π0)
V 0bψ (π0) Vψψ (π0)

¸
=

½ Ibb(π0, 1,0) 0
00 V [sψψt(π0, 1,0)]

¾
−
· I 0πb(π0, 1,0)I−1ππ(π0, 1,0)Iπb(π0, 1,0) I 0πb(π0, 1,0)I−1ππ(π0, 1,0)M(π0)

M0(π0)I−1ππ(π0, 1,0)Iπb(π0, 1,0) M0(π0)I−1ππ(π0, 1,0)M(π0)

¸
, (18)

Iππ(π0, 1,0) = E[Iππt(π0, 1,0)] is the Student t information matrix derived in FSC,
Iπb(π0, 1,0) = E[Iπbt(π0, 1,0)] and Ibb(π0, 1,0) = E[Ibbt(π0, 1,0)] are deÞned in Pro-
position 4, andM(π0) and V [sψψt(π0, 1,0)] are given in Proposition 8.

Therefore, if we consider a two-sided test, we will use

τ gT (π̄T ) =

· √
T s̄bT (π̄T , 1,0)√
T s̄ψψT (π̄T , 1,0)

¸0
V−1 (π̄T )

· √
T s̄bT (π̄T , 1,0)√
T s̄ψψT (π̄T , 1,0)

¸
, (19)

which is distributed as a chi-square with N + 1 degrees of freedom under the null of

Student t innovations. Alternatively, we can again exploit the one-sided nature of the

ψ-component of the test described in Proposition 7. However, since V (π0) is not block

diagonal in general, we must orthogonalise the moment conditions to obtain a partially

one-sided moment test which is asymptotically equivalent to the likelihood ratio test (see

e.g. Silvapulle and Silvapulle, 1995). SpeciÞcally, instead of using directly the score with

respect to b, we consider

s⊥bt (π̄T , 1,0) = sbt (π̄T , 1,0)− Vbψ (π̄T )V−1ψψ (π̄T ) sψψt (π̄T , 1,0) ,
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whose sample average is asymptotically orthogonal to
√
T s̄ψψT (π̄T , 1,0) by construction.

Note, however, that there is no need to do this orthogonalisation whenE [∂µt(θ0)/∂θ0] =

0, since in this case Vbψ (π0) = 0 because Iπb(π0, 1, 0) = 0 (see Proposition 4).

It is then straightforward to see that the asymptotic distribution of

τ oT (π̄T ) = T s̄
⊥0
bt (π̄T , 1,0)

·
Vbb (π̄T )−

Vbψ (π̄T )V 0bψ (π̄T )

Vψψ (π̄T )

¸−1
s̄⊥bt (π̄T , 1,0)

+τkT (π̄T )1 [s̄ψψT (π̄T , 1,0) > 0] , (20)

is another 50:50 mixture of chi-squares with N and N + 1 degrees of freedom under the

null, because asymptotically, the probability that s̄ψψT (π̄T , 1,0) is negative will be .5 if

ψ0 = 1. Such a one-sided test beneÞts from the fact that a non-positive s̄ψψT (π̄T , 1,0)

gives no evidence against the null, in which case we only need to consider the orthogonal-

ised skewness component. In contrast, when s̄ψψT (π̄T , 1,0) is positive, (20) numerically

coincides with (19).

On the other hand, if we only want to test for symmetry, we may use

τaT (π̄T ) =
√
T s̄0bT (π̄T , 1,0)V−1bb (π̄T )

√
T s̄bT (π̄T , 1,0) , (21)

which can be interpreted as a regular LM test of the Student t distribution versus the

asymmetric t distribution under the maintained assumption that ψ = 1 (see Mencía,

2003). As a result, τaT (π̄T ) will be asymptotically distributed as a chi-square distribu-

tion with N degrees of freedom under the null of Student t innovations.

Given that we can show that the moment condition (15) remains valid for any ellipt-

ical distribution, the symmetry component of our proposed normality test provides an

alternative consistent test for H0 : b = 0, which is however incorrectly sized when the

innovations follow a Student t. One possibility would be to scale LMs(òθT ) by multiply-

ing it by a consistent estimator of the adjusting factor [(1 − 4η0)(1 − 6η0)]/[1 + (N −
2)η0 + 2(N + 4)η

2
0]. Alternatively, we can run the univariate regression of 1 on mst(θ̄T ),

or the multivariate regression of εt(θ̄T ) on ς t(θ̄T )− (N + 2), although in the latter case
we should use standard errors that are robust to heteroskedasticity. Not surprisingly, we

can show that these three procedures to test (15) are asymptotically equivalent under

the null. However, they are generally less powerful against local alternatives of the form

b0T = b0/
√
T than τaT (π̄T ) in (21), which is the proper LM test for symmetry.

Nevertheless, an interesting property of a moment test for symmetry based on (15) is

that
√
Tm̄sT (θ̄T ) and

√
T s̄ψψT (π̄T , 1,0) are asymptotically independent under the null
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of symmetric Student t innovations, which means that there is no need to orthogonalise

them in order to obtain a one-sided version that combines the two of them.

