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Abstract

Evidence that asset returns are more highly correlated during volatile markets and during
market downturns (see Longin and Solnik, 2001, and Ang and Chen, 2002) has lead some
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consistent against all alternatives but it requires kernel estimation of only a univariate density
function, and hence is useful for testing the dependence structure between a large number of
assets. We justify our tests for both observable multivariate strictly stationary time series and
for standardized innovations of GARCH models. A simulation study demonstrates the efficacy
of both tests. When applied to equity return data and exchange rate return data, we find strong
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1 Introduction

The dependence between returns on risky assets can have a profound impact on portfolio and risk

management decisions. The dependence structure between the assets, in addition to the expected

return and risk of the individual assets, will affect the distribution of portfolio returns and thus the

utility that investors derive from a particular investment decision. Economic theory sheds little light

on the dependence structures to expect between financial assets, and so finding a good specification

is essentially an empirical problem. The most widely used dependence model is that of multivariate

normality, making linear correlation a sufficient statistic for the dependence structure. However

evidence that equity returns have a dependence structure that is not consistent with multivariate

normality, or even multivariate ellipticity more generally, has recently been presented by Longin

and Solnik (2001) and Ang and Chen (2002). Equity returns appear to be more correlated during

downturns than during upturns. Similar evidence for the dependence between exchange rates was

reported in Patton (2002a).

The evidence reported in these papers has prompted research on flexible models of dependence

between risky assets. One such line of research employs copulas to model the possibly nonlinear

contemporaneous dependence structure of multivariate financial time series. Numerous applications

of copula models have appeared in recent work, on multivariate option pricing; portfolio and market

Value-at-Risk calculations; default and credit risk correlations; contagion; tail-dependence; and

time-varying contemporaneous conditional dependence between different assets, for example. See

Frees and Valdez (1998), Embrechts et al. (2002) and Bouyé et al. (2000) for reviews of copula

methods in finance and insurance.1 The main reason for the increasing popularity and success of

copulas in modeling multivariate financial time series is its flexibility in separately modeling the

marginal behavior of each individual series and the dependence structure between individual series.

The theoretical foundation is provided by Sklar’s (1959) theorem; any multivariate distribution

with continuous marginals can be uniquely decomposed into a copula function and its univariate

marginals, where a copula function is simply a multivariate distribution function with uniform

marginals. One important property of copulas and copula-based measures of dependence is their

invariance to any increasing transformation of the original individual time series. As a result the

copula approach can flexibly model nonlinear and asymmetric dependence among multiple time

series often found in financial series without the influence of the marginal distribution of each

individual series.

In most of the existing work on modeling the dependence structure of multivariate financial time

1A non-exhaustive list of references include Hull and White (1998), Rosenberg (2003), Costinot, et al. (2000),
Li (2000), Frey and McNeil (2001), Schonbucher and Schubert (2001), Cherubini and Luciano (2001, 2002), Duan
(2002), Hu (2002), Junker and May (2002), Mashal and Zeevi (2002), Patton (2002a, b, 2004), Rockinger and Jondeau
(2002), Dias and Embrechts (2003), Embrechts, et al. (2003) and Breymann, et al (2003).
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series via the copula approach, parametric copulas are used to model the contemporaneous depen-

dence structure between univariate time series2 or between innovations of univariate parametric

time series models. Commonly used parametric copulas include the normal (or Gaussian) copula,

the Student’s t copula, Frank copula, Clayton copula and Gumbel copula.3 As these parametric

copulas lead to models that may have completely different dependence properties, it is important

in any empirical application to check whether the chosen parametric copula correctly specifies the

dependence structure of the multivariate time series regardless of the marginal distributions of

individual series.

Recently some authors have applied classical statistical tests such as the χ2 and the Anderson-

Darling tests of a parametric copula specification to financial data. For example, Breymann, et

al (2003) test various parametric specifications of the copula of multivariate high-frequency data,

while Junker and May (2002) apply these tests to testing parametric specifications of the copula

of a set of risk factors that determine a portfolio. In both papers, the marginal distributions of

the univariate time series are unspecified, and should be treated as infinite-dimensional unknown

nuisance parameters. As a result, the existing critical values for the classical Anderson-Darling and

the χ2 tests are no longer valid. This problem is also noted by Klugman and Parsa (1999) and

Malevergne and Sornette (2003). In their test for the normal copula for multivariate i.i.d. data,

Malevergne and Sornette (2003) have recommended the use of bootstrap to compute empirical

critical values of the Anderson-Darling test. However, it is difficult to implement bootstrap for

general financial multivariate time series models.

In this paper, we propose two simple and asymptotically valid tests of the goodness-of-fit of

any parametric copula model of the contemporaneous dependence structure between multiple time

series. Both tests are based on the multivariate probability integral transform and the kernel

smoothing approach, hence are distribution-free and are easy to compute.4 The first one is a

consistent test that requires the kernel estimation of a multivariate density function and is recom-

mended for testing the dependence structure between a small number of financial time series; the

second one may not be consistent against all alternatives, but it only requires kernel estimation

of a univariate density function, and hence is very useful for testing the dependence structure be-

tween a large number of time series. We justify the proposed tests for both observable multivariate

strictly stationary time series and for standardized innovations of GARCH models. Simulation

results demonstrate that both tests are conservative for realistic sample sizes and data generating

processes. Nevertheless, both tests perform well in terms of power. In view of the different power

2There are also a few papers using the copula approach to modeling (nonlinear) temporal dependence of individual
time series, see Chen and Fan (2002), Gagliardini and Gourieroux (2002), and the references therein.

3Due to the well-known “curse of dimensionality” problem, fully nonparametric copula modeling, although the-
oretically feasible (see e.g. Fermanian and Scaillet, 2002), is practically difficult to implement when the number of
series being modeled is greater than three.

4Matlab code for each test is available on the web, see http://fmg.lse.ac.uk/∼patton/code.html.
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properties of smoothing-based tests and non-smoothing tests, our proposed tests of the goodness-

of-fit of a parametric copula model complement the Anderson-Darling test and χ2 test already used

in the copula literature.

We apply our proposed tests to determining whether the dependence structure of up to 30 major

U.S. equities and up to 20 major exchange rates can be adequately described using the normal (or

Gaussian) copula. Recently, the normal copula has been applied to model multivariate financial se-

ries as a way to relax the multivariate normal distribution assumption yet still retain computational

simplicity. For example, Hull and White (1998) applied the normal copula in portfolio value-at-risk

calculation, and Duan (2002) employed the normal copula in option pricing. Due to its wide prac-

tical use in finance, a researcher should not abandon a normal copula model without reasonable

evidence against it. Our findings are as follows: For U.S. equity returns and for their standardized

GARCH residuals, it is difficult to reject normal copula hypothesis in bivariate analyses; however,

as the collection of assets gets larger (moving from 2 to 5, 10 and 30 assets) the normal copula

provides a poorer and poorer fit. For exchange rates and for their standardized GARCH residuals,

we can reject normal copula hypothesis even in bivariate analyses.

Since the normal copula implies no tail dependence nor ‘asymmetric correlation’ among different

financial assets, it is not too surprising that we find evidence against normal copula in multivariate

equity returns and exchange rates. Recently, Breymann et al. (2003) and Mashal and Zeevi

(2002) have recommended the more flexible Student’s t-copula model. Interestingly, our tests of

the Student’s t-copula hypothesis suggest that it is a reasonable model of the dependence structure

between equity returns and between exchange rates. Our findings indicate that non-normalities in

the dependence structure of equity returns and exchange rates, such as tail dependence, should be

incorporated into multivariate modelling of these series.

The rest of this paper is organized as follows. Section 2 briefly reviews some facts on copulas.

In Section 3, we introduce the two test statistics and establish their null limiting distributions for

observable multivariate strictly stationary time series. Section 4 extends both tests to residuals

of a multivariate time series model in which each individual time series is modeled by a GARCH

model and their contemporaneous dependence is characterized by a parametric copula. In Section

5 the results of a Monte Carlo study of the finite sample size and power of the tests are reported.

Section 6 presents analyses of the tenability of the normal copula and Student’s t copula as models

for the dependence structure of collections of daily U.S. equity returns, ranging from 2 assets to

all 30 stocks in the Dow Jones Industrial Average. Section 7 presents an equivalent analysis for 20

major exchange rates. Section 8 briefly concludes. Regularity conditions and a sketch of proofs are

collected in the Appendix.
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2 A Brief Review of Copulas

Suppose we observe a multivariate time series {Yt ≡ (Y1t, . . . , Ydt)}nt=1 from a multivariate strictly

stationary ergodic process whose invariant distribution is the same as the probability distribution of

the multivariate random variable Y ≡ (Y1, . . . , Yd). We assume that (Y1, . . . , Yd) has a continuous
joint distribution H(y1, . . . , yd) over Π

d
j=1Yj ⊆ Rd, and continuous marginal distributions Fj(yj)

for j = 1, . . . , d. By Sklar’s (1959) theorem, there exists a unique copula function C(u1, . . . , ud) ≡
H(F−11 (u1), . . . , F

−1
d (ud)) associated with the joint distribution H(y1, . . . , yd), where 0 ≤ uj ≤

1 for j = 1, . . . , d. Let Ujt ≡ Fj(Yjt) and Uj ≡ Fj(Yj) for j = 1, . . . , d. Then by definition

the multivariate time series {Ut ≡ (U1t, . . . , Udt)}nt=1 is again a strictly stationary process whose
invariant distribution is the same as the probability distribution of U ≡ (U1, . . . , Ud), which is

simply the copula function C(u1, . . . , ud) with 0 ≤ uj ≤ 1 for j = 1, . . . , d.
Throughout the paper, we shall consider two popular copula models: the multivariate normal

copula and the multivariate Student’s t-copula:

The normal copula: the d− dimensional normal (or Gaussian) copula is derived from the

d− dimensional Gaussian distribution. Let Φ denote the scalar standard normal distribution, and
ΦΣ,d the d−dimensional normal distribution with correlation matrix Σ. Then the d−dimensional
normal copula with correlation matrix Σ is

C (u;Σ) = ΦΣ,d(Φ
−1(u1), ...,Φ−1(ud)),

whose copula density is

c (u;Σ) =
1p
det(Σ)

exp

(
−
¡
Φ−1(u1), ...,Φ−1(ud)

¢0 ¡
Σ−1 − Id

¢ ¡
Φ−1(u1), ...,Φ−1(ud)

¢
2

)
.

