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Abstract

Which pricing kernel restrictions are needed to make low dimensional Markov mod-

els consistent with given sets of predictions on aggregate stock-market fluctuations ?

This paper develops theoretical test conditions addressing this and related reverse

engineering issues arising within a fairly general class of long-lived asset pricing mod-

els. These conditions solely affect the first primitives of the economy (probabilistic

descriptions of the world, information structures, and preferences). They thus remove

some of the arbitrariness related to the specification of theoretical models involving

unobserved variables, state-dependent preferences, and incomplete markets.
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Understanding the properties of aggregate stock-market behavior has long been the subject of

both theoretical and empirical research in financial economics. While the statistical properties of

the aggregate stock-market seem now to be well-understood, we still have a variety of theoretical

models which compete at rationalizing the empirical findings. Perhaps surprisingly, the general

properties of these theoretical models are poorly understood. As an example, we do not have a

theory able to answer such questions as: When are price-dividend ratios procyclical ? When is

stock-market volatility countercyclical ? When are expected returns positively related to expected

dividend growth ? This paper introduces a theory which explicitly addresses these and related

questions.

In the class of models covered by the theory of this paper, agents have fully rational expecta-

tions. The only additional assumptions that I make are that the state variables of the economy

are Markov processes with continuous sample paths (i.e. diffusion processes) satisfying some ba-

sic regularity conditions, and that asset prices are arbitrage-free. The first assumption has been

widely used in related asset pricing fields because it facilitates the kind of investigations that are

undertaken in this paper [See, e.g., Bergman, Grundy and Wiener (1996), Romano and Touzi

(1997), and Mele (2003)].1 The second assumption is used to produce the general statements of

the theory. To illustrate this theory, I provide examples of infinite horizon, general equilibrium

models. However, I emphasize that the theory only requires absence of arbitrage.

Based only on the previous assumptions, I develop sets of theoretical test conditions on the

primitives of the economy (laws of motion of the primitive state variables and the pricing kernel).

These conditions restrict the primitives so as to make the resulting asset price processes consis-

tent with a variety of patterns of aggregate stock-market behavior that are given in advance. As

an example, I provide precise conditions for price-dividend ratios to be strictly increasing and

concave in the variables tracking the business cycle conditions. In many cases of interest, these

conditions guarantee that stock market volatility and Sharpe ratios display the same qualita-

tive countercyclical behavior that we commonly observe in the data. In the same cases, these

conditions guarantee the internal consistency of many existing general equilibrium models. In-

deed, a presumption of all these models is that asset prices volatility is strictly positive. (This

presumption guarantees that intertemporal optimization programs of infinitely-lived agents are

1Alternatively, future research may consider discrete time models. In his celebrated article, for example, Lucas
(1972) considered a discrete time model. He was able to study slope and convexity of rational pricing functions
with respect to the state variables of the economy that he was considering. In continuous time models, these tasks
are easier because the study of the solution (and its partial derivatives) to certain dynamic programming equations
collapses to the study of the solution (and its partial derivatives) to partial differential equations.
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well-defined.) But how can this condition be checked when volatility is endogenously determined ?

As a by-product, the theoretical test conditions of this paper explicitly address this issue.

The perspective taken in this article differs from previous approaches in some fundamental

respects. As is well-known, the majority of long-lived asset pricing models are inherently nonlinear

and analytically intractable. Consequently, three well-known remedies have been hitherto devised.

The first one removes nonlinearities through a series of simplifying assumptions [e.g., Mehra and

Prescott (1985), Abel (1994, 1999), or Cecchetti, Lam and Mark (1993)]. The second one neglects

nonlinearities through a first-order approximation of the models under study [e.g., Campbell

and Shiller (1988)].2 Finally, a third approach consists in solving the models numerically [e.g.,

Campbell and Cochrane (1999), Veronesi (1999), or Chan and Kogan (2002)]. The first two

remedies have the clear advantage to isolate some important economic phenomena in a simple and

understandable way. [An example of analysis based on these principles is the survey of Campbell

(1999).] The third approach allows one to explicitly work out the consequences of nonlinearities.

This article combines the relative strengths of the previous three approaches. First, I produce

predictions which do not rely on any ad-hoc assumption. Second, these predictions do not hinge

upon any closed-form solution or any numerical analysis of any particular model. At a very least,

the results of this article should thus constitute the basis of a new method of investigation that

complements previous approaches.

To illustrate one example of predictions of the theory developed in this article, consider the

standard models with external habit formation. Among other things, these models may predict

stock-market volatility to be countercyclical. As an example, Campbell and Cochrane (1999)

found this property by relying on the numerical solution of their model. The theory in this article

unveils the precise theoretical mechanism underlying this and related discoveries. It predicts that

stock-market volatility is countercyclical whenever Sharpe ratios are “sufficiently” convex in the

state variable tracking the business cycle conditions (see proposition 4 in section 5).

As another example of predictions of the theory, consider the learning models introduced by

Veronesi (1999). This model predicts that long-lived asset prices are increasing and convex in

the agents’ posterior probability of the economy being in a good state. Veronesi offered many

insights on such a rational “excess sensitivity” of price reaction to state variables. The theoretical

test conditions of this article provide further precise insights on this and related learning models

[such as the Brennan and Xia (2001) model]. They point to two main conclusions. First, the

overreaction property observed by Veronesi is a robust property shared by many other learning

2Kogan and Uppal (2001) have developed a refined approximation approach based on asymptotic analysis ideas.
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models. Second, the same property is the manifestation of a more general characteristic of any

long-lived asset pricing model. Precisely, I find that long-lived asset prices are always convex in

any given state variable affecting the expected payoff under a bound on convexity of the risk-

neutralized drift of the given variable (see propositions 2 and 3 in section 5). As I will show

in section 4, such a bound arises naturally in many models with incomplete information and

learning (and in simpler models with time-varying dividend growth rate). The robustness of such

a “convexity” property suggests that theoretical explanations of large price movements do not

necessarily have to rely on non-fundamental factors of asset price formation.

The previous predictions of the theory are part of a more elaborated, multidimensional frame-

work of analysis (see proposition 5 in section 6). This framework encompasses two categories of

multidimensional models each having its own economic motivation. Both categories extend the

standard Lucas (1978) model of the (single) Markov consumption good process (the “payoff”).

The extensions operate along the two most natural dimensions.

In the first one (considered in section 4), one state variable affects the expected consumption

growth. Such a state variable may be observed or not. If it is not observed - and if agents attempt

to learn its value through observation of the past - nonlinearities may arise. It is precisely the

presence of such nonlinearities which makes the resulting pricing problem so complex. The

theoretical test conditions of this paper address this problem in great generality. However, I

stress that these conditions do not depend on assumptions such as partial observability of the

state.

In the second one (considered in section 5), one state variable affects all sets of admissible

(i.e. no arbitrage) Sharpe ratios on long-lived assets. Special cases of the resulting economies

are the “habit” economies mentioned earlier, or certain incomplete markets economies. Again, I

emphasize that the theoretical test conditions I obtain do not depend on assumptions regarding

preferences or the market structure.

Finally, the theory in this article is related to the “integrability” problem studied by He

and Leland (1993), Wang (1993), Cuoco and Zapatero (2000), and others. The integrability

problem consists in recovering preferences (and beliefs) from the knowledge of a given equilibrium

asset price process. In this article, I also derive restrictions on price kernels which make them

consistent with given rational asset price processes. One distinctive feature of this article is that

it is not confined to settings with complete markets and/or standard expected utility functions.

Furthermore, I consider multidimensional settings and I do provide accurate descriptions of both

implied kernel properties and implied primitive processes. On the other hand, the theoretical

test conditions of this article only impose sufficient restrictions on kernels and other primitives
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of models.

The article is organized in the following manner. The next section describes the primitives of

the model. Section 2 outlines how the motivational issues of this introduction are addressed in

this paper. Section 3 develops a simplified version of the theory. Sections 4 and 5 are the main

core of the paper; section 4 examines models including learning mechanisms and, more generally,

stochastic consumption growth; and section 5 analyzes models with time-varying risk-aversion.

Section 6 extends the theory to four-factor models. Section 7 concludes. Five appendices gather

proofs, examples, and results omitted in the main text.

1 The model

I consider a pure exchange economy endowed with a flow of a (single) consumption good. Let

Z = {z(τ)}τ>0 be the process of instantaneous rate of consumption endowment. With the

exception of section 6, I assume that consumption equals the dividends paid by a long-lived asset

(see below). Accordingly, I use the terms “consumption” and “dividends” interchangeably. Let

Y = {y(τ)}τ>0 be an additional multidimensional state vector. I assume that (Z, Y ) constitutes

a multidimensional diffusion process, with z(0) = z and y(0) = y (say), where (z, y) ∈ Z × Y,
Z ⊂ R++ and Y ⊂ Rd−1 (d ≥ 2). Consequently, I fix a probability space (Ω, F, P ) and a family
{F (τ) : τ ≥ 0} of sigma-algebras that is the augmented filtration of a standard Brownian motion
in Rd. To keep the analysis as simple as possible, I consider the case in which d = 2. As I

will show in sections 3, 4 and 5, this case is general enough to include many existing models.

Extensions to higher dimensions are considered in section 6 and appendix E.

A long-lived asset is an asset that promises to pay Z. Let Q = {q(τ)}τ≥0 be the corresponding

asset price process. As is well-known, absence of arbitrage opportunities implies that there exists

a positive pricing kernel M = {µ(τ)}τ≥0 such that

q(τ)µ(τ) = E

∙Z ∞

τ
µ(s)z(s)ds

¸
, τ ≥ 0, (1)

where E is the expectation operator taken under probability measure P .3

Given the previous assumptions on the information structure of the economy, the triple

3“Bubbles” are not considered in this paper.
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(Z, Y,M) necessarily satisfies:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dz(τ) = m0 (z(τ), y(τ)) dτ + σ (z(τ)) dW1(τ)

dµ(τ) = −µ(τ) [R(τ)dτ + λ1(τ)dW1(τ) + λ2(τ)dW2(τ)]

dy(τ) = ϕ0(z(τ), y(τ))dτ + ξ1 (y(τ)) dW1(τ) + ξ2 (y(τ)) dW2(τ)

(2)

where W1 and W2 are independent standard Brownian motions; m0, σ, ϕ0, ξ1 and ξ2 are given

functions guaranteeing a strong solution4 to (Z, Y ); the assumptions that consumption volatility

σ only depends on z and that the state variable volatility does not depend on z are made to

keep the presentation simple. Finally, R, λ1 and λ2 are some F -adapted processes satisfying all

the regularity conditions needed for the representation in (1) to exist. As is also well-known, R

represents the instantaneous (or short-term) rate process, and λi (i = 1, 2) are the unit prices of

risk associated with the two sources of risk W1 and W2.

In this paper, I consider classes of models predicting that the asset price process Q in (1)

satisfies the Markov property:

q(τ) ≡ q(z(τ), y(τ)),

where function q(z, y) ∈ C2,2(Z×Y) (the space of continuous and twice continuously differentiable
functions on Z×Y). A simple condition ensuring the existence of such a pricing function is that

µ(τ) ≡ µ(z(τ), y(τ), τ) = e−
R τ
0 δ(z(s),y(s))dsp(z(τ), y(τ)), (3)

for some bounded positive function δ, and some positive function p(z, y) ∈ C2,2(Z× Y). Indeed,
let us define the (undiscounted) “Arrow-Debreu adjusted” asset price process as:

w(z, y) ≡ p(z, y) · q(z, y).

By the assumed functional form of µ, and Itô’s lemma, R(τ) ≡ R(z(τ), y(τ)) and λi(τ) ≡
λi(z(τ), y(τ)) (i = 1, 2), where functions R and λi are given in appendix A [see eqs. (A2)].

Under usual regularity conditions, eq. (1) can then be understood as the unique Feynman-Kac

stochastic representation of the solution to the following partial differential equation

Lw(z, y) + f(z, y) = δ(z, y)w(z, y), ∀(z, y) ∈ Z×Y, (4)

4See definition 2.1 in Karatzas and Shreve (1991) (p. 285).
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where f ≡ pz, Lw is the usual infinitesimal generator of (2): Lw ≡ 1
2σ
2wzz +m0wz +

1
2(ξ

2
1 +

ξ22)wyy + ϕ0wy + σξ1wzy, and subscripts denote partial derivatives. [See, for example, Huang

and Pagès (1992) (thm. 3, p. 53) or Wang (1993) (lemma 1, p. 202), for a series of regularity

conditions underlying the Feynman-Kac theorem in infinite horizon settings arising in typical

financial applications.]

Eq. (4) can be further elaborated so as to emphasize a more familiar characterization of no-

arbitrage asset prices. By the definition of R and λi (i = 1, 2) given in appendix A [eqs. (A2)],

and Lw(τ) ≡ d
dsE [pq]

¯̄
s=τ
, one has that q is solution to:

Lq + z = Rq + (qzσ + qyξ1)λ1 + qyξ2λ2, ∀(z, y) ∈ Z×Y. (5)

Under regularity conditions, the Feynman-Kac representation of the solution to eq. (5) is:

q(z, y) =

Z ∞

0
C(z, y, τ)dτ, (6)

where

C(z, y, τ) ≡ E
∙
exp

µ
−
Z τ

0
R(z(t), y(t))dt

¶
· z(τ)

¯̄̄̄
z, y

¸
,

and E is the expectation operator taken under the risk-neutral probability P 0 (say). Finally,

(z, y) are solution to⎧⎪⎨⎪⎩
dz(τ) = m (z(τ), y(τ)) dτ + σ (z(τ)) dcW1(τ)

dy(τ) = ϕ(z(τ), y(τ))dτ + ξ1 (y(τ)) dcW1(τ) + ξ2 (y(τ)) dcW2(τ)

(7)

wherecW1 andcW2 are two independent P 0-Brownian motions, andm and ϕ are risk-adjusted drift

functions defined as m (z, y) ≡ m0 (z, y)−σ (z)λ1 (z, y) and ϕ (z, y) ≡ ϕ0 (z, y)−ξ1 (y)λ1 (z, y)−
ξ2 (y)λ2 (z, y). [See, for example, Huang and Pagès (1992) (prop. 1, p. 41) for mild regularity

conditions ensuring that Girsanov’s theorem holds in infinite horizon settings.]

The objective of the article is to provide general qualitative properties of the rational pricing

mapping (z, y) 7→ q(z, y) under the kernel assumption (3) and the additional technical condition

that q and its partial derivatives may be represented through the Feynman-Kac theorem. [Mele

(2002) (appendices A, B, C) develops regularity conditions ensuring the feasibility of such a

representation for a technically related problem.] In the next section, I highlight the main issues

motivating such a level of analysis. In section 3, I address a feasibility question: How is it possible

to pursue the objectives of this article without any knowledge of analytical solutions ? To gain

insight into this feasibility issue, I will then illustrate how the theory works through a series of

simple examples related to the recent literature.
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2 Issues

This article singles out general properties of long-lived asset prices that can be streamlined into

three categories: “monotonicity properties”, “convexity properties”, and “dynamic stochastic

dominance properties”. I now produce examples illustrating the economic content of such a

categorization.

• Monotonicity. Consider a model predicting that q(z, y) = z ·v(y), for some positive function
v ∈ C2(Y). (The remainder of this article contains many examples of this kind of models.)
By Itô’s lemma, asset return volatility is vol(z) + v0(y)

v(y) vol(y), where vol(z) > 0 is consump-

tion growth volatility and vol(y) has a similar interpretation. As is well-known, empirical

evidence suggests that actual returns volatility is too high to be explained by consumption

volatility [see, e.g., Campbell (1999) for a survey]. Naturally, additional state variables

may increase the overall returns volatility. In this simple example, state variable y inflates

returns volatility whenever the price-dividend ratio v is increasing in y. At the same time,

such a monotonicity property would ensure that asset returns volatility be strictly positive.

Eventually, strictly positive volatility is one crucial condition guaranteeing that dynamic

constraints of optimizing agents are well-defined.