4 Empirical illustration

We now apply the methodology derived in the previous sections to the empirical ap-

plication reported by FSC to assess the validity of the multivariate Student t assumption

they made. Their data consists on monthly excess returns on 26 U.K. sectorial indices

for the period 1971:2-1990:10 (237 observations). The vector of conditional mean returns

µt(θ) was assumed to be 0 because the returns had been demeaned prior to estimation.

As for the conditional covariance matrix, they considered

Σt(θ) = Γ+ λtcc0,

where Γ is a diagonal matrix, c a vector of dimension N = 26, and

λt = 1− α1 − α2 − α1v2 + α1
h¡
ft−1|t−1 − v

¢2
+ ωt−1|t−1

i
+ α2λt−1,

with ωt|t =
£
λ−1t + c0Γ−1c

¤−1
, ft|t = ωt|tc0Γ−1yt. Such a covariance matrix structure

corresponds to a conditionally heteroskedastic single factor model in which the con-

ditional covariance of the latent factor follows a univariate GQARCH(1,1)-type pro-

cess (see FSC for details). FSC estimated the model subject to the constraints v =

ρ
p
(1− α1 − α2) /α1, −1 ≤ ρ ≤ 1, and 0 ≤ α2 ≤ 1− α1 ≤ 1, which ensure that λt ≥ 0

for all t, and solve the scale indeterminacy of the vector c by implicitly setting E [λt] = 1.

We have re-estimated this model under three different conditional distributional as-

sumptions on the standardised innovations ε∗t : Gaussian, Student t and GH. We Þrst

estimated the model by Gaussian PML. The estimates for α1, α2, and ρ are reported

in Table 1, together with robust standard errors, which we have obtained by using the

formulae in Bollerslev and Wooldridge (1992) with analytical expressions for the deriv-

atives. Then, on the basis of these PML estimators, we have computed the Kuhn-Tucker

normality test KT (òθT ) described in section 3.1.3, which is reported in the Þrst panel

of Table 2. Notice that we can easily reject normality because both the skewness and

kurtosis components of the test lead to this conclusion.

Next, we estimated the same Student t model as FSC using the analytical formulae

for the score and the conditional information matrix they provide. The results, also

19



reported in Table 1, show that the estimate for the tail thickness parameter η, which

corresponds to slightly less than 10 degrees of freedom, is signiÞcantly larger than 0. This

result can be conÞrmed by comparing the log-likelihood functions under Gaussian and

Student t innovations, which implies that we would also reject normality with a likelihood

ratio test. Then, on the basis of these estimates, we have computed the Student t test

statistics τkT (π̄T ) and τaT (π̄T ) presented in section 3.2 (see also Table 2). The results

show that we can easily reject the Student t assumption because of the high value we

obtain for the skewness component τaT (π̄T ). However, the one-sided version of the ψ

component of the test is completely unable to reject the Student t speciÞcation against

the alternative hypothesis of symmetric GH innovations because s̄ψψT (π̄T , 1,0) < 0.

This, together with the fact that the conditional mean is assumed to be 0, implies that

the KT version of the Student t test in (20) numerically coincides with τaT (π̄T ).

Finally, we re-estimated the model under the assumption that the conditional distri-

bution of the innovations is GH by using the analytical formulae for the score provided

in appendix B, which introduces as additional parameters ψ and the vector b. The

results for α1, α2, ρ, η, also reported in Table 1, are very similar to those of the Student

t model. However, since the ML estimate of ψ is 1, the estimated conditional distribu-

tion is effectively an asymmetric t. Again, a likelihood ratio test would also reject the

Student t speciÞcation, although the gains in Þt obtained by allowing for asymmetry (as

measured by the increments in the log-likelihood function) are not as important as those

obtained by generalising the normal distribution in the leptokurtic direction.

5 Conclusions

In this paper we develop a rather ßexible parametric framework that allows us to

account for the presence of skewness and kurtosis in multivariate dynamic heteroske-

dastic regression models. In particular, we assume that the standardised innovations of

the model have a conditional Generalised Hyperbolic (GH ) distribution, which nests as

particular cases the multivariate Gaussian and Student t distributions, as well as other

potentially asymmetric alternatives. To do so, we Þrst standardise the usual GH dis-

tribution by imposing restrictions on its parameters. Importantly, we make sure that

our model is invariant to the orthogonalisation used to compute the square root of the

conditional covariance matrix. Then, we give analytical formulae for the log-likelihood
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score, which simplify its computation, and at the same time make it more reliable. In

addition, we explain how to evaluate the unconditional information matrix.

On the basis of these Þrst and second derivatives, we obtain multivariate normal-

ity and Student t tests against alternatives with GH innovations. In this respect, we

show how to overcome the identiÞcation problems that the use of the GH distribution

entails. Moreover, we decompose both our proposed test statistics into skewness and

kurtosis components, which we exploit to derive more powerful one-sided versions. We

also evaluate in detail the power of several versions of the normality tests against GH

alternatives, and conclude that the inclusion of the skewness component of our test yields

substantial power gains unless we are very close to the null hypothesis.

Finally, we revisit the empirical application to UK sectorial stock returns presented

in FSC. Testing the distributional assumption is particularly important in the Student

t case because ML estimators based on incorrectly speciÞed non-Gaussian distributions

often lead to inconsistent parameter estimates (see Newey and Steigerwald, 1997). In

this respect, we Þnd clear evidence of conditional skewness in the FSC dataset.

