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Abstract 7+

The present work deals with optimal planning in continuous time, infinite horizon,
stochastic neo-classical one-sector models of economic growth (or decline). In the main
model, called the Standard Model, the influence of risk is represented in an abstract
way by the measurability of production and utility with respect to a general filtration,
while the equation of accumulation is written as a random ordinary differential
equation. We also consider a model in which depreciation, technological progress,
population and impatience are modelled as general semimartingales and the equation of
accumulation may be written as a stochastic differential equation, and show that this
can be represented as a special case of the Standard Model

Consider a ‘star’ plan for which welfare is finite (and remains finite if con-

sumption is reduced by a small proportion) Let y = y(w,t) denote the ‘shadow price-
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process, defined as the product of marginal utility and (compound) marginal return to
capital, and let J*= J*(w,t) be the return-discounted capital process, both calculated
along the star plan. It is not hard to show that the star plan is optimal if y isa
martingale and E{y(t)J*(t)} - co as t]oo, but in general these conditions are not
necessary. The process y associated with an optimum may be only a local martingale
‘reduced’ by some sequence (xn) | oo of stopping times, and then the form of the
transversality condition needs to take into account the form of this sequence. We seek
conditions which are necessary and sufficient for optimality, and for which the reducing
sequences have significant economic interpretations. It is shown that the star plan is
optimal iff (i) y is a local martingale reduced by some sequence (vy) of depletion times,
ie. fizst downcrossing times for J*, which may be unbounded and even take the

value 0o, and (ii) y(w,00) = 0 in states w where J*(w,t) is bounded away from zero.
Alternatively, the'plan is optimal iff (i) y is a local martingale reduced by some
sequence (yn) of bounded stopping times and (ii) E{y{xa)J*(xn)} - 0 In particular,
the bounded times may be chosen as price times pnAn, where pq, are first exceedence
times for y. In case there is a deterministic function J- such that J*(w,t) > J-(t) > 0
for all t, a.s., the bounded times may be chosen as clock times (tn T 00), so that y isa
true martingale; this holds in particular if the ‘propensity to consume out of capital’
process ¢*/k* is bounded.

Conditions are also given for the existence of an optimum based on a lower
closure property of the set of consumption plans and on weak compactness of a
maximising utility sequence in a suitable L space. For negative and bounded utilities,
and typically also for positive utilities, a finite supremum of the welfare functional
implies existence.

A separate Chapter 1eviews some consequences of assuming that the marginal
productivity of capital at kK = 0 is infinite, in place of a Lipschitz-type condition

adopted in previous chapters.
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Note: An early version of much of the present ms was completed as long ago as 1986
as an extension of work on optimal saving with risk; it was accepted for publication
but put aside in favour of further work on portfolio problems. The formulation and
methods of proof adopted here follow broadly the lines of the author’s papers on saving
and portfolio choice, but the presence of a production function with diminishing
marginal productivity of capital gives rise to complications which have not been fully
dealt with in publications. It has therefore seemed worthwhile to cortect, substantially
extend and update the text Some later developments in growth theory, such as
endogenous growth, have had to be left aside, but it is hoped that our approach, if not
all the details, will prove to be more generally relevant.

Parts of the present material are to be included in a monograph in book form on
the optimal accumulation of capital in continuous-time, stochastic neo-classical growth
models, which will in particular investigate the structure of the optimal consumption
function in systems driven by Brownian motions.

Acknowledgements: I am grateful to Carol Hewlett for support and assistance with

word processing. 1 also wish to thank the LSE Economics Department for affording me
facilities to continue my research.
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1 INFORMAL REVIEW

The present work addzesses the problem of optimal accumulation, or optimal
consumption, in a continuous time, infinite horizon, stochastic neo-classical growth
model, with concave utility and production functions and a welfare functional whose
supremum is finite. The version of the model mainly considered, to be called the
Standard Model (SM), is specified in detail in Chapters 3—4. Briefly, there is given the
time domain 7= [0,00), a complete probability space (2, .4,P) with a right
continuous filtration 2 = (4 i€ ), whete £ = £ , and £ = £ _ is generated
by the P—null sets (so that an £ omeasurable variable is a s counstant on ).
2 represents the planner’s information structure and P his beliefs. The equation of
accumulation, representing the relation between consumption c, capital k and
investment k — all expressed in suitable ‘standard’ units — is defined for each random
element w by an ordinary differential equation (o0.d e.) of the form

kwi) = flk(wt); wit] = c{wt) L (1.1)
with the initial condition k(w,0) = K5 > 0 The problem of optimal accumulation is to

maximise a welfare funetional of the form

w

pc) = o(k) = EJ ufe(wt); wtla(wt)dt = J ue(wt); wtldpu(wt) - (12)

subject to (1), the consumption plan ¢ = ¢(w,t) and corresponding capital plan

o]

k = k(w,t) being constrained to be non—negative and to satisfy conditions of
‘progressive’ measurability — roughly speaking, observability at each time T of the
history during [0,T]; see Chapter 3, fn.1 and Chapter 4(A). The product uq is here
called ‘utility’, the split between “felicity’ u and ‘impatience density’ g > 0 being
chosen for convenience, in particular so that dp = q-dt-dP(w) defines a finite

(usually unitary) measure on (w,t)—sets called impatience measure. For fixed (w,t),
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the felicity function u and the production function f are concave and sufficiently
smooth in their first arguments, with u increasing,! possibly unbounded (in one
direction or both) and satisfying u’(0;t) = co, while { satisfies 1{0;t) = 0, and
£{0;t), f’{oo;t) are subject to conditions of integrability which ensure that solutions
of (1) aze unique — see (3.2—4) and Chapter 4(A); however, in Chapter 10, we review
the theory under the traditional ‘Inada’ assumption that f/(0;t} = co. For fixed
values of their first arguments, u and f define general (progressive) processes. In case
production is proportional to capital for each (w,t), say in the form f(&;wt) = K- r(w;t)
where 1 is a given process, as in [F1|, we refer to a model of saving or linear production
rather than a growth model; (see Chapter 3, fn. 6 for a wider definition).

In the Standard Model, risk is introduced in an abstract, general form by way of
the random element w, the main restrictions being that the structure of information as
well as the form of dependence of {, u and q on w be exogenous, and that capital and
consumption plans k and c¢ as well as corresponding production plans
Fy(wt) = flk(w,t); w;t] and felicity plans U (wt) = u[c(w,t); w,t] be observable
(progressive). However, various models of accumulation (or growth, decay, depletion
etc ), in which particular exogenous sources of risk are modelled explicitly as random
processes — possibly with a constraint represented by a stochastic differential equation
(s.d.e ) — can be transformed by suitable changes of variable into special cases of the
SM; see Chapter 2.

Reverting to the SM, let a distinguished ‘star’ plan, defined by positive
processes ¢* = c*(w,t) and k* = k*(w,t), be given. Let

r =r{wt) = k¥ wt)wt], v=ov(wt)=u[c*wt);wt]q(wt) . (1.3)
denote the marginal product of capital and marginal utility processes (or plans) along

the star plan, and write

i The terms positive, negative, tncreasing, decreasing have their strict meaning
throughout. The symbols f, {} and 7, | denote strict and weak monotonicity.
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R =R(wT) = [ 1(wt)dt, (14)
so that R is the (star) marginal log-return to capital process, e® is the marginal
return or compound interest process and e the discount process. Next, using
abridged notation, define processes

y=ret, J* =kt ", g¥t=c¥e T, G¥T) = jg g¥*(w,t)dt; ..(1.5)
y is called the shadow price of capital process, J* the discounted (star) capital process
(or plan), while g* and G* represent (star) discounted and cumulative discounted
consumption All these processes are positive on . Note that yJ* = vk* may be
interpreted as the (star) ‘value—of—capital’ process. If an alternative plan (c k) is
given, we write

J=ke ¥, g=ce ', G(T) = [ glwt)dt, 8 =J-J* 6G=GC-G* . (16)

Conditions characterising the star plan as optimal may be stated in three parts:
(i) A finite welfare condition, namely that ¢(c*) be finite, (and, for a necessary
condition, that ¢([1—ajc*) be finite for small & > 0). In this Chapter, we take the finite
welfare condition as read.

(i) That y = y(w,t) be a local martingale ‘teduced’ by a sequence { Xp ) of stopping
times, where Xn( w)Too as as n T co. Thus, for each n, the process

¥ =3 (wt) = ylwtax, ()], (17

representing ‘y stopped at Xy is a uniformly integrable martingale 2

2 Notes on stopping times and martingales. A random variable y = x(w) is a stopping
time (relative to ) if it takes values in [0,00] and, for each te 7, the event {w: x{w)<t}
is in % The c—algebra of events at (i.e. not later than) x is defined by

a&’x = {Aeg: Vied, An{x(w)<t} ¢ A1}

All processes are taken, without special mention, to be progressively measurable
(hence adapted) with respect to 2 and defined on J, unless otherwise specified; see
Chapters 3 and 4 Thus a process is a martingale if E|y(t)| < oo for each t¢ 7 and,
for each pair t < T from 7, we have Ety(T) = y(t) as.; here Et means E( [ 4).
Super and sub martingales are defined in the same way with the preceding equality
replaced by <, > respectively. A martingale is uniformly integrable (ui% iff thereis a
‘closing’ variable y(oco) such that, for each te 7, y(t) = Ety(co). A process y is said to
be reduced by a stopping time y if y(tAy) is a u.i martingale, and then the closing
variable is y{x) The process y is a local martingale if there is a sequence
(xo; 0 =0,1,. ) with xa{w) T 00 as. such that each xp reduces y, and then (x») is a
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(iil) A transversality condition at infinity, say in the form
B{1{w:x, (w) <o}yl x, ()] [wx ()]} + 0 a5 n- o0, (18)
y(w,00) =0 if x (w)= o0 for somen. . . {19)
It is easily shown, using the concavity assumptions of neo-classical models, that it is
sufficient for optimality if y is a true martingale and transversality holds in the form

E{y(T)J*(T)} = E{v(T)k*(T)} - 0 as T - o0 -(1.10)
For typical proof procedures see [F1}, which considers a model of optimal saving;
[BiM], which considers a growth model but does not explicitly use martingales; also
[F5], Brownian growth model; and Chapter 3 below. Untutored intuition might
suggest that these conditions should also be necessary, and this is indeed the case in a
discrete-time version of the growth model, see [F2] and remarks below. However, in
continuous time with an infinite horizon, standard necessity proofs (by whatever
technique) yield only that in general y is a local martingale, and then the transversalily
condition must also be adjusted to refer to convergence along a reducing sequence.

The mere information that a price process is a local martingale does not provide
an adequate characterisation. We wish to identify suitable reducing times, not merely
to know that they exist, and if possible to select times with an interesting economic
interpretation. Going a step further, the possibility suggests itself of defining a
continuous, increasing family of stopping times such that every sequence from this
family which tends a s. to infinity is a reducing sequence for y — so that the family

defines a random time change, such that y is transformed into a true martingale and

reducing sequence for y, see [DM] VI 27 e.s. A given process may admit various
reducing sequences; here we consider only sequences with x, > 0 a.s for n > some n,
Martingales (true or local) may be ‘modified’ so that sample functions are

a.s continuous on the right with limits on the left (corlol), and sometimes this
property will be assumed without special mention A non-negative local martingale is
a supermartingale. All martingales and supermartingales considered will be non-
negative on [0,00); the left limit y(w,00) then exists a s. However, if y is a martingale,
the process obtained by adjoining y(co) to y may not be a martingale on [0,00] In
particular, it may happen that y(w,t) > 0 on [0,00) but y(oo) = 0; cf fn. 3
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the transversality condition is stated in terms of (transformed) ‘clock’ times. A related
question concerns the form of the transversality condition, e.g. whether it involves
convergence of an expectation as in (10) or convergence pathwise. We return to these
ideas later. Here we note that various reducing sequences y  can be chosen to yield
necessary and sufficient conditions of the form (i), (ii), (iii) above. It is always
permissible to choose price times, ie toset x, = pi(n) with i(n) T o0, the price time
p; being defined by

p, = p(wi) =1 Ainf{t€[0,00): y(w,t) > 1} for 0 <i <oo S (111)
These times are bounded, so that (1.9) is redundant. It is also always permissible to
choose depletion times, ie toset x = Vi(n) with i(n) T Ko, the depletion time 2
being defined by

v, = ¥(w]i) = inf{te[0,00): Ko—I*(w;t) > i} for 0<i <K, . (1.12)
if such a number exists, and ¥(w,i) = oo in case J*(w,t) > Ko—i forall t. We shall
also need to consider consumption times 7, defined by

7 = T{w)i) = inf{te[0,00): G*(w;t) > i} for 0<i< o . (1.13)
if such a number exists, and 7{w,i) = o0 in case G*(w,00) <i. Further details of these
times ate given below and in Chapter 3 Finally, it is of interest to find conditions
under which y is a {true) martingale (i.e. a local martingale reduced by a sequence
Ta ] 00 of ‘clock’ times).

These remarks define the main programme of the present work, namely to give
proofs of sufficiency and necessity for conditions of optimality of the ‘local martingale
and transversality’ type for the growth model, with special reference to local martin-
gales reduced by price, depletion or clock times. Proofs are also given of the existence
of an optimum, extending procedures for a model of saving developed in [F1].

¥k %
I have considered local martingale and transversality conditions for optimality in

continuous time, and related time changes, in earlier papers, mainly in the setting of a
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model of optimal saving with risk [F1], with perhaps the additional complication of a
problem of portfolio choice [F3,4], or the presence of an €X0genous income or an
indivisible investment opportunity [F4] The later papers refer on important points to
the results of the earlier. It is useful to give more or less self-contained proofs for the
growth model, both because of its importance in economic theory and because the
presence of a production function leads to complications not found in the saving model.
(However, some analogous complications do arise in the model of saving with
€xogenous income, and certain arguments used in connection with that model in [F4]
were borrowed from an earlier draft of the present paper.)

As in the earlier papers, the main method of proof used here is a generalised
calculug-of-variations argument, which has a clear economic interpretation and yields
results by relatively elementary methods, with only minimal assumptions about the
stochastic environment (filtration and exogenous processes). It may be useful to
review some of the intuitive considerations underlying the martingale and trans-
versality conditions, indicating sources of differences (a) between discrete and
continuous time versions and (b) between growth and saving models. The remarks
which follow do not form part of the formal development of the SM, which is resumed
in Ch.3.

(a) Discrete vs Continuous Time. Starting with necessary conditions in the
discrete time growth model, the argument yielding the supermattingale property for y
is familiar. Briefly, if we had S < T and, with positive probability, Vg < ESyT, the
utility from consuming a marginal unit 6J ¢ of discounted capital at § would be less
than the expected utility at S from investing that unit at S and consuming the
(random) return at T Thus welfare would be increased by deferring consumption,
contrary to optimality; hence Vg > ESyT a.s., and y is a supermartingale

Replacing &J s by —&J g if feasible, yields a submartingale inequality. However,

the argument is not quite symmetrical, since it is straightforward to spend what has
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previously been saved, but in the presence of random returns it may not be possible to
save up what has previously been spent. The imposition of additional constraints to
deal with this difficulty can be avoided as follows We consider a variation 8J = J—J*
with &J, always negative for t > 0 and calculate the derivative D& in the ‘direction’ 4J
as

. T : : T—1
D® =-1imEX [y, (8J,—6J, ;)] = limE % [6Jt(yt+1_yt)_yTMT]’ (1 14)

T T—w

see [F2] eq.(3.5); note the ‘integration by parts’. Departing slightly from the argument
in [F2], we may decompose the supermartingale y as M—V, where M > 0 is a martin-
gale and V is a predictable non-decreasing process with V(0) = 0, see [RW] II 54

Then, for each t, we may replace E{é‘]t(yt+1—yt)} by E{éJtEt[yt+1myt}} and then
v by M—V. Since M is a martingale and V is predictable, this reduces to

~E{&J t(V _Vt)} > 0, and we also have —yTéJT > 0 However optimality requires

t+1
D& < 0, hence D® = 0, yielding V = 0, y = M. The transversality condition follows on
setting J = 0, 8J = —J*.