• Convexity : I. Next, suppose that y is some state variable related to the business cycle
conditions. Another robust stylized fact is that stock-market volatility is countercyclical

[see, e.g., Schwert (1989)]. If q(z, y) = z · v(y) and vol(y) is constant, returns volatility
is countercyclical whenever v is a concave function of y. Even in this simple example,

second-order properties (or “nonlinearities”) of the price-dividend ratio are critical to the

understanding of time variation in returns volatility.

• Convexity : II. Alternatively, suppose that expected dividend growth is positively affected
by a state variable g. If v is increasing and convex in y ≡ g, price-dividend ratios would

typically display “overreaction” to small changes in g. The empirical relevance of this point

was first recognized by Barsky and De Long (1990, 1993).5 More recently, Veronesi (1999)

5 In their empirical work, Barsky and De Long considered feeding a variant of the Gordon’s model (1962) with
a (time-varying) estimate of the long-term dividend growth rate. Naturally, the Gordon’s model is based on the
assumption that the dividend’s growth is constant. Nevertheless, the Barsky and De Long procedure is of great
interest. It highlights the role played by a convex function in vehicling small changes in the dividend growth rate
to large changes of the price-dividend ratios.
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addressed similar convexity issues by means of a fully articulated equilibrium model of

learning.

• Dynamic stochastic dominance. An old issue in financial economics is about the relation
between long-lived asset prices and volatility of fundamentals [see, e.g., Malkiel (1979),

Pindyck (1984), Poterba and Summers (1985), Abel (1988) and Barsky (1989)]. The tradi-

tional focus of the literature has been the link between dividend (or consumption) volatility

and stock prices. Another interesting question is the relationship between the volatility

of additional state variables (such as the dividend growth rate) and stock prices. In some

models, volatility of these additional state variables is endogenously determined. For exam-

ple, it may be inversely related to the quality of signals about the state of the economy [see,

e.g., David (1997) and Veronesi (1999, 2000)]. In many other circumstances, producing a

probabilistic description of y is as arbitrary as specifying the preferences of a representative

agent. [In fact, y is in many cases related to the dynamic specification of agents’ preferences

(see section 5).] The issue is then to uncover stochastic dominance properties of dynamic

pricing models where state variables are possible nontradable.

In the next section, I provide a simple characterization of the previous properties. To achieve

this task, I utilize (and extend) some general ideas in the recent option pricing literature. This lit-

erature attempts to explain the qualitative behavior of a contingent claim price function C(z, y, τ)

[such as the one in eq. (6)] with as few assumptions as possible on z and y. Unfortunately, some

of the conceptual foundations in this literature are not well-suited to pursue the purposes of this

article. As an example, many available results are based on the assumption that at least one

state variable is tradable. This is not the case of the “European-type option” pricing problem

(6). In section 3.1, I introduce an abstract asset pricing problem which is appropriate to our

purposes. In section 3.2, I apply this framework of analysis to study basic model examples of

long-lived asset prices. Finally, sections 4, 5 and 6 provide systematic extensions of the results

contained in section 3.

3 A simplified version of the theory

This section provides a derivation of the theory under a series of simplifying assumptions. These

assumptions are made to illustrate the salient aspects of the theory in the easiest possible way,

and will be relaxed in sections 4, 5 and 6. The reader willing to access directly to both more

general results and in-depth discussion can proceed to section 4 without loss of continuity.
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The major insights of this section are related to the price representation in eq. (6). Ac-

cording to eq. (6), a long-lived asset price q(z, y) is a linear functional of European-type option

prices {C(z, y, c)}c≥0. The main idea in this section is to analyze simple situations where general

properties of long-lived asset prices can be understood through the corresponding properties of

European-type option prices. In this section, I develop results addressing monotonicity and con-

vexity properties of asset price functions. To save space, results on dynamic stochastic properties

are only succinctly presented in Appendix B (see proposition B1).

3.1 A canonical pricing problem

Consider a risk-neutral environment in which a cash premium ψ is paid off at some future date

T . The cash premium is a given function of ex ≡ x(T ), where X = {x(τ)}τ∈[0,T ] (x(0) = x) is

some underlying state process. If the yield curve is flat at zero, c(x) ≡ E[ψ(ex)|x] is the price of
the right to receive ψ. The question is: Which joint restrictions on ψ and X are needed to make

c concave/convex ? Furthermore: what is the relationship between volatility of ex and c ?

When X is a proportional process (one for which the risk-neutral distribution of ex/x is
independent of x), there are simple answers to the previous questions. Consider for example the

second question. The price c is:

c(x) = E [ψ(x · C)] , C ≡ ex
x
, x > 0.

As this simple formula reveals, classical second-order stochastic dominance properties [see Roth-

schild and Stiglitz (1970)] apply when X is proportional: c decreases (increases) after a mean-

preserving spread in C whenever ψ is concave (convex) [consistently for example with the predic-

tion of the Black and Scholes (1973) formula]. This point was first made by Jagannathan (1984)

(p. 429-430). In two independent papers, Bergman, Grundy and Wiener (1996) (BGW) and

El Karoui, Jeanblanc-Picqué and Shreve (1998) (EJS) generalized these results to any diffusion

process (i.e., not necessarily a proportional process).6 ,7 But one crucial assumption of these exten-
6The proofs in these two articles are markedly distinct but are both based on price function convexity. An

alternate proof directly based on payoff function convexity can be obtained through a direct application of



sions is that X must be the price of a traded asset that does not pay dividends. This assumption

is crucial because it makes the risk-neutralized drift function of X proportional to x. As a con-

sequence of this fact, c inherits convexity properties of ψ, as in the proportional process case. As

I demonstrate below, the presence of nontradable state variables makes interesting nonlinearities

emerge. As an example, proposition 1 reveals that convexity of ψ is neither a necessary nor a

sufficient condition for convexity of c.8 Furthermore, “dynamic” stochastic dominance properties

are more intricate than in the classical second order stochastic dominance theory (see proposition

B1 in appendix B).

To substantiate these claims, I now introduce a simple, abstract pricing problem (taken to

satisfy the technical regularity conditions maintained in section 1). Once again, I emphasize that

the main purpose of this problem is to address in a simple way the issues of the previous section

through a simple characterization of the long-lived asset pricing problem (6) (see section 3.2).

Auxiliary pricing problem. Let X be the (strong) solution to:

dx(τ) = b (x(τ)) dτ + a (x(τ)) dcW (τ),

where cW is a P 0-Brownian motion and b, a are some given functions. Let ψ and ρ be two twice

continuously differentiable positive functions, and define

c(x, T ) ≡ E
∙
exp

µ
−
Z T

0
ρ(x(t))dt

¶
· ψ(x(T ))

¯̄̄̄
x

¸
(8)

to be the price of an asset which promises to pay ψ(x(T )) at time T .

In this pricing problem, X can be the price of a traded asset. In this case b(x) = xρ(x).

If in addition, ρ0 = 0, the problem collapses to the classical European option pricing case with

constant discount rates. If instead, X is not a traded risk, b(x) = b0(x)−a(x)λ(x), where b0 is the
physical drift function of X and λ is a risk-premium. The previous framework then encompasses

a number of additional cases. As an example, set ψ(x) = x. Then, one may 1) interpret X as

consumption process; 2) set c(x, τ) = C(x, y, τ) in (6); and 3) restrict the long-lived asset price

q to be driven by consumption only. As another example, set ψ(x) = 1 and ρ(x) = x. Then,

8Kijima (2002) produced a counterexample in which option price convexity may break down in the presence
of convex payoff functions. His counterexample was based on an extension of the Black-Scholes model in which
the underlying asset price had a concave drift function. (The source of this concavity was due to the presence of
dividend issues.) Among other things, the proof of proposition 1 reveals the origins of this counterexample.
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c is a zero-coupon bond price as predicted by a simple univariate short-term rate model. The

importance of these specific cases will be clarified in section 3.2 and appendix B. I now turn to

characterize qualitative properties of c.

Proposition 1. The following statements are true:
a) If ψ0 > 0, then c is increasing in x whenever ρ0 ≤ 0. Furthermore, if ψ0 = 0, then c is

decreasing (resp. increasing) whenever ρ0 > 0 (resp. < 0).

b) If ψ00 ≤ 0 (resp. ψ00 ≥ 0) and c is increasing (resp. decreasing) in x, then c is concave

(resp. convex) in x whenever b00 < 2ρ0 (resp. b00 > 2ρ0) and ρ00 ≥ 0 (resp. ρ00 ≤ 0). Finally, if
b00 = 2ρ0, c is concave (resp. convex) whenever ψ00 < 0 (resp. > 0) and ρ00 ≥ 0 (resp. ≤ 0).

Proposition 1-a) generalizes previous monotonicity results obtained by Bergman, Grundy and

Wiener (1996). By the so-called “no-crossing property” of a diffusion, X is not decreasing in its

initial condition x. Therefore, c inherits the same monotonicity features of ψ if discounting does

not operate adversely. While this observation is relatively simple, it explicitly allows to address

monotonicity properties of long-lived asset prices (see section 3.2).

Proposition 1-b) generalizes a number of existing results on price convexity. First, assume

that ρ is constant and that X is the price of a traded asset. In this case, ρ0 = b00 = 0. The last

part of proposition 1-b) then says that convexity of ψ propagates to convexity of c. This result

reproduces the findings in the literature that I surveyed earlier. Proposition 1-b) characterizes

option price convexity within more general contingent claims models. As an example, suppose

that ψ00 = ρ0 = 0 and that X is not a traded risk. Then, proposition 1-b) reveals that c inherits

the same convexity properties of the instantaneous drift of X. As a final example, proposition 1-

b) extends one (scalar) bond pricing result in Mele (2003). Precisely, let ψ(x) = 1 and ρ(x) = x;

accordingly, c is the price of a zero-coupon bond as predicted by a standard short-term rate

model. By proposition 1-b), c is convex in x whenever b00(x) < 2 for all x. This corresponds to eq.

(8) (p. 688) in Mele (2003).9 In analyzing properties of long-lived asset prices, both discounting

and drift nonlinearities play a prominent role. For the purpose of this paper, I therefore need the

more general statements contained in proposition 1-b).

9 In appendix B, I have developed further intuition on this bounding number.
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3.2 Applications to long-lived assets

Models in which long-lived asset prices are driven by only one state variable fail to explain

the actual characteristics of aggregate stock-market behavior. The simplest multidimensional

extensions consist in randomizing 1) the average consumption growth rate and 2) the Sharpe

ratio. In section 3.2.1, I explore theoretical properties of models addressing the first extension.

Properties of models with time varying Sharpe ratios are investigated in section 3.2.2. Sections

4 and 5 contain general versions of the simple predictions in sections 3.2.1 and 3.2.2.

3.2.1 Stochastic profitability growth

The first model of this section is a simple extension of the basic geometric Brownian motion model.

Precisely, consider an economy in which the instantaneous rate of consumption Z satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
dz(τ)

z(τ)
= [g(τ)− σ0λ] dτ + σ0dcW1(τ)

dg(τ) = ϕ (g(τ)) dτ + ξ1 (g(τ)) dcW1(τ) + ξ2 (g(τ)) dcW2

(9)

where cWi (i = 1, 2) are two independent P 0-Brownian motions, and σ0, λ are positive constants.

This model is a special case of system (7) [notably, for m(z, g) = z(g − σ0λ)]. Accordingly, I

interpret λ as a risk-premium coefficient and G = {g(τ)}τ≥0 as a stochastic consumption growth

rate. In this model, agents may be unable to observe G. But I initially assume that G is

measurable with respect to the agents’ information set. To simplify the exposition, I assume that

the short-term rate R = r, a constant.

To compute the long-lived price function q(z, g), I utilize the representation in eq. (6). The

result is that the price-dividend ratio v(g) ≡ q(z, g)/ z satisfies:

v(g) =

Z ∞

0
B(g, τ)dτ, (10)

where

B(g, τ) ≡ E
∙
β(τ) · exp

µ
−
Z τ

0
(r − g(u) + σ0λ)du

¶¯̄̄̄
g

¸

= E
∙
exp

µ
−
Z τ

0
(r − g(u) + σ0λ)du

¶¯̄̄̄
g

¸
. (11)
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Here β(τ) ≡ exp(−12σ20τ + σ0cW1(τ)), E is the expectation operator taken with respect to a new
probability measure P (say), and g is solution to:

dg(τ) = [ϕ (g(τ)) + σ0ξ1 (g(τ))] dτ + ξ1 (g(τ)) dW 1(τ) + ξ2 (g(τ)) dW 2(τ),

where W 1(τ) = cW1(τ) − σ0τ is a Brownian motion under P , and W 2 = cW2. Put another way,

this model predicts that function C in eq. (6) is given by C(z, g, τ) = z ·B(g, τ). Properties of v
can therefore be understood through the corresponding properties of B in eq. (11).

First, consider the simple case in which G is constant. In this case, eq. (10) reduces to

Gordon’s (1962) formula. This formula predicts that the price-dividend ratio v is increasing and

convex in g. Does a similar property hold when G is a random process ? This question is of

fundamental importance as it is related to the overreaction issue highlighted by Barsky and De

Long (1990, 1993) and overviewed in section 2.

Surprisingly, the answer to the previous question is neat. The price-dividend ratio v is always

increasing in g; furthermore,

v00(g) > 0 whenever ϕ000 (g) + (σ0 − λ) ξ001(g) > −2 for all g ∈ G. (12)

This result is a special case of propositions 2 and 3 in section 4. To demonstrate it here, I

recognize B as a special case of the canonical pricing problem introduced in section 3.1 (precisely,

B is a bond pricing function). The previous theoretical conditions then follow by a direct appli-

cation of proposition 1. Specifically, monotonicity properties (v0 > 0) follow by the “no-crossing”

property of a diffusion. Convexity properties follow by proposition 1-b). As we will see in section

4, both properties may fail to hold if R is a function of g (see proposition 3 and example 1).

The previous theoretical test condition imposes a joint restriction on both the law of motion

of the state variable g (ϕ0 and ξ1) and degrees of risk-aversion (λ). Suppose for example that

ϕ0 and ξ1 are both linear functions. Then, eq. (12) implies that the price-dividend ratio v is

always convex (i.e. independently of risk-aversion). As a second example, suppose that ϕ000 = 0.

Then, eq. (12) tells us that v is convex whenever ξ1 is concave and risk-aversion is sufficiently

high. As it turns out, ξ1 is nonconvex in many economies with partially observed state variables

and learning mechanisms [see, e.g., Brennan and Xia (2001) and Veronesi (1999)]. Eq. (12) then

formally describes how the effects of such learning mechanisms impinge upon the equilibrium

price process. This is the major insight of the present subsection. For completeness, in appendix

B I have illustrated the mechanism through which learning leads to nonconvexities of ξ1 in a

simple example (see example B2).
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3.2.2 Time-varying discount rates

I now analyze the main mechanism linking asset prices variations to random fluctuations in

Sharpe ratios. I consider a simple model in which (risk-neutralized) consumption Z solves⎧⎪⎪⎪⎨⎪⎪⎪⎩
dz(τ)

z(τ)
= [g0 − σ0λ(s(τ))] dτ + σ0dcW (τ)

ds(τ) = [φ (s(τ))− ξ (s(τ))λ(s(τ))] dτ + ξ (s(τ)) dcW (τ)

(13)

where cW is a P 0-Brownian motion; g0, σ0 are positive constants; φ, ξ are given functions; and λ

is the Sharpe ratio (or unit risk-premium).

Time-varying Sharpe ratios arise naturally in economies where agents have preferences non-

separable in time [see, e.g., Campbell and Cochrane (1999)]. They also arise in certain incomplete

markets economies [see Basak and Cuoco (1998)]. Section 5 develops theoretical test conditions

that can be used to predict the behavior of all models arising within such economies. In these

economies, the short-term rate R is a function of the state (z, s). To simplify the exposition of

this section, I assume that R is a constant r. More general results are established in section 5.

In system (13), state variable S = {s(τ)}τ≥0 drives variations in the Sharpe ratio λ. In many

cases of interest, it represents a state variable tracking the business cycle conditions (see section

5, example 3 and 4). In the same cases, the functional form of λ is easily deduced from first

principles (see, e.g., example A1 in appendix A) - as an example, all models examples in section

5 predict that λ is decreasing in s. On the other hand, the functional form of both φ and ξ is

typically “variation-free”, i.e. it is not restricted by standard asset pricing theories.