Because the existing simulation evidence indicates that the Þnite-sample size proper-

ties of many LM tests could be different from the nominal one, a fruitful avenue for future

research would be to consider bootstrap procedures to reduce size distortions (see e.g.

Kilian and Demiroglu, 2000). In addition, it would be interesting to develop sequential

estimators of the asymmetry and kurtosis parameters introduced by the GH assump-

tion, which would keep constant the conditional mean and variance parameters at their

Gaussian PML estimators along the lines of Fiorentini, Sentana, and Calzolari (2003b).

At the same time, it would also be useful to assess the biases of the Student t-based ML

estimators of the conditional mean and variance parameters when the true conditional

distribution of the innovations is in fact a different member of the GH family. Finally,

although in order to derive our distributional speciÞcation tests we have maintained the

implicit assumption that the Þrst and second moments adequately capture all the model

dynamics, it would also be worth extending Hansen�s (1994) approach to a multivari-

ate context, and explore time series speciÞcations for the parameters characterising the

higher order moments of the GH distribution.
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Appendix

A Proofs of Propositions
Proposition 1

If we impose the parameter restrictions of Proposition 1 in equation (1), we get

ε∗ = c (β, ν, γ)β

·
γξ−1

Rν (γ)
− 1
¸
+

s



Proposition 3

To compute the score when η goes to zero, we must take the limit of the score function

after substituting the modiÞed Bessel functions by the expansion (C3), which is valid in

this case. We operate in a similar way when ψ → 0, but in this case the appropriate

expansion is (C2). Then, the conditional information matrix under normality can be

easily derived as the conditional variance of the score function by using the property

that, if ε∗t is distributed as a multivariate standard normal, then it can be written as

ε∗t =
p
ζtut, where ut is uniformly distributed on the unit sphere surface in RN , ζt is

a chi-square random variable with N degrees of freedom, and ut and ζt are mutually

independent. ¤

Proposition 4

The proof is straightforward if we rely on the results in the appendix of Fiorentini,

Sentana, and Calzolari (2003b), who indicate that when ε∗t is distributed as a stand-

ardised multivariate Student t with 1/η0 degrees of freedom, it can be written as ε∗t =p
(1− 2η0)ζt/(ξtη0)ut, where ut is uniformly distributed on the unit sphere surface in

RN , ζt is a chi-square random variable with N degrees of freedom, ξt is a gamma vari-

ate with mean η−10 and variance 2η−10 , and the three variates are mutually independent.

These authors also exploit the fact that X = ζt/ (ζt + ξt) has a beta distribution with

parameters a = N/2 and b = 1/ (2η0) to show that

E [Xp (1−X)q] = B (a+ p, b+ q)

B (a, b)
,

E [Xp (1−X)q log (1−X)] = B (a+ p, b+ q)

B (a, b)
[ψ (b+ q)− ψ (a+ b+ p+ q)] ,

where ψ (·) is the digamma function and B (·, ·) the usual beta function. ¤

Proposition 5

For Þxed b and ψ, the LM1 test is based on the average scores with respect to η and

θ evaluated at 0+ and the Gaussian maximum likelihood estimates òθT . But since the

average score with respect to θ will be 0 at those parameter values, and the conditional

information matrix is block diagonal, the formula for the test is trivially obtained. The

proportionality of the log-likelihood scores corresponding to η evaluated at 0± and òθT

with the score corresponding to ψ evaluated at 0 and òθT leads to the desired result. ¤
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Proposition 6

LM
³

òθT ,b
´
can be trivially expressed as

LM
³

òθT ,b
´
=
Tb+0m̄T (òθT )m̄T (òθT )b

+

(N + 2)b+0DTb+
, (A3)

where b+ = (1,b0)0, m̄T (òθT ) =
h
m̄kT (òθT ), m̄sT (òθT )

i
, m̄kT (θ) and m̄sT (θ) are the sample

means of mkt(θ) and mst(θ), which are deÞned in (13) and (15), respectively, and

DT =

·
N/2 0

00 2àΣT

¸
.

But since the maximisation of (A3) with respect to b+ is a well-known generalised eigen-

value problem, its solution will be proportional to D−1
T m̄T . If we select N/[2m̄kT (òθT )]

as the constant of proportionality, then we can make sure that the Þrst element in b+ is

equal to one. Substituting this value in the formula of LM
³

òθT ,b
´
yields the required

result. Finally, the asymptotic distribution of the sup test follows directly from the fact

that
√
Tm̄kT (θ0) and

√
Tm̄sT (θ0) are asymptotically orthogonal under the null, with

asymptotic variances N(N + 2)/2 and 2(N + 2)Σ, respectively. ¤

Proposition 7

The average Hessian matrix at the restricted parameter estimates φ̄T=(π̄
0
T , 1,0)

0 is

1

T

X
t

∂2lt(φ̄T )

∂φ∂φ0 =
∂2l̄T (φ̄T )

∂φ∂φ0 =

·
∂2l̄T (φ̄T )/∂π∂π0 0

00 s̄ψψT (φ̄)

¸
(A4)

because ∂2lt(φ)/∂ψ∂π will be zero when ψ = 1 given that sψt(φ) is identically zero

at that value. If φ̄T does not maximize the GH log-likelihood, then the matrix in

(A4) cannot be negative deÞnite. However, since ∂2l̄T (φ̄T )/∂φ∂φ0 is negative deÞnite

because π̄T maximizes the Student t log-likelihood, then s̄ψψT (φ̄T ) must be positive for

φ̄T not to be a maximum. This conclusion also applies asymptotically. Thus, under the

alternative hypothesis, the expected value of sψψt(π0, 1,0) must be necessarily positive.