In continuous time, the derivation of the supermartingale property is in
principle similar, except that one has to consider an inferval of saving followed by an
intervel of spending, and then go to limits (from the right) as the lengths of the
intervals contract; see Chapfer 6. Attempting to imitate the subsequent discrete-time
argument, one finds that the (‘Doob’) decomposition y = M=V of the positive
supermartingale yields only a local martingale M, reduced by some sequence (x  )Too of
bounded stopping times, and a predictable, non-decreasing process V. with V(0) = 0.

see [DM] VII.12-13 Choosing a variation with 8J < 0 for t > 0, the directional

derivative is obtained as

—lim Eany(t)déJ(t) =

n—-+w 0

Lim B{-[SOAV()-AME] + V0e) MO I806)) - (119)

n—-m 0
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on integrating by parts. The (local) martingale integral vanishes, leaving an expression
which is > 0, hence = 0, again yielding V = 0 and y =M In this case one cannot
obtain the transversality condition in the form (8) by setting 6J = —J* unless free
disposal of capital is allowed, and a rather tedious limiting argument is needed. See
Chapter 7 3

(b) Growth vs Saving. We now compare briefly the variational arguments in the
continuous-time growth and seving models. In both cases, the process
G* = (G*(t); t€ 9) is continuous and (strictly) increasing, so that 7(w,i), if finite, is
the (strict, unique) upcrossing time by G*(w,t) of the level i€(0,00); thus

GHw,r(wi)] =1 for 0<i< G*w,00). .. (116)
The family 7 = ('ri; 0<i< oo} defines a process which is adapted, continuous and
increasing while finite, and as such may be considered as the #ime change associated

with G*, called here the change from ‘clock time’ to ‘consumption time’ 4 Conversely,

3 In [F2] in.1, I suggested that the crucial difficulty in imitating the discrete-time
procedure was the failure of the integration by parts in the formula corresponding to
(14) above. The present discussion shows that this is at best misleading: the crucial
difference arises from the Doob decomposition, which in the continuous—time case
yields only a local martingale in general.

Note that, even if y is a true martingale, it need not be uniformly integrable.
For example, in the saving model with u/(¢) = ¢d, b > 0, ¢(t) non-random and a log-
returns process R with independent increments we obtain, subject to some conditions
of integrability, y(t) = y(0)-exp{(1-b)R(t)}/E[exp{(1-b)R(t)}]. This is a martingale
on [0,c0) but in general is not ui.;if b # 1 and R is Brownian motion with drift, we
have y(oo) = 0 a.s. The case b = 1 (logarithmic utility), yielding y(t) = y(0) even
without independence of increments, is exceptional See [F1] S.1 for details.

¢ Notes on time changes Suppose that a family x = (xi) of stopping times is defined
for an index i taking values in a realinterval #= [0,]) with I < oo, such that
x = (x(wy)), regarded as a process, is right continuous and non-decreasing and takes

values in [0,00], with (0) = 0 and x(i) T ocas i 1 I Let .6 denote the o-algebra of

events at i ; the family 9 = (. ; i€ #) is right continuous. Then x (with %) can
be regarded as defining a time change If § = Ffti t€ J) is an A-process, its transform

under y is the Sl-process & = (€5 i€ #), where & = £(xi); if ¢ admits an a.s limiting
variable ¢ we set £i=¢ when xi= co, and also define the limiting variable EI =¢

If no limiting variable exists, its place may be taken by a suitable ‘variable at infinity’
In particular, if ¥ is a right continuous, non-decreasing process, with ¥(0) = 0
and ¥(oco) < oo, a time change x may be defined by
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G* defines the time change associated with 7 The time changes are mutually inverse
in the sense that G*[r(i)] =1 for 0<i < G*(00) —see eq.(16) —and 7[G*(t)] =t
for 0<t< oc. See Chapters 3 and 6 for further details.

Let G*, y denote the transforms under r of the processes G, y, satisfying

G*(i) = G*(r1), 3() = y(rs) for 0<i< G¥oo), mi< o0, (117)
and set

G*(i) = G*(00), §(i) =0 if i > G*(00), 71 = 00. (1 18)
Carrying out the ‘save now, spend later’ argument sketched above, but using variations
which start and end at specified consumption times (at least in the limit as the
variations become small), it is found that j is a supermartingale (with respect to the
transformed filtration) and hence, using the inverse transform and optional stopping,
that y is a supermartingale (with respect to the original filtration). Making changes on
null sets if necesssary, the processes ¥ and y are corlol, and the left limit
y(oo) = §]G*(o0 —)] exists as

The stochastic model of optimal saving considered in [F1] could be transformed
into a stochastic cake-eating problem, with K, as the cake and a depletion equation

Ko — G*w,t) = T¥(w,t), 0<t < o0, as .(1.19)

x(i) = inf{t: U(t) > i} for i€ ¢, sctting x(i) = co if ¥(oo) (i
Conversely, given a time change x, we can define ¥ as an inverse time change by
¥(t) = inf{i: (i) > t} for te g
In all cases considered here, ¥ will be continuous and y right continuous: if ¥ is
stri)ctly in)creasing, then y is continuous, (including continuity at values of i for which
x(i) = 00).

( In the sequel, we shall encounter situations where there is a corlol process y > 0
admitting a limiting variable y(c0), and a time change ¥, such that every sequence
(xi) = (xi(n)) with ;1 oo as. reduces y; we then say simply that  reduces y In
this case, for each i = i(nB <1, yi=(y(tAxs); t€ ) is a ui 2-martingale, which

implies (by the Stopping Theorem) that 1= (§(jAi); j€ #) is a ui U-martingale, so

that § = (§; : i€ #) is an U-martingale, which need not be u i. (A converse proposition
applies if x is defined by a strictly increasing process ¥, but if ¥ is only non-decreasing
the paths i~ x(i) may ‘jump across’ intervals of &, and then martingale properties of

y imply nothing about y on these intervals.) For more on time changes, see
[DM] VI 56, [Mey1] Ch.IV, [J] Ch X, [EM], [EW].
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In this case the concepts of consumption times and depletion times coincide, and these
times need be considered only for 0 <i < K, The variations yielding the super-
martingale inequality for y can be reversed to yield the submartingale inequality, so
that y is a martingale and a transversality condition is obtained in the form

E{§(i)[K;—~G*(i)]} - 0 as i ] K, ~.(1.20)
Equivalently, y is a local martingale reduced by some (indeed by any) sequence
7, =¥ withi T Ko, and

E{y(‘Ti)[Ko—G*(‘Ti)}} -+ 0 as i]K, .. (1.21)
This implies, using Fatou’s Lemma, that

y(w,00) =0 in case K—G*(w,00) > 0,

ie incase 7.(w)= oo for some i <K, .{1.21a)
so that both (1 8) and (1.9) are satisfied. However, we cannot use optional stopping to
conclude that y is o true martingale, because in general the times 7, are not bounded
and ¥ is not uniformly integrable, cf [DM] VI 10, [Mey1] VI.13—14

The new complication arising in the case of the growth model is that, in the
presence of production, a cake no longer shrinks by precisely the amount that is eaten
While G* is still a strictly increasing process, we now have K, — J* < G* in conse-
quence of the law of diminishing returns, see Chapter 3; also K,—J* need no longer be
monotonic or converge to a limiting variable at infinity Consequently the definitions
of depletion times and consumption times are no longer equivalent. The ‘save now,
spend later’ argument, using the transformation to consumption time, still works with
some complications, showing first ¥ and then y to be supermartingales (and hence that
the a.s. limiting variable y(oo0) exists).

However, the ‘spend now, save later’ variations on intervals starting and ending
at consumption times 7, are in general infeasible, and it is necessary to consider
variations defined by depletion times v, Since Ky—J* is not monotonic, it does not

define a time change; however, if T is the non-decreasing process which ‘fills in the
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troughs’ of K,—J*, we still have

Hwi) = inf{te(0,00): T'(w;t) >1i} for 0<i <K, if i < (w,00), . (112a)
and »{w,i) = co otherwise; see also (3.20) and (3.23—26). The family
v= (Vi; 0<i< Ky) defines a process which is adapted, right continuous and
increasing while finite, and as such may be 1regarded as the time change associated
with T', called the change to ‘depletion time’. Conversely, I' defines the time change
associated with v (Note that » may have discontinuities, ‘jumping over’ time intervals
on which I is constant; thus [ is inverse to v in the sense that T'[{i)] =i for
0 <i< o), but #T(t)] =t only for t in the (finite) range of v.) We define the
transforms T, ¥ of T,y under » by

I(i)= F(Vi): y(i) = Y(Vi)a 0<i< Ko ¥ <00,
and of course I‘(Vi) = Kqo—J *(Vi) if ; < 0o See Figure 1 Sincey is a super-
martingale, it follows by optional stopping that ¥ is also a supermartingale (for the
transformed filtration), so that the function E{y(i)} = E{y(»;)} is non-increasing
in i Conversely, a rather complicated construction shows that the ‘troughs’ of K,—J*
may be neglected in calculating the directional derivatives for certain variations, so
that, loosely speaking, one can use the time change defined by I' and a suitable
variation with 6J < 0 to show that y(0) < E{y(ui)} for each i, hence that E{y(ui)} is
actually constant. Thus y is a martingale, and y is a local martingale reduced by any
sequence (ui) with i T K,. The transversality condition then holds in the form

E{F(O)Ko~T(0)]} = E{y(y)[Ko-T()]}

= E{I{y; < oo)y(v)3* (%)} - 0 as i T Ko ..(122)

As above, this implies that

y{w,00) =0 if Ko—T'(w,00) >0,

ie if ¥(w) = oo for some i < Ko,

ie if inf{J*wt): te I} > 0, (1 22a)
so that both (1.8) and (1.9) are satisfied The stated local martingale condition for y
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together with either (22) or (22a) is also sufficient for optimality; see Chapters 3 and 8
for details (However, the martingale condition for y together with (22), while
necessary, is in general not sufficient because it says nothing about martingale
properties of y during t—intervals on which I' is constant.)

Some assumptions which imply that it is necessary for optimality that y be a
true martingale and transversality hold in the form (10) are stated at the end of
Chapter 3. Briefly, these conditions hold if there is a deterministic function J-
satisfying

J¥(wt) > J(t) >0, 0<t<o0,as. (1.23)
In particular, (23) is satisfied if the ‘propensity to consume process’ c¢*/k* = g*/J* is
bounded above by a constant, say ¢*/k* < #* < oo on Jas

* * *

A word about related literature on the necessary conditions for optimality is in
order. Essentially our programme is to extend the treatment of martingale and trans-
versality conditions initiated in [F1] to the continuous-time stochastic growth model,
which to my knowledge has not been done elsewhere. The paper closest to the present
one is [RW], which considers a two-sector stochastic growth model that is essentially
an extension of the Brownian version of our model. This paper derives necessary
conditions for optimality by dynamic programming, and brings in a (pointwise)
transversality condition only as part of a set of sufficient conditions used to verify the
optimality of proposed solutions It also gives a brief survey of some earlier work on
neo-classical growth models which need not be repeated here.

Widening the catchment area to (continuous-time, stochastic) control models
generally and considering first the Jocal’ conditions for optimality, it is found that our

‘classical’ calculus of variations approach, leading directly to martingale properties of
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the shadow price process, is not usual in stochastic control .8 Of course, such
properties can be derived as corollaries of necessary conditions obtained by alternative
methods such as dynamic programming, stochastic maximum principles or duality,
although often they are not spelled out. The numerous ways in which terminology,
assumptions, methods and the form of results vary makes it difficult to give systematic
comparisons and I shall not attempt a survey here For some general techniques which
could be applied (subject to various differences in assumptions) to our stochastic
growth model, see for instance [Bi], [BtM], [CHL], [FR], [FS], [KS], [K1], [MB] and
references given in these works; also, for related deterministic methods, [AC], [AK],
[Be[, [BIM], [Ha], [Sh] [Ta], [Ye] 6

Turning to the necessity of the transversality condition at infinity in con-
tinuous-time models, the literature on this point concentrates on deterministic
problems, so that the questions on which we focus here — concerning localisation, the
form of the condition (in terms of expected value or pointwise) etc do not arise. As is
well known, there are infinite-horizon control problems in which the condition is not
necessary for optimality, so that strictly speaking necessity cannot be taken for granted
even in a deterministic version of our model — say, in the form
y(t)J*(t) = v(t)k*(t) = 0. However, there are necessity results for deterministic
models with features similar to ours (concave utility and production, impatience, finite
welfare at and near the optimum); see for example [AK], [MB], [Mi], [K1], [Ta], which
also give further references. Of course, necessity for the deterministic version of our

model follows from the stochastic results to be proved here; there are some differences

5 For an interesting alternative ‘classical’ approach to stochastic calculus of variations,
using Hilbert space methods rather than martingales, see [Yal.

& Most techniques of continuous-time stochastic control are designed primarily for
finite-horizon problems, the ‘infinite-horizon case’, if considered at all, being treated as
in some sense a limiting case, using essentially the same concepts and methods. In a
model of the type considered here but with a finite horizon, the shadow price process y
is typically a uniformly integrable martingale, which is replaced in the infinite horizon
case by a local (possibly true) martingale.
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from the assumptions considered in the literature but it would be tedious to spell out
the details. T am not aware of necessity results for transversality in a continuous-time,
stochastic growth model (as distinct from rtesults for savings models mentioned earlier),
so in that respect the work presented here is new 7

* * &
The 1est of the paper proceeds as follows. Chapter 2 outlines a model of optimal
growth — called the Stochastic Neo—classical (SNC) Model — in which exogenous
sources of risk are modelled explicitly as semimartingales and the equation of
accumulation may be written as a stochastic differential equation (s.d.e ), and shows
how this version can be represented as a special case of the SM. The formal discussion
of the SM begins in Chapter 3. This chapter defines the model, sets out the basic
definitions relating to stopping times and martingale and transversality conditions and
proves a general form of the Sufficiency Theorem Chapter 4 proves some technical
points relating to the definition and properties of feasible plans Chapters 5—8 deal in
detail with conditions for optimality, in particular necessary conditions. Chapter 5
chatacterises an optimum as a (star) plan such that the directional derivatives of the
welfare functional are non-positive in all directions Chapter 6 proves the super-
martingale property of y by generalised calculus-of-variations methods, using variations
of the consumption plan Chapter 7 begins with a short proof, along lines sketched

above, that y is a local martingale, in particular that y is reduced by price times, and

7 There is also a literature on transversality in discrete-time deterministic growth
models, which I shall not review here. As regards stochastic versions of such models,
there are long-standing 1esults for models with uncertainty defined by a stationary
process, where the transversality condition is a straightforward generalisation of the
deterministic case, specifically that ‘the present expected value of the output (and
input) at period t decreases to zero as t goes to infinity’, [Z1] p 174, see also
references cited there and [Z2]. As was mentioned above, a similar result for a model
without stationarity assumptions was obtained in [F2] using directional derivatives and
martingale arguments. A somewhat more general result using directional derivatives
was obtained recently in [K2], (mention being made of [Z1-2] but not of [F2]); that
paper also gives references to deterministic discrete-time publications whose results it

generalises.
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also shows that the transversality condition holds in the form (1 8) with x = Pi(n)
Chapter 8 derives the necessity of the local martingale and transversality conditions
with depletion times, a more interesting but more difficult result Conditions for y to
be a true martingale and the corresponding transversality relation are obtained as a
corollary to the results of Chapters 7-8.

The last two chapters take up separate topics. Chapter 9 extends to the
Standard Model the proofs of the existence of an optimum given in [F1] for the saving
model Finally, Chapter 10 reviews the consequences of restricting the Generalised
Lipschitz Condition

Jo1E (Kuwt)[dt < 0o for all (w,T), L (124)
which in Chapters (1-9) is imposed for 0 < K < 0o, o the interval 0 < K < o0, and
assuming the traditional /nede condition

1/ (0;w,t) = 0o for all (w,t) (1 25)
The latter assumption has the advantage that it allows useful production functions,
such as Cobb-Douglas; but it is unrealistic and leads to technical complications because
multiple solutions for the o.d.e (1.1) can arise on the axis kK = 0. This discussion

appears to be new
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2. THE STOCHASTIC NEQ-CLASSICAL GROWTH MODEL

Among the features of the Standard Model are the abstract formulation of risk, which
is introduced through the random element w and the filtration, and the appearance of
the constraint on accumulation as a random ordinary differential equation {rather
than, as might be expected, a stochastic differential equation). Before turning to a
formal analysis of the Standard Model, it will be instructive to consider a model — to
be called the Stochastic Neo-Classical (SNC) Growth Model — which is a stochastic
version of the traditional continuous—time neo—classical model of optimal growth, the
exogenous influences of labour—augmenting technological progress, population growth,
depreciation of capital and time preference being modelled explicitly as semi-
martingales. This is a convenient setting in which to illustrate the relationship
between deterministic and stochastic formulations and between ordinary and stochastic
(differential or integral) equations of accumulation. We also show how the SNC model
can be represented as a special case of the Standard Model This Chapter is by way of
an intermezzo and is rather informal It is included largely to motivate the study of
the Standard Model, but also to provide a link with further work on the detailed
structure of optimal plans, in the special case where the exogenous processes are
independent Brownian motions, see [F5—6]; we refer to this case as the Brounian Neo-
Classical (BNC) Model. The formal development of the theory for the Standard Model

is independent of this Chapter.