In this article, I develop joint restrictions on φ, ξ and λ that are consistent with properties

of the pricing function q(z, s) that are given in advance. As an example, it is well-known that

stock-market volatility is countercyclical (see section 2). By Itô’s lemma, volatility of q is “coun-

tercyclical” whenever ξ is constant and q is a concave function of s. But how can we ensure

that q is concave in s in this and more complex situations (with possible non constant ξ) ? The

conditions in this section explicitly address this issue.

Similarly as in section 3.2.1, the starting point is to compute q(z, s) through the evaluation

formula in eq. (6). If Z is solution to (13), then q(z, s) = z · v(s)



In the previous formula, E is the expectation operator taken under a new measure P , and S is

solution to

ds(τ) = {φ (s(τ))− [λ(s(τ))− σ0] · ξ(s(τ))} dτ + ξ (s(τ)) dW (τ),

where W is a P -Brownian motion.10

According to eq. (14), the price-dividend ratio v is a linear functional of bond prices {B(s, c)}c≥0
in a fictitious economy where the short-term rate is given by ρ(s) ≡ r−g0+σ0λ(s). Furthermore,

function B in (14) is a special case of the canonical pricing problem in section 3.1 (namely for

X ≡ S and ψ ≡ 1). Therefore, general properties of v in (14) may be deduced through an

application of proposition 1 to function B.

Monotonicity properties are straightforward. By proposition 1-a), B is increasing in s when-

ever λ is decreasing in s. Convexity properties of v can be deduced through an application of

proposition 1-b). Precisely, B is concave in s whenever [φ (s) + σ0ξ(s)− ξ (s)λ(s)]00 < 2ρ0(s) and

ρ00(s) > 0, all s ∈ S. By using the definition of ρ, and by rearranging terms, I then arrive at the
following theoretical test condition. Suppose that λ0 < 0. Then, v is concave if

∀s ∈ S, λ00(s) > 0 and [φ (s) + σ0ξ(s)− ξ (s)λ(s)]00 − 2σ0λ0(s) < 0. (15)

The previous condition is a special case of proposition 4 in section 5. It imposes a natural lower

bound on convexity of the Sharpe ratio λ. This lower bound can be understood heuristically as

follows. Suppose that φ = ξ = 0. The price-dividend ratio is then as predicted by the standard

Gordon’s (1962) model, viz v(s) = (r − g + σ0λ(s))
−1, where s is the (constant) value of S. In

this case, the theoretical test condition (15) collapses to λ0 > 0 and λ00 > 0. That is, convexity of

λ translates to concavity of v in a natural way whenever λ0 > 0. The condition that λ0 > 0 is of

course very tight. As condition (15) reveals, randomizing S makes the model gain in increased

flexibility through the additional (nonzero) terms φ and ξ. Section 5 contains additional details

on the link between convexity of Sharpe ratios and concavity of price-dividend ratios.

4 Stochastic consumption growth

This section develops general properties of the rational pricing function q(z, y) introduced in

section 1. These properties isolate the effects of random changes in average profitability. To

10Such an additional change of measure arises because Z and S are correlated, and it is justified by the same
arguments leading to eq. (11) in section 3.2.1.
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emphasize this fact, I set G ≡ Y in system (2). I then consider the following restrictions:

∀(z, g) ∈ Z×G, ∂m0(z, g)

∂g
6= 0 and

∂λi(z, g)

∂g
= 0, i = 1, 2.

Models in which Sharpe ratios are driven by additional state variables are analyzed in section

5. Section 6 considers higher dimensional extensions (with fully interacting state variables)

encompassing both models of this and the next section. In this and the next section, I disentangle

the effects of random changes in average profitability from the effects of random changes in Sharpe

ratios. This helps to develop intuition on the functioning of the more complex model in section 6.

I now provide examples of models that are special cases of the framework covered in this section.

Example 1. [Veronesi (1999, 2000)]. Consider an infinite horizon economy in which a represen-
tative agent observes realizations of Z generated by:

dz(τ) = θdτ + σ0dw1(τ), (16)

where w1 is a Brownian motion, and θ is a two-states (θ, θ) Markov chain. θ is unobserved, and

the agent implements a Bayesian procedure to learn whether she lives in the “good” state θ > θ.

The equilibrium price of this economy is isomorphic to the equilibrium price of an economy in

which (Z,G) are solution to:⎧⎪⎨⎪⎩
dz(τ) =

£
g(τ)− γσ20

¤
dτ + σ0dcW1(τ)

dg(τ) = [k(g − g(τ))− γσ0ξ1 (g(τ))] dτ + ξ1 (g(τ)) dcW1(τ)

where cW1 is a P 0-Brownian motion, ξ1(g) = (θ − g)(g − θ)
±
σ0, k, g are some positive constants,

and γ is the agent’s CARA. (See example B2 in appendix B for heuristic details on such an

isomorphism and filtering results for a simpler problem.) A related model is one in which Z is

solution to:
dz(τ)

z(τ)
= θdτ + σ0dw1(τ), (17)

and the agent receives additional signals A = {a(τ)}τ>0 about θ satisfying:

da(τ) = θdτ + σ1dw2(τ),

where w2 is a Brownian motion independent of w1. Similarly as for model (16), the nonar-

bitrage price of this economy is isomorphic to the nonarbitrage price of an economy in which

17



(Z,G) are solution to eq. (2), with m0(z, g) = gz, σ(z) = σ0z, ϕ0 (z, g) = p(g − g), ξ1(z, g) =

(θ − g)(g − θ)
±
σ0, ξ2(z, g) =

σ0
σ1
ξ1(z, g) and p, g are some positive constants.11

Example 2. [Brennan and Xia (2001)]. A single infinitely lived agent observes Z, where Z is

solution to:
dz(τ)

z(τ)
= bg(τ)dτ + σ0dw1(τ).

Similarly as in example 1, bG = {bg(τ)}τ>0 is unobserved. Unlike example 1, bG does not evolve on

a countable number of states. Rather, it follows an Ornstein-Uhlenbeck process:

dbg(τ) = k(g − bg(τ))dτ + σ1dw1(τ) + σ2dw2(τ)

where g, σ1 and σ2 are positive constants. The agent implements a learning procedure similar as in

example 1. If she has a Gaussian prior on bg(0) with variance γ2∗ (defined below), the nonarbitrage
price takes the form q(z, g), where (Z,G) are now solution to eq. (2), with m0(z, g) = gz,

σ(z) = σ0z, ϕ0 (z, g) = k(g− g), ξ2 = 0, and ξ1 ≡ ξ1(γ∗) = (σ1+
1

σ0
γ∗)

2, where γ∗ is the positive

solution to ξ1(γ) = σ21 + σ22 − 2kγ.12

The models in the previous examples share the same basic economic motivation. Yet they

make different assumptions on the probabilistic structure of the unobserved consumption growth

rate. Do these two assumptions entail similar asset pricing implications ? More generally, which

minimal assumptions must any two “stochastic consumption growth” models share in order to

display comparable pricing properties ? Clearly, examples 1 and 2 only contain two possible

11The formal structure of the Markov chain in the two models is slightly different. In Veronesi’s (1999) model (16),
θ switches from the good state θ to the bad state θ with probability p1dτ (resp. θ switches from the bad state θ to
the good state θ with probability p2dτ) over any infinitesimal amount of time, and k = p1 + p2, g = πθ+(1− π)θ,
π = p2/ (p1 + p2). In a simplified version of Veronesi’s (2000) model, there is a probability pdτ that over any
infinitesimal amount of time dτ , new values of θ in (17) are drawn (θ with probability f and θ with probability
1− f , and θ < θ), and g = fθ + (1− f)θ.
12 In their article, Brennan and Xia considered a slightly more general model in which consumption and dividends

differ. They obtain a reduced-form model which is identical to the one in this example. In the calibrated model,
Brennan and Xia found that the variance of the filtered bg is higher than the variance of the expected dividend
growth in an economy with complete information. The results on γ∗ in this example can be obtained through an
application of theorem 12.1 in Liptser and Shiryaev (2001) (Vol. II, p. 22). They generalize results in Gennotte
(1986) and are a special case of results in Detemple (1986). Both Gennotte and Detemple did not emphasize the
impact of learning on the pricing function.
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kinds of models with incomplete information and learning mechanisms.13 Furthermore, models

making expected consumption another observed diffusion may have an interest in their own

[see Campbell (1999); and examples C1 and C2 in appendix C]. In this case, there might be

no practical guidance as to how to choose a dynamic model of expected consumption changes.

The theory of this section provides coverage to all such models, and allows one to gauge the

implications of primitive assumptions on the form of the asset price function.

In describing the theory, I will make two simplifications. The first simplification is achieved by

assuming that the short-term interest rate R is constant. Such an assumption isolates interesting

phenomena in a neat way, and is relaxed in appendix A (see lemma A1). The resulting predictions

of the theory are contained in proposition 2. Proposition 3 relaxes the assumption that R is

constant, but restricts the general theory to situations where price-dividend ratios are independent

of z. The reader interested in the general theory is referred to lemma A1 in appendix A.

The most basic properties of q that one may wish to isolate regard monotonicity (with respect

to both g and z) and “overreaction” to changes in g (i.e. convexity of the price function with

respect to g). Monotonicity properties are ensured by relatively simple restrictions. Overreaction

is a more complex phenomenon. In sections 2 and 3.2.1, I provided a heuristic introduction to

this topic. I now develop more technical details. Precisely, in the appendix I show that the second

partial qgg is solution to the following partial differential equation

0 = (L− k(z, g))qgg(z, g) + h(z, g), ∀(z, g) ∈ Z×G,

where L is a partial differential operator defined in appendix A (see lemma A1), k is also given

in appendix A, and finally,

h(z, g) ≡ m22(z, g)qz(z, g) + ϕ22(z, g)qg(z, g) +

∙
2m2(z, g) +

∂2

∂g2
((σξ1)(z, g))

¸
qzg(z, g), (18)

with m(z, g) ≡ m0(z, g) − λ1(z, g)σ(z), ϕ(z, g) ≡ ϕ0(z, g) − λ1(z, g)ξ1(g) − λ2(z, g)ξ2(g). By an

application of the Feynman-Kac representation theorem, we have that the sign of qgg is inherited

by the sign of h. This insight justifies the last statement in the following proposition.
13The literature on continuous time models with incomplete information and Bayesian learning mechanisms is

vast. It was initiated by Detemple (1986) and Gennotte (1986). David (1997) proposed the first model with
unobservable processes living on a countable number of states. Veronesi (1999, 2000) and Brennan and Xia (2001)
developed the first models analyzing the pricing function implications of learning phenomena. These last papers
contain additional references to this topic. Models with incomplete information are quite distinct from models
with asymmetric information such as the one developed by Wang (1993). Models with asymmetric information are
so complex that they can only be treated at the cost of simplifying assumptions on the primitives. In turn, these
simplifications often imply that the resulting price functions are only linear in the state variables.
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Proposition 2. Assume that for all (z, g) ∈ Z×G, ϕ1(z, g) = 0 and that R is constant ; then, the
price function q(z, g) is increasing in z. If in addition ∂2((σξ1)(z, g))

±
∂z2 = 0, q(z, g) is concave

(resp. convex) in z whenever m11(z, g) < 0 (resp. > 0) for all (z, g) ∈ Z × G. Furthermore, if
q(z, g) is increasing in z, it is increasing (resp. decreasing) in g whenever m2(z, g) > 0 (resp.

< 0) for all (z, g) ∈ Z×G. Finally, q(z, g) is convex (resp. concave) in g whenever h(z, g) > 0

(resp. < 0) in (18) for all (z, g) ∈ Z×G.

I shall henceforth assume that state variable G positively affects average profitability; that

is, m2 > 0. In this case, monotonicity of q with respect to both z and g holds whenever ϕ1 = 0.

[In appendix C, I have developed a less stringent technical condition ensuring that qz > 0; see

eq. (C1).] Examples of models predicting that ϕ1 = 0 naturally arise within infinite horizon

economies with complete markets. Assume, for instance, that ξ2 = 0 and that

ϕ(z, g) ≡ ϕ0(g)− ξ1(g)λ(z).

In this case, ϕ1 = 0 whenever λ is independent of z.
14

To fix ideas, I now assume that ϕ1 = 0. Proposition 2 may then be used to understand

second order properties of the pricing function q(z, g) in many interesting cases. Consider, first,

convexity properties with respect to z. Proposition 2 predicts that if the covariance between Z

and G is at most linear in z, the price function q inherits the same qualitative features of the

risk-neutralized drift function of Z. This is a generalization of a result found and discussed at

length in section 3.1 (see, also, corollary B2 in appendix B for further insights). It implies that

q(z, g) ≡ vc(g) + v(g)z whenever¯̄̄̄
∂2m(z, g)

∂z2

¯̄̄̄
+

¯̄̄̄
∂2σ(z)

∂z2

¯̄̄̄
= 0, ∀(z, g) ∈ Z×G. (19)

Finally, proposition 2 contains general predictions on convexity properties of the price function

q with respect to g. As an example, consider an economy in which consumption is a proportional

process. In this case, condition (19) is satisfied. Since the interest rate is constant, vc = 0

by eq. (6). Therefore, function h in (18) is: h(z, g) =
£
(σ0 − λ) ξ001(g) + ϕ000(g) + 2

¤
v0(g)z. By

proposition 2, “overreaction” of asset prices then occurs whenever the Sharpe ratio λ and the

other primitives of the economy satisfy the following joint restriction:

for all g ∈ G, (σ0 − λ) ξ001(g) + ϕ000(g) + 2 > 0.

14The risk-premium λ is independent of z in all complete markets economies in which either σ(z) = σ0z and a
representative agent has CRRA [as in example 1, model (17)]; or σ(z) = σ0 and a representative agent has CARA
[as in example 1, model (16)].
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[See eq. (12) in section 3.2.1 for an alternative derivation.] If risk-premia are sufficiently high and

ξ is nonconvex, the previous inequality holds whenever ϕ000 > −2 (see example B2 in appendix B
for an illustration of the origins of nonconvexities of ξ1 in models with learning mechanisms).

15

How do predictions change when the assumption of constant interest rates is dropped ? As

an example, in appendix A (lemma A1), I have shown that q(z, g) is convex in g if

for all (z, g) ∈ Z×G, h(z, g) ≡ m22(z, g)qz(z, g)−R22(z, g)q(z, g)

+ [ϕ22(z, g)− 2R2(z, g)] qg(z, g) +
h
2m2(z, g) +

∂2

∂g2
((σξ1)(z, g))

i
qzg(z, g) > 0.

(20)

To simplify the exposition, I now develop qualitative properties of price-dividend ratios in

models predicting them to be independent of z.

We have:

Proposition 3. Suppose that q(z, g) = z · v(g) for some positive function v. Then v0 > 0

(resp. < 0) if zR2(z, g) < m2(z, g) (resp. zR2(z, g) > m2(z, g)). Furthermore, suppose that

v0 > 0; then v is convex (resp. concave) if both m22(z, g) − R22(z, g)z > 0 (resp. < 0) and

ϕ22(z, g)z + 2 [m2(z, g)− zR2(z, g)] +
∂2

∂g2
(σξ1((z, g))) > 0 (resp. < 0).

The pricing function q(z, g) takes the form assumed in proposition 3 whenever condition (19)

holds and both the short-term rate R and the coefficients of G are independent of z. The proof

of this statement follows heuristically from eq. (6) - and it can be made rigorous through an

elaboration of lemma A1 in appendix A. In this case, function h(z, g) in eq. (20) collapses to:

h(z, g) = {m22(z, g)−R22(z, g)z} v(g)

+

½
ϕ22(z, g)z + 2 [m2(z, g)−R2(z, g)z] +

∂2

∂g2
((σξ1)(z, g))

¾
v0(g).