In contrast, we can use a conditional version of the Barlett identities to show that

E [sψψt(π0, 1,0)|zt, It−1,π0, 1,0] = 0. ¤

Propositions 8 and 9

We can use again the results of Fiorentini, Sentana, and Calzolari (2003b) mentioned

in the proof of Proposition 4, together with the results in Crowder (1976), to show that

√
T

T

X
t

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 d→ N

0, E
Vt−1

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)


 ,

27



where

Vt−1

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 =
 Iππt(π0, 1,0) Iπbt(π0, 1,0) Mt(π0)
I 0πbt(π0, 1,0) Vt−1 [sbt(π0, 1,0)] 0
M0

t(π0) 00 V [sψψt(π0, 1,0)]


under the null hypothesis of Student t innovations. To account for parameter uncertainty,

consider the function

g2t (π̄T ) =

·
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

¸
−
· I 0πb(π0, 1,0)

M0(π0)

¸
I−1ππ(π0, 1,0)sπt (π̄T , 1,0)

=
· −I 0πb(π0, 1,0)I−1ππ(π0, 1,0) IN 0

−M0(π0)I−1ππ(π0, 1,0) 00 1

¸ sπt (π̄T , 1,0)
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

=A2(π0)

 sπt (π̄T , 1,0)
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

 .
We can now derive the required asymptotic distribution by means of the usual Taylor

expansion around the true values of the parameters

0 =

√
T

T

X
t

g2t (π̄T ) =

√
T

T

X
t

·
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

¸
= A2(π0)

√
T

T

X
t

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)


+A2(π0)E

 ∂

∂π0

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

√T (π̄T − π0) + op (1) ,

where it can be tediously shown by means of the Barlett identities that

E

 ∂

∂π0

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 = −
 Iππ(π0, 1,0)
I 0πb(π0, 1,0)
M0(π0)

 .
As a result

√
T

T

X
t

·
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

¸
= A2(π0)

√
T

T

X
t

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 ,
from which we can obtain the asymptotic distributions in the Propositions. ¤

B The score using the EM algorithm

The EM-type procedure that we follow is divided in two parts. In the maximisa-

tion step, we derive l (yt|ξt, zt, It−1;φ) and l (ξt|zt, It−1;φ) with respect to φ. Then,

in the expectation step, we take the expected value of these derivatives given IT =

{(z1,y1) , (z2,y2) , · · · , (zT ,yT )} and the parameter values.
Conditional on ξt, yt is the following multivariate normal:

yt|ξt, zt, It−1 ∼ N
·
µt(θ) +Σt(θ)ct(φ)b

·
γ

Rν (γ)

1

ξt
− 1
¸
,

γ

Rν (γ)

1

ξt
Σ∗t (φ)

¸
,
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where ct(φ) = c[Σ
1
2
0

t (θ)b, ν, γ] and

Σ∗t (φ) = Σt(θ) +
ct(φ)− 1
b0Σt(θ)b

Σt(θ)bb0Σt(θ)

If we deÞne pt = yt −µt(θ) + ct(φ)Σt(θ)b, then we have the following log-density

l (yt|ξt, zt, It−1;φ) =
N

2
log

·
ξtRν (γ)

2πγ

¸
− 1
2
log |Σ∗t (φ)|−

ξt
2

Rν (γ)

γ
p0tΣ

∗−1
t (φ)pt

+b0pt − b0Σt(θ)b
2ξt

γct(φ)

Rν (γ)
.

Similarly, ξt is distributed as a GIG with parameters ξt|zt, It−1 ∼ GIG (−ν, γ, 1),
with a log-likelihood given by

l (ξt|zt, It−1;φ) = ν log γ − log 2− logKν (γ)− (ν + 1) log ξt −
1

2

µ
ξt + γ

2 1

ξt

¶
.

In order to determine the distribution of ξt given all the observable information IT ,

we can exploit the serial independence of ξt given zt, It−1;φ to show that

f (ξt|IT ;φ) =
f (yt,ξt|zt, It−1;φ)
f (yt|zt, It−1;φ) ∝ f (yt|ξt, zt, It−1;φ) f (ξt|zt, It−1;φ)

∝ ξ
N
2
−ν−1

t × exp
½−1
2

·µ
Rν (γ)

γ
p0tΣ

∗−1
t (φ)pt + 1

¶
ξt +

µ
γct(φ)

Rν (γ)
b0Σt(θ)b+ γ2

¶
1

ξt

¸¾
,

which implies that

ξt|IT ;φ ∼ GIG
Ã
N

2
− ν,

s
γct(φ)

Rν (γ)
b0Σt(θ)b+ γ2,

s
Rν (γ)

γ
p0tΣ

∗−1
t (φ)pt + 1

!
.