(A) Deterministic Model.
We begin with a review of the deterministic model, following with some changes the
standard work by Arrow and Kurz [AK]. Briiefly, the problem of optimal growth is to

choose a function C(t) > 0 from a suitable class so as to maximise a welfare functional
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o = [ OE@MEespi-pt)at, (21)

0
subject to the condition that the solution K(t) of the o d.e.
AR 1)/t = TR(),L(8)] — AR - SO (22)

with K(0) =Ko > 0 be defined and non—negative for all t > 0. Here C(t) represents
consumption per head of the population, K(t) the total capital stock and U[K(t}),L(t)]
total gross output, all expressed in ‘natural’ units. The population — or equivalently,
with a constant proportion of employment, the labour force —is II(t) = exp{#(t}},
while the ‘effective’ labour force is L{t) = exp{x(t)+/4(t)}, where A(t) represents
labour—augmenting technological progress The derivative 4(t) is usually taken to be
positive and to represent the rate of depreciation of capital, but other possibilities are
open {e.g. appreciation due to discovery of mineral deposits). The function p is usually
assumed to be positive and to represent ‘inter-generational weighting’, but negative
values may be considered The four functions

n=gyme, n=rt), (2.3)
are defined for 0 <t < co with (0) = 0, and (initially) assumed to be of class Ct. Ii
is usual in the case of certainty to assume that the functions are linear, say
n(t) = mnt, where the m,, are (usually positive) constants, but we adopt a more general
notation in order to avoid repetitions later on We further introduce the abbreviations

x(t) = x = — (v+f+m)

vit)=v=(1-b)f+ 7—0p

w(t)=w=(b-1)y+br—p (2.4)
where b is the constant appearing in (8) below, and note the relations

v+ x = —{7+bf+p), v+ (1-b)x=w . (25)

Next, the production function ¥(,L), representing gross output in natural
units, is defined for k> 0, L > 0 with ¥(0,L) = ¥(x,0) = 0 and is homogeneous of

degree one, concave and €2 (ie twice continuously differentiable, including one-sided
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limits on the axes); and for Kk > 0, L > 0 it is increasing and strictly concave in each

variable separately. We write

W) = T(K1) with P/ (1) > 0> ¥'(x), a(x) = YR)/K, -(26)
and further assume
(a) 0<9(0) <oo, (b) 9'(00)=0, (27)

¥’ (0), a(0), ¥’ (o0) and a{co) being defined as onesided limits while ¢(0) = 0. Note
that (a) departs from the traditional ‘Inade’ condition ¥’{0) = co adopted in [AK]

The function U, defined for consumption ¢ > 0, has the ‘CrrA’ form
U/(c) = ¢ with b> 0, so that

(c) = (1=b) L c!P ifh#1, (2.83)

U(c)=1Inc ith=1 .(2.8b)

- We now introduce ‘intensive’ variables k and €, also (for later reference)

‘standardised’ variables k and ¢, by writing

k() = K(t)e—ﬂ(t)—ﬁ(t) — f{(t)ex(t)+7(t) — lg(t)ex(t),

o(t) = G(t)e A = @) () FTO+FAY) 2 ¢(gyex(t), (29)
By the linear homogeneity of ¥,

WIR(), L(t)] = P[R (1), O FALN < e O HA Dy (210)
Thus the average and marginal products of capital, in intensive or natural units, are

a, = a[k(t)] = {k(t)]/k(t) = PIK(),L(OI/K(),

v = 9 [k(t)] = dylk(1)]/dk(t) = BVIK(t),L(t)]/OK(t) ~(211)
On differentiating k(t) in (9) and using (10), the o.d e. (2) is easily transformed into

dk(t)/dt = ¥k(t)] + x(t)k(t) — c(t), k(0) = K,. . (212)
Note that this is equivalent to

K(T) = K(0)e ™) = K, + T (k)] - o0} at (213)
or

ak(t)/dt = ylic()e eV _ (1), k(0) = Ko (213a)

We sometimes write

23




#(t) = In k(t) or simply z = InK, 2z, = In K,, also

Az) = a(®), M(z) = ¥ (”) (214)
If k(t) > 0 for all t, we may divide (12) by k(t) and integrate to obtain

AT) = 20+ [T {Af(t)] - e(t)-e 2 }dt + x(T) (215)
In intensive units, the functional (1) assumes the form

o= (1= r )P ®ay b1 (2 163)

0
o= Jm Mo (1) + 8™ PMay sp=1 . (2.16b)
0

The relations (12} or (15) and (16), together with the constraints ¢(t) 2 0,
k(t) > 0, are usually taken as the starting point for detailed analysis. As is well known,
the main advantages of this formulation, in case the functions fg,7,7,p are linear, are
twofold:

(i) An optimal plan (if one exists) may be determined by specifying
consumption as a (timeless) function of capital only — say, in the form

In¢(t) = H[z(t)] or simply InC = H(z) or O/K = exp{H(z)—2z} = &z), (217)

noting that along an optimum both ¢(t) and k(t) must be (strictly) positive Thus
(15) may be replaced by

2(T) = 2o+ [ {Ala(t)] — 0lz(t)]}dt + x(T). . (2.18)
The problem of optimal growth may then be restated as the choice of a positive
function #(z), defined for zeR, to maximise (16) with ¢(t) = f[z(t)]- oA(t) , where z(t)
satisfies (2.18) In this formulation, the constraints ¢ > 0 and k > 0 no longer appear

(ii) Under some restrictions on the parameters, the values of k(t) and ¢(t) along

an optimal plan tend to steady state values ast - oc

24




(B) Stochastic Model

We turn to the formulation of the SNC model. The time domain, probability space,
filtration and definitions relating to measures and processes are as in Chapters 1 and
3—4. The definitions and properties of the functions U and ¥ remain unchanged. The
variables = f,7,m,p are now introduced as general — possibly discontinuous — semi-
martingales 7= n(w,t) with 7(0) = 0. The abbreviations {2.4-5) stand. The
functional (1) is replaced by its expectation, which is still called ¢. Its domain is a
class % of progressive processes C = C(w,t) > 0, to be defined more precisely later

The processes 7 are, in general, not differentiable pathwise in the classsical
sense, so that the equation of accumulation (2) cannot simply be reinterpreted as a
random {pathwise) o d.e. We consider two possible reformulations

The first, which generalises the approach adopted in [F1], is to replace (2) by
the equivalent ordinary integral equation

R(T) = exp| (TS UK (), LK ()]

x{KO—J: [é(t)-exp{w(t)—i—'y(t)—jg{lli[f((T),L('r)] /K(T)}d’r}} dt}, L (219)
and to reinterpret this as a pathwise relation among the processes K, C, 11, 7, (C being
the ‘control’, K the ‘solution?)

The second approach, which generalises the formulation adopted in [F'5] for the
Brownian model, is to replace (2) by an s d.e., say

a&, = {¥[R, L] - C,c" Myt + R,_d AT, (2 20a)
with K(0) = K, > 0 — or, more propetly, the stochastic integral equation

K, =K, + [; {U[K,,L] - C)te“(t)}dt + [ K, dAe ), ..(2.20b)
Here #(e ) is the ‘mart—log’ of ¢ /,ie

dc,f(e"’)/)i5 = e—’Y(t—)de’Y(t), (221}

which reduces to —#(t), as in (2), in case -y is pathwise C! ! Note that (21) is a

i Note on martingale logarithms and exponentials. Given a semimartingale £ with £(t)
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generalised Doléans integral equation, so that for a suitable progressive C > 0 the

(unique, semimartingale) solution satisfies

K, = e“”J’(T)[KO + fy e'Y(t‘){q:[Kt,Lt] — ("Jte”(t)}dt], (2.22)
taking into account that A #(e” 1) > —1 always, ¢f [Ja] T.6.8. To check explicitly
that (22) satisfies (20a), write §=¢ "’ let ¢ denote the term in long brackets in
(22), differentiate £-6 using the product rule for semimartingales?, replace £(1—) in
the resulting expression by K(t—)ev(t_) using (22), then substitute from (21) and
simplify. Note also that e7(t_) may be replaced by e'y(t) under the Lebesgue
integral sign in (22) because the set {t: Y{w,t)#7{w,t—)} is at most countable, a.s.

It turns out that the two formulations (19) and (20) are essentially equivalent.
Briefly, if K satisfies (19) on J a5, then clearly Ke” is absolutely continuous
Taking the derivative of Ke7, substituting in the resulting expression from (19) for the
term in curly brackets and simplifying yields the o.d e.

d(f{te'y(t))/dt = {T[K, L] - éte”(t)}e“/(*) (223)
with K(0) = K, > 0, or equivalently (22).3 Conversely, if K satisfies (22), then Ke(’){)

is absolutely continuous and differentiation yields (23). Thus, provided conditions are

and {(t—) positive on , a §., the ‘martingale logarithm’ (or mart-log) of £ is the
semimartingale #[£] defined by .Z]¢](T) = Ig (1/¢(t—)d(&(t)) with £(0)=0. In-

versely, &(T)/é(0) = &[L(&))(T) where & is the ‘martingale exponential’, i e
£(T)/€(0) 1s the (unique, semimartingale) solution of the equation

7(T) = 1+ [ n(t-)d A(E)(t).

2 Note on differentiation of products (integration by parts). Given two semimartingales
¢ and §, the general product rule is (in abridged notation)
a(¢- 6% = &£.dé+ 6--d€ + dL4,&D
see [DM] VIII.18. Tf £ is absolutely continuous, the square bracket process vanishes.
3 Strictly speaking, the pathwise derivative of Ke7 in (23) is defined only up to null

Lebesgue sets. However, if for given € the (semimartingale) solution Ke? of (23)is
uniguely defined on J a s., we may fix the derivative process by choosing that version

which satisfies the equation identically. Then, since C will be chosen as a progressive
process, the same will be true of d(Ke?)/dt. Similazly for dk(t)/dt in (24).
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satisfied which ensure the existence and uniqueness of solutions of (23) on J a s, it
follows that a given semimartingale K satisfies (19) iff it satisfies (22) Similarly for
solutions defined only on some stochastic intetval L0,7L The stochastic problem of
optimal growth (in natural units) can therefore be defined provisionally as the choice of
a progressive process C = C(w,t) > 0 from a suitable class so as to maximise o,
subject to the condition that the (semimartingale) solution K = K(w,T) of (23), and
hence of (19) or (22), be a.s uniquely defined and non—negative for all t > 0.

We again introduce variables k, ¢ and k, ¢ asin (9) — this time as processes —
note that equation (10) remains valid, and consider the formulation and properties of
the stochastic model in standardised and intensive forms, starting with the equation of
accumulation
Standardised Form Substituting the expressions for k and ¢ into (23), using (10) and

simplifying yields,

dk(t)/dt = Pk(t)e (e~ _ () (2.24)
with k(0) = Ky, or, in integral form,
K(T) = Ko + 7 {9lk(®) Ve — iy, - (225)

in agreement (pathwise) with the corresponding deterministic ezpressions (13—13a) If
k(t) > 0 for all t, we may divide (24) by k(t) and integrate to obtain

k(1) = K, -+ 7 {alk(t)e( ) — e(t)/x(t)}at - (2.26)
Intensive Form. Replacing k by k-e ™, ¢ by c-e , also writing z = Ink = lnk + x,
(25) and (26) become

K1) ™ = K, + 17 {ylk(0)] - () Mag @27)

AT) = 20+ [T{AL()] - (t)- A Dyat + x(T), (2.28)
again in agreement with the corresponding deterministic forms (13) and (15).
Alternatively, we may multiply both sides of (27) by eX(T) and differentiate
according to the product rule for semimartingales (see fn.2). Denoting the r.h.s. of

(27) temporarily by £, we obtain the s.de.
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dEt _ ex(t_)dft i 51;_dex(t) _ e_AX(t)[d)(l_tt)—Et]dt n Et_e_x(t—)dex(t), (2 29)

using (27) again to evaluate d¢, and £, Also, (29) yields

e o or o x(t=)ax(t) ¢ Ax(

k—k_= ak = k_e (2 = g (AW _y) - (230)
hence k, = Rt_eAX
and, using (30) and the definition of the mart-log, obtain

(oK), = Jo {l0lk,) — T,)/k }dt + L),

T — _ _
= J, {alk,) — ,/kJdt + #(e"), (231
This equation looks neat, but bear in mind that, in general,
Ax(t
A, = *(T) + 108 + g [e x(6) g Ax(t)], (232)

and x is here the sum of three processes, see (4). Actually the form (28) based on
natural logarithms turns out to be more useful, particularly in case T/k is specified as a
function of k only, see (2.41) below.

So far, we have not specified precisely the class of admissible consumption
processes C (or © or c). Actually, it makes little difference for the characterisation
(as distinct from the existence) of an optimum whether we require consumption to be
progressively measurable or optional or even corlol and adapted (or, if the processes n
are continuous, predictable or even continuous and adapted) To be specific, we define
an (admissible) consumption plan in standardised form as a non-negative, progressive
process ¢ = c(w,t) such that the solution k of (25) is a.s. uniquely defined and non-
negative for 0 <t < 0o, and denote by _# the set of all such processes. (This
definition implies that jg c(wt)dt < oo forall T < co,as). Theset % of
consumption plans in intensive form is then the image of # under c» ¢ = ce¥, or
equivalently the set of non-negative, progressive processes € such that a
(semimartingale) solution k of (27) is uniquely defined and a.s non—negative for
0<t<oo Similarly for C.

If now we rewrite the functional y in standardised and intensive units we have,

for b #1,
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¢ = (1-0) 1B [2o(t)' " e Vg
= -0 B o o) P My, _(2.33)
and when necessary we write @(c) or ¢(t) to distinguish the two forms. In case
b =1, we have v = w = 7—p, and the functional becomes
o= E [° [ c(t)—(t)-r()le" VPV
=B 2 [l e(t)+A()]e™ P (Par (2 34a)
The expected integrals in (33) and (34a) are defined as Lebesgue integrals (To avoid
tedious reservations in the case b = 1 we set ¢ = —oo if the integrals have the form
+o0 + (—00) ) In (34a) it is natural to drop in each expression the terms not involving
consumption, and to maximise simply
o) = E [2 [in )" Vat on g, or
o(@) = E [2 [l ()™ "My on % (2.34)
The resulting problems are equivalent to one another, and to the problem in natural

units, if the terms which are dropped are integrable, which we always assume.

The stochastic problem of optimal growth (o1 decline) can now be briefly defined.

We consider ¢ (or ©) as an integral functional on & (or ¢) and assume directly, or
infer from stated assumptions, that it possesses a finite supremum ¢* (ie. that

ol <p* < o forallce € and yc) > —oo for some ¢ € ¥). Then the problem
expressed in standardised (or intensive) units is to find a ¢ (or €©) which attains this
supremum, if such an element exists. For brevity we omit conditions ensuring the
convergence of the integral defining ¢ and the existence of a maximum; see the
analogous discussion of these questions in the case of the Standard Model. It is usually
convenient to work with this formulation, leaving aside the original problem in natural
units. Clearly, the transformed models can also be interpreted as models of optimal
saving with diminishing returns to capital driven by two (dependent) semimartingales,
namely v and x in the intensive form, w and x in the standardised form.

We now review briefly some properties of the SNC model in standardised and in
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intensive units. The model in standardised units can obviously be regarded as a special
case of the Standard Model ¢ On setting ¢ = ¢, k =k, a comparison between (1 2)
and (33) gives, for b # 1,

ule(t)tla(t) = (1-b) " ¢! ") = (1-b) T o)t P YY),

we)tla®t) = oty P eV = gy P V() - (2 35)
The split between u and q is in general not unique, and can be chosen for convenience,
¢ g in applying the existence criteria in Chapter 9. Thus, if eV s m—integrable, one
can take (up to a scaling constant)

(1-byule(e)it) = (), c=¢ q(t) =e"®), - (236)

Il

whereas if e’ is m—integrable one can take
(1-byufe(t)t] = ()0, c=7, qft)=e"t) (237)

In the case b = 1, the remarks in the preceding paragraph apply to the two
—lél—b

forms of the functional in (34a—b), with (1—b)_191_b and (1-b) replaced by
Inc¢ and In ¢, noting that v=w = r—p since b= 1.

Further, a comparison of (24) with (1.1) gives

k(1] = Pl ™ = ke ™), (238)

so that the average and marginal products of capital are invariant to the choice of

units,¥ie.