The Student’s t-copula: the d− dimensional (standardized) Student’s t-copula is derived

from the d− dimensional standardized Student’s t-distribution.5 Let Tν be the scalar standardized
Student’s t distribution with ν > 2 degrees of freedom, and TΣ,ν be the d−dimensional standardized
Student’s t distribution with ν > 2 degrees of freedom and a correlation matrix Σ. Then the

d−dimensional (standardized) Student’s t-copula with correlation matrix Σ is

C (u;Σ, ν) = TΣ,ν(T
−1
ν (u1), ..., T

−1
ν (ud)),

where T−1ν (u1) is the inverse of the scalar standardized Student’s t distribution function Tν . The

5For interpretability we work with the standardized Student’s t copula and distribution here, rather than the non-
standardized Student’s t copula and distribution. The difference is that we constrain ν > 2, and define the matrix Σ
to be the correlation matrix. In the non-standardized case the matrix Σ is a ‘scale’ matrix and the covariance matrix,
if it exists (i.e., if ν > 2) is equal to Σν/ (ν − 2). We will refer to the standardized Student’s t copula as simply the
Student’s t copula for the remainder of the paper.
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(standardized) Student’s t copula density is:

c (u;Σ, ν) =
Γ(ν+d2 )[Γ(

ν
2 )]

d−1p
det(Σ)[Γ(ν+12 )]

d

µ
1 +

x0Σ−1x
ν − 2

¶− ν+d
2

i=1

d

µ
1 +

x2i
ν − 2

¶ν+1
2

,

wherex = (x1, ..., xd)
0, xi = T−1ν (ui) .

Just as the univariate Student’s t distribution generalizes the normal distribution to allow for

fat tails, the Student’s t copula generalizes the normal copula to allow for joint fat tails, i.e., an

increased probability of joint extreme events.

Tail dependence: The “tail dependence” is a key dependence measure to consider when

comparing the normal and Student’s t copulas, see Joe (1997). This is a measure of dependence

between random variables in the extreme upper and lower joint tails. For example with d = 2, if we

assume that Y1t ∼ F1 and Y2t ∼ F2 with a bivariate copula function C, and define U1t = F1 (Y1t)

and U2t = F2 (Y2t), then the coefficients of upper and lower tail dependence are defined as:

τL = lim
q→0 Pr [U1t ≤ q|U2t ≤ q] = lim

q→0
C(q, q)

q
(2.1)

τU = lim
q→1 Pr [U1t > q|U2t > q] = lim

q→1
1− 2q + C(q, q)

1− q
(2.2)

Informally, the coefficients of upper (lower) tail dependence measure the probability of an extremely

large positive (negative) return on one asset given that the other asset has yielded an extremely

large positive (negative) return. If the two assets have a bivariate normal copula, then both upper

and lower tail dependence coefficients are zero, i.e., the bivariate normal copula generates zero tail

dependence.6 The Student’s t copula, on the other hand, generates positive tail dependence even

if the correlation coefficient is zero. The Student’s t copula is symmetric and so the upper and

lower tail dependence coefficients for this copula are equal. The tail dependence coefficients for the

bivariate Student’s t copula with degrees of freedom ν > 2 and correlation coefficient ρ are:

τL = τU = 2Tν+1

µ
−√ν − 1

r
1− ρ

1 + ρ

¶
, (2.3)

see Embrechts et al (2002). The tail dependence coefficients of a bivariate t−copula for a few
different choices of ρ and ν are given in Table 1.

[ INSERT TABLE 1 ABOUT HERE ]

While the above table is useful for distinguishing between the bivariate normal and t copulas,

it does not give us an idea of how “different” the normal and t copulas are as a function of the

dimension of the copula. In our empirical application in Section 6 we find quite different results

6However, this does not mean that the bivariate normal copula (with correlation coefficient ρ) goes to the in-
dependent copula u1u2 unless ρ = 0. More generally, tail independence (i.e., τL = 0, τU = 0) is not equivalent to
independence in the tail (i.e., limy1,y2{H(y1, y2)/[F1(y1)F2(y2)]} = 1), see e.g. Malevergne and Sornette (2003).
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as the dimension of the copula under analysis is increased. In Table 2 we use the Kullback-Leibler

Information Criterion (KLIC) to measure the distance between the normal and t copulas, as a

function of the dimension and the degrees of freedom parameter, for correlation of 0.5. This table

confirms that for any given dimension, as the degrees of freedom parameter increases the KLIC

distance gets smaller. It also indicates that for any given degrees of freedom, as the dimension of

the copula increases the KLIC distance gets larger, and the impact of the dimension is substantial.

For example, the distance between the bivariate normal and t10 copulas is less than the distance

between the 30 dimensional normal and t50 copulas. For univariate densities most people substitute

the normal density for a Student’s t density with degrees of freedom greater than 30; Table 2 shows

that such a substitution may not be appropriate for higher dimension cases.

[ INSERT TABLE 2 ABOUT HERE ]

3 Two Tests of a Parametric Copula for Time Series Data

Let {C0(u1, . . . , ud;α) : α ∈ A} be a class of parametric copulas for Y ≡ (Y1, . . . , Yd). We are

interested in testing the null hypothesis:

H0 : Pr(C(U1, . . . , Ud) = C0(U1, . . . , Ud;α0)) = 1 for some α0 ∈ A

against the alternative hypothesis:

H1 : Pr(C(U1, . . . , Ud) = C0(U1, . . . , Ud;α)) < 1 for all α ∈ A.

Let C0j(u1, . . . , uj ;α0) denote the joint distribution function of U1, . . . , Uj under H0. It is given

by

C0j(u1, . . . , uj ;α0) = C0(u1, . . . , uj , 1, . . . , 1;α0). (3.1)

In addition, let C0j(Uj ;α0|U1, . . . , Uj−1) denote the conditional distribution function of Uj given

(Uj−1, . . . , U1) under H0. It can be derived via

C0j(uj ;α0|u1, . . . , uj−1) = ∂j−1C0j(u1, . . . , uj ;α0)
∂u1 · . . . · ∂uj−1 /

∂j−1C0,j−1(u1, . . . , uj−1;α0)
∂u1 · . . . · ∂uj−1 . (3.2)

Define the following probability integral transform7

Z1 ≡ U1, Zj ≡ C0j(Uj ;α0|U1, . . . , Uj−1) for j = 2, . . . , d.
7This probability integral transform was first introduced by Rosenblatt (1952), and has been used recently to

evaluate density forecasts in Diebold, et al (1998), to test parametric conditional distributions of dynamic regression
models in Bai (2003) and Corradi and Swanson (2001), and to test goodness of fit of conditional distributions of
diffusion models in Thompson (2002) and Hong and Li (2002).
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3.1 A consistent test

As the copula function is a multivariate distribution function, it follows from Rosenblatt (1952)

that H0 holds if and only if the probability integral transformed random variables Z1, . . . , Zd are

independent and identically distributed as a Uniform[0, 1] random variable. Hence, H0 is equivalent

to

H 0
0 : P (g(Z1, . . . , Zd) = 1) = 1,

where g(z1, . . . , zd) is the joint density function of Z1, . . . , Zd.

To testH 0
0, we need to first estimate the joint density function g(z1, . . . , zd). For each t = 1, ..., n,

we denote

Z1t = U1t, Zjt = C0j(Ujt;α0|U1t, . . . , Uj−1,t) for j = 2, . . . , d.

Then {Zt ≡ (Z1t, . . . , Zdt)}nt=1 becomes an infeasible time series sample of Z ≡ (Z1, . . . , Zd), which

can be used to construct an infeasible kernel estimator g(z1, . . . , zd) of g(z1, . . . , zd):

g(z1, . . . , zd) =
1

nhd

nX
t=1

h
Πdj=1Kh(zj , Zjt)

i
,

and one could then test H0 or H
0
0 based on

In =

Z 1

0
. . .

Z 1

0
[g(z1, . . . , zd)− 1]2dz1 . . . dzd,

where h ≡ hn is a bandwidth goes to zero, and Kh(x, y) is a univariate boundary kernel defined as

Kh(x, y) =


k(x−yh )/

R 1
−(x/h) k(u)du, if x ∈ [0, h),

k(x−yh ), if x ∈ [h, 1− h],

k(x−yh )/
R (1−x)/h
−1 k(u)du, if x ∈ (1− h, 1],

(3.3)

in which k(·) is a symmetric univariate second order kernel function supported on [−1, 1]. The above
boundary kernel is used in Hong and Li (2002). Müller (1991) provides general optimal boundary

kernels for pointwise kernel estimation, while Fan and Rilstone (2001) employ the general boundary

kernels in testing the parametric specification of a hazard function.

Of course the time series {Zt ≡ (Z1t, . . . , Zdt)}nt=1 is not observable since Fj , j = 1, ..., d and α0

are unknown, hence g(z1, . . . , zd) and In cannot be computed. Fortunately we can compute pseudo

observations on Z ≡ (Z1, . . . , Zd) as follows:

Ẑ1t = F̂1(Y1t), Ẑjt = C0j(F̂j(Yjt); α̂|F̂1(Y1t), . . . , F̂j−1(Yj−1,t)), (3.4)

where j = 2, . . . , d, t = 1, . . . , n, α̂ is a
√
n-consistent estimator of α0 under the null hypothesis,

and F̂j(y) is the rescaled empirical distribution function of Fj(y):

F̂j(yj) =
1

n+ 1

nX
t=1

1(Yjt ≤ yj).
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As in Fan (1994) and Hong and Li (2002), we can now base our test on

bIn = Z 1

0
. . .