From here, we can use (D1) and (D2) to obtain the required moments. SpeciÞcally,

E (ξt|IT ;φ) =
q

γct(φ)
Rν(γ)

b0Σt(θ)b+ γ2q
Rν(γ)
γ

p0tΣ
∗−1
t pt + 1

×RN
2
−ν

"s
γct(φ)

Rν (γ)
b0Σt(θ)b+ γ2

s
Rν (γ)

γ
p0tΣ

∗−1
t pt + 1

#
,

E

µ
1

ξt

¯̄̄̄
IT ;φ

¶
=

q
Rν(γ)
γ

p0tΣ
∗−1
t pt + 1q

γct(φ)
Rν(γ)

b0Σt(θ)b+ γ2

× 1

RN
2
−ν−1

hq
γct(φ)
Rν(γ)

b0Σt(θ)b+ γ2
q

Rν(γ)
γ

p0tΣ
∗−1
t pt + 1

i ,
E (log ξt|YT ;φ) = log

Ãs
γct(φ)

Rν (γ)
b0Σt(θ)b+ γ2

!
− log

Ãs
Rν (γ)

γ
p0tΣ

∗−1
t pt + 1

!

+
∂

∂x
logKx

"s
γct(φ)

Rν (γ)
b0Σt(θ)b+ γ2

s
Rν (γ)

γ
p0tΣ

∗−1
t pt + 1

#¯̄̄̄
¯
x=N

2
−ν
.
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where

f (IT ,φ) = γ−1Rν (γ)E (ξt|IT ;φ) ,
g (IT ,φ) = γR−1ν (γ)E

¡
ξ−1t |IT ;φ

¢
,

∂vec[Σ∗t (φ)]
∂θ0

=
∂vec[Σt(θ)]

∂θ0
+
ct(φ)− 1
b0Σt(θ)b

{[Σt(θ)bb0 ⊗ IN ]+ [IN ⊗Σt(θ)bb0]} ∂vec[Σt(θ)]
∂θ0

+
ct(φ)− 1
[b0Σt(θ)b]

2

(
1p

1 + 4 (Dν+1 (γ)− 1)b0Σt(θ)b
− 1
)

×vec [Σt(θ)bb0Σt(θ)] vec0 (bb0)
∂vec[Σt(θ)]

∂θ0
,

∂pt
∂θ0

= −∂µt(θ)
∂θ0

+ ct(φ) [b
0 ⊗ IN ] ∂vec[Σt(θ)]

∂θ0

+
ct(φ)− 1
b0Σt(θ)b

1p
1 + 4 (Dν+1 (γ)− 1)b0Σt(θ)b

Σt(θ)bvec
0 (bb0)

∂vec[Σt(θ)]

∂θ0
,

∂ct(φ)

∂ (b0Σt(θ)b)
=
ct(φ)− 1
b0Σt(θ)b

1p
1 + 4 (Dν+1 (γ)− 1)b0Σt(θ)b

,

∂ct(φ)

∂η
=

ct(φ)− 1
Dν+1 (γ)− 1

∂Dν+1 (γ)

∂η
,

and
∂ct(φ)

∂ψ
=

ct(φ)− 1
Dν+1 (γ)− 1

∂Dν+1 (γ)

∂ψ
.

C ModiÞed Bessel function of the third kind

The modiÞed bessel function of the third kind with order ν, which we denote as

Kν (·), is closely related to the modiÞed Bessel function of the Þrst kind Iν (·), as

Kν (x) =
π

2

I−ν (x)− Iν (x)
sin (πν)

. (C1)

Some basic properties of Kν (·), taken from Abramowitz and Stegun (1965), are

Kν (x) = K−ν (x),Kν+1 (x) = 2νx
−1Kν (x)+Kν−1 (x), and ∂Kν (x) /∂x = −νx−1Kν (x)−

Kν−1 (x). For small values of the argument x, and ν Þxed, it holds that

Kν (x) ' 1

2
Γ (ν)

µ
1

2
x

¶−ν
.

Similarly, for ν Þxed, |x| large and m = 4ν2, the following asymptotic expansion is valid

Kν (x) '
r
π

2x
e−x

½
1+
m-1
8x
+
(m-1) (m-9)

2! (8x)2
+
(m-1) (m-9) (m-25)

3! (8x)3
+ · · ·

¾
. (C2)
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Finally, for large values of x and ν we have that

Kν(x) '
r
π

2ν

exp (−νl−1)
l−2

·
(x/ν)

1 + l−1

¸−ν ·
1-
3l-5l3

24ν
+
81l2-462l4+385l6

1152ν2
+ · · ·

¸
, (C3)

where ν > 0 and l =
£
1 + (x/ν)2

¤− 1
2 . Although the existing literature does not discuss

how to obtain numerically reliable derivatives of Kν(x) with respect to its order, our

experience suggests the following conclusions:

� For ν ≤ 10 and |x| > 12, the derivative of (C2) with respect to ν gives a better

approximation than the direct derivative of Kν(x), which is in fact very unstable.

� For ν > 10, the derivative of (C3) with respect to ν works better than the direct

derivative of Kν(x).