4 If the processes 7 are sample differentiable, the SNC model in intensive units can, of

course, be treated directly as a special case of the Standard Model with ¢ =¢, k =k,
(2.10) corresponding to (1 1) etc

5 The variety of units in which economic variables are expressed makes it difficult to
devise a coherent terminology. It seems most convenient always to use the same words
for concepts which correspond to one another under the various transformations but to
qualify these words by specifying the units of measurement. Thus the symbols k, ¢, {,
u, q, ug = v appearing in the Standard Model are called capital, consumption,
production, felicity (or instant utility), impatience density and utility in standard
units, (or, more precisely, ‘when goods are denominated in standard units’, since q is
not measured in units of goods; we adopt similar ‘abus de langage’ in other cases) The

symbols K, C, ¥, U, e_(ﬂ_p ), U- e_( T+p) appearing in the SNC Model may be given
the same names but are in nafural units, (although there is some ambiguity here

because of the appearance of II = e7r, which is the reason why p has been given a
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flk(8);t]/k(8) = YIR(]/K(L) = UR(E),LI/R(),

£/ [k(8);t] = 9 [K(1)] = IR (1), L(1)]/OR(L). (239)

Necessary and sufficient conditions for optimality in ‘local mastingale and
transversality’ form for the SNC model can be obtained directly from the results stated
in Chapters 1 and 3(B). Briefly, conditions for (¢*,k*) or (¢*,k*) to be optimal may
be obtained — writing ¢ = ¢, k = k, using (2 4-5) and (2 9), then (1.3—10), dropping
the stars and abridging the notation — by setting

R(T) = |7 o' [R(e)Jat,

W(T) = g(T)_b W(T)+R(T) _ E(T)"b ) ex(T)-I—V(T)-I-R(T),

HT) = K1)-e ™M) = 5(r).e (02T,

y(DIT) = KDT) ") = Krye(ry .77 (2.40)
For the Brownian casef, more detailed statements of these formulae are given in [F5];
see also Chapter 3, eq. (3 47) et seq. Some existence results for this case are obtained
in Chapter 9.

Of course, the main reason for being interested in a ‘standardised’ version of the

stochastic growth model, with the equation of accumulation written as an o d.e,, is

separate name in the text) Again, the symbols k, €, #(k), (1-b)-1ei-b, ev,

(1-b)-tetb.ev and k, c, ¢(kex)ex, (1-b)-ictb, ew, (1-b)-igi-b.evw 1efer to intensive
and standardised units respectively, again with the same names (although these are not

entirely satisfactory). The welfare functional should perhaps be written ¢, ¢, @, ¢ in
the four cases, but no confusion arises if ¢ is used throughout and called simply
‘welfare’. Reverting to the SM, the variables J, j, g, G defined in (1 5—6) and (3.8-9)
are in discounted units. The term ‘reduced’, used in [F1] instead of ‘discounted’, is
now reserved for its meaning in connection with local martingales.

6 In the BNC model, the processes # = §,7,m,p —cf (2.3) — are assumed to have the
form
W(W;t) = a’qt + Jan(th): (*)

where G and oy > 0 are constants and the B, are a set of independent standard

Brownian motions. The linear combinations defined as in (2.4) are then Brownian
motions with drift which may again be written in the form (*), with » replaced by
x, vorw. See[F5]eqs (1.7) es for details (with slightly different notation)
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that it makes available the methods and results presented in our other Chapters.?
These in turn have certain advantages as regards precision of results and connection
with economic intuition, although it is difficult to make exact claims without going
into details of alternative procedures. As was mentioned in Chapter 1, the local
martingale property of the shadow price process can be obtained by various methods
(dynamic programming, maximum principle, duality), but so far as I am aware the
precise characterisation of reducing sequences and corresponding transversality
conditions, in particular as regards necessity, have not been derived by these methods
The o0.d e. formulation also offers advantages in proving the existence of solutions of
equations and the existence of an optimal plan, due to the availability of simpler and
more general theorems. Regarding the economic basis of conditions for optimality used
in the Standard Model, see the related discussion in [F4].

As to the formulation in intensive units, it has been mentioned above that in
the case of certainty this yields some nice properties. How far can analogous results be
obtained in the stochastic case, with the ‘“intensive’ equation of accumulation written
as an s.d.e? I offer only a few informal remarks, without proof

(i) If the 7 are processes with stationary independent increments (p.sii ) and 2
is the ‘internal history’ of these processes8, intuition suggests (and it should not be
hard to prove)} that an optimal plan, if one exists, may be generated by specifying
consumption as a (time and state invariant) tunction of capital only, asin (17) In this

case the equation of accumulation (28) appears in the form

7 Tt is worth noting that, in the simple model considered here, the possibility of
transforming from s.d.e. to corresponding random o.d e. formulations extends to
equations driven by general (not necessarily continuous) semimartingales, unlike the
situations usually considered in the literature on such transformations, see [Do] and
[Su], also [Li] for some 1ecent references. Moreover we may identify solutions of sd e s
pathwise (up to null sets) with solutions of corresponding o.d e s, which simplifies
discussion of the existence of solutions

8 More precisely, the smallest filtration making the processes optional (and possessing
the properties specified in Chapter 3).

2.12




2(wT) = 2o + [_{Alz(wt] — ffa(wt]}dt + x(w,T), - (2.41)
which agrees pathwise with (18).

(i) In case the processes 7 are independent Brownian motions with drift, it is
shown in [F5—6] that, if an optimal plan is generated by a consumption function H(z)
asin (2 17) and certain restrictions on parameter values are satisfied, then the local
local martingale condition for optimality may be replaced by the requirement that H
satisfy a certain second order o.d . of the form H" = F(H, H’, z), while the
transversality condition may be 1eplaced by certain boundary conditions for H’(z)
and #(z) = exp{H(z)—z} as |[z]| - *co In case the 7 are general psii, preliminary
work suggests that the o.d.e. is to be replaced by a suitable integro-differential
equation (and of course there are different restrictions on parameters).

(iii) If the n are Brownian motions with drift and 2 is the internal history, then
standard methods for controlled one-dimensional Markov processes show that, for
suitable parameter values, the distributions of the random variables k(w,t) and
¢(w;t)/k(w,t) in an optimal plan generated by a control of the form (17) converge
weakly to steady state (i.e. invariant) distributions, see [Ma] Results of this type have
been obtained for a related model by Merton [Mer], and I have derived detailed results
for the BNC model in as yet unpublished work. The question whether there is
convergence to a steady state distribution for some discontinuous p.s i.i appears to be
open; discussion of relevant techniques may be found in [GM] Ch.7, [EK] Ch 4 9

The properties discussed here depend heavily on our assumptions about the
functions ¢ and U and on the 5 being p sii. If these assumptions are varied, there is
of course a large class of (Markov) models for which an optimal control can be
obtained in closed-loop form, say in ¢ = H{in k,t), but the advantages of an intensive
rather than a standardised formulation tend to be lost On the other hand, the

conditions for optimality obtained via the Standard Model are very robust.
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3. THE STANDARD MODEL, CONDITIONS FOR OPTIMALITY AND SUFFICIENCY THEOREM

(A) The Standard Model

This Chapter gives a more detailed specification of the SM, followed by definitions
needed for statements of conditions for optimality, statement and proof of the main
Sufficiency Theorem, and a review of the forms of the local martingale and trans-
versality conditions which correspond to alternative choices of stopping times.

The definitions and assumptions in this Chapter are maintained throughout the
paper unless otherwise stated. Let = [0,00) be the time domain with Borel sets F
and Lebesgue measure [ and let (Q,.% P) be a complete probability space with a
filtration ™A = (Jgt, te ) satisfying the ‘usual conditions’ of right continuity and
completeness, where 4= A while 4 o= A, 18 generated by the P—null sets.
We define the products & = Q@ x7, Y= A& x @, m=P x [ (not necessarily
completed) and write 5 = (w,t), dm(s) = dP(w)dt, dt = dl(t). Statements which
hold apart from null sets of J 0, o are qualified by ‘a.a.t.’, ‘a.s’, ‘a.e.’ respectively,
the measures considered being [, P, m or equivalent measures In the product space
o we consider the o—algebras %, ¢ , # of progressive, optional and predictable sets,
as well as the corresponding classes of processes.! All processes considered are

assumed, or may easily be shown to be, at least progressively measurable; (however,

for the sufficiency proof in this Chapter it is enough if all processes are adapted to 2L ).2

I 7% comprises (w,t) sets H such that, for each Te 7, the subset H n {0x[0,T]} belongs
to A&, x By O1is generated by intervals of the form [o,7[ where o, 7 are stopping

times, or equivalently by the right continuous, adapted processes. .# is generated by
intervals Jo,7] and sets A x {0} with A€ .#,, or equivalently by the left continuous,
adapted processes. We have 4xFJ &I 72 2.

2 The following conventions apply unless we state or imply otherwise. The terms
positive, negative, increasing, decreasing have their strict meaning throughout. The
symbols T,] and ft,{ denote weak and strict monotonicity respectively. Measures
are by definition non-negative. Random variables are finite, or occasionally extended,
real—valued, .£—measurable functions. For a random variable ¢, ¢ > 0 means

((w) >0 as and ¢ >0 means ((w)> 0 as., while for a (progressive) process £ > 0
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On the measurable space ( ¢/, ) we consider, in addition to m, a finite
measure x with the same null sets, defined by

ds) = dp(w,t) = a(w,t)dP(w)dt = g(s)dm(s) (31)
where q is a positive, finite, ##—measurable and m-integrable function, i e.
Ejg q(w,t)dt <oo; pis called the impatience measure, q the impatience density It
will be convenient {except occasionally in examples) to normalise q so that xis a
probability measure on ( ¢#,#) We denote by L= 21( % ,u) the space of (classes
of similar) o —measurable, y—integrable processes ¢ = £(s) = £&(w,t) on o with the
norm [|¢|dpg. When the domain is not specified, y—integrals are taken over o

The production function = 1(x; wt) = {(x; s) is defined on [0,00] x ¢ and
takes values in [—co,00].2 Considered as a function of all its variables, f is supposed to
be ﬂ[ 03] x # measurable. For fixed s, it is assumed that f is continuous and

(weakly) concave in X and satisfies f(0; 5) = 0;4 in general, no continuity is assumed

means £(s) > 0ae and £>0 means £(5) > 0 ae; however, if a process is specified
possibly after changes on a null set) to be continuous on the right with left limits
corlol), then € > 0 is taken to mean £(t) > 0 and £(t—) > 0 on J as. Forany
process &, we set £(0—) = £(0). Finite vartation means finite variation on compacts.
Non-decreasing and finite vanation processes satisfy £(0) = 0 unless otherwise stated.
For te 7, Et means E(-/.4.); similarly Ev, Ev- for a stopping time ». Martingales
(true or local}), non-decreasing and finite variation processes are finite on J and are
taken (subject to context) to be corlol; similarly for supermartingales ¢ with t = E£(t)
right continuous. Finally, if a given set = of processes is specified, we identify
elements £;and ¢ which are indistinguishable, i.e which satisfy &i(wt) = €a(w,t)
for all t€ 7 as, and write &3 = £ We call two processes similar if they differ only on
an m—null set of #, and sometimes identify with one another processes which satisfy a
given set of conditions and are similar; see also Chapter 4, fn.1 and Chapter 6. Note
that similarity as defined here is weaker than the relation ‘is a modification of’ often
considered in martingale theory, see [DM] IV.6. Explicitly, progiessive processes £,
and ¢, are modifications of one another iff £{w,t) = &x(w,t) a8 for eacht € I,
whereas they are similar iff £1{w,t) = £a(w,t) a.s. for a a.t, or equivalently for aa t, as.

3 Note the use of small capitals These are often (but not exclusively) used to
distinguish capital, consumption etc considered as real variables g, ¢ etc fiom
corresponding functions of time or processes k, c etc

¢ The assumption f(0; w,t) = 0 may be replaced by f(0; w,t) > 0 to allow for an
exogenous random income It is then necessary to replace (3) by (k) = [f{(x)—f(0)]/x
and to make consequential changes elsewhere Also, if the property that an optimum
has positive capital is to stand it should be assumed that, for every TeJ, there exists a
positive random variable h, =h,(w) such that
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with respect to t. The marginal product function £'(x; 5), {* = 0f/ K, is also defined
on [0,c0]x o with valuesin [—co,c0] and is contiruous and non—increasing in ¥ for
each s, with /(0) and {’(co) defined as one—sided limits; (however, continuity of {/
is not needed for the Sufficiency Theorem or in Chapters 4 and 9). Clearly {’ inherits
the conditions of measurability assumed for f Except in Chapter 10 it is assumed
that, for each xe[0,00],

[l (& wt)|dt < 0o for each (w,1)€ o, .(32)
and since f’! in K it is enough if (8) holds for kK = 0 and X = co; these conditions
operate as generalised Lipschitz conditions for the o d e (1.1) — see Chapter 4(A) —
and models in which they all hold will accordingly be called Lip models. Now let

ox; wt) = {(K; wit)/k, 0 <K< 00, (wh)ees, ..{3.3)
denote the average product function; since f is concave, | in X and we may define

2(0) and ?(co) as one—sided limits. Also, for 0 < & € oo, write

DE; wt) = [7 A& wt)]dt, (w1)ees (3 3a)
We have, for each {(w,t),
(0) = (0) > (k) > £/(K) > £ (00) = (c0); (39)

thus, under (2), the integrals (3a) are defined and finite and 1/(0) is finite with
f7/o1T1 as k10

Next, the felicity (or instent utility) function u = u(c; w,t) = u(c; 5) is defined
on [0,00] x o and takes values in [—oco,c0] Considered as a function of all its

variables, it is lﬁ’[ k 7 measurable For fixed s, u is continuous, concave and
]

PT[f(0;t) = 0 for T<t< T+h] > 0,28
(Cf. [F4] Section 2B and App.B. on the case of linear production with an exogenous
income ) The theory of Chapters 3—9 then extends with more or less routine changes;
in particular T replaces oo as the upper limit of integration in (4.9) and the inequality
is required to hold for all TeZ, a s. On the other hand, allowing 1{0;t) < 0, asin the
case of reparations or debt repayments, creates more serious problems. These variants
will not be pursued here.
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increasing in ¢. As usual, the function u may be chosen arbitrarily from a collection of
functions differing only as to scale and origin. The marginal felicity function u’(c,s),
u’ = gu/do, is defined on [0,00] x ¢ with values in [0,00], and for each s is
continuous and non—increasing in ¢ with u’(0) = co; (however, diminishing marginal
felicity is not needed for the Sufficiency Theorem, nor is marginal felicity as such
needed in Chapters 4 and 9).

We now state the fundamental definitions concerning plans Let the initial
capital Ky > 0 be given. A consumption plan, or c—plan, is a process ¢ = c¢{w,t)
which is progressive, a.e. non—negative, a.s. locally integrable (i e. Lebesgue integrable
on finite intervals of 7), and such that the o.d e. (1.1) with initial conditions
k(w,0) = K, has a progressive, a.s. unique and non—negative solution k = k{w,t) on
= 0 x 7. More explicitly, it is required that a s. the o.d e. (1.1) possesses a unique
local solution k(w, ) through (K,,0) which can be uniquely continued to the whole of
g, the solution remaining finite and non—negative, while k(,.) is progressive. The
process k is called the cepital plan, or k—plan, corresponding to ¢, and the pair (c k) is
simply a plan. The process F = Fy defined by

Fi (s) = T (wt) = flk(wt); wit] 5= (wt)ee’ .. {35)
is the production plan In the same way, ¢ defines a felicity plan U = Uc by

U (s) = U (wt) = ue(wt); wt] 5= (wt)es ..(3.6)
Also associated with (c,k) are the processes

t [k(wt); wt], fk(wt); wt], u’[c{wt); wtl, (3.6a)
called the marginal product, average product and marginal felicity plans.5 These
definitions need some justification as regards existence, uniqueness and measurability;

this is postponed to Chapter 4(A).

5 We often abridge the notation in various ways, e g. omitting w or t or both, writing
f(k,) or simply f(k) rather than f[k,;t], similazly £’ (k,), o(k;), (k) or even 0, when k is

given, also u(c,) or u(c) rather than u[ct;t], similarly u’(c,) or u’(c).
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We denote by ¥ and & the set of all ¢ and k plans respectively and by
I = #xJ% the set of plans (¢,k) Any one of these sets may be regarded as the
domain of the welfare functional @ or @ defined by (1 2), and it is always assumed, or
inferred from additional conditions, that for each plan the positive part of the integral
(1.2) is finite, so that the functional is well defined It is further assumed or inferred
that the supremum ¢* of the functional is finite. Corresponding elements c¢* and k* are
called optimal if o(c*) = ®(k*) = ¢*, and the problem of optimal accumulation is to
choose an optimal pair (c*k*) if one exists.

The main differences between this model and the model of saving considered in
[F1] are the introduction of the concave production function f and (less important) the
definition of q as a process and the slightly stronger assumption of product
measurability for u. Also, we shall consider here only the case of an infinite horizon,
the changes needed to allow for a random horizon being much the same as in the

saving model.6

6 The equation of accumulation and the welfare functional considered in [F1] (1.2-6)
and (1.8) may be obtained from the present specification of the Standard Model in (at
least) two ways. One way is to set =0 and to replace c, k, K, in the present
notation by g, K~G, K in the notation of [F1] The compound interest process R
defined in (3.7) will then also vanish, and the symbols g, G and k = J in the present
notation — see (3 8—9) — will have the same meaning as g, G and k-exp(—x) in [F1].
The alternative is to 1eplace f(x; w,t) formally in (1 1) by a linear expression
K-r{wt) = K-dR(w,t)/dt where R is a given process, so that the equation becomes

_ k(t) = k(t)x(t) - c(t) (1)
which may be rewritten as
Ko—K(T)e ) = 2 e(1)e Mgy (i)

Tf R is not sample differentiable, then only (ii) is regarded as properly defined and (i) is
just shorthand With this formulation, the symbols ¢, k, g, G have the same meaning
here as in [F1], while R, Ky, J and j here mean the same as x, K, k-exp(—x) and
d(k-exp(-=x))/dt in [F1]. Formulae such as (3.11-12) remain valid if one sets

f(k) — kf’ (k) = 0, yielding Ko—J(T) = G(T) asin [F1]. When reference is made
here to ‘linear production’ or ‘the saving model’ we shall generally have the second
procedure in mind; this avoids pedantic distinctions between a linear version of the
present model and the model of saving considered in [F1]
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(B) Conditions for Optimality and Sufficiency Theorem.