Z 1

0
[ĝ(z1, . . . , zd)− 1]2dz1 . . . dzd, (3.5)

where ĝ(z1, . . . , zd) is the kernel estimator of g(z1, . . . , zd) constructed from the pseudo observations

{bZt ≡ ( bZ1t, . . . , bZdt)}nt=1 as follows:

ĝ(z1, . . . , zd) =
1

nhd

nX
t=1

h
Πdj=1Kh(zj , Ẑjt)

i
. (3.6)

The asymptotic null distribution of bIn will be derived in two steps: In the first step, we estab-
lish the asymptotic null distribution of Īn; in the second step, we show that the asymptotic null

distribution of bIn is the same as that of Īn.
To establish the asymptotic null distribution of Īn, we follow Fan and Ullah (1999). In the fol-

lowing we assume that the observed multivariate time series {Yt ≡ (Y1t, . . . , Ydt)}nt=1 is strictly sta-
tionary and absolutely regular (or beta-mixing), see the appendix for the definition of an absolutely

regular process. One advantage of this assumption is that the probability integral transformed time

series {Zt ≡ (Z1t, . . . , Zdt)}nt=1 will also be stationary and absolutely regular, with the same decay
rate as that of {Yt ≡ (Y1t, . . . , Ydt)}nt=1. This will allow us to test the correct specification of the
contemporaneous dependence structure among Y1t, . . . , Ydt (for arbitrarily fixed t), while leaving

the temporal persistence structure of {Yt ≡ (Y1t, . . . , Ydt)}nt=1 to be totally unspecified as long as
it is stationary and absolutely regular.

THEOREM 3.1 Under (C1)-(C3) and (A1)-(A2) stated in the Appendix, Tnd ≡ (nhd/2bIn −
cdn)/σd → N(0, 1) in distribution under H0, where

cdn = hd/2[(h−1 − 2)
Z 1

−1
k2(w)dw + 2

Z 1

0

Z z

−1
k2z(y)dydz]

d

σ2d = 2{
Z 1

−1
[

Z 1

−1
k(u+ v)k(v)dv]2ddu}d,

where kz(y) = k(y)/
R z
−1 k(u)du.

Remark: Although in Theorem 3.1 we assume that the same bandwidth h is used in all directions,

one can easily extend the result to the case where a different bandwidth is used in each different

direction:

T ∗nd =
nΠdi=1h

1/2
i În − c∗dn
σd

c∗dn = Πdi=1

½
h
1/2
i

·
(h−1i − 2)

Z 1

−1
k2(w)dw + 2

Z 1

0

Z z

−1
k2z(y)dydz

¸¾
.
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Note that the asymptotic distribution of bIn under the null hypothesis has the same variance as
that of the bias-corrected test in Fan (1994), but a different center term caused by the use of the

boundary kernel. The derivation of the center term is relegated to the Appendix.

Theorem 3.1 suggests the following simple, distribution-free test for the correct specification of

a parametric copula {C0(u1, . . . , ud;α) : α ∈ A}: reject H0 at a given significance level 5% (say), if

Tnd > z5%, where z5% is the upper 5% quantile of the standard normal distribution. Following Fan

(1994) or Fan and Ullah (1999), one can show that this test is consistent against H1.

One may also obtain a χ2 test from Theorem 3.1 by noting that T 2nd → χ2[1] in distribution

under H0. Compared with the normal test based on Tnd, the χ2 test based on T 2nd loses some

power. However our simulation results reveal better size performance of the χ2 test T 2nd and hence

we recommend it in practical applications.

Recently, we received a working paper by Fermanian (2003), who proposed to consistently test

a parametric copula specification by nonparametric kernel estimation of the joint copula density of

the original multivariate series. We note that Fermanian’s test is closely related to the consistent

test of the specification of a parametric density function in Fan (1994), while our first test is similar

in spirit to the test in Hong and Li (2002) developed for testing the correct specification of univariate

diffusion models. Hong and Li (2002) report Monte Carlo evidence that the consistent test based on

the kernel density estimation of the probability integral transformed random variables has better

size properties than the test based on the kernel density estimation of the original random variables,

and we suspect that a similar conclusion may apply to the two consistent tests of parametric copula

specifications: our test Tnd and that in Fermanian (2003). In any case, for large dimensional

multivariate time series models, neither our test based on Tnd nor Fermanian’s test will perform

well. This motivates the second test in our paper.

3.2 An Alternative Test of a High-Dimensional Copula Model

It is well known that when the dimension d is large, the kernel estimator may suffer from the

“curse of dimensionality”, which may affect the accuracy of the test proposed in the previous

section. To circumvent this problem, we note that if H0 holds, then the scalar random variable

W ≡ Pd
j=1[Φ

−1(Zj)]
2 follows a χ2[d] distribution, where Φ

−1 denotes the inverse of the standard
normal distribution function. Breymann, et al (2003) apply the Anderson-Darling test to testing

the distribution of W or H0 for multivariate high-frequency data. However, as W is not observed,

they use pseudo observations {Ŵt}nt=1 defined below in implementing the Anderson-Darling test.
It is known that parameter estimation will affect the critical values of the Anderson-Darling test in

a complicated, non-trivial way. The conclusions may be erroneous if such effect is not taken into

9



account.8

In this section, we propose an alternative kernel-based test. Let Fχ2
[d]
(w) denote the distribution

function of the χ2[d] distribution and gW (·) its density function. Noting that Fχ2
[d]
(W ) follows the

uniform distribution on the interval [0, 1], we develop a test by comparing a kernel estimate of

gW (·) with the uniform density. In particular, the kernel estimate of gW (w) is defined as

ĝW (w) =
1

nh

nX
t=1

Kh(w,Fχ2
[d]
(Ŵt)), (3.7)

where

Ŵt =
dX

j=1

[Φ−1(Ẑjt)]
2. (3.8)

The alternative test is based on

bJn = Z 1

0
[ĝW (w)− 1]2dw. (3.9)

THEOREM 3.2 Under similar conditions to those in Theorem 3.1, Tn1 ≡ (nh1/2 bJn− c1n)/σ1 →
N(0, 1) in distribution, where

c1n = h1/2[(h−1 − 2)
Z 1

−1
k2(w)dw + 2

Z 1

0

Z z

−1
k2z(y)dydz]

σ21 = 2

Z 1

−1
[

Z 1

−1
k(u+ v)k(v)dv]2du.

Compared with the previous test, the test Tn1 only requires kernel density estimation in one

dimension regardless of how large the true dimension of the multivariate series d is. However, it

may have trivial power against certain deviations from the null model.

4 Testing a Parametric Copula for Residuals of Parametric Dy-
namic Models

In a number of empirical applications of copulas in modeling multivariate financial time series,

univariate GARCH models are used first to model the individual time series and parametric copulas

are then used to model the dependence structure of residuals from the univariate GARCH models.

This class of multivariate time series models has proved to be successful in capturing the stylized

8Distribution-free versions of this test have been developed in the context of testing parametric regression models
via the martingale transformation approach of Khmaladze (1981), see e.g. Bai (2003) and Stute, et al (1998) among
others. However this approach can not be easily modified to test the parametric copula, as the marginal distribution
functions are infinite-dimensional nuisance parameters in semiparametric copula models.

10



facts of multivariate financial time series such as clusters of extreme values. The model takes the

following form:

Yjt = X 0
jtδj + σjt�jt,

σ2jt = κj + βjσ
2
j,t−1 + γj(Yj,t−1 −X 0

j,t−1δj)
2, (4.1)

where for each j = 1, . . . , d, {�jt}nt=1 is i.i.d. with zero mean and unit variance and for each t,

(�1t, . . . , �dt)
0 has copula C(�1, . . . , �d). The parameters of the GARCH models are assumed to

satisfy

κj > 0, βj ≥ 0, γj ≥ 0, and βj + γj ≤ 1, j = 1, . . . , d.
This model and variants of it have been used in Patton (2002a), Rockinger and Jondeau (2002),

and Junker and May (2002), to name only a few. Junker and May (2002) apply the above model

with several parametric copulas to describe a set of risk factors that determine a portfolio. They

use the χ2 test to check the validity of different parametric copulas including the Gaussian copula

and the Students’ t copula. However, like the Anderson-Darling test, the correct critical values of

the χ2 test for this model remain to be worked out.

In this section, we extend the tests proposed in the previous two sections to testing the correct

specification of the parametric copulas for the residuals (�1t, . . . , �dt).

The assumptions we adopt on the univariate GARCH models are the same as those in Bai

(2002): For each j = 1, . . . , d, we assume the following conditions hold.

(G1) The �jt are i.i.d. with a cdf Fj(x), which is continuous and strictly increasing. In addition,

�jt is independent of Xjs for s ≤ t;

(G2) Eσ2jt < Mj and E�2jt < Mj for all t and for some Mj <∞;

(G3) n−1
Pn

t=1XjtX
0
jt converges to a non-random and positive definite matrix;

(G4) There exists θ̂j such that
√
n(θ̂j − θj) = Op(1), where θj = (δ

0
j , κj , βj , γj)

0.

An example of the estimator θ̂j satisfying the assumption (G4) is the QMLE of the univariate

GARCH models, see Bollerslev and Wooldridge (1992), Robinson and Zaffaroni (2002) and the

references therein for conditions under which the QMLE θ̂j satisfies (G4). For each j = 1, . . . , d,

given an initial value σ̂2j0 and the estimate θ̂j , we compute the conditional variance via the following

recursion:

σ̂2jt = bκj + β̂jσ̂
2
j,t−1 + γ̂j(Yj,t−1 − δ̂0jXj,t−1)2.

Define the residuals

�̂jt = (Yjt − δ̂0jXjt)/σ̂jt, j = 1, . . . , d.

11



Then we use {(�̂1t, . . . , �̂dt)}nt=1 to construct the test T �
nd as in Theorem 3.1 or the test T �

n1 as in

Theorem 3.2.

THEOREM 4.1 Under conditions (G1)-(G4) and the same conditions as in Theorems 3.1 and

3.2 except the absolute regularity condition, Theorems 3.1 and 3.2 hold for T �
nd and T

�
n1 respectively.

Theorem 4.1 implies that the use of QMLE of the parameters in the univariate GARCH models

does not affect the asymptotic null distribution of the tests. This is due to the
√
n-consistency of

the QMLE.