The second part of proposition 3 immediately follows. As proposition 2 revealed, the pricing

function partially inherits convexity properties of the risk-neutralized drift function of the state

variables. Proposition 3 now reveals that the same convexity effects may be compensated by

15For instance, let η denote the representative agent’s CRRA in example 1 [model (17)]; then, h(z, g) = 2ηv0(g)z
in this example. Furthermore, it is easily seen that qzg = 0 in model (16) (see, e.g., example B2 in appendix B;
or apply lemma A1 in appendix A). It follows that h(z, g) = −γσ0ξ001 (g)qg(z, g) = 2γσ0qg(z, g). In both models
of example 1, risk aversion and concavity of ξ1 come exactly as needed to make prices convex in g. Finally,
h(z, g) = 2v0(g)z in example 2; that is, prices are always convex in g in this example - i.e. independently of
risk-aversion.
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second-order properties of the short-term rate. Even when m22 = R22 = 0, the short-term rate

can destroy the convexity properties in proposition 2, and make asset prices linear in g. As an

example, this phenomenon occurs with model (17) and in appendix C, I show that a similar

phenomenon may take place with model (16). Additionally, time-varying interest rates may

induce price-dividend ratios to be decreasing in g! According to proposition 2, this happens

whenever zR2 > m2. For example, in both model (17) and example 2, v0 < 0 whenever η > 1

[see, also, Veronesi (2000, lemma 3(a)) for a related result]. In appendix C, I have provided

further examples illustrating the theoretical test conditions in proposition 3.

Propositions 2 and 3 impose restrictions on the joint dynamics of expected returns, returns

volatility and changes in g. Consider, for example, proposition 3, and set σ(z) ≡ σ0z, where σ0
is some constant. To save space, I only consider the case ξ2 = 0, and set ξ ≡ ξ1 and λ ≡ λ1.

Excess returns volatility is then

V(g) ≡ σ0 +
v0(g)

v(g)
ξ(g),

and expected (percentage) returns are given by λ(z)V(g). Returns volatility is negatively related
to g whenever function ω(z, g) ≡ v0(g)ξ(g) is positive and decreasing in g. In all models predicting

that v0 > 0, ω is decreasing in g for sufficiently high levels of g whenever ξ is ∩-shaped (as in
the learning models in example 1). If on the contrary ξ is nondecreasing, time-varying expected

dividend growth may now induce a positive relation between expected (non-percentage) returns

and price-dividend ratios whenever price-dividend ratios are convex in g.16 Menzly, Santos and

Veronesi (2004) have recently demonstrated that should such a property occur in multidimensional

settings, price-dividend ratios would then be weak predictors of future dividend growth - a well-

known empirical feature [see, e.g., Campbell and Shiller (1988)]. The theory in this section

isolates precise conditions under which price-dividend ratios are convex. In section 6, I develop its

multidimensional extensions in which Sharpe ratios and interest rates may be driven by additional

state variables.

5 Time-varying Sharpe ratios

This section develops a theory analyzing the joint behavior of time-varying discount rates, asset

returns and volatility. I consider models in which Sharpe ratios are driven by state variables that

16While the previous statement is always true when applied to expected returns, in the appendix I conjecture
that expected percentage returns are increasing in g whenever the curvature of the stochastic flow of G under a
certain probability measure is positive (see appendix C, conjecture C1).
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are only indirectly related to total consumption. To isolate the effects of time-varying Sharpe

ratios on asset prices, I assume that total consumption Z is generated by a simple geometric

Brownian motion
dz(τ)

z(τ)
= g0dτ + σ0dW1(τ), (21)

where g0 and σ0 are positive constants. The unit-risk premia λi are then taken to satisfy the

following conditions:

∀(z, y) ∈ Z×Y, ∂λi(z, y)

∂z
= 0 and

∂λi(z, y)

∂y
6= 0, i = 1, 2.

Further, I simplify the presentation and I set ξ2 = 0 (and hence, λ2 = 0) and define W ≡ W1,

ξ ≡ ξ1 and λ ≡ λ1. General results are in appendix D. In many models satisfying the previous

restrictions, Y is some state variable tracking the business cycle conditions and ∂λ/ ∂y < 0 (see

examples 3 and 4 below). To distinguish the class of models studied in this section from the one

analyzed in section 4, I set S ≡ Y . Therefore, S is assumed to be the (strong) solution to:

ds(τ) = φ(s(τ))dτ + ξ(s(τ))dW (τ),

where φ and ξ are functions guaranteeing the existence of a strong solution. The problem analyzed

in this section is: Which general restrictions do we have to impose to λ, R, φ and ξ to make the

rational price function q(z, s) exhibit some general properties given in advance ? I now provide

examples of models covered by the framework of this section.

Example 3. [Campbell and Cochrane (1999)]. Consider an infinite horizon, complete markets
economy in which the representative agent has (undiscounted) instantaneous utility given by

u(c, x) = [(c− x)1−η − 1]
±
(1 − η), where c is consumption and x is a (time-varying) habit,

or (exogenous) “subsistence level”. In equilibrium C = Z. Let s ≡ (z − x)/z (the “surplus

consumption ratio”). By assumption, S = {s(τ)}τ≥0 is solution to:

ds(τ) = s(τ)

∙
(1− φ)(s− log s(τ)) + 1

2
σ20l(s(τ))

2

¸
dτ + σ0s(τ)l(s(τ))dW (τ), (22)

where l is a positive function given in appendix D. The Sharpe ratio predicted by the model is:

λ(s) = ησ0 [1 + l(s)]

(see appendix D for additional details).17

17Chan and Kogan (2002) have proposed an alternative external habit model with “catching up with the Joneses”.
In their model, the “standard of living of others” is a process with bounded variation and the Sharpe ratio is driven
by a procyclical state variable through nonlinearities induced by agents heterogeneity.
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Time variation in the Sharpe ratio may also arise in economies where agents have classical

preferences but may face an incomplete market structure. In these cases, Sharpe ratios are

typically driven by state variables positively related to the utility of market participants.

Example 4. [Basak and Cuoco (1998)]. Two infinitely lived agents a and b have instantaneous

(undiscounted) utility ua(c) = (c1−η − 1)
±
(1 − η) and ub(c) = log c. Only agent a invests in

the stock market. While the competitive equilibrium is generically Pareto inefficient, agents’

aggregation is still possible in this model. Let {bci(τ)}τ≥0 be the general equilibrium allocation

process of agent i (i = a, b). The agents’ first order conditions are u0a(bca(τ)) = wae
δτµ(τ) andbcb(τ)

−1 = wbe
δτ−

R τ
0 R(s)ds, where µ is the pricing kernel process defined in section 1, and wa, wb are

two constants. Let u(z, x) ≡ maxca+cb=z[ua(ca) + x · ub(cb)], where x ≡ u0a(bca)/u
0
b(bcb) = u0a(bca)bcb

is a stochastic social weight. By the definition of µ (see section 1), X is solution to

dx(τ) = −x(τ)λ(τ)dW (τ),

where λ is the Sharpe ratio. Then, the equilibrium price system in this economy is supported by

a fictitious representative agent with utility u(z, x).18 The Sharpe ratio takes the following form:

λ(s) = ησ0s
−1,

where now s ≡ bca/ z (see appendix D). Appendix D also provides the functional form of drift

and diffusions of state variable S and interest rates in this example.

Qualitative properties of the models in the previous examples should depend critically on

the assumptions made as regards the primitives of the economy. For example, Campbell and

Cochrane assumed that function l in (22) is positive, decreasing and convex over the relevant

range of variation of S. Remarkably, their model makes the intriguing predictions that price-

dividend ratio are concave in s, and that expected returns and stock-market volatility are both

countercyclical. Yet what is the precise mechanism linking convexity of Sharpe ratios, concavity

of price-dividend ratios and countercyclical risk-premia and volatility ? The following proposition

provides a theory addressing this question in great generality.

18Theorem 1 in Basak and Cuoco (1998) (p. 321) contains the rigorous statement of this result.
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Proposition 4. The rational price function q(z, s) is given by q(z, s) = z · v(s), where v is a

positive function satisfying the following properties :

a) Suppose that ∀s ∈ S, R0(s) + σ0λ
0(s) < 0 (resp. > 0). Then, v is increasing (resp.

decreasing).

b) Assume that v is increasing, and that ∀s ∈ S, R00(s) + σ0λ
00(s) > 0 (resp. ≤ 0) and

G(s) ≡ (φ(s)− λ(s)ξ(s))00 + σ0
¡
ξ00(s)− 2λ0(s)

¢
− 2R0(s) < 0 (resp. > 0). Then, v is concave

(resp. convex).

It is useful (but not compulsory) to think of S as a state variable related to business cycle

conditions that are relevant to stock-market participants - just as in the previous examples 3

and 4. Proposition 4-a) then formalizes a simple idea about discount rates R+ σ0λ: If discount

rates are countercyclical, price-dividend ratios are automatically procyclical. As is well-known,

economic theory is ambiguous about the sign of R0. But as proposition 4-a) indicates, models

making short-term rates R “too” procyclical may also entail counterfactual consequences (namely,

countercyclical price-dividend ratios).

Proposition 4-b) contains a second-order analysis of the setting analyzed in this section.

Similarly as in section 4, define expected (excess) returns (E) and returns volatility (V) as:

E(s) ≡ V(s) · λ(s) and V(s) ≡ σ0 +
v0(s)

v(s)
ξ(s).

In these models, concavity of the price-dividend ratio v plays a critical role in explaining cyclical

properties of both volatility and risk-premia. As an example, if ξ is constant, λ0 < 0 and v

is concave, then V and E are both countercyclical. The simple intuition behind this effect is
that returns volatility increases on the downside when price-dividend ratios are concave in the

variables related to business cycle conditions.

When is v concave then ? According to proposition 4-b), v is concave whenever discount rates

R+σ0λ are convex and λ has a curvature “sufficiently” high to make G < 0. Such a condition on

the curvature on Sharpe ratios has a relatively simple explanation. Suppose that Sharpe ratios are

decreasing and convex in s. In good times, Sharpe ratios are then relatively insensitive to small

changes in the state-variables driving the business cycle conditions. Therefore, future dividends

are discounted at approximately the same order of magnitude, and price-dividend ratios do not

vary too much. As business-cycle conditions deteriorate, Sharpe ratios increase sharply (due to

convexity), and future dividends are discounted at rapidly increasing orders of magnitude. Price-

dividend ratios should now be highly responsive to news in bad times. If such an asymmetry
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in discounting is sufficiently strong, price-dividend ratios are then concave in the state variables

related to the business cycle. The condition that G < 0 in proposition 4-b) represents a precise

prediction on how “sufficiently strong” such an asymmetry must be.19

6 Higher dimensional extensions

This section considers higher dimensional extensions of the theory. I take as primitive a general

diffusion state process. I then restrict it to guarantee that all possibly resulting long-lived asset

price processes are consistent with given sets of properties.

Consider the general formulation in section 1, and set d = 4. I assume that (Z, Y ) satisfies:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dz(τ) = m0 (z(τ), y(τ)) dτ + σ (z(τ)) dW1(τ)

dµ(τ) = −µ(τ)
h
R(z(τ), y(τ))dτ +

P4
j=1 λj(z(τ), y(τ))dWj(τ)

i
dyi(τ) = ϕ

(i)
0 (z(τ), y(τ))dτ +

P4
j=1 ξ

(i)
j (y(τ)) dWj(τ) i = 1, 2, 3

(23)

where y = (y1, y2, y3)> and {Wj}4j=1 are independent Brownian motions. Accordingly, the no-
arbitrage price function is q(z, y) ∈ C2,2,2,2(Z×Y), Y ⊂ R3. Furthermore, functions m0, σ, R, λj ,

ϕ
(i)
0 , ξ

(i)
j (i = 1, 2, 3 and j = 1, · · ·, 4) satisfy the same kind of conditions as those of eqs. (2) and

(7) in section 1. To simplify notation, I set ξ
2
i ≡

°°°(ξ(i)1 , · · ·, ξ(i)4 )
°°°2 and ξm,n ≡

P4
j=1 ξ

(m)
j ξ

(n)
j .

In this model, asset prices variations originate from the fluctuation of four factors: 1) dividends

(Z); and 2) three state variables affecting expected dividend growth (m0), risk-premia (λj) and

the short-term interest rate (R). This formulation allows expected dividend growth, risk-premia

and the short-term interest rate to be imperfectly correlated - even when risk-premia and the

short-term rate do not depend on z. Brennan and Xia (2003) and Brennan, Wang and Xia (2003)

have recently considered specific cases of system (23) allowing for closed-form solutions for the

pricing function q(z, y). Even the individual stock prices in the economies considered in Menzly,

Santos and Veronesi (2004) can be thought of as being generated by a specific mechanism that

19Consider, e.g., the model in example 3. An application of proposition 4 to this model predicts that v0 > 0.
The proof of proposition 4 also reveals that a milder condition ensuring concavity of v in this model is that
−σ0λ00v + Gv0 < 0. Even where G is positive, the convexity effect induced by λ by the parameters reported
by Campbell and Cochrane (1999) is so strong that v00 ≤ 0. As regards the model in example 4, I found that
proposition 4 predicts that v0 > 0 and v00 ≤ 0 in correspondence of sufficiently high levels of η (the analytical
expressions of φ, ξ, R for this model are given in appendix D).
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is similar to system (23). Here I aim at providing a general asset pricing characterization relying

on as few assumptions as possible as regards the primitive dynamics.

In appendix E, I have developed a general theory [see eqs. (E2)]. To simplify its exposition, I

illustrate it in the case in which R and λj are independent of z, and Z is a process with possibly

time-varying expected growth, viz

dz(τ)

z(τ)
= d0(y1(τ), y2(τ), y3(τ))dτ + σ0dW1(τ), (24)

where σ0 is a constant and function d0 is twice differentiable in all its arguments. Similarly as in

section 1, I set d ≡ d0− σ0λ1. Accordingly, functions ϕ(i) denote risk-neutralized drift functions.

We have:

Proposition 5. Assume that the pricing kernel is as in eqs. (23), that the short-term rate R

and unit risk-premia λj are all independent of z and, finally, that the instantaneous dividend

rate satisfies eq. (24). Then, the rational price function takes the form q(z, y) = z · v(y), where
the price-dividend ratio v is positive, and satisfies the following properties:

a) Suppose that ξ
2
i , ϕ

(i), ξ(i)1 (i = 2, 3) and ξ2,3 are independent of y1. Then, v is increasing

(resp. decreasing) in y1 whenever ∂
∂y1
[d(y)−R(y)] > 0 (resp. < 0) for all y.

b) Suppose that ξ
2
i , ϕ

(i), ξ(i)1 (i = 2, 3), ξ2,3 are independent of y1 and that ∂2

∂y21
ξ1,2(y) =

∂2

∂y21
ξ1,3(y) = 0 for all y. Then, if v is increasing in y1, it is also concave (resp. convex ) in y1 if

∂2

∂y21
[d(y)−R(y)] ≤ 0 (resp. ≥ 0) and 2 ∂

∂y1
d(y)+ ∂2

∂y21
ϕ(1)(y)+σ0

∂2

∂y21
ξ
(1)
1 (y)− 2 ∂

∂y1
R(y) < 0 (resp.

> 0) for all y.

c) Suppose that for all y, v is increasing and (weakly) convex in y1 (viz ∂
∂y1

v(y) > 0 and
∂2

∂y21
v(y) ≥ 0) and that for i 6= j, function ξ

2
i does not depend on factor yj , ∂

∂y1
[d(y)−R(y)] > 0,

ξ
(1)
1 > 0, ∂

∂y3
v(y) > 0, ∂2

∂y1∂y3
[d(y) − R(y)] > 0 and, finally, that ϕ(2) is independent of both y1

and y3. Then, for all y, ∂2

∂y1∂y3
v(y) > 0 in all economies in which λ2 = λ3 = λ4 = 0, λ ≡ λ1(y3),

λ0 < 0 and ∂
∂y3
[d(y)−R(y)− (ξ(1)1 (y1))0λ(y3)] > 0.