� Otherwise, the direct derivative of the original function works well.
We can express such a derivative as a function of Iν(x) by using (C1) as:

∂Kν(x)

∂ν
=

π

2 sin (νπ)

·
∂I−ν(x)
∂ν

− ∂Iν(x)
∂ν

¸
− π cot (νπ)Kν(x)

However, this formula becomes numerically unstable when ν is near any non-negative

integer n = 0, 1, 2, · · · due to the sine that appears in the denominator. In our experience,
it is much better to use the following Taylor expansion for small |ν − n|:

∂Kν(x)

∂ν
=
∂Kν(x)

∂ν

¯̄̄̄
ν=n

+
∂2Kν(x)

∂ν2

¯̄̄̄
ν=n

(ν − n)

+
∂3Kν(x)

∂ν3

¯̄̄̄
ν=n

(ν − n)2 + ∂4Kν(x)

∂ν4

¯̄̄̄
ν=n

(ν − n)3 ,

where for integer ν:

∂Kν(x)

∂ν
=

1

4 cos (πn)

·
∂2I−ν(x)
∂ν2

− ∂
2Iν(x)

∂ν2

¸
+ π2 [I−ν(x)− Iν(x)] ,

∂2Kν(x)

∂ν2
=

1

6 cos (πn)

·
∂3I−ν(x)
∂ν3

-
∂3Iν(x)

∂ν3

¸
+

π2

3 cos (πn)

·
∂I−ν(x)
∂ν

-
∂Iν(x)

∂ν

¸
-
π2

3
Kn(x),

∂3Kν(x)

∂ν3
=

1

8 cos (πn)

½·
∂4I−ν(x)
∂ν4

− ∂
4Iν(x)

∂ν4

¸
−4π2

·
∂2I−ν(x)
∂ν2

− ∂
2Iν(x)

∂ν2

¸
− 12π4 [I−ν(x)− Iν(x)]

¾
+ 3π2

∂Kn(x)

∂ν
,

and

∂4

∂ν4
Kν(x) =

1

8 cos (πn)

½
3

2

·
∂5I−ν(x)
∂ν5

− ∂
5Iν(x)

∂ν5

¸
-10π2

·
∂3I−ν(x)
∂ν3
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¸
-4π4

·
∂I−ν(x)
∂ν

− ∂Iν(x)
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¸¾
+6π2

∂2Kn(x)

∂ν2
− π4Kn(x).
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Let ψ(i) (·) denote the polygamma function (see Abramowitz and Stegun, 1965). The
Þrst Þve derivatives of Iν(x) for any real ν are as follows:

∂Iν(x)

∂ν
= Iν(x) log

³x
2

´
−
³x
2

´ν ∞X
k=0

Q1(ν + k + 1)

k!

µ
1

4
x2
¶k
,

where

Q1 (z) =

½
ψ (z) /Γ (z) if z > 0
π−1Γ (1− z) [ψ (1− z) sin (πz)− π cos (πz)] if z ≤ 0

∂2Iν(x)

∂ν2
= 2 log

³x
2

´ ∂Iν(x)
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− Iν(x)
h
log
³x
2

´i2
−
³x
2

´ν ∞X
k=0

Q2(ν + k + 1)

k!

µ
1

4
x2
¶k
,

where

Q2(z) =


£
ψ0 (z)− ψ2 (z)¤ /Γ (z) if z > 0
π−1Γ (1− z) £π2 − ψ0 (1− z)− [ψ (1− z)]2¤ sin (πz)
+2Γ (1− z)ψ (1− z) cos (πz) if z ≤ 0

∂3Iν(x)

∂ν3
= 3 log

³x
2

´ ∂2Iν(x)
∂ν2

− 3
h
log
³x
2

´i2 ∂Iν(x)
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+
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log
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2
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´ν ∞X
k=0

Q3(ν + k + 1)

k!

µ
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4
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,

where

Q3(z) =


£
ψ3 (z)− 3ψ (z)ψ0 (z) + ψ00 (z)¤ /Γ (z) if z > 0
π−1Γ (1− z)©ψ3 (1− z)− 3ψ (1− z) [π2 − ψ0 (1− z)] + ψ00 (1− z)ª sin (πz)
+Γ (1− z)©π2 − 3 £ψ2 (1− z) + ψ0 (1− z)¤ª cos (πz) if z ≤ 0
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= 4 log
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log
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log
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µ
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4
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,

where

Q4(z) =



h
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i
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−ψ000 (1− z)− π4} sin (πz) + Γ (1− z) 4ψ3 (1− z)− 4π2ψ (1− z)
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and Þnally,

∂5Iν(x)

∂ν5
= 5 log

³x
2

´ ∂4Iν(x)
∂ν4

− 10
h
log
³x
2

´i2 ∂3Iν(x)
∂ν3

+ 10
h
log
³x
2

´i3 ∂2Iν(x)
∂ν2

−5
h
log
³x
2

´i4 ∂Iν(x)
∂ν

+
h
log
³x
2

´i5
Iν(x)−

³x
2

´ν ∞X
k=0

Q5(ν + k + 1)

k!