5 A Simulation Study

To assess the finite sample performance of the tests proposed above we conducted a series of Monte

Carlo studies. We considered sample sizes (n) of 500, 2500 and 5000, covering the various sizes

likely to be encountered in empirical analyses of copulas of financial assets. Given the prevalence

of the assumption of normality in finance, we focus on the ability of the proposed tests to reject the

null hypothesis that the true copula is a normal copula. The data generating process (DGP) was

such that the individual variables were conditionally normal, and that the copula was some mixture

of the Normal copula and the Student’s t copula with 4 degrees of freedom. We let the mixing

parameter, p, vary between zero and one. The DGP copula is Normal and the null hypothesis is

true when p = 0, while the DGP copula is the Student’s t4 copula when p = 1. The intermediate

values of p measure the power of the test to detect small deviations from the null. The DGP was

specified to be:

(U1t, ..., Udt) ∼ iid(1− p) · CNormal(ρ) + p · Ct4(ρ),t = 1, 2, ..., n, (5.1)

where CNormal(ρ) is the d−dimensional normal copula with correlation matrix having value ρ for
its off-diagonal elements, and Ct4(ρ) is the d−dimensional Student’s t4 copula with correlation
matrix having value ρ for its off-diagonal elements. The coefficient ρ is a measure of the correlation

between the assets. We considered three values of ρ to determine the power of the test for various

levels of dependence: ρ ∈ {0.1, 0.5, 0.9}.
We considered two cases for the marginal distributions: the case that the individual variables

were iid Normal(0, 1); and the case that the individual variables have an AR(1)-GARCH(1,1) DGP.

That is,

Yit = Φ−1 (Uit) ,i = 1, 2, ..., d (5.2)

or

Yit = 0.01 + 0.05Yi,t−1 + eit (5.3)

12



eit = σit ·Φ−1 (Uit) (5.4)

σ2it = 0.05 + 0.85σ2i,t−1 + 0.1e
2
i,t−1, i = 1, 2, ..., d (5.5)

where Φ−1 is the inverse of the scalar standard normal distribution function. In the first case there
is no need to estimate parameters associated with the marginal distributions. In the second case

the parameters of the AR(1)-GARCH(1,1) model are estimated via QMLE.

We considered five values of the mixing parameter p ∈ {0, 0.25, 0.5, 0.75, 1}, and three values of
the dimension of the assets d ∈ {2, 5, 30}. For the larger values of d = 5, 30, we only analyzed the
performance of Test 2; as mentioned in the previous section Test 1 may have difficulties for high

dimension problems. We used 500 Monte Carlo replications for each of the bivariate cases, and 100

replications for the higher dimension cases.

To test the null hypothesis of a normal copula, the Ẑit variables are computed as follows:

LetỸit = Φ−1
³
F̂i (Yit)

´
(5.6)

Ỹt = [Ỹ1t, ..., Ỹdt]
0 (5.7)

Ẑ1t = F̂1(Y1t) (5.8)

Ẑit = Φ

 Ỹit − Ỹ 0[1:i−1],t · Σ̂−1[1:i−1,1:i−1] · Σ̂[1:i−1,i]q
1− Σ̂[i,1:i−1] · Σ̂−1[1:i−1,1:i−1] · Σ̂[1:i−1,i]

 ,i = 2, ..., d (5.9)

where Ỹ 0[1:i−1],t = [Ỹ1t, ..., Ỹi−1,t] and similarly for Σ̂[1:i−1,i], and Σ̂
−1
[1:i−1,1:i−1] ≡

³
Σ̂[1:i−1,1:i−1]

´−1
. Σ̂

is the estimate of the parameter of normal copula, which is simply the sample correlation matrix

of Ỹt. F̂i is the estimated distribution function of Yit, consisting of parameters from the models

for the mean and variance (if applicable) and the empirical distribution function of the estimated

standardized residuals.

Throughout this simulation, and the empirical applications to follow, we employed the “quartic

kernel”:

k (u) =
15

16

¡
1− u2

¢2 · 1 {|u| ≤ 1} (5.10)

which yields the following quantities necessary in the construction of the test statistics9:Z 1

−x/h
k (u) du =

1

2
+
15x

16h
− 5x

3

8h3
+
3x5

16h5Z (1−x)/h

−1
k (u) du =

1

2
+
15 (1− x)

16h
− 5 (1− x)3

8h3
+
3 (1− x)5

16h5Z 1

−1
k2(w)dw =

5

7

9The final expression below was obtained using Mathematica.
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2{
Z 1

−1
[

Z 1

−1
k(u+ v)k(v)dv]2ddu}d = 21−7d

µ
3865

49

¶d

dd,d = 1, 2, ...Z 1

0

Z z

−1
k2z(y)dydz = 0.91985927266009985456

The remaining input to the computation of the test statistics is the bandwidth, h. For Test 1

we allow the bandwidth to be different in each dimension, according to the rule-of-thumb hi =

V [Ẑi,t]
1/2n−1/(d+4). For Test 2 we use a similar rule-of-thumb, h = V [Ŵt]

1/2n−1/5. In both cases
we use the two-sided test rather than the one-sided test, as it had better size properties in finite

samples.

[ INSERT TABLES 3 AND 4 ABOUT HERE ]

The second column of Table 3 shows that in all cases Test 1 has reasonable empirical size,

ranging from 0.000 to 0.056 when the nominal size is 0.05. The test is too conservative in all but

one case considered, but empirical size tends toward its nominal level as the sample size increases.

Turning to the results on power, Table 3 suggests that Test 1 has reasonable power against the t(4)

copula for sample sizes 2500 and 5000 but may have difficulty detecting intermediate alternatives

for sample sizes less than 5000. The degree of correlation does not seem to much affect the power

of the test.

From Table 4 we also see that Test 2 has reasonable empirical size in this simulation: ranging

from 0.000 to 0.040. Again, in all cases the empirical size increases towards its nominal level as the

sample size increases. The power of Test 2 is comparable to that of Test 1 in this scenario. For the

largest sample size both tests have reasonable power to reject the Normal copula.

[ INSERT TABLES 5 AND 6 ABOUT HERE ]

In Tables 5 and 6 we present the corresponding results to those in Tables 3 and 4 when the

marginal distributions contain parameters that must be estimated before estimating the parameter

of the copula. The marginal distributions are assumed to be AR(1)-GARCH(1,1) processes with

normal innovations, as in equations (5.3) to (5.5). The empirical size of both Test 1 and Test

2 is satisfactory in this case, and the power of both tests appears to be largely unaffected by

the introduction of the five parameters per marginal distribution that must be estimated. This

confirms the small-sample accuracy of the asymptotic theory in dealing with both parametric and

nonparametric estimation error.

[ INSERT TABLES 7 AND 8 ABOUT HERE ]

In Tables 7 and 8 we investigate the performance of Test 2 to detect deviations from the normal

copula when the dimension of the copula model is increased from 2 to 5. Tables 7 and 8 suggest

that deviations from normality of the form embodied by the Student’s t4 copula are well detected
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by Test 2. The empirical size of this test both with and without parametric estimation error in

the marginal distributions is satisfactory, and the power of the test is much greater than in the

bivariate case discussed above. For all levels of correlation the power is good, and particularly so

for the two larger sample sizes. For sample sizes of 2500 and 5000 the smallest deviation from the

null considered (when the DGP is a 75:25 mixture of the normal and the t4 copula) is detected in

almost all cases.

[ INSERT TABLES 9 AND 10 ABOUT HERE ]

In Tables 9 and 10 we repeat the analysis for the copula model of dimension 30. This is very

large relative to the types of models previously presented in the literature, but not large relative

to the problems typically faced by portfolio managers and risk managers. We study this case to

determine whether we may apply Test 2 to the study of large collections of risky assets in the next

section. Tables 9 and 10 show that the size of the test is good for sample sizes of 2500 and 5000, but

is somewhat over-sized for the case that the sample size is 500. This is not too surprising; one would

not expect many people to estimate a 30-dimension density model with merely 500 observations at

their disposal. The power of the test is very good in this case: it is equal to 1 for all the sample

sizes and all the correlation levels considered, both with and without parametric estimation error

in the marginal distributions.

6 Testing Copula Hypotheses for US Equity Returns

There is much accumulated evidence against the assumption of normal distribution for individual

stock returns, dating back as far as Mills (1927). Such evidence is of course also sufficient to reject

joint normality of stock returns. An interesting question, though, is whether the assumption of joint

normality would be reasonable if we could somehow deal with non-normality in the distribution of

individual returns. This is thus a question about the copula of these returns. Recently Malevergne

and Sornette (2003) presented evidence that the bivariate normal copula hypothesis cannot be

rejected for many pairs of equity returns. When moving to a larger collections of financial assets,

Mashal and Zeevi (2002) find that a multivariate normal copula is more easily rejected in favor of a

multivariate Student’s t copula. We note both of the papers conduct their respective tests under the

assumption that the observed asset returns are i.i.d. over time, which is not be a good assumption

for stock returns. In this section, we shall consider the goodness-of-fit tests of the normal copula

and of the t−copula hypotheses for US equity returns without assuming that returns are i.i.d. over
time.

We extend and generalize the work of Malevergne and Sornette (2003) to consider larger col-

lections of assets (ranging from 2 to 30 assets) and to deal with the estimation error introduced

by first employing conditional mean and variance filters for the individual returns. Further, we
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also test the goodness-of-fit of a normal copula with time-varying conditional correlations, and the

goodness-of-fit of a Student’s t copula. Matlab code for testing each of these copula specifications

is available, see footnote 4.

We use daily returns on the 30 stocks in the Dow Jones Industrial Average over the period

January 3, 1990 to December 31, 1999, yielding 2525 observations. We considered collections of

assets ranging in dimension from 2 to 30 assets, to investigate the impact of the dimension of the

multivariate model being considered on the plausibility of a normal copula and of a t−copula. For
each dimension size, d, we randomly selected 100 distinct collections of d assets from the 30 stocks.

Analyzing all possible collections of d assets was not feasible10 for most values of d. We randomly

selected the collections of assets, rather than study collections of particular assets, so as to present

results that may be taken as generally reflective of the plausibility of the normal copula (or of the

t−copula) hypothesis for daily returns on liquid stocks. The results reported in this section may or
may not be representative of those for infrequently traded stocks, or for emerging market stocks,

and we leave the analysis of these alternative assets for future work.