A simple example illustrating proposition 5 is one in which aggregate consumption C =

{c(τ)}τ≥0 (say) is made up of one nonfinancial component (i.e. irrelevant for asset pricing) and

dividends Z = {z(τ)}τ≥0; and λ2 = λ3 = λ4 = 0, λ ≡ λ1, where the risk-premium λ is driven by

a hypothetical pro-cyclical “risk-preferences process” S = {s(τ)}τ≥0, and is such that s 7→ λ(s)
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is differentiable and decreasing. Let (Z,C, S) satisfy:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz(τ)

z(τ)
= d0(g(τ))dτ + σ0dW1(τ)

dg(τ) = ϕ
(1)
0 (g(τ))dτ + ξ

(1)
1 (g(τ))dW1(τ) + ξ

(1)
2 (g(τ))dW2(τ)

dc(τ) = ϕ
(2)
0 (c(τ))dτ + ξ

(2)
1 (c(τ))dW1(τ) + ξ

(2)
3 (c(τ))dW3(τ)

ds(τ) = ϕ
(3)
0 (s(τ))dτ + ξ

(3)
1 (s(τ))dW1(τ) + ξ

(3)
3 (s(τ))dW3(τ)

(25)

Suppose further that the interest rate R is a function of s only. By proposition 5-a,b), the

price-dividend ratio is a function v(g, s) 1) increasing and convex in the expected dividend growth

whenever d00(g) > 0, d
00
0(g) ≥ 0 and 2d00(g)+ ∂2

∂g2
[ϕ
(1)
0 (g)+(σ0−λ(s))ξ

(1)
1 (g)] > 0 all (g, s) ∈ G×S;

and 2) increasing in s if −σ0λ0(s)−R0(s) > 0, and concave in s whenever (λ(s) + σ0R(s))
00 > 0

and ∂2

∂s2
[ϕ
(3)
0 (g) + (σ0− λ(s))ξ

(3)
1 (g)]− 2σ0λ0(s)− 2R0(s) < 0, all (g, s) ∈ G× S. These properties

represent multidimensional extensions of those found and discussed in sections 3, 4 and 5, and

are not discussed further here.

A new interesting aspect of multidimensional models is related to the price reaction to joint

movements in the underlying state variables. Proposition 5-c) provides a basic prediction on the

sign of such a reaction in models in which the price is a monotonic function of any two state

variables. As an example, suppose that in model (25), ξ(1)1 > 0 and that R0(s) < −σ0λ0(s) −
(ξ
(1)
1 (g))

0λ0(s), all (g, s) ∈ G × S. Under these mild conditions, proposition 5-c) predicts that it
is always true that vsg > 0 in this model. In multidimensional models such as (25), changes in

the expected dividend growth rate are very likely to have an even larger price impact than the

one described in section 4. At the same time, such a magnifying effect induces in a natural way

a positive relation between expected dividend growth and expected price variations (and hence

returns) in this model. As proposition 5-c) reveals, this property is likely to emerge in much

larger classes of economies under a set of rather mild conditions.

7 Conclusion

The basic one-factor Lucas (1978) asset pricing framework can considerably be enriched to allow

for time-variation in both dividend growth and risk-adjusted discount rates. Such a research

strategy has generated a new impetus in the literature. While the resulting models are making
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a real progress towards our understanding of aggregate stock-market behavior, the same models

are often based on new assumptions concerning the dynamics of unobservable processes (such as

time-varying dividend growth, or habit formation). As for many other asset pricing problems,

the choice of these assumptions is typically guided by economically sensible intuition, casual

empirical evidence, or analytical convenience. Yet each particular assumption should carry a

critical weight on to the overall general properties of the resulting pricing functions. This article

adds a new perspective and explores such general properties in a framework relying only on three

basic assumptions: 1) asset prices are arbitrage free; 2) agents have rational expectations; and 3)

state variables follow low-dimensional diffusion processes.

The theoretical test conditions of this article enable one to understand qualitative properties

of models directly from first principles. As a by-product, they explicitly investigate the robust-

ness of well-known long-lived asset price properties to the modification of “typical” assumptions.

In fact, I produced examples illustrating how to apply the theory of this article to shed new

light on already existing models. Importantly, the theory developed in this article makes novel

testable restrictions on the joint behavior of asset prices, risk-premia and the dynamics of con-

sumption. Therefore, natural applications of this theory include the use of its predictions as a

practical guidance to specification, estimation and testing of multidimensional long-lived asset

prices models with rational expectations.
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Appendix A: Preliminaries

This appendix contains preliminary results. First, I assume the regularity conditions in section

1, and derive the Feynman-Kac stochastic representation of the partial derivatives of long-lived

asset prices for the models considered in sections 3 and 4 (see lemma A1). Second, I provide the

analytical expression of interest rates and risk-premia corresponding to the price kernel in eq.

(3) [see eqs. (A2)]. Finally, I illustrate how these analytical expressions fit into standard infinite

horizon, general equilibrium models with complete markets (see example A1).

Lemma A1. Let w1(z, g) ≡ qz(z, g), w2(z, g) ≡ qzz(z, g), w3(z, g) ≡ qg(z, g), w4(z, g) ≡ qgg(z, g)

and w5(z, g) ≡ qzg(z, g). We have:

wi(z, g) = E
∙Z ∞

0
κi(τ)hi(ζi(τ), γi(τ))dτ

¸
, i = 1, · · ·, 5,

where κi are random, positive processes defined in the proof,

h1(z, g) = 1 + ϕ1(z, g)qg(z, g)−R1(z, g)q(z, g)

h2(z, g) = m11(z, g)qz(z, g) + ϕ11(z, g)qg(z, g) +
h
2ϕ1(z, g) +

∂2

∂z2
((σξ1)(z, g))

i
qzg(z, g)

−R11(z, g)q(z, g)− 2R1(z, g)qz(z, g)

h3(z, g) = m2(z, g)qz(z, g)−R2(z, g)q(z, g)

h4(z, g) = m22(z, g)qz(z, g) + ϕ22(z, g)qg(z, g) +
h
2m2(z, g) +

∂2

∂g2
((σξ1)(z, g))

i
qzg(z, g)

−R22(z, g)q(z, g)− 2R2(z, g)qg(z, g)

h5(z, g) = m12(z, g)qz(z, g) +m2(z, g)qzz(z, g) + ϕ12(z, g)qg(z, g) + ϕ1(z, g)qgg(z, g)

−R1(z, g)qg(z, g)−R12(z, g)q(z, g)−R2(z, g)qz(z, g)

and ζi, γi are solutions to some stochastic differential equations that are also given in the proof.

Proof. In the absence of arbitrage, the price function q(z, g) is solution to eq. (5). By using

the definition of m and ϕ in (7), eq. (5) is:

0 =
1

2
σ2qzz +mqz +

1

2
ξ2qgg + ϕqg + σξ1qgz + z −Rq, ∀(z, g) ∈ Z×G, (A1)
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where ξ2 ≡ ξ21 + ξ22. By differentiating eq. (A1) with respect to z and g an appropriate number

of times, I find that wi are solutions to the following partial differential equations:

0 = (Li − ki)wi(z, g) + hi(z, g), ∀(z, g) ∈ Z×G, i = 1, · · ·, 5,

where Liwi = 1
2σ
2wi

zz +miwi
z +

1
2ξ
2wi

gg + ϕiwi
g + σξ1w

i
zg, and

k1(z, g) = R(z, g)−m1(z, g)

k2(z, g) = R(z, g)− 2m1(z, g)− 1
2(σ(z)

2)00

k3(z, g) = R(z, g)− ϕ2(z, g)

k4(z, g) = R(z, g)− 2ϕ2(z, g)− 1
2(ξ

2(g))00

k5(z, g) = R(z, g)−m1(z, g)− ϕ2(z, g)− ∂2

∂z∂g (σξ1)(z, g)

where I have defined, m1 ≡ m+ 1
2(σ

2)0, ϕ1 ≡ ϕ+ ∂
∂z (σξ1), m

2 ≡ m+ (σ2)0, ϕ2 ≡ ϕ+ 2 ∂
∂z (σξ1),

m3 ≡ m + ∂
∂g (σξ1), ϕ

3 ≡ ϕ + 1
2(ξ

2)0, m4 ≡ m + 2 ∂
∂g (σξ1), ϕ

4 ≡ ϕ + (ξ2)0, m5 ≡ m + 1
2(σ

2)0 +
∂
∂g (σξ1), ϕ

5 ≡ ϕ + 1
2(ξ

2)0 + ∂
∂z (σξ1). The result then follows by the Feynman-Kac probabilistic

representation theorem: processes κi are given by κi(τ) ≡ exp(−
R τ
0 k1(ζi(u), γi(u))du), where ζi

and γi are solutions to⎧⎪⎨⎪⎩
dζi(τ) = mi(ζi(τ), γi(τ))dτ + σ(ζi(τ))dcW1(τ)

dγi(τ) = ϕi(ζi(τ), γi(τ))dτ + ξ1(γi(τ))dcW1(τ) + ξ2(γi(τ))dcW2(τ)

with (ζi(0), γi(0)) = (z, g), for i = 1, · · ·, 5. ¥

Next, I characterize Sharpe ratios and interest rates in some classes of models considered in

sections 3, 4 and 5.

Interest rates and risk premia in eq. (5). Let (Z, Y ) be solution to the first and third
equations in system (2). The exact expressions of R and λ in eq. (5) are obtained by an

application of Itô’s lemma to µ(τ , z, y) in eq. (3), and by identifying drift and diffusion terms.
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We have: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(z, y) = δ(z, y)− Lp(z, y)

p(z, y)

λ1(z, y) = −σ(z, y) ∂
∂z
log p(z, y)− ξ1(z, y)

∂

∂y
log p(z, y)

λ2(z, y) = −ξ2(z, y)
∂

∂y
log p(z, y)

(A2)

Example A1 below is an important special case of this setting.

Example A1 (Infinite horizon, complete markets economy.) Consider an infinite horizon, com-
plete markets economy in which total consumption Z is solution to eq. (2), with ξ2 ≡ 0. Let a
(single) agent’s program be:

maxE

∙Z ∞

0
e−δτu(c(τ), x(τ))dτ

¸
s.t. V0 = E

∙Z ∞

0
µ(τ)c(τ)dτ

¸
, V0 > 0,

where δ > 0, the instantaneous utility u is continuous and thrice continuously differentiable in

its arguments, and x is solution to

dx(τ) = β(z(τ), g(τ), x(τ))dτ + γ(z(τ), g(τ), x(τ))dW1(τ).

In equilibrium, C = Z, where C is optimal consumption. Provided the finiteness of this program’s

value [see Huang and Pagès (1992) (lemma 3, p. 42; and prop. 4, p. 47) for regularity conditions

related to this kind of infinite horizon problems], we have that in terms of the representation in

(A2), δ(z, x) = δ, and p(z(τ), x(τ)) = u1(z(τ), x(τ))/u1(z(0), x(0)). Consequently, λ2 = 0,

R(z, g, x) = δ − u11(z, x)

u1(z, x)
m0(z, g)−

u12(z, x)

u1(z, x)
β(z, g, x)

−1
2
σ(z, g)2

u111(z, x)

u1(z, x)
− 1
2
γ(z, g, x)2

u122(z, x)

u1(z, x)
− γ(z, g, x)σ(z, g)

u112(z, x)

u1(z, x)

(A3)

and

λ(z, g, x) = −u11(z, x)
u1(z, x)

σ(z, g)− u12(z, x)

u1(z, x)
γ(z, g, x). (A4)
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Appendix B: Proofs, examples and Dynamic Stochastic Domi-
nance theory for section 3

Proof of proposition 1. Let c(x, T −s) ≡ E[exp(−
R T

s ρ(x(t))dt) · ψ(x(T ))
¯̄̄
x(s) = x]. Function

c is solution to the following partial differential equation:⎧⎪⎨⎪⎩
0 = −c2(x, T − s) + L∗c(x, T − s)− ρ(x)c(x, T − s), ∀(x, s) ∈ R× [0, T )

c(x, 0) = ψ(x), ∀x ∈ R
(B1)

where L∗c(x, u) = 1
2a(x)

2cxx(x, u) + b(x)cx(x, u). By differentiating twice eq. (B1) with respect

to x, I find that c(1)(x, τ) ≡ cx(x, τ) and c(2)(x, τ) ≡ cxx(x, τ) are solutions to the following

partial differential equations: ∀(x, s) ∈ R++ × [0, T ),

0 = −c(1)2 (x, T − s) +
1

2
a(x)2c(1)xx (x, T − s) +

∙
b(x) +

1

2
(a(x)2)0

¸
c(1)x (x, T − s)

−
£
ρ(x)− b0(x)

¤
c(1)(x, T − s)− ρ0(x)c(x, T − s),

with c
(1)
2 (x, 0) = ψ0(x) ∀x ∈ R; and ∀(x, s) ∈ R× [0, T ),

0 = −c(2)2 (x, T − s) +
1

2
a(x)2c(2)xx (x, T − s) +

£
b(x) + (a(x)2)0

¤
c(2)x (x, T − s)

−
∙
ρ(x)− 2b0(x)− 1

2
(a(x)2)00

¸
c(2)(x, T − s)

−
£
2ρ0(x)− b00(x)

¤
c(1)(x, T − s)− ρ00(x)c(x, T − s),

with c
(2)
2 (x, 0) = ψ00(x) ∀x ∈ R (in both equations, subscripts denote partial derivatives). By

arguments similar to the ones used to prove lemma A1, we have that c(1)(x, T − s) > 0 (resp.

< 0) ∀(x, s) ∈ R× [0, T ) whenever ψ0(x) > 0 (resp. < 0) and ρ0(x) < 0 (resp. > 0) ∀x ∈ R. This
completes the proof of part a) of the proposition. The proof of part b) is obtained similarly. ¥

It is worth emphasizing that one consequence of proposition 1 is a general statement about

conditional expectations of scalar diffusion processes. Precisely, we have:

Corollary B1. A conditional expectation of a scalar diffusion is a concave (resp. convex) func-
tion of the initial condition whenever the drift function is concave (resp. convex).
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Proof. A conditional expectation of a scalar diffusion is function c(x, τ) with ψ(x) = x and

ρ(x) = 0 in the canonical pricing problem of section 3.1. The result immediately follows by

plugging these ψ and ρ into the theoretical test conditions of proposition 1. ¥

Let ψ(x) = x, b = m, a = σ and X = Z, the total consumption process. By combining eq.

(6) with proposition 1, one obtains a general price characterization of scalar models:

Corollary B2 (Scalar long-lived asset price models.) The rational price function q is positive

and if R0 ≤ 0, it is increasing. Furthermore, suppose that q is increasing. Then, q is concave
(resp. convex) whenever m00 − 2R0 < 0 (resp. > 0) and R00 ≥ 0 (resp. ≤ 0).

Remark B1. In the economy of example A1, R0 ≤ 0 whenever u(c) = c1−η−1
1−η and the elasticities

of m0 and σ are both bounded by one, as in example B1 below.

I now turn to an alternate proof of corollary B2. This proof is instructive. It provides

intuition on the general strategy of proofs adopted to deal with the difficult multidimensional

cases of sections 4, 5 and 6.

Alternate proof of corollary B2. In the scalar case, the stochastic representations of qz and

qzz of lemma A1 reduce to:

q0(z) = E
½Z ∞

0
κ1(τ)

£
1−R0(ζ1(τ))q(ζ1(τ))

¤
dτ

¾
, (B2)

and

q00(z) = E
∙Z ∞

0
κ2(τ)h2(ζ2(τ))dτ

¸
, (B3)

where

h2(z) ≡
£
m00(z)− 2R0(z)

¤
q0(z)−R00(z)q(z),

and κ1, κ2, ζ1 and ζ2 are as in lemma A1 (with ξ2 ≡ 0 andm(z, g) ≡ m(z)). By eq. (B2), q0(z) > 0

for all z whenever R0 ≤ 0. Given this result, the second claim of the corollary immediately follows
from the representation of q00 in (B3). ¥

Finally, I develop dynamic stochastic dominance theory related to the canonical pricing prob-

lem in section 3.1. We have:
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Proposition B1 [Dynamic Stochastic Dominance (DSD) theory.] Consider two economies A
and B with volatilities aA and aB, and let ci, πi(x) ≡ ai(x) · λi(x) and ρi(x) (i = A,B) be the

corresponding prices, risk-premia and discount rates in the canonical pricing problem of section

3. Let aA > aB. Then, cA < cB whenever for all (x, τ) ∈ R× [0, T ],

V (x, τ) ≡ − [ρA(x)− ρB(x)] c
B(x, τ)−[πA(x)− πB(x)] c

B
x (x, τ)+

1

2

£
a2A(x)− a2B(x)

¤
cB

xx(x, τ) < 0.