µ
1

4
x2
¶k
,

33



where

Q5(z) =


n
ψ5 (z)− 10ψ3 (z)ψ0 (z) + 10ψ2 (z)ψ00 (z) + 15ψ (z) [ψ0 (z)]2

−5ψ (z)ψ000 (z)− 10ψ0 (z)ψ00 (z) + ψ(iv) (z)
o
/Γ (z) if z > 0

π−1Γ (1− z) fa (z) sin (πz) + Γ (1− z) fb (z) cos (πz) if z ≤ 0
with

fa (z) = ψ
5 (1− z)− 10π2ψ3 (1− z) + 10ψ3 (1− z)ψ0 (1− z) + 10ψ2 (1− z)ψ00 (1− z)
+15ψ (1− z) [ψ0 (1− z)]2 + 5ψ (1− z)ψ000 (1− z) + 5π4ψ (1− z)

−30π2ψ (1− z)ψ0 (1− z) + 10ψ0 (1− z)ψ00 (1− z)− 10π2ψ00 (1− z) + ψ(iv) (1− z) ,
and

fb (z) = −5ψ4 (1− z) + 10π2ψ2 (1− z)− 30ψ2 (1− z)ψ0 (1− z)
−20ψ (1− z)ψ00 (1− z)− 15 [ψ0 (1− z)]2 + 10π2ψ0 (1− z)− 5ψ000 (1− z)− π4.

D Moments of the GIG distribution

If X ∼ GIG (ν, δ, γ), its density function will be
(γ/δ)ν

2Kν (δγ)
xν−1 exp

·
−1
2

µ
δ2

x
+ γ2x

¶¸
,

where Kν (·) is the modiÞed Bessel function of the third kind and δ, γ ≥ 0, ν ∈ R,

x > 0. Two important properties of this distribution are X−1 ∼ GIG (−ν, γ, δ) and
(γ/δ)X ∼ GIG ¡ν,√γδ,√γδ¢. For our purposes, the most useful moments of X when

δγ > 0 are

E
¡
Xk
¢
=

µ
δ

γ

¶k
Kν+k (δγ)

Kν (δγ)
(D1)

E (logX) = log

µ
δ

γ

¶
+
∂

∂ν
Kν (δγ) . (D2)

The GIG nests some well-known important distributions, such as the gamma (ν > 0,

δ = 0), the reciprocal gamma (ν < 0, γ = 0) or the inverse Gaussian (ν = −1/2).
Importantly, all the moments of this distribution are Þnite, except in the reciprocal

gamma case, in which (D1) becomes inÞnite for k ≥ |ν|. A complete discussion on this
distribution, including proofs of (D1) and (D2), can be found in Jørgensen (1982).

E Skewness and kurtosis of GH distributions

We can tediously show that

E [vec (ε∗ε∗0) ε∗0] = E [(ε∗ ⊗ ε∗) ε∗0]

= c3(β,ν, γ)

·
Kν+3 (γ)K

2
ν (γ)

K3
ν+1 (γ)

− 3Dν+1 (γ) + 2
¸
vec (ββ0)β0

+c(β,ν, γ) [Dν+1 (γ) -1] (KNN+IN2) (β ⊗A)A0+c(β,ν, γ) [Dν+1 (γ) -1] vec (AA0)β0,
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and

E [vec (ε∗ε∗0) vec0 (ε∗ε∗0)] = E [ε∗ε∗0 ⊗ ε∗ε∗0]

= c4(β,ν, γ)

·
Kν+4 (γ)K

3
ν (γ)

K4
ν+1 (γ)

− 4Kν+3 (γ)K
2
ν (γ)

K3
ν+1 (γ)

+ 6Dν+1 (γ)− 3
¸
vec (ββ0) vec0 (ββ0)

+c2(β, ν, γ)

·
Kν+3 (γ)K

2
ν (γ)

K3
ν+1 (γ)

− 2Dν+1 (γ) + 1
¸

×{vec (ββ0) vec0 (AA0)+vec (AA0) vec0 (ββ0)+ (KNN+IN2) [ββ0 ⊗AA0] (KNN+IN2)}
+Dν+1 (γ) {[AA0 ⊗AA0] (KNN + IN2) + vec (AA0) vec0 (AA0)} ,

where

A =

·
IN +

c(β,ν, γ)− 1
β0β

ββ0
¸ 1
2

,

andKNN is the commutation matrix (see Magnus and Neudecker, 1988). In this respect,

note that Mardia�s (1970) coefficient of multivariate excess kurtosis will be -1 plus the

trace of the fourth moment above divided by N(N + 2).

Under symmetry, the distribution of the standardised residuals ε∗ is clearly elliptical,

as it can be written as ε∗ =
p
ζ/ξ
p
γ/Rν (γ)u, where ζ ∼ χ2N and ξ−1 ∼ GIG (ν, 1, γ).

This is conÞrmed by the fact that the third moment becomes 0, while

E [ε∗ε∗0 ⊗ ε∗ε∗0] = Dν+1 (γ) {[IN ⊗ IN ] (KNN + IN2) + vec (IN) vec
0 (IN)} .

In the symmetric case, therefore, the coefficient of multivariate excess kurtosis is simply

Dν+1 (γ)-1, which is always non-negative, but monotonically decreasing in γ and |ν|.