6.1 Testing the normal copula for US equity returns

We considered the normal copula hypothesis in three ‘forms’. The first is for the unconditional

distribution of asset returns. That is, we transform the returns by their empirical distribution

functions and test the normal copula hypothesis on these variables.

In the second case we recognize that daily equity returns exhibit serial correlation and volatility

clustering, and we employ a simple ARMA(1,1)-GARCH(1,1) filter to capture these. We then test

the normality of the unconditional copula of the standardized returns. We will refer to this mean

and variance filter simply as a GARCH filter below.

Finally, we consider the case that the conditional dependence between the returns may be time-

varying. Some authors, see Tse (2000) and Engle (2002) amongst others, have reported that the

conditional correlation between equity returns is not constant, and so analyzing the unconditional

copula of asset returns or standardized asset returns is of less interest than analyzing the conditional

copula. To allow for possible time variation in the conditional copula of these assets we employ the

Dynamic Conditional Correlation (DCC) model of Engle (2002) and Engle and Sheppard (2001).

This model allows the conditional correlation matrix of a collection of assets to be time-varying,

and does so in a manner that easily extends to large collections of assets. This is important, as we

wish to consider collections of up to 30 assets. We use the DCC model to parameterize the time

variation in the correlation matrix of the normal copula. The conditional correlation matrix in a

DCC(1,1) Normal copula model is given by:

Σt = Q∗−1t QtQ
∗−1
t , where (6.1)

10For d = 15, for example, the total number of combinations is 30C15 = 155, 117, 520.
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Qt = (1− κ− β) Σ̄+ κỸt−1Ỹ 0t−1 + βQt−1 (6.2)

Q∗t =


√
q11,t 0 · · · 0
0

√
q22,t · · · 0

...
...

. . .
...

0 0 · · · √qdd,t

 , (6.3)

qii,t is the (i, i)
th element of Qt, and Σ̄ is the sample correlation matrix of Ỹt ≡ Φ−1

³
F̂ (Yt)

´
. Thus

allowing for dynamics of the form given by a DCC(1,1) model introduces two new parameters, κ

and β, that must be estimated.

Two points regarding our use of the DCC model should be made. The first is an acknowl-

edgment that a rejection of the time-varying normal copula may be due either to the assumption

of conditional normality of the copula, or to the particular specification for the dynamics of the

conditional copula we employed. That is, it may be normality or the DCC model or both that

generates a rejection. Flexible modeling of the correlation matrix of large collections of assets may

be done in a number of ways; see Bauwens, et al. (2003) for a comprehensive survey of multivariate

GARCH modeling,

A second, related, point that should be made is that a rejection of the conditional normal copula

with DCC does not constitute evidence against the DCC model for correlations. The rejection of a

conditional normal copula with DCC may suggest that correlations are not sufficient to characterize

dependence between financial assets, and thus that we should employ other more general measures

of dependence, but correlations themselves may be well modelled with the DCC model.

We firstly present the results of an analysis of the copula of randomly chosen pairs of assets

from the Dow Jones 30.11 The correlation between the returns on these stocks ranged from 0.13

to 0.56, and averages 0.26 across the 435 pairs of assets. We performed both Test 1 and Test 2

on these pairs of assets, and present the results in Table 11. This table shows that the bivariate

normal copula is difficult to reject for these assets. In no case was the proportion of rejections

greater than the 5% nominal size. The Monte Carlo results corresponding to this case, presented

in Tables 3 and 4, suggest that the power of Tests 1 and 2 to detect deviations from the bivariate

normal copula is reasonable only for “large” deviations, represented in the simulation as a copula

that is wholly non-normal rather than a mixture of a normal and a non-normal copula. Overall

these results indicate that for bivariate problems the normal copula may be an adequate description

of U.S. equity return dependence structures, or that the deviations from normality in the bivariate

case are not large. This finding is consistent with that of Malevergne and Sornette (2003), who

also report that the normal copula is difficult to reject for pairs of equity returns.

[ INSERT TABLE 11 ABOUT HERE ]

11We do not report the parameter estimates for the ARMA, GARCH, or DCC models estimated prior to running
the following tests as these are not of direct interest.
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In Table 12 we report the fraction of times that the normal copula was rejected for a collection

of size d of equities. All tests are conducted at the 5% level. We only conducted the second of the

two tests proposed in the previous section.

[ INSERT TABLE 12 ABOUT HERE ]

Table 12 shows that as we increase the number of assets in the collection from 2 to 3 we see

the fraction of rejections increases dramatically. In the first column, representing a test of the

normality of the unconditional copula of these returns, the fraction of rejections goes from 0.03 to

0.59. In the second column, where we first employ a GARCH filter, the fraction goes from 0.01 to

0.17. In the final column, where we also allow for a time-varying conditional copula the fraction

goes from 0.02 to 0.12. Notice that allowing for time-varying conditional variance, and then for

time-varying conditional variance and a time-varying conditional copula, decreases the fraction of

rejections of normality. This suggests some of the rejections found in the first column may actually

be due to time variation in the conditional distribution of these returns rather than non-normality.

As the number of assets in the collection increases we see that in all three cases the fraction of

rejections increases, and that by the time this number reaches 10 the rejection frequency is 100%

for all three cases. This stands in contrast to what one might have expected a priori. It would

have been reasonable to expect that increasing the dimension of the copula being tested, without

increasing the length of the time series being used, would have lead to a decrease in the power of

the test to reject the null hypothesis, due to the increasing sparsity of data points in the support of

the joint density. However we find the opposite: increasing the dimension of the problem improves

the ability of the test to detect non-normality in our study. The simulation study results presented

in Table 8 suggest that this is not due to a size distortion. Instead, Table 8 reported that the power

of the test to detect weak non-normality (represented in the simulation study as a copula DGP

that is mostly normal and only partially Student’s t4 copula) increased with the dimension of the

copula under analysis, which is consistent with the results of our empirical study. This may be due

to the greater KLIC distance between the normal and Student’s t copulas for higher dimensions,

see Table 2.

Mashal and Zeevi (2002) similarly find that the normal copula is more easily rejected for larger

collections of financial assets, though they considered testing the null of a normal copula against

a Student’s t copula and assumed the observable multiple series are i.i.d., whereas we allow for

a general alternative copula, for stationary multivariate serially dependent asset returns, and for

preliminary filtering of the asset returns using parametric dynamic models of the conditional mean

and variance.

The strong rejection of the conditional normal copula for collections of 5 or more U.S. equities

is an important one. Bivariate problems are often studied in academic research, being taken

as representative of higher dimension multivariate problems. However, practitioners are often
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concerned with larger collections of assets: portfolio managers generally have numerous assets

in their portfolios, and risk managers have numerous exposures. Our results suggest that for

bivariate problems the normal copula hypothesis is plausible, but for problems of higher dimensions

the normal copula hypothesis is untenable. This suggests the need for more general methods of

measuring and modeling the dependence between risky assets, and implies that portfolio managers

and risk managers should be concerned about non-normality of the dependence structure between

equity returns. To this end, we now turn to an analysis of the goodness of fit of the Student’s t

copula.

6.2 Testing the t-copula for US equity returns

A natural generalization of the univariate normal distribution assumption for individual assets is

the Student’s t distribution, which was first utilized in time series density modeling by Bollerslev

(1987). Given the strong rejection of the normal copula it again seems natural to look to the

Student’s t copula to provide a first step towards flexible copula modeling. As we already pointed

out in Section 2, the Student’s t copula allows for joint extreme co-movements. However, it does

not allow for asymmetries in the copula. Such asymmetries in equity return dependence structures

have recently been reported in the finance literature, see Longin and Solnik (2001), Ang and Chen

(2002) and Patton (2004), and so the Student’s t copula may also be too restrictive to provide a

reasonable fit to equity data.

In order to implement the tests described above we must have an expression for computation

of the Ẑit variables. We do this by making use of a property of multivariate Student’s t random

variables, presented in Box, et al. (1994) for example. Let X be a d× 1 vector of random variables

that has the general non-standardized Student’s t probability density:

h (x;µ, S, ν) = (2π)−d/2 {det(S)}−1/2
³ν
2

´−d/2
Γ

µ
ν + d

2

¶
Γ
³ν
2

´−1
·
µ
1 +

(x− µ)0 S−1 (x− µ)

ν

¶−(ν+d)/2
,

where µ is the mean vector, S is the scale matrix and ν is the degrees of freedom. Let us partition

x as [x01,x02]
0, with x1 being a d1×1 vector and x2 being a d2×1 vector, and d1+d2 = d. Similarly

partition the location vector, µ =[µ01, µ02]0, and the scale matrix:

S =

·
S11 S12
S012 S22

¸
Then the conditional density of X2 given X1 = x1 is f (x2|x1;Σ, ν) =

h

µ
x2;µ2 + S012S

−1
11 (x1 − µ1),

ν + (x1−µ1)0S−111 (x1−µ1)
ν + d1

¡
S22 − S012S

−1
11 S12

¢
, ν + d1

¶
.
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The Student’s t copula has two key inputs to be estimated; the correlation matrix Σ = Sν/(ν−2)
and the degrees of freedom parameter ν. Unfortunately no closed-form expression exists for the

MLE of either of these and so numerical methods must be employed. This can cause difficulties

when the dimension of the problem is greater than about 5, as the total number of parameters to

be estimated is d (d− 1) /2 + 1, which equals 11 for d = 5, and rises to 436 for d = 30. To get

around this, we instead use Σ̂ as our estimate of Σ, where Σ̂ is the sample correlation matrix of£
T−1ν0 (u1), ..., T

−1
ν0 (ud)

¤
, and ν0 is set to 10. We then estimate ν using maximum likelihood, imposing

Σ̂ as our estimate of Σ. We could iterate this procedure, updating our estimates of Σ and ν at

each stage. We have experimented with this for realistic simulated data and found changes in the

parameter estimates generally only occur beyond the second decimal place, and so we use only one

iteration here. The scale matrix is estimated by Ŝ = Σ̂ (ν̂ − 2) /ν̂

LetỸit = T−1
³
F̂i (Yit) ; 0, 1, ν̂

´
(6.4)

Ỹt = [Ỹ1t, ..., Ỹdt]
0 (6.5)

Ẑ1t = F̂1(Y1t) (6.6)

Ẑit = T

µ
Ỹit; Ŝ

0
[1:i−1,1]Ŝ

−1
[1:i−1,1:i−1]Ỹ[1:i−1],t,

ν + Ỹ 0[1:i−1],tŜ
−1
11 Ỹ[1:i−1],t

ν̂ + i− 1
³
Ŝ22 − Ŝ012Ŝ

−1
11 Ŝ12

´
, ν̂ + i− 1

!
(6.7)

fori = 2, 3, ..., d.

where T (·;µ, s, ν) is the non-standardized Student’s t distribution with mean µ, scale matrix s and

degrees of freedom parameter ν, and T−1(·;µ, s, ν) is the inverse of T (·;µ, s, ν).
We tested the Student’s t copula hypothesis for both raw returns and GARCH filtered returns.