We now introduce some concepts and formulae which are needed throughout the
discussion of the conditions for optimality, then state the conditions and prove their
sufficiency Let (c*k*) be a distinguished plan, and define the corresponding star
marginal product plan 1 and star marginal log—return plan R by

(wt) = ¥/ [k wt); wil, R(w,T)= [ 1(wt)ds; (3.7)
note that R is a s. finite on J by virtue of (2) (Cf (1.3—4); we do not now assume a
priori that ¢* > 0 and k* > 0, but of course only such a plan can be optimal ) We use
R to express any given plan (¢ k) in discounted units; explicitly, we write

Hw,T) = k(wT)e MOD, (1) = dI/dt = [k(t)—r(Wk®))e X, (38)

G(uT) = [T (wt)e ™ @ta,  gut) = ac/ar = o), (3.9)
and refer to J, j, g, G as the discounted capital, investment, consumption and
cumulative consumption plans. In particular, we define the discounted plans
J*, i*, g*, G* corresponding to k* and c*, as well as the shadow price process

y(,T) = ' [*(w,T); wTla(w,T)e 47 - (310)
all these processes are progressive — see Chapter 4(A) Obviously y is positive and
finite if ¢* > 0.

Using (8—9) and abridging the notation, the equation k = f(k) — ¢ becomes

j, =, + k) 8 ()6 () = g + M- 3y, (311)
the second equality follows trivially from 9(x) = f(x)/k when k. >0 and is still true
if k, =0 and 9(0) = £/(0). On integrating, one has

Kol = G, — k) Kl Var = o - 12 @ Wpraae. (312)

Thus a progressive process g defines a plan iff it is a e non—negative, a s locally inte-
grable, and such that the o.d.e. (11) with initial condition J(0) = Ko — or equi-

valently the integral equation (12) — has a progressive, a s. unique and non—negative

solution J
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Given (c*k*) and another plan (c,k), we often write (omitting w and t)
bc =c—c* fu=u(c)—u(c*); bu< de-u’(c*) = dc-u'*, ..(3.13)
&k =k —k*; & = f(k) — {k*); bc+ &k = & < &k -1/ (k*) = k-1, .(314)

the inequalities being due to the concavity of u and f. Similarly, we write dg, éj etc

and obtain
§j = —bg + [éf—1- k] * < —bg . (315)
g Tree  o1Ra o
81, =—6G, + | [f—r-skle™ dt < 4G, . (3.16)
fu-q < e-u'*q = bg-y & —bj-y - (317)
—c*u'*q = —g*y < dg-y < —bj-y ~(3.18)

where (15—16) are derived from (8—9) with (14), and (17—18) are derived from
(9—10) with (13) and (15).

We turn now to some fundamental properties and definitions concerning the
‘star’ plan. Let j= j*, g = g* etc.in (11-12) and note that (&) > kf’/(k) for all K
because f is concave and f(0) = 0; thus

Flwt) > g¥(wt), Ke—I*wT) < G¥w,T). ..(3.19)
Obviously the sample functions of G* are non—decreasing, but those of Ky —J* arein
general not monotonic or even (as far as I can see) of bounded variation on .7, nor
need they converge as T — oc. However, one can define a non—decreasing depletion
process [, which “ills in the troughs’ of Ky —J¥, by

MNw,T) = sup{Ko—J*(w,t); t<T}, (w,T)e . (3 20)
cleazly I' is adapted and absolutely continuous, hence progressive, and 0T < K,
since J*> 0 and J¥(0) = K,. Since G* and T' are non-decreasing, the random
variables G*(oc) and I'(co) exist as a.s. limits. Typical sample functions of J*, G¥,

Ko—J* and T' are depicted in Figure 1.
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Associated with (c* k*) are three families of stopping times relative to 2. The
consumption times T; are defined for 1> 0 by

7; = T(wi) = inf{te T+ G*(w,t)>i} (3.21)
with 7(wi) = oo in case G*(w,00)<i. Clearly 7; > 0as fori> 0, and

G*w,m(wi)) =1 if 0<i< G*(w,00). . (322)

The depletion times v, are defined for 0 <i < K¢ by

v, = Y(wji) = inf{te 7 Ko—T*(wt) > i} = inf{te 7" T(w,t) > i}, . (323)
with »(w,i) = oo in case J*(wt) > Ko forallt,ie in case I'(w,00) <i. Using the

definitions (in particular the continuity) of J* and T" we have, a.s,,

TH(u) = Ko~ (1) = Ko—i if v < o0, (324)
v, = oo forsome i < Ko iff inf,  oJ¥(t) >0, ie iff T(o0) <Ko, . (325)
v, Too when i TKo iff J*(t) >0 forall teJ. .(3.26)

Obviously (19) implies T, <Y as, cf. Figure 1. Note that the times T and v, are
predictable because G* and I' are absolutely continuous.

The price fimes go(i) and p; are defined by

p,=iApY, ;= p(wi) = inf{te 7 y(w;t) > i}, .(3.27)
with go(i) =o0 if y(t) <i forallt The economic meaning of p(i) is clear, while the
upper bound is introduced for technical reasons which will become apparent in
Chapter 7. Note that p, > 0 when i > y(0) Also, for fixed w, p(w,i) T oo when
i1 oo provided that y{w,t) is bounded on compacts of J; (this condition is satisfied
a s. if y is a right continuous supermartingale)

The families (), { Vi) and (pi) may be regarded as processes, and as such are
easily seen to be adapted, with sample functions which are a.s. non—decreasing and
right continuous, (provided, in the case of p, that y is right continuous); thus the

processes define time changes relative to 2. (See Chapters 1 and 68 for further

details )
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CONDITIONS FOR OPTIMALITY: GENERAL FORM.
The following condition are sufficient for (¢*,k*) to be optimal:
(a)  «p(c*)is finite . (328)
and there exists a non—decreasing sequence (xn) of stopping times, with X, >0 for

n > some n,, such that

(b) x,(w)Tooas whennt oo, .(8.29)
(c)  for each , the stopped process y™(wt) = yw,tAx, (w)]

is a uniformly integrable martingale, - (3.30)
(@) tim B Hurx, (@) <oo}ylwx ()T wx (@] } = O, (331)
()  y(woo)=0 if x (w)=o0 for somen,as. .(3.32)

If the x  are finite, (d) and (e) may be replaced by the single condition
(d)  lim B{ylwx, (@) wx, (W]} = 0 (333)
The preceding conditions are also necessary for optimality if (a) is replaced by

(a’) thereis an o € (0,1) such that p(c*~ac*) > —oo for 0 < al a {3.34)

Note that, since we assume throughout that ¢ satisfies a finite supremum condition,
(a) is equivalent to @(c*) > —co. The reason for considering (a’) will appear in
Chapter 5, see eq (5.6). We shall call (a) or (a’), depending on the context, the finite
welfare (FW) condition, distinguishing (a) as the weak, (a’) as the strong FW
condition if necessary; but sometimes we shall take finite welfare as read. Conditions
(b) and (c) together assert that y is a (right continuous) local martingale reduced by
the sequence ( Xg ) and are together called the (local) martingale condition, while (d)
and (e), or (d”), comprise the transversality condition (at infinity). Note that (b) and
(c) requite y to be finite and imply the existence of the finite limiting variable y(co) by
martingale convergence. The conditions also imply c* > 0 ae, since c*(t) =0
would imply y(t) = oo, contrary to the martingale property; hence also k* > 0

on J as. toensure feasibility Also they imply that y(t) >0 on Jas,sincea
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non—negative local martingale cannot hit zero at a finite time p without remaining at
zero thereafter, [DM] VI.17, which by (10) would imply c¢*(t) = 00 for t > p,

contrary to feasibility Further, (c) implies Ey( Xn) = y(0) for each n.

SUFFICIENCY THEOREM.

The Conditions (28—32) are sufficient for optimality

Proor. Let (c*k*) satisfy the Conditions. We have to show that, for any plan
(¢,k), we have y(c) — ¢(c*) = [ bu-q-dm < 0 It may be assumed that ¢{c) > —o0,
and then éfu-q is m—integrable. For brevity, write
v =y0(t) =y(tAx,) and i} =I{(wt): t < xu )},
and note that for each t these variables are £ —measurable because the y,, are
stopping times. We have

E [X0 6u, q, dt < —BfX"y, dj, dt = —E [X° yT 0, dt
= —E [Py} 8 it dt = ~E [§ [B%(x,)] 6}, 1F d
=2 B{[Ely(x,)] i 53t = —Jg B{By(x) &y ifl}dt = —[7 E{y(xa) &; 1}dt
= —E [X® y(x,) 6i(s) dt
= —B{T{xy<oo}y(xa)a" 8 dt} = ~E{I{xy<o0} y(xa) 81(x,)}

< E{I{xp<oo} y(xn) I*(xa)} . (335)
The first inequality follows from (17), which together with the fact that fu-q is

m—integrable also justifies the interchanges in the order of integration in what follows.
The next equality expresses the fact that y, =y} for t < x,, and the third step is
just a change of notation. The next equality uses the fact that y§ is a uniformly inte-
grable martingale by (30), so that y} = E* ; = Eby(x,); we pass to the sixth term by
Fubini’s Theorem, then to the seventh by virtue of the fact that ¢j, and i} are

/£ ~measurable, then to the eighth by EE' = E. To pass to the ninth term, we apply
Fubini again and use the definition of if. Note that, in this term, the values of y(x,)

with x, = oo, which by (32) must equal zero, multiply only finite numbers In the tenth
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and eleventh terms we accordingly restrict the expectation to {w: x,(w)<oo} and then
replace the time integral of 8j on [0,)x,) by 6&J(x,) Since
—83(x,) = F*(xn) —I(xn) € T*(x,), thelast inequality follows. By (31), the final
expression in (35) tends to zero with n, whereas the first term in the first line tends to
wlc) — p(c*) |l
REMARK I. The fact that y7 in the third term of (35) can be replaced by y(x,) in the
ninth is a variant of a standard 1esult on integration of a martingale with respect to a
non-decreasing function, [El] 7.16; a direct proof has been given to make the argument
self—contained and to allow for the possibility that J*(co) and J(oco) do not exist as a s
limits, or, if they exist, that 6J(co) may have the form oo —co If the x, ate a.s.
finite, or if (as in the case of linear production) J* and J are non-increasing and hence
bounded on 7 so that 6J is of finite variation on [0,00], the proof can be shortened
Indeed, we may in these cases write the ninth term in (35) as
—E{y(x, ) (x)—I*(x,])}, and since this is < E{y(x,)d*(x,)} we can replace
Conditions (d—e) in the set of sufficient conditions by (d’)
S

To conclude this Chapter, we consider alternative forms of the Conditions for
Optimality which correspond to particular choices of the stopping times, namely as
price, depletion or clock times These allow certain simplifications of statements and
proofs If, as is often the case in applications, one is interested only in sufficiency, one
can choose any of these times, and it may be convenient to make stronger assumptions
than those required for the Sufficiency Theorem; (see the discussion of clock times
below). As to necessity, it will be shown later that, if (c*k*) is optimal (and satisfies
(a’) ), the Conditions (b—c) and (d’) can be satisfied by choosing a sequence of price
times (Chapter 7), while (b—e) can be satisfied by choosing a sequence of depletion
times (Chapter 8) A sequence of clock times may be chosen if the optimum satisfies

additional conditions. Some further details of this programme follow.
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CONDITIONS IN ‘PRICE TIME’ FORM.
Consider a sequence of the form Xy =Pp 1= i(n) T oo as n T oo, where the p; ate
price times defined as in (27). These times are bounded, so the sufficient conditions
are (a—c) and (d’). The necessity assertion to be proved is that, for an optimal plan
(c*,k*) satisfying (a’), the process y is a local martingale reduced by some (indeed by
any) sequence of price times (fp;) with i T oo, and further that E{y(p:J*(g;)} — 0
The proof will be completed in Chapter 7.

CONDITIONS IN ‘DEPLETION TIME’ FORM.

Suppose now that the times ( xn) are specified to be of the form Xp =V i= i(n) T Kg
as n T oo, where the v, are depletion times defined as in (23); for example, X, may be
the sequence

Xy =¥ 1=Ko(l—), n=01,. - (3.36)
Let us for the moment denote the resulting Conditions (b—e) by (b"—e"). Note that
(25) shows that (b") reduces to J*(t) > 0 on Jas, or equivalently k*(t) > 0 on
J as. Now (b") and (c") state that y is a positive local martingale reduced by (v;), so
that Ey(v;) = y(0) for cachi. Given (b") and (c"), we consider alternative forms of
the transversality condition. According to (25), (e) is equivalent to the assertion

(e]) y(oo) =0 if inf,  oJ*(t) >0, ie if I'(c0) < Ko, (3.37)
the weakest condition to be expected on economic grounds; this may be rewritten as

() y(oo)KoT(o0)] =0 as - (3.38)
Using (24), it follows from this equation and the preceding remarks that

E{I{y;<oo}y(v)T*(1)} = (Ko—i)E{[{;<o0o}y(1)}

= (Ko)Ey(s) = (Kod)y,, (339)
which tends to zero when i1 Ko, n 1 oo This shows that (d") follows from (") and
so can be discarded. Again, since y(z/i)[KD—I‘(ui)] vanishes if v, = oo and equals

y(»)3*(v;) otherwise, it follows from (38—39) that
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(e3) lim E{y(y)[K—T(#)]} =0 -(3.40)
iTKg

(We cannot replace Ko— I' by J* in this relation, because J*(oo) might be undefined,
or defined but greater than K,—I'(co), possibly infinite.) Finally, (40) implies (38);
indeed, the limiting variables y(co) and KyT'(oo) are defined, and it suffices to con-
sider any sequence i(n) | K, and apply Fatow’s Lemma. Consequently all three forms
of (€") are equivalent in the presence of (8") and (c"). This result may be claimed as a
significant advantage of working with conditions involving depletion times.

To sum up, the sufficient conditions are (a), J* > 0, (¢") and any one of the
forms of (e"). It is easily seen that, if these conditions are satisfied for some sequence
vi(ny 1 00 with i(n) T Ko, then they are satisfied for any such sequence. The
necessity assertion remaining to be proved is that, for an optimal plan (c* k*) satisfying
(a’}, y is a local martingale reduced by some (indeed by any) sequence of depletion
times (v;) with i T K, and that (") holds, say that y(00)[Ko—T*(cc)] = 0 a.s. The
proot will be completed in Chapter 8.

CONDITIONS IN CLOCK TIME FORM.

Consider the Conditions for Optimality with stopping times of the form x =1 for
some sequence T | oo with T €5 In this case, (c) says that y is a (true)
martingale and (d’) becomes

lim_E{y( )J*(z )} = 0. .(341)
In statements of sufficient conditions, it is sometimes convenient to teplace (41) by the
stronger condition

lim, | E{y(T)J*(1)} = 0 . (3.42)
cf (1.10); (41) does not imply (42) since (41) might hold for some sequences but not
for others Another condition which can replace (41) in a set of sufficient conditions is

jg’ E{y(T)J*(T)}dT < o0. - (3.43)
Note that (43) does not imply (42), because convergence of an integral jg’ f(t)dt with
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> 0 does not imply f(t) - 0 as t - oo, see [Har] Section 185. On the other hand,
(43) does imply (41), because convergence of the integral implies that f(t) is not
bounded away from zero for large t
Turning to necessary conditions, it seems that in general optimality implies neither
that y is a true martingale nor that transversality holds in any of the forms (41—43);
cf. Chapter 1, in.3 Of course, the results already stated imply that y is always a
positive local martingale, and then it is a standard result that y is a true martingale
iff Ey(t) is constant for 0 <t < 00, in particular if y is bounded on each interval
[0,T]. 1t can be shown that, if y is a true martingale, then transversality in the form
(42) is a necessary condition; this assertion, which apparently is not trivial, follows
from arguments presented in Chapter 7 — sce Remark II at the end of that Chapter.
Further conditions for y to be a martingale can be obtained from the Conditions
in depletion time. Given the necessity of the latter conditions, suppose that for each
clock time T € 9 there is a depletion time » such that T € »(w) a.s. Then it follows
from the fact that y is reduced by any sequence of depletion times incieasing a s.
to co that y is also reduced by a sequence Tn T oo of clock times and so is a true
martingale. For example, this situation obtains if there is a deterministic function J-
(which may w.lo g be taken to be non—increasing and right continuous) satisfying
J*(w,T)>J(T) >0 on J,as,; .. (3 44)
see Chapter 8, Remark IV for details, also Figure 4.
In particular, note that by (8), (1.1) and (4) we have (in abridged notation)
P*IIE = k*/k* —1 = f{k*)/k* —c*/k* —1 > —*/k¥,
hence (omitting the stars from now on)
J(wT) > Korexp{—[ [c(wt)/k(wt}]dt} (3.45)
Thus, if the ‘propensity to consume’ process c/k is bounded, a.s on 7, by a constant
f* < o0, we may take

J{T) = K,-exp{—8'T} . (3 46)
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and conclude that y is a true martingale Then (42) also holds. Clearly the
conditions stated are not the weakest possible, but they are the most useful in
applications.