F Power of the normality tests

We can determine the power of the sup test by rewriting it as a quadratic form in·
2/[N (N + 2)] 00

0 1/[2 (N + 2)]

¸
evaluated at m̄T = [m̄kT , m̄

0
sT ]

0. To obtain the asymptotic distribution of
√
Tm̄T under

the alternative of GH innovations, we can use the fact that when µt(θ) = 0 and Σt(θ) =

IN , we can write

ε∗t = c(φ)b (ht − 1) +
p
htArt,

ς t = ε∗0t ε∗t = c
2(φ) (ht − 1)2 b0b+ 2c(φ)

p
ht (ht − 1)b0Art + htr

0
tA

0Art,

with ht = ξ
−1
t γ/Rν (γ), and

A =

·
IN +

c(φ, ν, γ)− 1
b0b

bb0
¸ 1
2

,
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where rt|zt, It−1 ∼ iid N (0, IN) and ξt|zt, It−1 ∼ iid GIG[.5η−1, ψ−1(1 − ψ), 1] are mu-
tually independent. Hence, since both ξt and rt are iid , then ε∗t and ς t = ε∗0t ε∗t will also

be iid. As a result, given that all the moments of normal and GIG random variables

are Þnite (except when ψ = 1, in which case some moments may become unbounded

for large enough η; see appendix D), we can apply the Lindeberg-Lévy Central Limit

Theorem to show that the asymptotic distribution of
√
Tm̄T is N [m(η, ψ,b), V (η, ψ,b)],

where the required expressions can be computed analytically. In particular, we can use

Magnus (1986) to evaluate the moments of quadratic forms of normals, such as r0tA
0Art.

Finally, we can use Koerts and Abrahamse�s (1969) implementation of Imhof�s pro-

cedure for evaluating the probability that a quadratic form of normals is less than a

given value (see also Farebrother, 1990).

To obtain the power of the KT test, we will use the following alternative formulation

KT

T
=

2

N (N + 2)
m̄2
kT · 1 (m̄kT ≥ 0) + 1

2 (N + 2)
m̄0
sT m̄sT .

Hence, the distribution function of the KT statistic can be expressed as

Pr

µ
KT

T
< x

¶
=

Z ∞

−∞
Pr

µ
KT

T
< x

¯̄̄̄
m̄kt = l

¶
fk (l) dl, (F1)

where fk (·) is the pdf of the distribution of the kurtosis component. But since the
joint asymptotic distribution of

√
Tm̄T is normal, so that the conditional distribution

of
√
Tm̄sT given

√
Tm̄kT will also be normal, the KT test can also be written as a

quadratic form of normals for each value of the kurtosis component. As a result, we can

use Imhof�s procedure again to evaluate

Pr

µ
KT

T
< x

¯̄̄̄
ākT

¶
= Pr

·
1

2 (N + 2)
m̄sT m̄sT < x− 2

N (N + 2)
ā2kT · 1 (ākT ≥ 0)

¯̄̄̄
ākT

¸
.

Once we know this conditional probability, we can evaluate the integral in (F1) by

numerical integration with a standard quadrature algorithm.
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Table 1
Maximum likelihood estimates of a conditionally heteroskedastic model for 26 U.K.

sectorial indices

Gaussian Student t Generalised Hyperbolic
Parameter SE SE SE
α1 .111 .075 .053 .026 .053 .033
α2 .670 .258 .675 .120 .668 .135
ρ .951 .629 1.0 1.0
η - - .103 .012 .113 .012
ψ - - - 1.0
Log-likelihood -4,471.216 -4,221.162 -4,192.209

Note: Monthly excess returns 1971:2-1990:10 (237 observations)

Table 2
Tests of Gaussian and Student t distributional assumptions

Normality tests

Test p-value
Kurtosis component 2,962.6 .000
Skewness component 625.2 .000
Kuhn-Tucker 3,587.7 .000

Student t tests

Test p-value
ψ component 0 1.000
Skewness-component 63.5 .000
Kuhn-Tucker 63.5 .000

Notes: Since the Kurtosis component of the normality test is positive, the
supremum test is numerically identical to the Kuhn-Tucker test. The ψ com-
ponent is the one-sided test of Student t vs symmetric GH, and the skewness
component is the two-sided test of a Student t against an asymmetric Student
t distribution.
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Figure 1a: Standardised bivariate normal den-
sity
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Figure 1b: Contours of a standardised bivari-
ate normal density

Figure 1c: Standardised bivariate Student t
density with 8 degrees of freedom (η = .125)
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Figure 1d: Contours of a standardised bivari-
ate Student t density with 8 degrees of freedom
(η = .125)

Figure 1e: Standardised bivariate asymmetric
Student t density with 8 degrees of freedom
(η = .125) and β = (−2,−2)′
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Figure 1f: Contours of a standardised bivari-
ate asymmetric Student t density with 8 de-
grees of freedom (η = .125) and β = (−2,−2)′
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Figure 2a: Power of the univariate normality tests
under symmetric alternatives (N = 1, b = 0)
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Figure 2b: Power of the univariate normality tests
under asymmetric alternatives (N = 1, b = 1)
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Figure 2c: Power of the multivariate normality tests
under symmetric alternatives (b = 0)
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Figure 2d: Power of the multivariate normality tests
under asymmetric alternatives (b = 1)
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Figure 2e: Power of the normality tests against in-
creasing skewness near normality (η = .01)
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Figure 2f: Power of the normality test against in-
creasing skewness (η = .03)
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Notes: Size = 5%, T = 100, ψ = 1, µ
t
(θ0) = 0 and Σt(θ0) = IN . Kurtosis tests mean tests of Normal vs

symmetric Student t innovations.