In Table 13 we present the results for Test 1 and Test 2 of a bivariate t−copula for the same 100
randomly selected pairs of stocks. We find that the Student’s t copula is rarely rejected across the

100 pairs of assets considered. This is not surprising given that the bivariate normal copula was

also not often rejected for these pairs of assets, as the bivariate t−copula nests the bivariate normal
copula when ν →∞.

[ INSERT TABLE 13 ABOUT HERE ]

In Table 14 we present results on the plausibility of the Student’s t copula for collections of

assets of different dimensions. We considered 5 cases of d = 2, 5, 10, 20, 30. In stark contrast with

the results for the normal copula, we find no evidence against the Student’s t copula for equity

returns, in terms of both raw data and GARCH filtered residuals. For all 5 cases the rejection

frequency across the 100 randomly selected collections of assets is less than or equal to the nominal

size of the test (0.05), suggesting that the Student’s t copula is a reasonable specification.
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[ INSERT TABLE 14 ABOUT HERE ]

Using univariate GARCH models to remove the conditional variance dynamics increases the

average degrees of freedom parameter in all cases, reflecting the fact that the conditional variances

of asset returns are positively correlated. The tendency for raw returns to exhibit more joint

extreme movements seems to be partially driven by correlated conditional variances, and partially

by joint fat tails of the standardized residuals. Overall our results suggest that the Student’s t

copula is a much better approximation to the true copula of U.S. equity returns than the normal

copula, but that the possibility of mis-specification still exists.

Bai (2003) reports a similar conclusion for his study of the univariate distribution of U.S. equity

returns. It is important to note, however, that the joint distribution of d equity returns will be

multivariate Student’s t only if all marginal distributions and the copula have the same degrees of

freedom parameter. If any of these are different, then the joint distribution will have Student’s t

components but will not be multivariate Student’s t.

7 Testing Copula Hypotheses for Exchange Rates

Exchange rate risk is an important source of risk for international investors, and the joint behavior

of exchange rates can have a substantial impact on the distribution of returns on an international

portfolio. In this section we analyze 20 exchange rates, all against the U.S. dollar, over period

1 January, 1989 to 30 June, 2003, yielding 3717 daily observations. In all cases we analyze the

log-difference of the exchange rate. The currencies considered are those from: Austria, Belgium,

Finland, France, Germany, Greece, Ireland, Italy, The Netherlands, Portugal, Spain, Australia,

Canada, Denmark, Japan, Norway, Singapore, Sweden, Switzerland and the United Kingdom. The

first 11 of these countries joined the euro on January 1, 1999, thus the dependence structure of

these exchange rates will be different before and after this date. In the following we deal with this

by only using data up to December 31, 1997 when 2 or more countries now in the “eurozone” are

under analysis. We drop data from the year 1998 as the exchange rates were converging during that

year toward their pre-determined euro entry levels, and thus their behavior may not be considered

representative of “normal” exchange rate behavior.

7.1 Testing the normal copula for exchange rates

We perform similar analyses on these exchange rates to those conducted on equity returns in the

previous section. In the simplest case we ignore time variation in the conditional mean and variance

of these exchange rates and analyze the plausibility of the normal copula for the unconditional

copula. In the second case we employ an ARMA(1,1)-GARCH(1,1) filter to account for time-

varying conditional means and variances and test the normal copula for the standardized exchange
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rate returns. The final case allows for time-varying conditional means and variances, and a time-

varying conditional correlation matrix in the normal copula via the use of the DCC model described

in equations (6.1) to (6.3).

We again randomly select 100 collections of exchange rates, of various dimensions, ranging from

d = 2 to d = 20. In Table 15 we present the results of Test 1 and Test 2 for bivariate normal

copula.

[ INSERT TABLE 15 ABOUT HERE ]

In contrast to the results for equity returns, Table 15 shows that the bivariate normal copula

is rejected for many of the pairs of exchange rates considered in this study. Allowing for time

variation in the conditional means, variances and correlation reduces the frequency of rejections,

but even the most flexible filter considered still yields a rejection frequency between 41% and 47%.

In Table 16 we examine the impact of increasing the dimension of the group of exchange rates.

We find that for group dimension d = 5 and higher, the rejection frequency is 100%. Thus we have

very strong evidence against the normal copula hypothesis for exchange rates.

[ INSERT TABLE 16 ABOUT HERE ]

7.2 Testing t-copula for exchange rates

In Tables 17 and 18 below we examine the goodness of fit of the Student’s t copula for these

exchange rates. For equity returns there exists published evidence of asymmetries in the dependence

structure, but for exchange rates little comparable work has been done, see Patton (2002a) for one

study. These tables show that the Student’s t copula generally provides a better fit to exchange

rate data than the normal copula. For the bivariate case the rejection frequency is less than 40%

for the raw exchange rate returns, and between 14% and 24% for the filtered exchange rate returns.

As we increase the number of exchange rates under analysis the rejection frequency for raw returns

increases 53% for baskets with d = 15 exchange rates, and for the full 20-dimensional problem the

Student’s t copula is rejected. When a GARCH filter is employed the rejection frequency remains

around 15% regardless of the number of exchange rates in the group. For the full 20-dimensional

problem using filtered returns the Student’s t copula is not rejected.

Overall these results suggest that the Student’s t copula provides a reasonable fit to multivariate

exchange rate copulas. We would expect that more sophisticated modeling of the copula, allowing

for time-varying conditional correlations and degrees of freedom parameter for example, would

further reduce the proportion of rejections, though we do not explore this possibility here.

[ INSERT TABLES 17 AND 18 ABOUT HERE ]
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8 Conclusion

Recent work on the dependence between financial assets has called into question the assumption of

normality for the joint distribution of asset returns. This has prompted research into more flexible

models of the dependence structure between financial assets. Unfortunately finance theory does

not provide much guidance on the types of dependence structures to expect, and so the assessment

of proposed models is essentially an empirical question. In this paper we provide two simple

goodness-of-fit tests for models of the dependence structure (copula) of multivariate financial time

series. Both tests are easy to compute and are distribution-free. We use these tests to determine

whether significant evidences against the normal copula and t−copula exist in U.S. equity returns
and exchange rates, considering collections of up to 30 assets simultaneously.

The first proposed test is a consistent test that requires the kernel estimation of a multivariate

density function and is recommended for low dimension problems only; the second test may not

be consistent against all alternatives, but only requires kernel estimation of a univariate density

function, and proved very useful when a large number of financial time series is considered. We

justify both tests for observable multivariate strictly stationary time series and for standardized

innovations of GARCH models. A simulation study demonstrates the efficacy of both tests for

realistic sample sizes and data generating processes.

In our study of U.S. equity returns and exchange rates we find substantial evidence against

the normal copula for both types of assets, particularly for large collections of assets. Much less

evidence was found against the more flexible Student’s t copula, suggesting that this model provides

a better approximation to the unknown true copula of these assets. Our study suggests that when

moving from two to five or ten dimensions one must account for the non-normality of the dependence

structure of financial assets. Allowing for univariate non-normality (via a flexible univariate density

model, such as the Student’s t, the GED, a skewed Student’s t etc.) and then imposing normality

on the copula will not provide an acceptable fit to daily equity return or exchange rate data; a

more flexible model of the dependence structure is required.
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Appendix

Definition 8.1 Let {Yt} be a strictly stationary stochastic process and Mt
s(Y) denote the sigma

field generated by (Ys, ...,Yt) for s ≤ t. The process {Yt} is called absolutely regular (or β−mixing)

if

βτ = E[supA∈M∞
τ (Y)

{|P (A|M0
−∞(Y))− P (A)| } ]→ 0 as τ →∞.

We note that many financial time series models satisfy this absolutely regular condition, includ-

ing nonlinear ARCH (Masry and Tjøstheim, 1995), GARCH and stochastic volatility (Carrasco

and Chen, 2002), and nonlinear diffusion models (Chen et al, 1998). Properties and additional

examples of absolutely regular processes can be found in Doukhan (1994).

The first set of conditions is used to establish the asymptotic null distribution of Īn.

(C1) (i) {Y1t, . . . , Ydt} is an absolutely regular process with coefficient βτ = O(ρτ ) for some 0 <

ρ < 1; (ii) Let Zt = (Z1t, . . . , Zdt). Let f
Z
1,1+τ1,1+τ2,...,1+τl

(·) denote the density function of
(Z1,Z1+τ1 , . . . ,Z1+τl) for 1 ≤ l ≤ 3. We assume that fZ(·) is continuous and bounded. In
addition, the following Lipschitz type condition holds: |fZ1,1+τ1,1+τ2,...,1+τl(z1 + u1, . . . , zl+1 +

ul+1)− fZ1,1+τ1,1+τ2,...,1+τl(z1, . . . , zl+1)| ≤ D(z1, . . . , zl+1)||u||, where D(·, . . . , ·) is integrable.

(C2) The kernel function k(·) : [−1, 1] → R+ is a symmetric, bounded, and twice continuously

differentiable probability density function such that
R 1
−1 u

2k(u)du <∞;

(C3) h = O(n−c) for some 0 < c < 1/d.

The second set of conditions is used to show that the asymptotic null distribution of bIn is the
same as that of Īn.