Proof. Clearly, cA and cB are both solutions to eq. (B1), but with different coefficients. Let

bA(x) ≡ b0(x) − πA(x). The price difference ∆c(x, τ) ≡ cA(x, τ) − cB(x, τ) is solution to the

following partial differential equation: ∀(x, s) ∈ R× [0, T ),

0 = −∆c2(x, T−s)+
1

2
σB(x)2∆cxx(x, T−s)+bA(x)∆cx(x, T−s)−ρA(x)∆c(x, T−s)+V (x, T−s),

with ∆c(x, 0) = 0 for all x ∈ R, and V is as in the proposition. The result follows by the same

reasoning produced in the proof of lemma A1 in appendix A. ¥

I now develop applications of DSD theory to illustrate properties of models with uncertain

stochastic consumption growth rate [model (9) and example 3 in section 4] and models with

time-varying Sharpe ratios [model (13)].

1. Model (9). I assume throughout that ξ2 does not depend on σ0.

1.1 Let ∂[(σ0 − λ)ξ1]/ ∂σ0 = 0 and ∂ξ1/ ∂σ0 < 0.20 If condition (12) holds, q decreases

with σ0. Indeed, B in eq. (11) decreases with σ0 because: a) it decreases with σ0λ; and

b) condition (12) ensures that convexity effects are activated in proposition B1. (Due

to these convexity effects, q is decreasing in σ0 even when the risk-premium λ = 0.)

1.2 Next, let ∂ξ1/ ∂σ0 = 0, and set π ≡ −σ0ξ1 in the canonical pricing problem (CPP).

By proposition B1, q can now be increasing in σ0 when λ = 0.

1.3 If condition (12) holds and λ < σ0, q increases with ξ1. This follows by setting

π ≡ −(σ0 − λ)ξ1 in the CPP, and by an application of proposition B1.

1.4 Finally, consider the price impact of ξ2.
21 By proposition B2, q increases with ξ2 when-

ever condition (12) holds. Note that if the inequality in (12) is reversed, q decreases

with ξ2.
20These conditions emerge naturally in learning models such as the one in example 1 (section 4).
21As example 1 in section 4 reveals, ξ2 is negatively related to the quality of additional sources of information

in models of learning.
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2. Example 1 in section 4 [Model (16)]. This model can be analyzed with the simple tools of

section 3. In terms of eq. (6), the model predicts that q(z, g) =
R∞
0 C(z, g, τ)dτ , where

C(z, g, τ) = e−rτ (z − σ0λτ) + e−rτ

Z τ

0
E [g(u)| g] du, τ ≥ 0. (B4)

Then, q is always decreasing in ξ if λ > 0. Indeed, an application of proposition B2 reveals

that there is a conflict between convexity effects and drift effects. I then perturb function

ξ1 with � · ξ1, � > 0. The expectation in eq. (B4) is:

E [g(u)| g] = e−kug +
³
1− e−ku

´
g − λ� ·

Z u

0
e−k(s−t)E [ξ1(g(s))| g] ds,

where ξ1 is nonnegative by construction.

3. Model (13). Let ξ > 0, and let ∂ξ/ ∂σ0 > 0 and ∂λ/ ∂σ0 > 0.22 Then, q decreases with σ0

whenever B is concave and ∂(λ− σ0)/ ∂σ0 > 0. Finally, let λ > σ0. Then q decreases with

changes in ξ that are not related to σ0.

Finally, consider the scalar models analyzed in corollary B2. If R is not constant, proposition

B2 can not be used to address stochastic dominance properties of q in great detail. Yet I claim

that in the setting of example A1, q is decreasing in volatility whenever δ is constant and,

for all z ∈ Z, m00
0(z) ≤ 0, zA(z) < 1 and zP (z) < 2, (B5)

where A ≡ −u00/u0 and P ≡ −u000/u00 are the absolute risk aversion and the absolute prudence
coefficient. As the following proof reveals, prices are increasing in volatility if u00 = u000 = 0 and

m00
0 > 0. In other terms, conditions (B5) make concavity effects dominate in proposition B1.

23

Proof of sufficiency of eqs. (B5). Define w(z, τ) ≡ w(z, τ ;σ2) ≡ c(z, τ ;σ2)u0(z), where z

is solution to the first equation in (2) with m0(z, y) ≡ m0(z), and c(z, τ ;σ2) ≡ c(z, τ), where

c(z, τ) is as in eq. (8), with ψ(z) = z for all z ∈ Z. By definition, c is decreasing in σ2 if and

only if w is decreasing in σ2. By eq. (6), q(z) =
R∞
0 c(z, τ ;σ2)dτ . Therefore, q is decreasing

22These assumptions hold in all the model examples in section 5.
23Naturally, conditions (B5) are only suffi



in σ2 whenever w is decreasing in σ2. By assumption, and example A1, δ(z) = δ > 0 and

p(z(τ)) = u0(z(τ))/u0(z(0)). By eq. (8), and the definition of the risk-neutral probability P 0, w

satisfies:

e−δtw(z(t), t) = e−δsE [w(z(s), s)] , τ > s > t > 0,

where w(z, τ) = zu0(z) for all z ∈ Z. Therefore, w is solution to the following partial differential
equation: ⎧⎪⎨⎪⎩

0 = w2(z, s) + Lw(z, s)− δw(z, s), ∀(z, s) ∈ Z× [0, τ)

w(z, τ) = zu0(z), ∀z ∈ Z

where Lw(z, s) = 1
2σ(z)

2wzz(z, s) +m0(z)wz(z, s). The previous partial differential equation is

in the same format as eq. (B1). In terms of eq. (B1), ρ(z) = δ, ψ(z) = zu0(z), a(z) = σ(z) and

b(z) = m0(z). Therefore, the theoretical test conditions of proposition 1 can be applied to the

undiscounted Arrow-Debreu price w as well. Suppose then that w0 > 0. Then, by proposition

1-b), w00 < 0 whenever

m00
0(z) ≤ 0, z ∈ Z,

and the final payoff zu0(z) is concave, viz.

d2

dz2
[zu0(z)] < 0, z ∈ Z.

Finally, by proposition 1-a), w0 > 0 whenever the final payoff zu0(z) is increasing, or

d

dz
[zu0(z)] > 0, z ∈ Z.

The prediction summarized by eqs. (B5) is obtained by explicitely developing the previous two

conditions. As demonstrated above, w00 < 0 if eqs. (B5) hold. The result then follows by

proposition B1. ¥

The following example illustrates corollary B2 and eqs. (B5).

Example B1. Consider the economy in example A1 (appendix A), and assume that δ is constant,
u(c) = (c1−η − 1)/(1− η), and total consumption Z is lognormal:

dz(τ) = z(τ)(a− b log z(τ))dτ + σ0z(τ)dW (τ),
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where a, b, σ0 are positive constants and W is a Brownian motion. Consequently, R(z) = δ +

η(a− b log z)− 1
2σ
2
0η(η+1) and λ(z) = ησ0. Hence R0(z) < 0 whenever η > 0 and by proposition

1, q0 > 0 whenever η > 0. Furthermore, m(z) = z(a− b log z), where a ≡ a− ησ20. Therefore,

m00(z)− 2R0(z) = b (2η − 1)
z

< 0 ⇔ η <
1

2
.

Finally, R00 > 0. By corollary 1, q00 < 0 if η ∈ (0, 12). More generally, the proof of corollary B2
reveals that q00 < 0 whenever,£

m00(z)− 2R0(z)
¤
q0(z)−R00(z)q(z) < 0.

As eq. (B6) below reveals, there exist sufficiently high values of η reversing the previous inequality,

thus making q00 > 0. But in all cases, eqs. (B5) can be used to conclude that q is decreasing in

σ20 whenever η < 1 (i.e. even when the representative agent is risk-neutral). To confirm these

results analytically, consider the asset price solution in this economy:

q(z) =

Z ∞

0
zη[1−exp(−bτ)]+exp(−bτ)ek(τ)dτ, (B6)

where

k(τ) ≡ −δτ + 1
b
[1− exp(−bτ)]

∙
a(1− η)− 1

2
σ20(η + 1)

¸
+
ησ20
2b

[1 + exp(−2bτ)− 2 exp(−bτ)] + σ20
4b
[1− exp(−2bτ)] (1 + η2).

Naturally, the (general equilibrium version of the) Gordon’s (1962) model is obtained by sending

b→ 0 in eq. (B6), leaving the well-known formula: q(z)/z = (δ − a(1− η)− 1
2σ
2
0(η(η− 1))−1. In

the general case, q00 < 0 (resp. > 0) if and only if η < 1 (resp. > 1). And if η > 0, q is decreasing

(resp. increasing) in σ20 whenever η < 1 (resp. > 1). Note, however, that if η > 1, q is also

decreasing in a - similarly as in the Gordon’s model.

The next example is inspired from Veronesi (1999) (see example 1 in section 4), and deals with

issues arising from learning mechanisms. Precisely, here I develop a new heuristic construction

of nonlinear filters of partially observed processes. I then illustrate pricing implications through

an application of corollary B1.
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Example B2. Consider a static scenario in which Z is generated by z = θ + w, where w has

zero mean and unit variance, and it is continuous with bounded density function φ. For a given

A > 0, let p ≡ Pr(θ = A) = 1− Pr(θ = −A), and π(z)dz ≡ Pr (θ = A| z ∈ dz). We have:

π(z)− p = p(1− p)
φ(z −A)− φ(z +A)

pφ(z −A) + (1− p)φ(z +A)
.

The variance of the “probability changes” π(z)−p is zero exactly where there is a degenerate prior
on the state. More generally, it is a ∩-shaped function of the a priori probability p of the “good”
state. Clearly, g ≡ E (θ = A| z) has the same property because it is linear in Pr (θ = A| z).

Next, assume that w is Brownian motion and set A ≡ Adτ . Let z(0) = 0 and π ≡ π(z). By

Itô’s lemma,

dπ(τ) = 2A · π(τ)(1− π(τ))dW (τ), π(0) ≡ p,

where dW (τ) ≡ dz(τ) − g(τ)dτ and g(τ) ≡ E (θ = A| z) = Aπ(τ) − A(1 − π(τ)). While this

construction is heuristic, the result is correct [see, e.g., Liptser and Shiryaev (2001) (Vol. I, thm.

8.1 p. 318; and example 1 p. 371)]. W is then a Brownian motion with respect to σ (z(t), t ≤ τ)

[see Liptser and Shiryaev (2001) (Vol. 1, thm. 7.12 p. 273)]. The equilibrium in the economy

with incomplete information is then isomorphic in its pricing implications to the equilibrium in

a full information economy in which:⎧⎪⎨⎪⎩
dz(τ) = [g(τ)− λ] dτ + dcW (τ)

dg(τ) = −λξ(g(τ))dτ + ξ(g(τ))dcW (τ)

(B7)

wherecW is a P 0-Brownian motion, λ is a constant (say) risk-premium, and ξ(g) ≡ (A−g)(g+A).
In this and related models, the instantaneous volatility of G is ∩-shaped. Under positive

risk-aversion, the risk-neutralized drift of Z is thus convex in g. Finally, the pricing function is

as in eq. (B4) (with k = g = 0) and by corollary B1, E [g(u)| g] is convex in g whenever the drift

of G in (B7) is convex, which as observed is always true.

On bond prices convexity. Consider a short-term rate process {r(τ)}τ∈[0,T ] (say), and let

u(r0, T ) be the price of a bond expiring at time T when the current short-term rate is r0:

u(r0, T ) = E
∙
exp

µ
−
Z T

0
r(τ)dτ

¶¯̄̄̄
r0

¸
.
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As I pointed out in section 3.3.1, a restricted version of proposition 1-b) implies that in all scalar

(diffusion) models of the short-term rate, u11(r0, T ) < 0 whenever b00 < 2, where b is the risk-

netraulized drift of r. I originally obtained this specific result in Mele (2003). Both the theory in

Mele (2003) and the proof of proposition 1 rely on the Feynman-Kac representation of u11. Here

I provide a more intuitive derivation under a set of simplifying assumptions.

By Mele (2003) [eq. (6) p. 685],

u11(r0, T ) = E

("µZ T

0

∂r

∂r0
(τ)dτ

¶2
−
Z T

0

∂2r

∂r20
(τ)dτ

#
exp

µ
−
Z T

0
r(τ)dτ

¶)
.

Hence u11(r0, T ) > 0 whenever24Z T

0

∂2r

∂r20
(τ)dτ <

µZ T

0

∂r

∂r0
(τ)dτ

¶2
. (B8)

To keep the presentation as simple as possible, I assume that r is solution to:

dr(τ) = b(r(τ))dt+ a0r(τ)dW (τ),

where a0 is a constant. We have,

∂r

∂r0
(τ) = exp

∙Z τ

0
b0(r(u))du− 1

2
a20τ + a0W (τ)

¸
and

∂2r

∂r20
(τ) =

∂r

∂r0
(τ) ·

∙Z τ

0
b00(r(u))

∂r(u)

∂r0
du

¸
.

Therefore, if b00 < 0, then ∂2r(τ)/∂r20 < 0, and by inequality (B8), u11 > 0. But this result

can considerably be improved. Precisely, suppose that b00 < 2 (instead of simply assuming that

b00 < 0). By the previous equality,

∂2r

∂r20
(τ) < 2 · ∂r

∂r0
(τ) ·

µZ τ

0

∂r(u)

∂r0
du

¶
,

and consequently,Z T

0

∂2r

∂r20
(τ)dτ < 2

Z T

0

∂r

∂r0
(τ) ·

µZ τ

0

∂r(u)

∂r0
du

¶
dτ =

µZ T

0

∂r(u)

∂r0
du

¶2
,

which is inequality (B8).

24All statements are to be understood to hold P ⊗ dτ almost surely.

40



Appendix C: Proofs and examples for section 4

Proof of proposition 2. By assumption, R1(z, g) = ϕ1(z, g) = 0 for all (z, g) ∈ Z × G.
Therefore, the stochastic representation of qz in lemma A1 (appendix A) takes the form:

qz(z, g) = E
∙Z ∞

0
e−rτ−

R τ
0 m1(ζ1(u),γ1(u))dudτ

¸
,

where ζ1 and γ1 are as in lemma A1. Hence qz > 0. As regards the sign of qzz, the assump-

tions of the proposition imply that function h2 in lemma A1 is h2(z, g) = m11(z, g)qz(z, g) and

consequently,

qzz(z, g) = E
½Z ∞

0
e−rτ−

R τ
0 [2m1(ζ2(u),γ2(u))+

1
2
(σ(ζ2(u))

2)00]du [m11(ζ2(τ), γ2(τ))qz(ζ2(τ), γ2(τ))] dτ

¾
,

where ζ1 and γ1 are as in lemma A1. Since qz > 0, the claim of the proposition about the sign

of qzz immediately follows. Finally, all the assumptions of the proposition imply (in conjunction

with lemma A1) that

qg(z, g) = E
∙Z ∞

0
e−rτ−

R τ
0 ϕ2(ζ3(u),γ3(u))dum2(ζ3(τ), γ3(τ))qz(ζ3(τ), γ3(τ))dτ

¸
and

qgg(z, g) = E
½Z ∞

0
e−rτ−

R τ
0 [2ϕ2(ζ4(u),γ4(u))+

1
2
(ξ(γ4(u))

2)00]duh(ζ4(τ), γ4(τ))dτ

¾
where ζ3, γ3, ζ4 and γ4 are as in lemma A1, and h(z, g) is as in eq. (18) in the main text. The

stochastic representation for qg reveals that qg > 0 (resp. < 0) if m2(z, g)qz(z, g) > 0 resp. (< 0)

for all (z, g) ∈ Z×G. And by the stochastic representation for qgg, we have that qgg > 0 (resp.