The case of the SNC model considered in Chapter 2 deserves special mention.
Consider first a set of sufficient conditions, with y assumed to be a true martingale
and c* and k* always positive. Omitting the stars and using (2.33), the finite welfare
condition (28) may be written for b# 1 as

1© Bfe(n)' 2" ar = 1 B{e()/k@E@n) e M < 0 (347)
and this coincides with the strong finite welfare condition (34). Next, we have
y(1)JI(T1) = E(T)E(T)_beV(T) according to (2 40), so that (43) reads

1® B{k(ne() e Mydr < o (3.48)
The integral appearing here was called the transversality integral in [F5], and its
convergence implies a transversality condition of the form.

lim_ E{K(ra)e(1a) ")} = 0 . (3.49)
for some sequence T,, T oo, cf (43).7 Condition (48) is convenient for proving suffic-
iency, not least because of its connection with (47). Explicitly, for b # 1, if the process

e(wt)/k(w,t) = c(w)/k{wt)
is bounded above (on 7, a.s ) by a constant #* < oo, then (48) implies (47); and if
the process is bounded below by some constant §- > 0, then (47) implies (48). Thus it
is sufficient for optimality if y is a martingale and either (47) holds with

t/k > 6-> 0, or(48) holds with ¢/k < 6* < co 8

7 The statement of the Corollary to Theorem 1 of [F5], p 1960, contains the incorrect
assertion that (48) implies a condition of the form

lim__ E{k(n)e(n) e} = 0
To correct the argument in [F5], it is enough to prove Theorem 1 with the trans-
versality condition in the form (3.49) above Specifically, it is enough to insert the
words “for some sequence T, T 0o’ before (iii) in the statement of the Theorem and to

replace T by Ty, in the last line of the proof.
8 The coincidence of the ordinary and strong finite welfare conditions also holds for

3.15




We now restrict attention to the Brownian version of the model. In [F5—6] we
constructed optimal plans determined by logarithmic consumption functions of the
form T/R = @(inK), cf. (2.17) above, the function § being of class C! on ¥ with 0
and & satisfying certain finite boundary conditions as In X - = co. The boundary
conditions were of two types, called Type 1 and Type 0, defined for different ranges of
parameter values, with # bounded away from zero for Type 1 and ¢ tending to zero
at either oo or —co for Type 0. Obviously @is bounded on ® in both cases, so that the
process ¢(w,t)/k(w,t) which the function determines is also bounded. For both Types
(including the case b = 1) the process y is a martingale by construction and the proofs
of sufficiency involve proofs that the tzansversality integral converges

The new point to be made here — which for the present is advanced as a
conjecture — relates to nmecessity Assume that 2 is the smallest filtration for which the
vector Brownian motion is optional, {and, as usual, that (2.7) is satisfied) It appears
that every optimal plan in the BNC model can be generated by an invariant
log—consumption function of the form (2 17), and further that this function must satisfy
one of the types of boundary condition specfied in [F5—6] In view of the uniqueness
(up to null sets) of optimal plans in this model, and the constructive procedure
described in [F5-6], this amounts to the conjecture that optimal plans (as defined)
exist only for the ranges of parameter values considered in these papers Of course,
since the function #(in ) is in all these cases bounded by some constant, it follows
from the argument leading to (46) that y is always a martingale; however, this also
results from the construction.

ReMARK IL If the finite supremum assumption is dropped, the question arises as to the

appropriate definition in the present setting of ‘overtaking’ criteria. New

b=1 if J"('; {E ev(T)}dT < oo Then it is sufficient for optimality if, in addition to
finite welfare, y is a martingale and c*/k* > #.> 0.
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possibilities suggest themselves, once it is accepted that economic time is not
necessarily to be measured by the clock. For example, given a sequence (or moie gene-
rally a family) of stopping times ( xn) T co as, apreordering of plans might be
defined by the relation ‘c* overtakes ¢ along ( xn)’ iff the integrals appearing in the
initial term of (35) are defined for all n and their limit is non—positive. Then if
(c*,k*) is a plan satisfying ¢(c*) > —c0 and Conditions (b)—(e), the proof of
sufficiency (with only minor changes) shows that this plan is ‘optimal relative to (x,)’
in the sense that it overtakes all other plans along ( Xn). If the X, are clock times, the
overtaking criterion is essentially the usual one, applied to expected utility However,
if the Xy are (say) the depletion times associated with the ‘star’ plan, then each plan
chosen as ‘star’ defines its own preordering — thus giving rise a priori to the possibility
that one plan may overtake another according to the one’s preordering, while the other
overtakes the one according to the other’s preordering These ideas will not be pursued

here, but they point to new difficulties with the overtaking approach.
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4. FEASIBLE PLAXNS

This Chapter deals with some technicalities concerning the definition of plans in the
Standard Model which were omitted from Chapter 3, and derives some properties of
feasible sets which will be needed later Readers willing to accept the Feasibility
Lemma stated at the end of the chapter can skip the rest without loss of continuity.
(A) Justification of Definitions.
Referring to the definitions of ¢ and k plans given in Chapter 3(A), it should be
checked that the assumptions of the model imply the existence, uniqueness and
progiessive measurability of the required solutions of (1.1), and further that the
‘indirect’ functions of s = (w;t) such as Fy (s) = fk(s);s], U (s) = u[c(s);3], 1'[k(s);4],
o[k(s);sl, u’lc(s);s] derived from a given plan (c,k) are progressive — see (3.5—6a), also
(3 7—10) for functions derived from (c* k*).

FEzistence and Uniqueness of Solutions. We first consider (1.1) with w fixed,
regarding c(t) as a given non—negative locally integrable function. In order to be able
to speak of negative solutions, it is convenient to extend (1.1) — sometimes without
special mention — by setting

f(k;t) = 0, K<0, ted . (41)
The right side of (1.1) is then defined for all zeal K and t € 7, and is continuous in K
for each t and measurable in t for each k. The Carathéodory Theorem, [CL]
pp 42—8, then shows that an absolutely continuous solution k(t) through a given
point (K,t) exists on some right neighbourhood of 1 if there is a rectangle

Q = [K K] x [t,15] withK) <K <K,
and a Lebesgue integrable function n(t) on [f,tz], such that

[f(x;t) —c(t)| <n(t) for (xt)eQ;

this solution can be continued to the boundary of Q. Further, the solution is unique if

there is an integrable function n(t) on [t,t,] such that
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[f(x";t) —f(x’;t)| € |®" —x’|n(t) for (x",t) and (x’,t)in Q
Note that we consider solutions of initial value problems and continuations only in the
forward direction of time

Under present assumptions, the concavity of f and £(0;t) = 0 imply that, for x> 0,

k' (00;t) —e(t) < f(x;t) —c(t) < xf’(0t), (42)
so that, for any real ¥ and K K <Ko,

—[x |- [ (00t) | —c(t) < H&5t) —cft) < [Kg|- [£(05t)] -(43)

The concavity of f and the extension (1) also yield

(k") — (23] < |£(0)] - [=" —x ], (44)

Since f/{0;t) and f’{o0,t) are locally integrable by (3 2), the local existence and
uniqueness follow. Further, a solution k(t) can be continued forward on [t,00)
because no explosion can occur at a finite time; this follows 1eadily from the inequal-
ities (2) together with (1) and the local integrability of £/ (0), £'(occ) and ¢. For brevity
we now confine attention to solutions satisfying the initial condition k(0) = K.
Progressive Measurability Tt remains to check that k and k regarded as
functions of the pair § = (w,t) define progressive processes, and further that the
‘indirect’ functions Fy, U, etc. derived from a given plan (c,k) are progressive. We
start with the latter point, taking F; as an example Recall that (e”,o%, u) isa
probability space, and the measurable (‘random?’) variables on this space are the
progressive processes. We may regard the function f(x;s) = {fK(5): K€[0,00]} asa
‘process on (o, , )’, i.e. a family of variables parameterised by K, and according
to the assumptions about f this ‘process’ is (x,5)—measurable with respect to
3[0 o0

]

if k(s) is a measurable variable with range in the parameter set [0,00], the function

ik 7% Tt follows from a Measurability Lemma for processes, [T.o] p.503, that,

F, (s) = {flk(s);s];5¢ o} has the same property. In other words, if k is a progressive
PIocess, 8o is Fk" The proofs for other ‘indirect’ functions on ¢ rely on similar

arguments, together with elementary properties of measurable functions We further
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note that, if k and hence Fk. are known to be progressive then, since ¢ is
progressive by assumption, this property extends to k by virtue of equation (1.1).

Turning to the progressive measurability of k, we recall that a process with
continuous sample paths is progressive iff it is adapted, [RW] Ch.II(73 9—10). Thus
the function k of (w,t) obtained by ‘collecting’ the solutions k{w,-) will be a
progressive process iff, for each t, k(-,t) is a random variable and is £ t—measurable.
Now the latter property can be inferred from the procedure used to prove the
Carathéodory Theorem if the approximations to the solution of (1.1) are constructed as
processes, i e simultaneously for all w. Rather than rewrite the whole proof for the
stochastic case, we shall use the fact that, for fixed w, a unique solution k{w,-)
through (K,,0) and defined on the whole of  is already known to exist In these
circumstances the approximating functions may be constructed on an arbitrary fixed
interval [0,7], and — as noted on p 45 of [CL] — they must converge at least pointwise
to the solution k(w,-) on this interval. To be explicit, we recall that, for the purpose
of constructing approximations, the o.d e (1 1) is replaced by the equivalent integral
equation

K(T) = Ko+ Jo {flk(t)it] —c(t)}dt, Tes - (45)
Adapting formula (1 5) of [C1] p 43, the approximations may be defined on [0,7],
simultaneously for all w, by

k(T) = Ko, 0<T< 7/ . (4 6a)

k(T) = Ko+ J

-7/ .
{f[kj(t);t] —c(t)}dt, r/j<T<T (4 6b)
0

Obviously k; = kl(w,T) is defined as a progressive process on [0,7], since it is the
constant K, For any fixed j> 1, (6a) defines k jas a constant on [0,7/j], and then
(6b) defines kj as a continuous function up to 27/j. Further, for each t < 7/j the
function of w defined by f[k‘j(t);t] = {[Ko;t] is 6 ,—measurable by the assumptions

about f, and c(t) has the same property; since t < 7/j < T < 27/j implies £, € £,
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it follows that the integral defining k j(T) is € —measurable for T < 27/j It follows
that k‘j is defined as a progressive process on [0,27/j] Now assume (inductive hypo-
thesis) that kj is so defined on [0,i7/j] for 0 <i < j Then (6b) defines kj as a
continuous function of t on (ir/], (i+1)7/j], knowledge of the integrand being required
only for t <ir/j Further, since k‘j(t) is 4 ,—measurable for t < ir/j, the Measur-
ability Lemma cited above shows that f[kj(t);t] has the same property; consequently
all these variables and the corresponding c(t) for t <ir/j are ¢ —measurable for
ir/j < T < (i+1)7/j, so that the integral defining k‘j(T) is also ¢, —measurable
Therefore, by induction, (6) defines k.j as a progressive process on [0,7] Since j — o0
implies kj(w,t) — k(w,t) on [0,7] for all w (making changes on a null set if need
be), it follows that k is also progressive on [0,7]. It then remains tolet 71 oo.!
(B) Properties of Feasible Sets.

Sometimes it is useful to rewrite (1.1) as an integral equation in another form. Given a
k—plan (or more genetally a progressive process k), we define the corresponding
average returns plan (process) by

Dk, T) = [ ok(wit); wtldt, weq, te, (4 7a)

extending the definition K0o(x) = f(K) to K < 0 if necessary; we also write

t A word should be added about the treatment of classes of similar progressive pro-
cesses. As stated in Chapter 3 fn 2, we sometimes identify with one another processes
which belong to the same class and satisfy a given set of conditions Thus we say that
a process ¢ satisfying conditions C has property Q if thereisa ¢’ satisfying C
and similar to ¢ which has Q Some care is needed in allowing for the implications of
the ‘given’ conditions C. In general —ie. in the absence of special restrictions — a
c—plan as defined above may be replaced by any similar process, and the same goes for
the processes denoted by dk/dt, Fi, U, g, jand y. On the other hand, two k—plans,
being by definition absolutely continuous, are similar iff their sample functions agree
on ,as., so that k—plans are actually classes of indistinguishable processes; the same

oes for G, J, T etc. Given the existence and uniqueness of progressive solutions of
%1‘1), k—classes correspond to c—classes Sometimes a particular choice of ¢ or k, or
one of the processes derived from them, is made, and then it is implicit that
corresponding choices are made for all other processes. This can imply further
restrictions: for example if y, once it has been shown to be a supermartingale, is
assumed to be right continuous, the choice of ¢ in its class is correspondingly limited;
cf the Remark in Chapter 6. All this is confusing, but will cause no confusion if

ignored.
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Dk;7,T) = D(k;T) — D(k; ), 0<7<T . (4.7b)
The integrals ©(k;T) are finite, cf (3.2—4), so that the o.d.e (1.1) with k(0) = K, is
equivalent to the integral equation

Ko — k(T)e 206T) = f7 o(yye=Plkit)gy (48)
It follows that, in the definition of a c-plan, the requirement that k(T) >0 on Jas.
may be 1eplaced by the condition

e PEtar K, as (49)
Explicitly, a c—plan may be defined as a non—negative, progressive, locally integrable
process such that there exists a progressive k which a s. satisfies (8) for all T €7 as
well as (9)
We now establish some basic properties of the feasible sets %, J# and I = #x .4

PROPERTY (i): 0 € %, therefore # is not empty
ProoF This follows immediately from (8)—(9) and the results on existence and
uniqueness of solutions ||

ProperTY (ii): If ¢ €% and c, is a progressive process such that 0 <cy < ¢
a.e,then c,€ %, 1 c. there exists ko such that (cqky)€ll; moreover 0 <k, (t) <ko(t)
on J as.
Proor. We may assume ¢y 2 Cq everywhere. Obviously Co 18 locally integrable, so
that ko(t) can be defined as the unique, progressive solution of the (extended)
cquation (1.1) through (K,,0); it is only necessary to check that ko, > k, If not, let
D = {w:31€7, k(t) > ky(t)} with PD >0, and consider a fixed w € D. Bearing in
mind that both k; and k, start at Ko, there must be some interval (v, T) with
ki(t) > ky(t) in the interval and ki() = ky(7) 20 since k; >0 From (7-8),

k(r) = k(1)e DT = T e iy PRaT gy, =1 (4.10)
Now T)(kQ; 7,1) 2 ’D(kl; 7,4) for te[r,T] since ?! with K; thus the left—hand side
of (10) is greater for i=2 than for i=1, while the right—hand side is at least as great

for i=1 asfor i=2 since ¢; > ¢, 2 0, a contradiction which proves the result ||
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ProPERTY (iii): The sets # and % are convex
ProOF Let (c*k*) and (ck) be plans, write &%= ac+(1—a)c¥,
k% = ak+(1—a)k*, c®=1(k%—k® for 0 < @< 1. By the concavity of {,

c® 2 af(k) + (1—a)f(k*) — [ok—(1—-a)k*] = &% > 0. L (411)
Thus c® and k% are both non—negative, hence define a plan since the remaining
conditions are certainly satisfied, and it follows that J is convex. Since 0< 60‘5 ca,
it follows from Property (i) that ¢% ¢ &, so that & also is convex ||

PROPERTY (iv): ¥ is closed under liminf,ie if (c ) is a sequence from ¥,

then ¢4 € %, where

m>n Cm(

>n ¢n $ ¢y and the c, are obviously progressive, it

¢x(w,t) = lim_ inf wt), (wt)e . . (412)
PROOF. Since 0< ¢ *inf
follows from Property (ii) that Eﬂ € ¢, and since En T cx we may as well replace ¢y
by En from the outset and assume c_(wt) T c«(w,t) a.e. Then Property (ii) implies
that k (wt)l pointwise. Let ky(wt) denote the limit process. Clearly ¢y and ks
are non—negative and progressive, and it remains to show that c4 is a.s. locally
integrable and ky is the solution of (1.1) corresponding to cy It is enough to show
that a5, for each Te J,

[T elt)dt = Tm [Cc ()dt = lim {f7 f[k (t);tldt —k (T) + Ko}

= J7 flls(t);t]dt — ke(T) + Ko < 00 (413)

Now, the first equality follows from monotone convergence and the second from (1 1)
The third equality is valid because kn(t) — ky(t) implies fk_(t);t] — flk«(t);t] by
continuity and the latter convergence is dominated on [0,T]; this in turn follows from
the inequalities

k (1)1 (oc0;t) < flk (t);t] < Kk (6)i(0t), 0 <k (1) Cky(t),
and the facts that the continuous function k,(t) is bounded on [0,T] and that
f7(0;t), f'{oo;st) areintegrable by (3.2). The same considerations show that all terms

are finite ||
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The main results of this Chapter are summed up in the following
FEASIBILITY LEMMA.
(A) Given a progressive, a € non—negative and a.s locally integrable process
¢ = c¢(w,t), theod.e (1 1) with initial condition k(w,0) = K, — or equivalently the
integral equation (4.8) with (4.7) — has a.s. a unique local solution k(w,-) which can
be continued uniquely to the whole of &, and the function k =k(-,-) on ¢ is
progressive If k(w,t)> 0 on Jas - or equivalently if the inequality (4.9) holds
a.5. — we refer to the processes ¢ and k, or to the pair {ck), as plans.
(B) Thesets # and % of ¢ and k plans have the following properties:
(i) 0ew.
(i) If ¢ €% and c, is a progressive process satisfying 0<c; <c, ae, then
there exists ki, satisfying 0 <k, (t) <ko(t) on T as. such that (cokq)ell
(iii) ¢ and & are convex.