(A1) α̂ ∈ A is a parameter estimator such that
√
n(α̂ − α∗) = Op(1), where α∗ is an interior

element of A and α∗ = α0 under H0;

(A2) C0(u1, . . . , ud;α) is twice differentiable.

Proof of Theorem 3.1: The proof consists of two parts. The first part establishes the

asymptotic null distribution of Īn: (nh
d/2Īn− cdn)/σd → N(0, 1) in distribution, where cdn and σ2d

are defined in Theorem 3.1. In the second part of the proof, we analyze the difference between bIn
and Īn.

Part I. The proof of this part is the same as that in Fan and Ullah (1999) except that the

kernel function in this paper is a boundary kernel. Taking this into account as in Fan and Rilstone

(2001) and Hong and Li (2002), one can easily establish the stated result. For space considerations,
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we only provide a detailed derivation of the center term cdn. It is well known that the center term

is given by the dominant term of EĪn = MISE(ḡ). Ignoring higher order terms, one can show that

under H0,

EĪn = MIVAR(ḡ)

=
1

nh2d
Πdj=1E[

Z 1

0

K2
h(zj , Zjt)dzi]

=
1

nh2d
Πdj=1E[

Z h

0

 k(
zj−Zjt

h )R 1
−zj/h k(u)du


2

dzj +

Z 1−h

h

k2(
zj − Zjt

h
)dzj +

Z 1

1−h

(
k(

zj−Zjt
h )R (1−zj)/h

−1 k(u)du

)2
dzj ]

=
1

nh2d

Z 1

0

Z h

0

 k( z−yh )R 1
− z
h
k(u)du


2

dzdy +

Z 1

0

Z 1−h

h

k2(
z − y

h
)dzdy

+

Z 1

0

Z 1

1−h

 k( z−yh )R (1−z)
h

−1 k(u)du


2

dzdy


d

≡ 1

nh2d
[F + S + T ]d. (A.1)

We now establish the dominant terms of F , S, and T respectively. First,

F =

Z 1

0

Z h

0

(
k(z−yh )R 1

−z/h k(u)du

)2
dzdy

=

Z h

0

1

[
R 1
−z/h k(u)du]2

[

Z 1

0
k2(

z − y

h
)dy]dz

= h

Z h

0

1

[
R 1
−z/h k(u)du]2

[

Z z/h

(z−1)/h
k2(y)dy]dz

= h2
Z 1

0

1

[
R 1
−z k(u)du]2

[

Z z

z−h−1
k2(y)dy]dz

= h2
Z 1

0

1

[
R z
−1 k(u)du]2

[

Z z

−1
k2(y)dy]dz, (A.2)

we have used the symmetry of k(·) and the fact that for 0 ≤ z ≤ 1, it holds that z−h−1 ≤ 1−h−1 →
−∞ as n→∞. Similarly,

S =

Z 1

0

Z 1−h

h
k2(

z − y

h
)dzdy

=

Z 1−h

h
[

Z 1

0
k2(

z − y

h
)dy]dz

=

Z 1−h

h
[h

Z z/h

(z−1)/h
k2(y)dy]dz
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=

Z 1−h

h
[h

Z 1

−1
k2(y)dy]dz

= h(1− 2h)
Z 1

−1
k2(y)dy, (A.3)

where we have used the fact that for h ≤ z ≤ (1− h), it holds that 1 ≤ z/h and (z − 1)/h ≤ −1.
Finally,

T =

Z 1

0

Z 1

1−h

(
k(z−yh )R (1−z)/h

−1 k(u)du

)2
dzdy

=

Z 1

1−h

½Z 1

0
k2(

z − y

h
)dy

¾
1

[
R (1−z)/h
−1 k(u)du]2

dz

= h

Z 1

1−h

(Z z/h

(z−1)/h
k2(y)dy

)
1

[
R (1−z)/h
−1 k(u)du]2

dz

= h2
Z 1

0

(Z h−1−z

−z
k2(y)dy

)
1

[
R z
−1 k(u)du]2

dz

= h2
Z 1

0

½Z z

−1
k2(y)dy

¾
1

[
R z
−1 k(u)du]

2
dz, (A.4)

where we have made a change of variables from z to (1− z)/h to obtain the second last equation

and used the fact that for 0 ≤ z ≤ 1, it holds that h−1 − z ≥ h−1 − 1→∞, and the symmetry of
k(·).

The center term is obtained from equations (A.1)-(A.4).

Part II. In this part, we will show that bIn − Īn = op((nh
d/2)−1). The reason for this is that

the estimators involved in constructing Ẑ1t, . . . , Ẑdt are all n
−1/2 consistent. Ignoring higher order

terms, we get

bIn = Īn +

Z
[0,1]d

{ 1

nhd

nX
t=1

Πdj 6=l,j=1Kh(zj , Zjt)Kh,2(zl, Zlt)(Ẑlt − Zlt)}2dz

+2

Z
[0,1]d

[
1

nhd

nX
t=1

Πdj=1Kh(zj , Zjt)− 1]{ 1

nhd

nX
t=1

Πdj 6=l,j=1Kh(zj , Zjt)Kh,2(zl, Zlt)(Ẑlt − Zlt)}2dz

(A.5)

where z = (z1, . . . , zd) and

Kh,2(x, y) =


− 1hk0(x−yh )/

R 1
−(x/h) k(u)du, if x ∈ [0, h),

− 1hk0(x−yh ), if x ∈ [h, 1− h],

− 1hk0(x−yh )/
R (1−x)/h
−1 k(u)du, if x ∈ (1− h, 1],

(A.6)

By expanding Ẑlt − Zlt in terms of F̂j(Yjt) − Fj(Yjt) and α̂ − α0 and then using the expressions

for F̂j(Yjt)−Fj(Yjt) and the property of α̂, one can show by tedious calculations that the last two

terms on the right hand side of (A.5) are op((nh
d/2)−1).

2
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Table 1: Tail dependence in the bivariate t copula

ρ

ν 0 0.2 0.5 0.8

4 0.0378 0.0637 0.1266 0.2448
6 0.0166 0.0338 0.0852 0.2035
10 0.0034 0.0102 0.0409 0.1463
∞ 0 0 0 0

Note: This table presents the tail dependence implied by the Student’s t copula for various levels of
correlation and various degrees of freedom values.

Table 2: KLIC between Normal and Student’s t copula, ρ = 0.5

Degrees of freedom, ν
Dimension 4 6 10 20 30 50

1∗ 0.3853 0.2171 0.1161 0.0535 0.0347 0.0204

2 7.5864 6.8612 6.3660 5.9574 5.8969 5.7773

3 7.8933 7.0550 6.4386 5.9855 5.9196 5.8452

5 8.5726 7.4096 6.6752 6.1324 5.9730 5.9043

10 10.2132 8.4966 7.2460 6.4293 6.1142 5.9848

20 13.4706 10.6224 8.4791 6.9961 6.5758 6.1844

30 16.6329 12.5668 9.6355 7.6430 6.9304 6.4101

Note: This table presents the Kullback-Leibler Information Criterion (KLIC) between the Normal and

Student’s t copulas. The KLIC between these two copulas is computed as:

KLIC (cnormal (ρ) : ct (ρ, ν)) =

Z
log

µ
cnormal (u;Σ)

ct (u;Σ, ν)

¶
cnormal (u;Σ) du

where Σ is a matrix with ones on diagonal and ρ for all off-diagonal elements. The integration is over [0, 1]d,
where d is the dimension of the copulas being compared. We obtained the above estimates of the KLIC
by drawing n = 10, 000 observations from the d−dimensional Normal copula with correlation matrix Σ,
denoted {ut}nt=1, and then computing:

\KLIC (cnormal (ρ) : ct (ρ, ν)) = n−1
nX
t=1

log

µ
cnormal (ut;Σ)

ct (ut;Σ, ν)

¶
∗For the purposes of comparison we present the KLIC between the univariate normal and Student’s t
probability densities.
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Table 3: Probability of rejecting the null using Test 1

p 0 0.25 0.5 0.75 1

N Correlation = 0.1

500 0.000 0.000 0.016 0.000 0.000

2500 0.024 0.032 0.000 0.096 0.536

5000 0.056 0.000 0.064 0.736 1.000

Correlation = 0.5

500 0.000 0.000 0.000 0.0000 0.000

2500 0.032 0.000 0.000 0.096 0.520

5000 0.032 0.000 0.040 0.704 0.992

Correlation =0.9

500 0.000 0.000 0.000 0.000 0.024

2500 0.000 0.008 0.016 0.256 0.776

5000 0.024 0.008 0.120 0.792 1.000

Note: This table presents the results of a Monte Carlo study of the size and power of Test 1. The

null hypothesis is that the copula is normal. The DGP is a mixture of a normal and a t4 copula: C =
(1 − p)Cnormal + pCt4 , so the case that p = 0 corresponds to the case that the DGP satisfies the null
hypothesis. The marginal distributions were set to be iid N (0, 1) . The nominal size in all cases is 0.05.
The number of replications was 500. The dimension considered was 2.