< 0) if h(z, g) > 0 (resp. < 0) for all (z, g) ∈ Z×G. ¥

On the sign of qz. Let y(τ) ≡ ∂z(τ)/ ∂z and x(τ) ≡ ∂g(τ)/ ∂z to be the first partials of the

stochastic flows z(τ) and g(τ) with respect to the initial condition z of the dividend rate. Consider

the following condition: there exist two constants c0 and c1 such that c1 + r > 0, c0 > −(c1 + r)

and,

∀τ > 0, E [m1(z(τ), g(τ))y(τ) +m2(z(τ), g(τ))x(τ)] > c0 · exp(−c1τ). (C1)

As shown below, E [y(τ)] > 0 for sufficiently small τ . But if the dividend rate is not Markov,

there may be sets T such that E [y(τ)] < 0 for all τ ∈ T . Condition (C1) then ensures that such

sets do not contribute too much to the overall sign of qz.
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Proof that qz > 0 under condition (C1). The Feynman-Kac representation of the solution to

the partial differential equation (A1) is q(z, g) = E
£R∞
0 e−rτz(τ)dτ

¤
. By differentiating it with

respect to z leaves:

qz(z, g) =

Z ∞

0
e−rτE [y(τ)] dτ, (C2)

where s(τ) ≡ (y(τ) x(τ))> satisfies:⎧⎪⎨⎪⎩
ds(τ) =M(z(τ), g(τ))s(τ)dτ +Σ(z(τ), g(τ))s(τ)dW (τ)

s(0) = (1 0)>

and

M(z, g) =

Ã
m1(z, g) m2(z, g)

ϕ1(z, g) ϕ2(z, g)

!

Σ(z, g) =

Ã
σ0(z) 0

0 ξ0(g)

!

This shows that

E [y(τ)] = 1 +
Z τ

0
E [m1(z(u), g(u))y(u) +m2(z(u), g(u))x(u)] du.

In particular, function τ 7→ E (y(τ)) is continuous with limτ↓0 E (y(τ)) = 1. Therefore, there

exists a τ∗ such that for all τ ≤ τ∗, E (y(τ)) > 0, as I claimed before giving condition (C1).

To show that condition (C1) guarantees that qz > 0, replace the previous relation into (C2) to

obtain

qz(z, g) =
1

r
+

Z ∞

0
e−rτ

Z τ

0
{E [m1(z(u), g(u))y(u) +m2(z(u), g(u))x(u)] du} dτ

>
c1 + r + c0
r (c1 + r)

,

where the second line is obtained through condition (C1). Therefore, for all z, g, qz(z, g) > 0

whenever c1 + r > 0 and c0 > −(c1 + r). ¥

Proof of proposition 3. If q(z, g) = z · v(g), functions h3 and h4 in lemma A1 collapse to

h
3
(z, g) ≡ [m2(z, g)−R2(z, g)z] · v(g) and h

4
(z, g) ≡ [m22(z, g)−R22(z, g)z] v(g) + [ϕ22(z, g)z +
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2(m2(z, g) − zR2(z, g)) +
∂2

∂g2
((σξ1)(z, g))]v

0(g), and the stochastic representations for qg = zv0

and qgg = zv00 are then as follows:

zv0(g) = E
∙Z ∞

0
κ3(τ)h

3
(ζ3(τ), γ3(τ))dτ

¸
and

zv00(g) = E
∙Z ∞

0
κ4(τ)h

4
(ζi(τ), γi(τ))dτ

¸
,

where κi, ζi and γi (i = 3, 4) are as in lemma A1. ¥

Example C1. Consider a representative agent economy in which m0(z, g) = zg, σ(z) = σ0z,

ξ1 and ξ2 are independent of z. The agent has impatience rate δ > 0 and instantaneous utility

function u(c) = (c1−η − 1)/(1− η) and acts as in example A1 in appendix A. It is easy to show

that in this case, q(z, g) = z ·
R∞
0 C(g, τ)dτ , where

C(g, τ) = E
∙
exp

µ
−
Z τ

0
R(g(t))dt

¶
z(τ)

z

¸

= E
½
exp

∙
−(δ + 1

2
σ20η(1− η))τ + (1− η)

Z τ

0
g(t)dt− 1

2
σ20τ + σ0cW1(τ)

¸¾

= E
½
exp

∙
−(δ + 1

2
σ20η(1− η))τ + (1− η)

Z τ

0
g(t)dt

¸¾
,

and E is the expectation taken under measure P defined through the Radon-Nikodym derivative

dP
±
dP 0 = exp(−12σ20τ+σ0dcW1(τ)). Next, I assume that g is normally distributed, with ϕ(z, g) =

a − θg, ξ1 and ξ2 constants, and a ≡ a0 − ησ0ξ1, where a0 is a positive parameter under the

physical probability measure. By Girsanov’s theorem,

dg(τ) = [a− θg(τ)] dτ + ξ1dW 1(τ) + ξ2dW 2(τ),

whereW 1 is a P -Brownian motion,W 2 = cW2 is also a P -Brownian motion, and a ≡ a0+σ0ξ1(1−
η). Using the fact that

R τ
0 g is a P -Gaussian process, some computations lead to:

C(g, τ) = e−[δ−
(1−η)a

θ
+ 1
2

σ20η(1−η)−1
2
(
(1−η)ξ0

θ
)2]τ+[g−a

θ
−(1−η)(

ξ0
θ
)2] 1−η

θ (1−e−θτ)+
(1−η)2ξ20

4θ3
(1−e−2θτ),

where ξ20 ≡ ξ21 + ξ22. As is clear, v is always convex; and v0 > 0 (resp. v0 < 0) whenever η < 1

(resp. η > 1), consistently with the prediction of proposition 3. Note that this model differs
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from the Brennan and Xia (2001) one because R is not being kept constant here. Also, a model

previously developed by Goldstein and Zapatero (1996) is a special case of the present model

(namely, for ξ2 = 0).

Example C2. (“Three-halves”). Let us be given the economy in example C1, and assume that
ϕ0(g) = κ(a− g)g, ξ1(g) = ξ0g

3
2 and ξ2(g) = 0, where κ, a and ξ0 are constants. This model was

introduced by Ahn and Gao (1999) in the term structure literature,25 and by Lewis (2000) in the

stochastic volatility option pricing literature. By proposition 3, the price-dividend ratio v(g) is

concave (resp. convex) in g whenever κ > 1− η and ξ0 < 0 (resp. κ < 1− η and ξ0 > 0).

Convexity issues in model (16). Consider the economy in example 1 [model (16)]. If the
representative agent has CARA γ > 0 and impatience rate δ > 0, R = δ + γg − 1

2σ
2
0γ
2. By

lemma A1, h1 = 1 (implying that qz > 0), h2 = 0 (implying that qzz = 0), h3 = qz − γq, h4 = 0

(implying that qgg = 0) and h5 = −γqz (implying that qzg < 0). Therefore,

q(z, g) = c0 + c1 · g + c2 · z + c3 · g · z,

where {cj}3j=0 are some constants with c3 < 0 and c2 > |c3 ·maxg∈G g| (|c3 ·maxg∈G g| < ∞).
Prices are not convex in g. Furthermore, q is nondecreasing in g for sufficiently low levels of γ on

any compact setO of Z×G. Indeed, let qg(z, g; γ) ≡ qg(z, g). By lemma A1, limγ→0 qg(z, g; γ) > 0.

Hence, for fixed (z, g), there exists a γ0(z, g) : qg(z, g; γ) > 0 for all γ ≤ γ0(z, g). Now set

(z0, g0) ∈ argmin(z,g)∈O γ0(z, g). Then, qg(z, g; γ) > 0 for all γ ≤ γ0(z
0, g0) on O.

Finally, I develop details leading to a conjecture on additional qualitative properties of the

price-dividend ratio v(g) in proposition 3.

Let the short-term rate R ≡ r, a constant, and set

R(τ) ≡ exp
∙
− (r + λ0σ0) τ +

Z τ

0
g(u)du

¸
,

and

Gj(τ) ≡
Z τ

0

∂jg

∂gj
0

(u)du, j = 1, 2,

where

dg(τ) = [ϕ(g(τ)) + σ0ξ(g(τ))] dτ + ξ1(g(τ))dW 1(τ) + ξ2(g(τ))dW 2(τ)

25 In the present example, the short-term rate R(g) is as in example C1, and thus follows the same dynamics
originally assumed by Ahn and Gao. (The pricing kernels in the two economies differ, however.)
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(as in section 3.2.1), and ∂g/ ∂g0 is the sensitivity of the stochastic flow g with respect to the

initial condition g0. Accordingly, G2 tracks the (cumulative) curvature of the stochastic flow.
Finally, define

A ≡ A(g) ≡ cov

∙Z ∞

0
R(τ)dτ,

Z ∞

0
R(τ)G1(τ)2dτ

¸
.

I assume that

A > 0, all g ∈ G.

Let B(g, t) ≡ E [[R(t)]. Under regularity conditions similar to ones provided in Mele (2002,
appendix A, lemma A4), the partials of B in eq. (11) satisfy

B1(g, t) = E [R(t)G1(t)] , all (g, t) ∈ G× [0,∞).

B11(g, t) = E
£
R(t)G1(t)2

¤
+ E [R(t)G2(t)] , all (g, t) ∈ G× [0,∞).

I also assume that the conditions of proposition 3 ensuring convexity of B are satisfied, and

so:

B11(g, t) > 0, all (g, t) ∈ G× [0,∞).

By the stochastic representation in eq. (6), the ratio,

Z(g) ≡ v0(g)

v(g)

is non-concave whenever v is convex and∙Z ∞

0
B1(g, τ)dτ

¸2
≤
∙Z ∞

0
B11(g, τ)dτ

¸
·
∙Z ∞

0
B(g, τ)dτ

¸
, all g ∈ G. (C3)
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We have,∙Z ∞

0
B1(g, τ)dτ

¸2
=

½Z ∞

0
E [R(τ)G1(τ)] dτ

¾2

=

½
E
∙Z ∞

0
R(τ)G1(τ)dτ

¸¾2

≤ E
∙Z ∞

0
R(τ)G1(τ)dτ

¸2
≤ E

∙µZ ∞

0
R(τ)dτ

¶
·
µZ ∞

0
R(τ)G1(τ)2dτ

¶¸

≤
½Z ∞

0
E [(R(τ)] dτ

¾
·
½Z ∞

0
E
£
R(τ)G1(τ)2

¤
dτ

¾
+A

<

½Z ∞

0
E [(R(τ)] dτ

¾
·
½Z ∞

0
E
£
R(τ)G1(τ)2

¤
dτ

¾

=

∙Z ∞

0
B(g, τ)dτ

¸
·
½Z ∞

0

£
B11(g, τ)− E (R(τ)G2(τ))

¤
dτ

¾

≤
∙Z ∞

0
B(g, τ)dτ

¸
·
∙Z ∞

0
B11(g, τ)dτ

¸
, all g ∈ G,

where I assumed that I was allowed to apply both Fubini-Tonelli theorem and Cauchy-Schwartz

inequality. If any, this presumption can only be validated through a series of integrability con-

straints on R, G1 and G2 that I have been unable to develop in full generality.
The previous heuristic arguments lead me to conjecture that under suitable integrability

conditions, the following statement is true:

Conjecture C1 [Nonnegative stochastic flow curvature structures.] Suppose that A > 0, v00 > 0

and that the stochastic solution flow G has nonnegative (cumulative) curvature, viz G2 ≥ 0.

Then, Z is strictly convex.

An example not necessarily nested into the framework of the previous conjecture is the fol-

lowing one. Suppose that B is exponential affine, viz B(t) ≡ B(g, t) = exp(A(t) + B(t)g), for
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some functions A and B. Then, eq. (C3) holds whenever:∙Z ∞

0
B(τ)B(τ)dτ

¸2
≤
∙Z ∞

0
B(τ)B(τ)2dτ

¸
·
∙Z ∞

0
B(τ)dτ

¸
, all g ∈ G,

which is Cauchy-Schwartz inequality. Therefore, Z is non-concave in affine models under the

standard regularity conditions underlying Cauchy-Schwartz inequality.

Appendix D: Proofs and examples for section 5

Proof of proposition 4. I provide second-order properties of price-dividend ratios for the

general case. By eq. (5), q(z, s) is solution to:

0 =
1

2
σ20z

2qzz + (g0 − σ0λ1)zqz +
1

2
ξ
2
qss + (φ− ξ · λ)qs + σ0zξ1qzs + z −Rq,

where ξ
2 ≡ ξ21 + ξ22 and ξ · λ ≡ ξ1λ1 + ξ2λ2. Next, suppose that q(z, s) = z · v(s). By replacing

the proposed solution into the previous equation leaves:

0 =
1

2
ξ
2
v00 + (φ+ σ0ξ1 − λ · ξ) v0 − (R− g0 + σ0λ1) v + 1.

By the same arguments as in lemma A1, v > 0. Finally, define v1 ≡ v0 and v2 ≡ v00. By

differentiating the previous differential equation, I find that v1 and v2 are solutions to:

0 =
1

2
ξ
2
v001 +

∙
φ+

1

2
(ξ
2
)0 + σ0ξ1 − λ · ξ

¸
v01 −

£
R− g0 + σ0λ1 − (φ+ σ0ξ1 − λ · ξ)0

¤
v1 + c1,

and

0 =
1

2
ξ
2
v002 +

h
φ+ (ξ

2
)0 + σ0ξ1 − λ · ξ

i
v02

−
∙
R− g0 + σ0λ1 − 2φ0 − 2σ0ξ01 + 2 (λ · ξ)0 −

1

2
(ξ
2
)00
¸
v2 + c2,

where

c1(s) ≡ −
£
R0(s) + σ0λ

0
1(s)

¤
v(s),

c2(s) ≡ −
£
R00(s) + σ0λ

00
1(s)

¤
v(s)

+
£
(φ(s) + σ0ξ1(s)− λ(s) · ξ(s))00 − 2

¡
R0(s) + σ0λ

0
1(s)

¢¤
v1(s)
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The result follows by setting ξ2 = 0, ξ = ξ1, λ = λ1, and by a direct application of the Feynman-

Kac representation theorem, as in lemma A1 in appendix A. ¥

Additional details on example 3. Campbell and Cochrane (1999) originally considered a
discrete-time model. The diffusion limit of their consumption process is simply eq. (21) given in

the main text. By example A1 [eq. (A4)],

λ(z, x) =
η

s

∙
σ0 −

1

z
γ(z, x)

¸
. (D1)

Next, x = z(1 − s), where s is solution to eq. (22). By Itô’s lemma, γ = [1− s− sl(s)] zσ0.

By eq. (D1), λ(s) = ησ0 [1 + l(s)], as claimed in the main text. (This result only approximately

holds in the original discrete time framework.) Finally, by an application of formula (A3), R(s) =

δ + η
¡
g0 − 1

2σ
2
0

¢
+ η(1− φ)(s− log s)− 1

2η
2σ20 [1 + l(s)]2. R is constant whenever

l(s) =
1

S

p
1 + 2(s− log s)− 1, s ∈

³
0, S · e 12 (1−S

2
)
´
,

where S = σ0
p
η/(1− φ) = exp(s). This corresponds to the same original restriction as in

Campbell and Cochrane.

Additional details on example 4. To apply the theoretical test conditions in proposition 4
to the model in example 4, one needs to know Sharpe ratios and interest rates - which Basak

and Cuoco (1998) do not report in their article. The representative agent in this economy has

(undiscounted) instantaneous utility u(z, x) as in example A1. By eq. (A4), λ thus satisfies:

λ(z, x) = −u11(z, x)
u1(z, x)

σ0z +
u12(z, x)x

u1(z, x)
λ(z, x).

This is:

λ(z, x) = − u1(z, x)u11(z, x)

u1(z, x)− u12(z, x)x
· σ0z

u1(z, x)

= − u00a(bca)

u1(z, x)
σ0z

= −u
00
a(bca)bca

u0a(bca)
σ0s

−1.

where the second line follows by Basak and Cuoco [identity (33), p. 331] and the third line

follows by the definition of u(z, x) and s. The Sharpe ratio reported in the main text follows by
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the definition of ua. The interest rate is also found using example A1. The final result is:

R(s) = δ +
ηg0

η − (η − 1)s −
1

2

η(η + 1)σ20
s(η − (η − 1)s) .