(iv) ¢ is closed under (pointwise a e.) passage to the lim inf.
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5. DIRECTIONAL DERIVATIVES

We turn now to a detailed study of conditions characterising an optimum in the
Standard Model. Following the procedure of the classical calculus of variations, we
begin with a brief review of conditions expressed in terms of directional derivatives
Assume as usual that ¢* is finite, let (c*k*) be a distinguished plan with

¢{c*) > —oo and (c,k) another plan, let &k = k—k*, dc=c—c* andfor 0< a<1
write ¢% = c*+ade, k% = k*+adk and c®={(k*—k® Two kinds of directional
derivatives may be defined. The first considers the functional ¢ on % —see (12) —
and defines the derivative of ¢ at ¢* in the direction éc by

Dy = Dg(c*,bc) = lim o [p(&%) — p(c")]
al 0

~ 1im o tiu(z %
= (1)51161 o J{u(c) —u(c*)}du . {5.1)

The second definition considers the same functional, now denoted @, on % and sets
D& = Da(k*6k) = lim o [u(k%) — o(k*)]

al0
= lim a—lj{u(c“) —u(c*)}dp (59)
al0

By Property (iii) of Chapter 4(B) and its proof, ¢% and ¢® arein #, k% isin ¥
and c¢®» &% The limits in (1) and (2) exist because w(¢%*) — ¢(c*) and
®(k*—&(k*) are concave functions of @ on [0,1] Since u is increasing in ¢, we
have D® > Dy Ii is easily shown that (c*k*) is optimal iff Dy(c*,dc) < 0 for all
c=c*+éc €% Indeed,if (c*k*) is optimal, then p(c*) is finite by definition and
@(c*) > p(c*+éc) for any fixed 6c; hence [p(c*+abc) — p(c*)]/a< 0 for each a€(0,1]
and it only remains to go to the limit. Conversely, concavity implies

p(c*+-bc) — p(c*) < Dyp(c*,éc) and the assertion follows. A similar argument shows

that (c*k*) is optimal iff D®(k* ék) < 0 for all k = k*+8k € %
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Provided that it is permissible to differentiate under the integral sign in (1) and

(2), we obtain

@
Dy = J fe-u’(c*¥)dp = EJ ge-u’(c*)q dt; . (5.3)
0
‘| w i+
Do = J (8- £ (k¥) — KJu’ (c*)dp = EJ (6k-£ (k*) —6k]u’(c¥)q dt (5 4)
0
Using the notation (3.7—10) and (3 15-16), these formulae may also be written

m (41] ® (¢ )]
Dy = EJ fg-ydt = EJ y-déG; Do = —EJ biry dt = —EJ' y-déJ, (55)
0 0 0 0

from which it is incidentally clear that the proof of the Sufficiency Theorem amounts
to showing that D® < 0. The differentiation is easily justified without further
assumptions if ¢(c) = ®(k) > — co, but the necessity argument below requires
formulae (3—5) to hold for every feasible variation To ensure this,

we assume that, if ¢* is optimal, there is an o € (0,1) such that

p(c*—ac*) > —occ  for 0<aa, . (5.6)
ie c* satisfies the Strong Finite Welfare Condition (3.34) This condition is actually
satisfied for all plans (not just optima) if u > 0, and for all plans with ¢ > —o0 if u
has one of the forms considered in the SNC model Now, since u and f are concave,
a_l[u(f:a) —u(c*)] and ot fu(c®—u(c*)] T when al0, and the monotone limits are
fc-u’(c*) and [f'(c*)ék — 8kJu’ (c*); therefore (3) and (4) will follow once it is shown
that the integrands in (1) and (2) are bounded below, for all c€[0,a ], by a
p—integrable function. Using c®> ¢%> (1—a)c* and the monotonicity and concavity
of u we have

o u(c®-u(c?)] 2 o u(e®) - u(c*)]

> o Mu(ct-act)—-u(c*)] 2 o u(c*—a c*)-u(c¥)],

and by (6) the y—integral of the last term if finite.

As a corollary, we may set éc = —*, ¢=g =0, toobtain

m

o
D* = —Dy(c*,—c*) = EJ ctu’(c*)qdt = EJ yg* dt < oo, . (5.7)
0

0
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and clearly —D* is a finite minimum of Dy and D& for all feasible variations. The
proof that the Conditions for Optimality are necessary seems to depend in an essential
way on (7).

In case (5.6) does not apply but ¢(c) = ®(k) > — 00, the argument justifying
the differentiation under the integral sign is slightly altered. Consider for example the
integrands aml[u(ﬁa) —u(c*)], 0 < a<l, in(5.1). They ascend as a ! 0, and on
the domain {c > ¢*} they are non—negative while on {c < ¢*} they are non—positive
and bounded below by the g—integrable function u(c) —u(c*). The passage to the
limit under the integral sign is therefore justified by monotone convergence in each
case and the result for D¢ follows as above. The argument for D& is similar.

We shall not stop to set out these results as a theorem. The main point needed
in the necessity theory is that, if (c*,k*) is optimal and satisfies (5.6), then all Dy
and D® may be calculated as in (2), (3) and (4) and satisfy

0>D% > Dyp>-D* (58)
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6. THE SYPERMARTINGALE PROPERTY

The next three Chapters are devoted to proving the necessity of the Conditions for
Optimality stated in Chapter 3(B) Throughout this argument, (c* k*) will be a given
optimum, so that (c*) = ¢* is finite by definition. The present Chapter is mainly
devoted to the proof that y is a supermartingale. Chapter 7 derives the local
martingale property of y by an argument based on the Doob decomposition of a
supermartingale. This method shows that the price times ; reduce y, and a proof of
the transversality condition (3 33) with x = p, is then given Chapter 8 takes up
the discussion again from the end of Chapter 6 and derives local martingale and trans-
versality conditions based on the depletion times »;, by means of a ‘calculus of
variations’ argument. Conditions for y to be a true martingale and for transversality
to hold in the form (1.10) or (3 42) are obtained as corollaries of the results of Chapters
7 and 8

We first note that, if (c*,k*) is optimal, then c¢*(w,t) > 0 ae, and it may be
assumed that ¢* > 0 everywhere To see this, suppose that ¢c¥* =0 on H €& with
#(H) > 0, and let ¢ be another plan with ¢ > 0 a.e. (Such plans exist: for example, it
follows from (4.9), taking into account (3.2—4), that it is feasible to set
c(t)e_,D(oo’t) = 6‘Koe—‘9t on J as. with a constant #> 0} Since u’(0) = oo, it is
found from (5.3) that Dy = féc-u’(c*)du = oo, contrary to optimality Further, if
¢* >0 ae, it follows from f(x;t) = 0 for K< 0 and the uniqueness of solutions of
(1.1) that k* >0 on Jas,andif ¢*>0 on ¢ then k* >0 on o

If ¢*>0 on o), hence g* > 0, the process G* can be used to define an
invertable time change Briefly, the time change associated with G* is the process
7= (7(i): i 7}, where 7(i) is the 2U—stopping time defined by (3 21). Since G*(t) is
(strictly) increasing and absolutely continuous, we have, a s,

G¥r) =1, r'(i)=dr/di= 1/g*(r) i 7 < oo, . (6.1)
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ie if i < G*(00), and we set 7/(1) = 0 otherwise. Letting L/{i = L/zT(i) we obtain
a right continuous filtration 2% = (4 ;1€ J)} and define the o—algebra &% of U—pro-
gressive sets, the concepts of ﬁ[—stopping time, rjl—ma,rtingale, etc The inverse time
change is the process G* = (G*(t); t€.); in particular, each G*(t) is an S—stopping
time and ‘/{G*(t) = A, cf [F1] S.5, Lemma. Note that, for fixed w, the map
t — G*(i) =1 has an inverse for all t > 0 defined by i — (i) = t; however, the map
i — 7{i) has an inverse only for i < G*{c0).
The transform y = (§(i); i€.9) of y under 7 is defined by setting, for each w
yA)=y(r) i 0<i< G*(o00),
y(i) =0 if G*(o0)<i< o0 . (6.2)

this process is % —measurable, in particular §(i) is a&’“i—measurable" The inverse
transform y, defined by y(t) = F[G*(t)], coincides with y, and it may be checked

that, if y is altered on a null set of J , then y is altered only on a null set of 7.

For integrals, we have a s.

7(1) |
[ e = [[sexe,  ocici<m 63)
and in particular (5 7) yields
D* = Ejmgr(@))d@ _ EJm (B)g*(t)dt < oo (64)
0 0

We turn to the

SUPERMARTINGALE PROPERTY FOR SHADOW PRICES
The process y (suitably altered on null sets) is a supermartingale.
The proof is divided into three parts.
(i) The average values of E§(i) on intervals [0,h), 0 < h < Ko, are uniformly
bounded by D*/K,.
Choose h € (0,K,) and define a plan by setting, for each w,
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e(t) = (Kof/h)c*(t) for 0<t<7(h),
c(t) = 0 for t> 7(h) - (6.5)
Then ¢ is non-negative and locally integrable, and it is progressive since the 7(h) are

Ri-stopping times. To check feasibility it is therefore enough, by (4.9), to show that

T _ T :
K, 2 J c(t)e_g(k’t)dt = J g(ﬁ)eR(t)_—@(k’t)dt ...(6.6)

0 0
for TeJ as, and in view of (5) it is enough to consider T = 7(h). Now c(t) > c*(t)

for t < r(h) implies k(t) < k*(t) on this interval — see the proof of Property (ii),
Chapter 4(B) — and this in turn implies D(k;t) > D(k*;t) > R(t) by the concavity

of f, see (32—4)and (37) Since G*{r(h)] < h, (8) follows from

J T(h)g(t)eﬁ(t)_ﬁ(k;t)dt < Jr(h)g(t)dt = (Ko/h)r(h)g*(t)dt < Koo .(87)
o} ¢} (8]

Now calculate, from (5 5) and (5),

(0 .
Dy = B SO OKA- - | s

° 7(h ®
= B{(Ko/b)] ( )y(t)g*(t)dt—joy(t)g*(t)dt}.

Orn rearranging, noting that Dy < 0 by optimality, and using (3—4) we conclude that

h (h)
(E|(©)a(e) = 1/

o

y(8)g*(t)dt < D*/K,, 0<h <Ko . (68)
0

(i) ¥ is an A—supermartingale.
Choose i>0 and A€ L/ia’ﬁi, then I, h, h’ and ¢ such that
i<i+h<I<I4+h’ and 0<e<h<K,

Now define a plan by setting g = g*+6g, J = J*+4&] etc with
—(e/h)g*(t) i) <t< T€i+h)
bg(t) = 0 r{i+h) <t < 7(1) .. (6.9)
+(e/h’ )g*(t) i) <t<op

for we A, where p = p(w,e) is the smallest solution after {(w;i) of J(w;t) = T¥(w,t)

if this exists and p = oo otherwise. For w¢ A, weset fg=10 and p= 7(1), 50
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that p is well defined as a stopping time Also g(t) =0 for t < 7(i) and for

t > p. Thus g is progressive and g > 0; also g{t) < g®(t) for t < r(i) implies
J(1) > J¥(t) > 0 on this interval, and the latter inequalities continue by definition for
t > 7(I). It follows that g is feasible Further, by (9) and the definition of the
times 7, we have

0 ¢ —0G(t) < —6G[r(i+h)] < ¢
and either 7(I+h’) = co or 6G[r(I+h’)] = 0. Since

0 < (1) < —6G(t)
by (3.16), it follows that p < 7(I+h’).

Now consider what happens when ¢ — 0. The preceding remarks show that
6G(t) and 6J(t) tend to zero uniformly with respect to (w,t) We next prove that
p(e) — 7(I+h’) as. for we A Suppose first that 7(I+h’) < oo, so that
p < 7(I+h’) and 8J(p) =0 Start with ¢ fixed By virtue of the mean value
theorem and the continuity of {’ in K, one can write (3 15) in the form

§ = —bg + k(x"-)e F = —bg + (t")a7,

17 = § (k*+ k), n=n(fkuwt), 0<n<l, ..(6.10)
(where 1° =1). Regarding this as a linear o.d e. for &J with &J[(i)] = 0, solving for
81(T) with T > 7(i) and setting 6J(g) = 0, then substituting for g from (9) and
cancelling ¢ one obtains

7(i-+h) _I:(i) (r1)d®
1/h *(t

0] e o

= (1/h’)Jp g*(t)e_fr(l)(r _I‘)dgdt\ . (611)

7(1)
Now, when ¢ — 0, 8J(t) — 0 uniformly, and the same is true of &k(t), 1(t)—1(t)

and the integrals f(r—r) appearing above, because of the bounds (3 2), the continuity
of ¥/ and the fact that all intervals of integration are contained in the finite interval

[7(i), 7(I+h*)] On passing to the limit under the outer integral, it is found that the
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left—hand side of (11) tends to

(1/W){GHri+h)] - GHr()]} = 1,
and a similar calculation on the right shows that we must have p — 7(I+h’) in order
to preserve equality. There remains the possibility that 7(I+h’) = co. If #(I) = 00
also, then p(e) = co forall ¢ >0 If 7(I) < 00, then 7(®) < co for © in some
right neighbourhood of I, and the limit on the left of (11) when ¢ — 0 isstill 1; but
the limit on the right cannot be 1 if p stays in any interval of the form [7(1),7(©))
with © < I+h’ and 7(©) < co, so that p— oo Thus lim p{¢) = 7(I+h’) in all
cases

Reverting to the main argument, we now evaluate D¢ from (5 5) to obtain

0> Dp = eLdP[(1/h)JT(i+h)yg*dt - (ﬂh')Jp

wal, o)
(1
then cancel ¢ andlet ¢l 0; the convergence is dominated because of (5.7), so that in

(i
the limit one can replace p by 7(I+h’). On transforming the integrals as in (3) and
rearranging, this yields
i+ 1+h’
1

JAdP[(l/h)J hy(@)d@] ngP[(l/hf)j

or, writing Y(A,0) = J&(w,@)dP,
4

j(e)de] (6.13)
I

i+h I+h’
(1 /h)J_ Y(A,0)d0 (l/h’)J ¥(A,0)d6. (6.14)
i I

For fixed i and A€ a@'ﬁi, these inequalities hold for all I, h and h’ chosen as

prescribed, so that clearly the left side T when hl0 and therefore tends to a limit

YO(A) = 1im(1/h)f+h Y(A,0)d0

hi0 1
i+h
— sup (l/h)J Y(a,0)do, (615)
h>0 i
and on letting h’ ! 0 also one has
YO(A) > YO(AL), Aes, <L . (6.16)

In particular, on choosing A = £, Y(Q,0) = E§(0), it is seen that the average
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h
(1/11)[ E§(©)d0 1 when h 0, and sois bounded above by its limit, i e by
0

¥°(0,0), which by part (i) above does not exceed the finite number D* /K. Tt follows
that E§(i) < D*/K, for almost all i > 0, while the same number defines an upper

bound for ell values of the indefinite integral
i+h .
(1/h)] Y(A,0)d0 Ach, i20, h>0 (6.17)
1

Now, for fixed i, (17) defines for eack h > 0 a P—continuous, non—negative measure
on J{i bounded by D*/K,, and on letting h | 0 it follows from the existence of the
limit (15) that Y°(A,i) has the same properties (Vitali~Hahn—Saks Theorem,

[DuS] II1 7 4). Consequently Y°(A)is the indefinite P—integral on l/zhi of an a.s
uniquely defined and non—negative random variable jro(w,i), with

E5°(i) = Y°(0,i) < D*/K,, (Radon—Nikodym Theorem, [DuS] IIT.10 2) It follows
from these facts and (16) that the process 7° = (7°(i); i€ Z) is an Y—supermartingale
Moreover (15) shows that the non—increasing function EF°(i) is right continuous, so
that one can choose fro with sample functions which are right continuous with left
limits (‘corlol’), see [DM] VI.4; this also implies that 7° is progressive. Note that
7°(0) is a s equal to a constant, since we have assumed that .4 0= A o 15 generated
only by the P-null sets of .