Table 4: Probability of rejecting the null using Test 2

p 0 0.25 0.5 0.75 1

N Correlation = 0.1

500 0.008 0.000 0.000 0.008 0.000

2500 0.016 0.000 0.008 0.120 0.512

5000 0.024 0.008 0.048 0.752 0.992

Correlation = 0.5

500 0.008 0.000 0.000 0.000 0.000

2500 0.024 0.008 0.000 0.144 0.680

5000 0.040 0.008 0.152 0.800 1.000

Correlation =0.9

500 0.000 0.000 0.000 0.000 0.048

2500 0.016 0.008 0.008 0.336 0.816

5000 0.024 0.024 0.192 0.872 1.000

Note: This table presents the results of a Monte Carlo study of the size and power of Test 2. The

null hypothesis is that the copula is normal. The DGP is a mixture of a normal and a t4 copula: C =
(1 − p)Cnormal + pCt4 , so the case that p = 0 corresponds to the case that the DGP satisfies the null
hypothesis. The marginal distributions were set to be iid N (0, 1) . The nominal size in all cases is 0.05.
The number of replications was 500. The dimension considered was 2.
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Table 5: Probability of rejecting the null using Test 1

p 0 0.25 0.5 0.75 1

N Correlation = 0.1

500 0.000 0.000 0.000 0.000 0.000

2500 0.004 0.004 0.008 0.064 0.568

5000 0.052 0.000 0.048 0.704 1.000

Correlation = 0.5

500 0.000 0.000 0.000 0.000 0.000

2500 0.024 0.016 0.000 0.084 0.480

5000 0.040 0.008 0.068 0.684 0.992

Correlation = 0.9

500 0.000 0.000 0.000 0.000 0.020

2500 0.000 0.004 0.016 0.228 0.728

5000 0.008 0.008 0.188 0.828 1.000

Note: This table presents the results of a Monte Carlo study of the size and power of Test 1. The null

hypothesis is that the copula is normal. The DGP is a mixture of a normal and a t4 copula: C = (1 −
p)Cnormal+pCt4 , so the case that p = 0 corresponds to the case that the DGP satisfies the null hypothesis.
The marginal distributions are assumed to be AR(1)-GARCH(1,1) processes with Normal innovations. The

nominal size in all cases is 0.05. The number of replications was 500. The dimension considered was 2.

Table 6: Probability of rejecting the null using Test 2

p 0 0.25 0.5 0.75 1

N Correlation = 0.1

500 0.004 0.012 0.004 0.004 0.004

2500 0.020 0.004 0.016 0.140 0.608

5000 0.032 0.020 0.092 0.716 0.996

Correlation = 0.5

500 0.016 0.004 0.000 0.000 0.008

2500 0.024 0.000 0.012 0.208 0.668

5000 0.024 0.020 0.092 0.772 1.000

Correlation = 0.9

500 0.000 0.008 0.008 0.008 0.080

2500 0.020 0.008 0.072 0.380 0.776

5000 0.032 0.012 0.288 0.836 1.000

Note: This table presents the results of a Monte Carlo study of the size and power of Test 2. The null

hypothesis is that the copula is normal. The DGP is a mixture of a normal and a t4 copula: C = (1 −
p)Cnormal+pCt4 , so the case that p = 0 corresponds to the case that the DGP satisfies the null hypothesis.
The marginal distributions are assumed to be AR(1)-GARCH(1,1) processes with Normal innovations. The

nominal size in all cases is 0.05. The number of replications was 500. The dimension of the system considered

is 2.
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Table 7: Probability of rejecting the null using Test 2

p 0 0.25 0.5 0.75 1

N Correlation = 0.1

500 0.00 0.06 0.45 1.00 1.00

2500 0.04 0.74 1.00 1.00 1.00

5000 0.02 1.00 1.00 1.00 1.00

Correlation = 0.5

500 0.00 0.08 0.58 0.98 1.00

2500 0.00 0.69 1.00 1.00 1.00

5000 0.08 0.99 1.00 1.00 1.00

Correlation = 0.9

500 0.04 0.18 0.68 0.99 1.00

2500 0.04 0.79 1.00 1.00 1.00

5000 0.00 1.00 1.00 1.00 1.00

Note: This table presents the results of a Monte Carlo study of the size and power of Test 2. The

null hypothesis is that the copula is normal. The DGP is a mixture of a normal and a t4 copula: C =
(1 − p)Cnormal + pCt4 , so the case that p = 0 corresponds to the case that the DGP satisfies the null
hypothesis. The marginal distributions were set to be iid N (0, 1). The nominal size in all cases is 0.05.
The number of replications was 100. The dimension of the system considered is 5.

Table 8: Probability of rejecting the null using Test 2

p 0 0.25 0.5 0.75 1

N Correlation = 0.1

500 0.00 0.04 0.47 0.98 1.00

2500 0.06 0.81 1.00 1.00 1.00

5000 0.02 0.98 1.00 1.00 1.00

Correlation = 0.5

500 0.02 0.05 0.48 0.94 1.00

2500 0.00 0.76 1.00 1.00 1.00

5000 0.04 1.00 1.00 1.00 1.00

Correlation = 0.9

500 0.02 0.30 0.78 0.98 1.00

2500 0.02 0.84 1.00 1.00 1.00

5000 0.06 0.99 1.00 1.00 1.00

Note: This table presents the results of a Monte Carlo study of the size and power of Test 2. The null

hypothesis is that the copula is normal. The DGP is a mixture of a normal and a t4 copula: C = (1 −
p)Cnormal+pCt4 , so the case that p = 0 corresponds to the case that the DGP satisfies the null hypothesis.
The marginal distributions are assumed to be AR(1)-GARCH(1,1) processes with Normal innovations. The

nominal size in all cases is 0.05. The number of replications was 100. The dimension of the system considered

is 5.
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Table 9: Probability of rejecting the null using Test 2

p 0 0.25 0.5 0.75 1

N Correlation = 0.1

500 0.16 1.00 1.00 1.00 1.00

2500 0.07 1.00 1.00 1.00 1.00

5000 0.05 1.00 1.00 1.00 1.00

Correlation = 0.5

500 0.12 1.00 1.00 1.00 1.00

2500 0.03 1.00 1.00 1.00 1.00

5000 0.03 1.00 1.00 1.00 1.00

Correlation = 0.9

500 0.15 1.00 1.00 1.00 1.00

2500 0.06 1.00 1.00 1.00 1.00

5000 0.08 1.00 1.00 1.00 1.00

Note: This table presents the results of a Monte Carlo study of the size and power of Test 2. The

null hypothesis is that the copula is normal. The DGP is a mixture of a normal and a t4 copula: C =
(1 − p)Cnormal + pCt4 , so the case that p = 0 corresponds to the case that the DGP satisfies the null
hypothesis. The marginal distributions were set to be iid N (0, 1). The nominal size in all cases is 0.05.
The number of replications was 100. The dimension of the system considered is 30.

Table 10: Probability of rejecting the null using Test 2

p 0 0.25 0.5 0.75 1

N Correlation = 0.1

500 0.09 1.00 1.00 1.00 1.00

2500 0.00 1.00 1.00 1.00 1.00

5000 0.00 1.00 1.00 1.00 1.00

Correlation = 0.5

500 0.05 1.00 1.00 1.00 1.00

2500 0.02 1.00 1.00 1.00 1.00

5000 0.04 1.00 1.00 1.00 1.00

Correlation = 0.9

500 0.24 1.00 1.00 1.00 1.00

2500 0.07 1.00 1.00 1.00 1.00

5000 0.06 1.00 1.00 1.00 1.00

Note: This table presents the results of a Monte Carlo study of the size and power of Test 2. The null

hypothesis is that the copula is normal. The DGP is a mixture of a normal and a t4 copula: C = (1 −
p)Cnormal+pCt4 , so the case that p = 0 corresponds to the case that the DGP satisfies the null hypothesis.
The marginal distributions are assumed to be AR(1)-GARCH(1,1) processes with Normal innovations. The

nominal size in all cases is 0.05. The number of replications was 100. The dimension of the system considered

is 30.

34



Table 11: Proportion of times the bivariate Normal Copula can be rejected

Raw returns GARCH filter GARCH+DCC filter

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

0.01 0.01 0.00 0.03 0.01 0.03

Note: This table presents the proportion of times the bivariate normal copula was rejected for a randomly

selected collection of 100 pairs of equities.

Table 12: Proportion of times the Normal Copula can be rejected

Number of assets Raw returns GARCH filter GARCH+DCC filter

2 0.03 0.01 0.02

3 0.59 0.17 0.12

5 1.00 0.81 0.80

10 1.00 1.00 1.00

15 1.00 1.00 1.00

20 1.00 1.00 1.00

25 1.00 1.00 1.00

30 1.00 1.00 1.00

Note: This table presents the proportion of times the normal copula was rejected for a randomly selected

collection of 100 groups of equities, with the size of the group ranging from 2 to 30. For the group of size 30

there was only one to consider.

Table 13: Proportion of times the bivariate Student’s t Copula can be rejected

Raw returns GARCH filter

Test 1 Test 2 Test 1 Test 2

0.00 0.05 0.01 0.04

Note: This table presents the proportion of times the bivariate Student’s t copula was rejected for a

randomly selected collection of 100 pairs of equities.

Table 14: Proportion of times the Student’s t Copula can be rejected

Number of assets Raw returns GARCH filter

2 0.05 0.04

5 0.00 0.01

10 0.01 0.01

20 0.02 0.00

30 0.00 0.00

Note: This table presents the proportion of times the Student’s t copula was rejected for a randomly

selected collection of 100 groups of equities, with the size of the group ranging from 2 to 30. For the group

of size 30 there was only one to consider.
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Table 15: Proportion of times the bivariate Normal Copula can be rejected

Raw returns GARCH filter GARCH+DCC filter

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

0.75 0.74 0.64 0.66 0.41 0.47

Note: This table presents the proportion of times the bivariate normal copula was rejected for a randomly

selected collection of 100 pairs of exchange rates.

Table 16: Proportion of times the Normal Copula can be rejected

Number of assets Raw returns GARCH filter GARCH+DCC filter

2 0.74 0.66 0.47

5 1.00 1.00 1.00

10 1.00 1.00 1.00

15 1.00 1.00 1.00

20 1.00 1.00 1.00

Note: This table presents the proportion of times the normal copula was rejected for a randomly selected

collection of 100 groups of exchange rates, with the size of the group ranging from 2 to 20. For the group of

size 20 there was only one to consider.

Table 17: Proportion of times the bivariate Student’s t Copula can be rejected

Raw returns GARCH filter

Test 1 Test 2 Test 1 Test 2

0.38 0.37 0.24 0.14

Note: This table presents the proportion of times the bivariate Student’s t copula was rejected for a

randomly selected collection of 100 pairs of exchange rates.

Table 18: Proportion of times the Student’s t Copula can be rejected

Number of assets Raw returns GARCH filter

2 0.37 0.14

5 0.26 0.13

10 0.32 0.18

15 0.53 0.17

20 1.00 0.00

Note: This table presents the proportion of times the Student’s t copula was rejected for a randomly

selected collection of 100 groups of exchange rates, with the size of the group ranging from 2 to 20. For the

group of size 20 there was only one to consider.
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