Finally, by applying Itô’s lemma to s = ca/ z, and using the optimality conditions for agent a, I

find that drift and diffusion functions of s are given by:

φ(s) = g0

∙
(1− η)(1− s)

η + (1− η)s

¸
s− 1

2

(η + 1)σ20
η + (1− η) s

+
1

2

(η + 1)σ20
s

+ σ0(s− 1),

and ξ(s) = σ0(1− s).

Appendix E: Proofs for section 6

Proof of proposition 5 [parts a and b]. By absence of arbitrage opportunities, q(z, y1, y2, y3)
is solution to:

0 = (Lq −R(z, y1, y2, y3))q(z, y1, y2, y3) + z, (E1)

where

Lqq =
1

2
σ2qzz +mqz +

1

2

3X
i=1

ξ
2
i qyiyi +

3X
i=1

ϕ(i)qyi + σ
3X

i=1

ξ
(i)
1 qzyi

+ξ1,2qy1y2 + ξ1,3qy1,y3 + ξ2,3qy2,y3 ,

and m ≡ m0 − λσ.

Let a ≡ qy1 and b ≡ qy1y1 . Functions a and b are solutions to:

0 = (Lj − kj) j + hj , j = a, b, (E2)

where ka = R− ∂ϕ(1)

∂y1
, kb = R− 2∂ϕ(1)

∂y1
− 1
2

∂2

∂y21
ξ
2
1,

Laa = L3a+ Laaa

Lbb = L4b+ Lbbb
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with

Laa[a] =
3X

i=2

³
1
2ξ
2
i ayiyi + ϕ(i)ayi + σξ

(i)
1 azyi

´
+

∂ξ1,2

∂y1
ay2 + ξ1,2ay1y2 +

∂ξ1,3

∂y1
ay3 + ξ1,3ay1y3

+ξ2,3ay2y3

Lbb[b] = Laa[b] +
∂ξ1,2

∂y1
by2 +

∂ξ1,3

∂y1
by3

and L3 and L4 are the operators defined in appendix A (lemma A1) (with (y1, ξ
2
1, ϕ

(1), ξ
(1)
1 )

replacing (g, ξ2, ϕ, ξ1)), and finally,

ha(z, y) = m2(z, y1, y2, y3)qz(z, y1, y2, y3)−R2(z, y1, y2, y3)q(z, y1, y2, y3) +M(z, y1, y2, y3)

hb(z, y) = m22(z, y1, y2, y3)qz(z, y1, y2, y3) + ϕ
(1)
22 (z, y1, y2, y3)qy1(z, y1, y2, y3)

+
h
2m2(z, y1, y2, y3) +

∂2

∂y21
(σξ

(1)
1 )(z, y1, y2, y3)

i
qzy1(z, y1, y2, y3)

−R22(z, y1, y2, y3)q(z, y1, y2, y3)− 2R2(z, y1, y2, y3)qy1(z, y1, y2, y3)

+N(z, y1, y2, y3)

where

M ≡
3X

i=2

Ã
1

2

∂ξ
2
i

∂y1
qyiyi +

∂ϕ(i)

∂y1
qyi + σ

∂ξ
(i)
1

∂y1
qzyi

!
+

∂ξ2,3

∂y1
qy2,y3

N ≡
3X

i=2

"
1

2

∂2ξ
2
i

∂y21
qyiyi +

∂ξ
2
i

∂y1
qy1yiyi +

∂2ϕ(i)

∂y21
qyi + 2

∂ϕ(i)

∂y1
qy1yi + σ

∂2ξ
(i)
1

∂y21
qzyi + 2σ

∂ξ
(i)
1

∂y1
qy1zyi

#
+
∂2ξ1,2

∂y21
qy1,y2 +

∂2ξ1,3

∂y21
qy1,y3 +

∂2ξ2,3

∂y21
qy2,y3 + 2

∂ξ2,3

∂y1
qy1,y2,y3

By arguments nearly identical to the ones developed in appendix A, j > 0 (resp. < 0)

whenever hj > 0 (resp. < 0), j = a, b. In particular, let R be independent of z, and let

m(z, y) = z · d(y), where d(y) = d0(y)− σ0λ1(y), as assumed in the proposition. Then, function

q(z, y) = z · v(y) satisfies eq. (E1), and functions h· in eq. (E2) are ha = ha and hb = hb, where:

ha(z, y) = z ·
©
[dy1(y)−Ry1(y)] v(y) +M(y)

ª
hb(z, y) = z · [dy1y1(y)−Ry1y1(y)] v(y)

+z ·
h
2dy1(y) + ϕ

(1)
y1y1(y) + σ0

∂2

∂y21
ξ
(1)
1 (y)− 2Ry1(y)

i
vy1(y) + z ·N(y)
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and

M ≡
3X

i=2

"
1

2

∂ξ
2
i

∂y1
vyiyi +

Ã
∂ϕ(i)

∂y1
+ σ0

∂ξ
(i)
1

∂y1

!
vyi

#
+

∂ξ2,3

∂y1
vy2,y3

N ≡
3X

i=2

"
1

2

∂2ξ
2
i

∂y21
vyiyi +

∂ξ
2
i

∂y1
vy1yiyi +

∂2ϕ(i)

∂y21
vyi + 2

∂ϕ(i)

∂y1
vy1yi + σ0

∂2ξ
(i)
1

∂y21
vyi + 2σ0

∂ξ
(i)
1

∂y1
qy1yi

#
+
∂2ξ1,2

∂y21
vy1,y2 +

∂2ξ1,3

∂y21
vy1,y3 +

∂2ξ2,3

∂y21
vy2,y3 + 2

∂ξ2,3

∂y1
vy1,y2,y3

Parts a) and b) in proposition 5 then follow by arguments similar to ones used to show lemma

A1: vy1 > 0 whenever ha > 0 and vy1y1 > 0 (resp. < 0) whenever hbb > 0 (resp. < 0). ¥

Proof of proposition 5 [part c]. I only demonstrate that part c of proposition 5 holds for

three-factor models. The general case is dealt with similar arguments. Let g ≡ y1 and s ≡ y3.

The price-dividend ratio v(g, s) satisfies:

0 =
1

2
ξ
2
1(g)vgg(g, s) +

1

2
ξ
2
3(s)vss(g, s) + ξ1,3(g, s)vgs(g, s)

+
h
ϕ
(1)
0 (g) + (σ0 − λ(s)) ξ

(1)
1 (g)

i
vg(g, s) +

h
ϕ
(3)
0 (s) + (σ0 − λ(s)) ξ

(3)
1 (s)

i
vs(g, s)

− [R(s, g)− d(s, g)] v(g, s) + 1.

51



By arguments similar to ones in the proof of proposition 5, I find that w ≡ vgs is solution to:

0 =
1

2
ξ
2
1(g)wgg(g, s) +

1

2
ξ
2
3(s)wss(g, s) + ξ1,3(g, s)wgs(g, s)

+

∙
1

2
(ξ
2
1(g))

0 + ξ1,3s (g, s) + ϕ
(1)
0 (g) + (σ0 − λ(s)) ξ

(1)
1 (g)

¸
wg(g, s)

+

∙
1

2
(ξ
2
3(s))

0 + ξ1,3g (g, s) + ϕ
(3)
0 (s) + (σ0 − λ(s)) ξ

(3)
1 (s)

¸
ws(g, s)

−
h
R(g, s)− d(g, s)− ξ1,3gs (g, s)− (ϕ

(1)
0 (g))

0 + ξ
(1)
1 (g)

0λ(s)

−(ϕ(3)0 (s)− ξ
(3)
1 (s)λ(s))

0 + σ0

³
(ξ
(1)
1 (g))

0 + (ξ(3)1 (s))
0
´i

w(g, s)

+hw(g, s),

where

hw(g, s) ≡ [dgs(g, s)−Rgs(g, s)] v(g, s) +
h
ds(g, s)−Rs(g, s)− (ξ(1)1 (g))0λ0(s)

i
vg(g, s)

+ [dg(g, s)−Rg(g, s)] vs(g, s)− ξ
(1)
1 (g)λ

0(s)vgg(g, s).

The result follows by the Feynman-Kac representation theorem applied to function w. ¥

52



References

Abel, A. B., 1988, “Stock Prices under Time-Varying Dividend Risk: an Exact Solution in an

Infinite-Horizon General Equilibrium Model,” Journal of Monetary Economics, 22, 375-393.

Abel, A. B., 1994, “Exact Solutions for Expected Rates of Return under Markov Regime Switch-

ing: Implications for the Equity Premium Puzzle,” Journal of Money, Credit and Banking,

26, 345-361.

Abel, A. B., 1999, “Risk-Premia and Term Premia in General Equilibrium,” Journal of Monetary

Economics, 43, 3-33.

Ahn, D. and B. Gao, 1999, “A Parametric Nonlinear Model of Term-Structure Dynamics,”

Review of Financial Studies, 12, 721-762.

Bajeux-Besnainou, I. and J.-C. Rochet, 1996, “Dynamic Spanning: Are Options an Appropriate

Instrument ?,” Mathematical Finance, 6, 1-16.

Barsky, R. B., 1989, “Why Don’t the Prices of Stocks and Bonds Move Together ?” American

Economic Review, 79, 1132-1145.

Barsky, R. B. and J. B. De Long, 1990, “Bull and Bear Markets in the Twentieth Century,”

Journal of Economic History, 50, 265-281.

Barsky, R. B. and J. B. De Long, 1993, “Why Does the Stock Market Fluctuate ?” Quarterly

Journal of Economics, 108, 291-311.

Basak, S. and D. Cuoco, 1998, “An Equilibrium Model with Restricted Stock Market Partici-

pation,” Review of Financial Studies, 11, 309-341.

Bergman, Y. Z., B. D. Grundy, and Z. Wiener, 1996, “General Properties of Option Prices,”

Journal of Finance, 51, 1573-1610.

Black, F. and M. Scholes, 1973, “The Pricing of Options and Corporate Liabilities,” Journal of

Political Economy, 81, 637-659.

Brennan, M. J. and Y. Xia, 2001, “Stock Price Volatility and Equity Premium,” Journal of

Monetary Economics, 47, 249-283.

53



Brennan, M. J. and Y. Xia, 2003, “Risk and Valuation Under an Intertemporal Capital Asset

Pricing Model,” forthcoming in the Journal of Business.

Brennan, M. J., A. W. Wang and Y. Xia, 2003, “Estimation and Test of a Simple Model of

Intertemporal Capital Asset Pricing,” forthcoming in the Journal of Finance.

Campbell, J. Y., 1999, “Asset Prices, Consumption, and the Business Cycle,” in Taylor, J.

B. and M. Woodford (Editors): Handbook of Macroeconomics (Volume 1C, chapter 19),

1231-1303.

Campbell, J. Y., and R. J. Shiller, 1988, “The Dividend-Price Ratio and Expectations of Future

Dividends and Discount Factors,” Review of Financial Studies, 1, 195-227.

Campbell, J. Y., and J. H. Cochrane, 1999, “By Force of Habit: A Consumption-Based Expla-

nation of Aggregate Stock Market Behavior,” Journal of Political Economy, 107, 205-251.

Cecchetti, S. G., P.-S. Lam and N. C. Mark, 1993, “The Equity Premium and the Risk-Free

Rate: Matching the Moments,” Journal of Monetary Economics, 31, 21-45.

Chan, Y. L. and L. Kogan, 2002, “Catching Up with the Joneses: Heterogeneous Preferences

and the Dynamics of Asset Prices,” Journal of Political Economy, 110, 1255-1285.

Cuoco, D. and F. Zapatero, 2000, “On the Recoverability of Preferences and Beliefs,” Review

of Financial Studies, 13, 417-431.

David, A., 1997, “Fluctuating Confidence in Stock Markets: Implications for Returns and

Volatility,” Journal of Financial and Quantitative Analysis, 32, 427-462.

Detemple, J. B., 1986, “Asset Pricing in a Production Economy with Incomplete Information,”

Journal of Finance, 41, 383-391.

El Karoui, N., M. Jeanblanc-Picqué and S. E. Shreve, 1998, “Robustness of the Black and

Scholes Formula,” Mathematical Finance, 8, 93-126.

Gennotte, G., 1986, “Optimal Portfolio Choice Under Incomplete Information,” Journal of

Finance, 41, 733-746.

Goldstein, R. and F. Zapatero, 1996, “General Equilibrium with Constant Relative Risk Aver-

sion and Vasicek Interest Rates,” Mathematical Finance, 6, 331-340.

54



Gordon, M., 1962, The Investment, Financing, and Valuation of the Corporation. Homewood,

IL: Irwin.

Hajek, B., 1985, “Mean Stochastic Comparison of Diffusions,” Zeitschrift fur Wahrschein-

lichkeitstheorie und Verwandte Gebiete, 68, 315-329.

He, H. and H. Leland, 1993, “On Equilibrium Asset Price Processes,” Review of Financial

Studies, 6, 593-617.

Huang, C.-F. and Pagès, H., 1992, “Optimal Consumption and Portfolio Policies with an Infinite

Horizon: Existence and Convergence,” Annals of Applied Probability, 2, 36-64.

Jagannathan, R., 1984, “Call Options and the Risk of Underlying Securities,” Journal of Fi-

nancial Economics, 13, 425-434.

Karatzas, I. and S. E. Shreve, 1991, Brownian Motion and Stochastic Calculus, Springer Verlag,

Berlin.

Kijima, M., 2002, “Monotonicity and Convexity of Option Prices Revisited,” Mathematical

Finance, 12, 411-426.

Kogan, L. and R. Uppal, 2001, “Risk-Aversion and Optimal Portfolio Policies in Partial and

General Equilibrium Economies,” wp MIT and LBS.

Lewis, A. L., 2000, Option Valuation Under Stochastic Volatility, Finance Press, Newport Beach,

CA.

Liptser, R. S. and A. N. Shiryaev, 2001, Statistics of Random Processes: Vol. I (General Theory)

and Vol. II (Applications) (Second Edition), Berlin, Springer-Verlag.

Lucas, R. E., Jr., 1972, “Expectations and the Neutrality of Money,” Journal of Economic

Theory, 4, 103-124.

Lucas, R. E., Jr., 1978, “Asset Prices in an Exchange Economy,” Econometrica, 46, 1429-1445.

Malkiel, B., 1979, “The Capital Formation Problem in the United States,” Journal of Finance,

34, 291-306.

Mehra, R. and E. C. Prescott, 1985, “The Equity Premium: A Puzzle,” Journal of Monetary

Economics, 15, 145-61.

55



Mele, A., 2002, “Fundamental Properties of Bond Prices in Models of the Short-Term Rate

(with Examples, Counterexamples, and Primitive Regularity Conditions),” working paper,

London School of Economics.

Mele, A., 2003, “Fundamental Properties of Bond Prices in Models of the Short-Term Rate,”

Review of Financial Studies, 16, 679-716.

Menzly, L., T. Santos and P. Veronesi, 2004, “Understanding Predictability,” Journal of Political

Economy, 111, 1, 1-47.

Pindyck, R, 1984, “Risk, Inflation and the Stock Market,” American Economic Review, 74,

335-351.

Poterba, J. and L. Summers, 1985, “The Persistence of Volatility and Stock-Market Fluctua-

tions,” American Economic Review, 75, 1142-1151.

Romano, M. and N. Touzi, 1997, “Contingent Claims and Market Completeness in a Stochastic

Volatility Model,” Mathematical Finance, 7, 399-412.

Rothschild, M. and J. E. Stiglitz, 1970, “Increasing Risk: I. A Definition,” Journal of Economic

Theory, 2, 225-243.

Schwert, G. W., 1989, “Why Does Stock Market Volatility Change Over Time ?” Journal of

Finance, 44, 1115-1153.

Veronesi, P., 1999, “Stock Market Overreaction to Bad News in Good Times: A Rational

Expectations Equilibrium Model,” Review of Financial Studies, 12, 975-1007.

Veronesi, P., 2000, “How Does Information Quality Affect Stock Returns ?” Journal of Finance,

55, 807-837.

Wang, J., 1993, “A Model of Intertemporal Asset Prices Under Asymmetric Information,” Re-

view of Economic Studies, 60, 249-282.

Wang, S., 1993, “The Integrability Problem of Asset Prices,” Journal of Economic Theory, 59,

199-213.

56