It remains to verify that §° = ¥ ae Briefly, define an % —measurable

process y o by

i+h
(i) = lim inf(l/h)J §(,0)d0

hl0 1

and write ?O(A,i) =, 3, (i)dP for Ae ./ffi.‘ By Fatou’s Lemma and (15) we have
YO(A,i) < YO(A,) for Ace (/gﬁi, hence § (w)i) < 5°(w,i) as foreach i>0, so that
jro <§5° ae Ounthe other hand, if follows from a standard property of the Lebesgue
integral that, for fixed w, iro(w,i) = §(w,i) for almost all i> 0, hence § 0= vy ae,

and the same property applied to (15) with A = Q gives Eﬁo(i) = Ey(i)
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for aa.i>0 Thus 0<§<37° ae,and the product integrals of § and §° agree on
o, implying y = jro ae. We may therefore replace § by #°, and henceforth denote
the latter process by ¥

(iii) y is an U—supermartingale.

The inverse image under 7 of the new ¥ is now called y; clearly it is ##-measurable
and similar to the original y, and inherits from j the property of being corlol Since
G*(t) is an Y-stopping time and £ (1) = €, an application of the Stopping
Theorem, [DM] VI 10, to y yields y[G*(t) 2 E[J[G¥(T)]/.#,] as for t<T, or
equivalently y(t) > E[y(T)/.#,] In particular, y(0) 2 Ey(t) forall t, and

y(0) = y[G*(0)] = §(0) < D*/K,, proving integrability. This completes the proof that
y is an YU—supermartingale. In conclusion we record some properties of y. First, y(0)
is a.s constant Second, the as. limit y(co) exists by martingale convergence, but
may take the value zero. Third, y(t) > 0 on J a.s. To prove the last point, let
be the first arrival time of y at the level zero and note that, since y is a right
continuous, non—negative supermartingale, y(t) =0 for t > p as., see [DM] VL17,
but y = 0 implies ¢* = oo, so that p < oo with positive probability would

contradict feasibility ||

REMARK. It is an inconvenient feature of this argument that, for technical 1easons, we
want the supermartingale y(1) = u’ [c*(t);t]q(t)eR ®) 4o be corlol (perhaps after
changes on null sets), yet consumption plans c(t) are not required to be corlol, nor are
processes of the form u’[c(t);t] or q(t). However, some mild additional assumptions
about u’ and q allow (c* k*) to be replaced by a plan (¢*,k*) satisfying ¢* = c* ae,

which is still optimal and such that ¢*, u’[¢*(t);t] and q(t) aze all corlol
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Specifically, suppose that
for all w, u’(c;w,t) is jointly continuous in ¢ and corlol in t,! while q{w,t) is
corlol in t. Also, for all (w,t), u’(c;w,t) is strictly decreasing in ¢, with
u’(cojw,t) = 0. . {6.18)
These conditions ensure the existence, for every (w,t), of a function ¢ = (u’)-! inverse
to u’,ie suchthat (Ju’(c¢);w,t]=c for ¢ > 0, and {[u’;wt] is jointly continuous in
u’ and corlol in t. Now, given the process § defined in the preceding proof, we may
(omitting w) define a process ¢* by
(1) = e Myawytl, or v el = j(1)
Taking into account (18), ¢* is corlol since ¥, R and q have this property, and
¢*=c* ae because§ =y ae Iifollows that the solution k* of (1.1) obtained on
replacing ¢* by ¢* coincides with k* on J a.s., so that the process R defined from k* as
in (3.7) coincides with R. Finally, it is clear that ¢(t*) = ¢(c*), so that &* is optimal.
Incidentally, these arguments show why we work with equivalence classes of
‘similar’ (progressive) processes y and ¢ rather than the more usual classes defined ‘up
to modification’, see Chapter 3, fn 2 and Chapter 4, fn.1. An alternative approach,
which avoids the concept of similarity and somewhat simplifies the proof of the super-
martingale property, would be to restrict the choice of ¢ from the outset to corlol
elements of %, and to make assumptions like (18) which ensure that
u’ [c(t);t]q(t)eﬁ(t) is corlol for any such c. It then follows from (13) and the bound on
(1/b)f% E§(0)d0 that, for small h € (0,K), the process 76) = (/) 5(5)ds is
a corlol supermartingale. Choosing a sequence h=h_| 0, it then follows as in (15)
that, for given i, ﬁh(i) T as., so that (jrh) is a non-decreasing sequence of corlol super-

martingales, hence by [DM] VI 18 the limit y*is corlol. Moreover, it follows as in the

! je., for given (G,1), v’ (C;w,t) and u’ (C;w,t—) exist as limits of u’(c;wt) as ¢ ¢,
t] % andas ¢-=¢C,t 1t respectively. For brevity we omit reservations about one-
sided continuity when C or t 18 0 or 0.
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remarks leading to (17) that y+is integrable and so is a corlol supermartingale, (and of
course it coincides with a corlol version of §° as defined above). Finally,

¥+ w,i) = y(w,1) for almost all i, a.s., by the property of the Lebesgue integral cited
above; but since both processes are corlol they are indistinguishable. The reason why
this approach has not been adopted here is that restricting ¢ to be corlol complicates
the discussion of feasibility, in particular Property (B)(iv) of the Feasibility Lemma
fails, and the rather simple proof of the existence of an optimum in Chapter 9 is

invalidated.
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7 NECESSARY CONDITIONS INVOLVING PRICE TIMES

In this Chapter we complete the discussion of the Conditions for Optimality in ‘Price
Time’ form begun in Chapter 3(B) A Corollary is obtained about the form of the
transversality condition when the shadow price process is a true martingale

First, recall that (any) corlol, non—negative (c.n n ) supermartingale, say 7y,
admits a unique ‘Doob’ decomposition y = M—V, where V is a predictable,
non—decreasing ¢ n.n. process with V(0) =0 and EV(oco0) < Ey(0), and M isa
cnn local martingale, see [DM] VI1.8,12,13 or [El] 8.24. It can be shown that the
process M is reduced by any sequence of stopping times of the form

pi= p(wi) = 1Ainf{tiy(wt)>i} with 0<iToo!
The times p(i) were introduced as price times associated with the star plan in (1.11)
and (3 27)

OPTIMALITY THEQREM IN PRICE TIME FORM.
A plan (c*k*) satisfying the Strong Finite Welfare Condition (3.34) or (5 6) is
optimal iff, for any sequence of price times ( pi) with i T oo, y is a local martingale

reduced by (p;) and Um,E{y(p)I*(p,)} = 0.

t Consider the decomposition y = M~V of acnn supermartingale y, with V
predictable non-decreasing ¢.n n. satisfying V(0) =0 and M a cn.n. local
martingale For given i > 0, let

§i=1Aint{tiy, 21}, pi=1Ainf{t:y, > i}
It is usually shown, either as part of the proof of the decomposition or as a corollary,
that M is reduced by a sequence of times (¢;) with 0<i =i, T o0, see
Mey2] IV 4 bis, [DM] VII.12—13. However, the assertion is also valid for a sequence
i), provided that the filtration 21 is right continuous (so that the p; are stopping
times). Indeed, arguing as in [DM] VII.13, we note that p;1 co withi and that the
stopped supermartingale (y(tAp;:): t€ J) is dominated by the random variable
iV y(pi). It follows from the Stopping Theorem that this variable is integrable, hence
by the Decomposition Theorem (for supermartingales of class (D) ) there is a
decomposition y(tAp;) = Mi(t) — Vi(t), t€.J, with Vi predictable, non-decreasing
cn.n. satisfying Vi{0) = 0 and M! a uniformly integrable martingale. The uniqueness
of the given decomposition y = M~V then imples that Mi(t) = M(t), Vi(t) = V(1)
for 0 <t < p;, hence that M is a local martingale reduced by the sequence (p;)

The family (p:) is convenient here because it is right continuous and so defines
a time change in the usual sense.
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Sufficiency follows from the results of Chapter 3(B). We consider necessity

(i) Local Martingale Condition. From previous work we know that, if the star plan is
optimal and satisfies (3 34), then, up to null sets, c* > 0, k* > 0 and y is a (strictly)
positive corlol supermartingale with Doob decomposition y = M —V We need to
show that y (and not just M) is reduced by any sequence (pi) with i T co. Let (c,k) be
any plan such that 6k(t) < 0 on Jas, or equivalently 6J(t) < 0, and consider the

following calculation:

I _ pi)
D = —EJ y.dj.dt = —lim, EJ y.6j dt
o T,
, (i) |
— lim, EJ (V=M)d&J
0

= lim, E{Jgo(i)VdéJ - M(p.)é3(p,)}
(i)
= lim, E{—jf BV + [V(e)-M(p)]8(p,)}. ()

The first line starts with (5 5); the passage to the limit is justified because

p(i) T oo as and the product integral defining D® converges when (c*k*) is
optimal — see Chapter 5 The second line replaces dj-dt by déJ and y by its
decomposition. The third line uses the formula for integration of a martingale with
respect to a non—increasing process, [Elf 7.16, noting that 8] may be written as the
diffezence between two such (finite) processes on the bounded interval [0,,], while M
is uniformly integrable on this inverval; also &J(0) = 0 The fourth line is obtained
on integrating by parts Now 6J <0, dV >0 and V-M = —y < 0, yielding D® > 0,
hence D® = 0 by optimality It follows from Fatou’s Lemma that the random

variables in braces in the fourth line tend to zero as i T 0o, p{i) 1 0o, so that
(14

—J &3(t)dV(t) = 0; but then —6J >0, dV >0 and dV(0) =0 (right continuity)
0

imply that the process V vanishes identically. Thus y = M, a local martingale

reduced by (p;); this leaves
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D& = 0 = Lm; E{y(p)[J*(p,)—I(g;)]}. (72)
(ii) Transversality. It remains to get rid of the term J{ #;) in (2) and so obtain the
desired ‘condition at infinity’

0 = HmiTm E{Y(Pi)']*(@i)}" (7.3)
This step is trivial in a discrete—time model, where one can choose for J the plan
which consumes all capital at t = 0, and could be made so in the present model by
allowing free instantaneous disposal (as distinct from instantaneous consumption) of a
‘lump’ of capital. Without such an assumption it is not in general possible to
construct a feasible J such that J (pi) =0 as for some fixed i. We therefore need
a limiting argument.

The first step is to construct explicitly a family of feasible plans
(Jg(w,t): 6>0) such that 0 < Jgg J¥, 1710 as §— o0 and ng/dt < 0.
We show that, if &= o{w,t) is any progressive, positive and pathwise locally
integrable process, then

T
JH(T) R 0f jo(t)dt

with #> 0 defines a feasible plan. Indeed, for fixed 4 and J=1J d we have

(74)

(abridging the notation, see Chapter 3, fn. 5)
0<J<J* and j/J=j7/J*—0a forT >0
using the latter condition together with (3.11), J = ke ™ and o(k) = i(k)/k yields
g/d —g*/J* = —3/3 — §*[T* + o(k) — o(k*) = fa + (k) —0(k*) > fa, . (75)
the inequality being due to k < k*. Since g* > 0 and fa > 0, it follows that g > 0,
so that the plan is feasible.
In particular, we may set o = 93(k*)—1+1 — or, explicitly
aft) = ()] — 1(1) + 1 (76)
then a> 1 since ?(k*) = f(k*)/k* > {'(k*) =1 From (4) and (6) we have
(d/dt)ina? = (d/dt)ln I* — da = KF/K* —1 — Go(k*) — 1 +1],

7.3




and since k* < f(k*), hence k*/k* < 0(k*), we obtain, for > 1,

@lanife) < -6 3% <Kee™® for >0 as if 6>1 (77
Now replace J by J ¢ in (2) and note that, by part (i) of the proof, the resulting
equation must hold for each #> 1 Thus (3) will follow if it is shown that, for ¢ T oo,
iT oo,

lim ; lim, E{y ()3 %)} = 0 (18)

Turning to the second step, we regard the stopping times p, = plwi) as
defined for all real 1> 0 and consider the family (p;) as a process. The sample
functions are non—decreasing and right continuous with

goi=0 as. for igyo, ngigi for y0<i<c>o,
and an a.s. limit =00 Let

= “/gp({)’ )
s0 that the family 2l = (£ .) is a right continuous filtration, and define

() = y(g;)
and (for each fixed 4> 1)

i) = 1%s)
Then ¥ and J 0 are positive, right continuous processes on [0,00) adapted to 2, and
it follows from part (i) above and the Stopping Theorem that § is an Zl-martingale
satisfying E§(i) = y(0), while J ¥ 5sa non—increasing process bounded above by K,.
We may define the a s limits #(c0) = y(c0) and J ﬂ(oo), where obviously
7%00) = 0 by (7). Tt follows that the product

b = 50)-3°0)
defines a sample right continuous (hence corlol), positive 2-supermartingale with
1%(c0) = 0. Write

mli) = Enl), o0<i<oo, HYoo-) = umiTmﬂf’(i), (79)

noting that Hﬂ(oo—) exists as a limit because Hﬂ( +) is non—increasing, and that Hg( )

is right continuous for i < oo because ha is sample 1ight continuous, see
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[Mey1] VL4 Thus

y(0)Ko > H0) > Blco) > HYe0) = o, (710)
bearing in mind that 0 < h%(i) < §()K, and E§(i) = y(0) for 0<i < oo.

Now the third step. Restrict (p;) to some interval [io,00) with i > y(0), so
that the p. areas positive. Onletting 67T oo, we have hg(i) 10 for each i iy, so0
that (by dominated convergence)

limg B5) =0, o <i< oo
this assertion also holds for i = oo because of (10). Obviously, the left—hand limits
Hg(iu) 10 alsoas 67T co. Thus, for any sequence 1< 7T oo, the functions Hg(i)
are a sequence of positive corlol functions on [ig,00], decreasing simply to zero together
with the left limits Hg(i—); it then follows from a generalisation of Dini’s Theorem,
[DM] VII 2 (Lemma), that the convergence is uniform This uniformity justifies the
following interchange of limits, which completes the proof of the Theorem:

0 = timlim (i) = limim_B%) |
REMARK I. The preceding proof implies the following:

If (c*k*) is optimal and satisfies (3.34), then § is an 2l-martingale and

limy.., E{#(i))J*(Q)} = 0. L (711)
Stated informally, this says that the price times (goi) define a time change such that
the transformed shadow price process is a tiue martingale and the transformed
transversality condition assumes a form analogous to (1 10); cf the discussion in
Chapter 1 Note however that the conditions in {11) are not sufficient for optimality,
since they specify properties of y only at price times The additional condition that y
is an AU-supermartingale is enough to yield sufficiency, since then the stopped process
(y(tAp,); te 7) is a uniformly integrable martingale for each 1.

Remark TI. The proof of necessity given above remains valid if the price times ( goi) ate
1eplaced by any right continuous, non-decreasing family (xi) of finite stopping times,

defined for 0 <i < oo, such that x(w,-) 7 oo as withi, each x(-,) reduces y, and
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x(wi) > 0as onsome interval [ip,00). (Cf the note on time change, Chapter 1,
in 4)

In particular, suppose that it is known that y is in fact a true martingale.
Then Part (i) of the argument, with V =0 and with p; and i both replaced by any
sequence T = T 1 00, yields

D® = 0 = hmTTm E{y(1)[J*(T)-J(1)]}
in place of (2). Part (ii) can be simplified because the second step is trivial — briefly,
one can take

xi)=i=1, £ =4, 56) = y1), %)= 1%1) et -
and then the third step yields (7.3) in the form

0 = limTTm E{y(1)J*(1)}, (7 12)
in agreement with (1 10) or (3 42). This is an important conclusion, which we state
as a

COROLLARY

If an optimal plan satisfies the Strong Finite Welfare Condition and is such that y is

a true martingale, then transversality holds in the form (1.10) or (3.42).
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8 NECESSARY CONDITIONS INVOLVING DEPLETION TIMES

We retuin to the end of Chapter 6, and now complete the discussion of the Conditions
for Optimality in ‘Depletion Time’ form. A condition for y to be a true martingale is
obtained as a Corollary. The depletion times (i) were introduced in (1.12) and
(3.23), see also (3.36-40).

OPTIMALITY THEOREM IN DEPLETION TIME FORM.
A plan (c*k*) satisfying the Strong Finite Welfare Condition (3.34) or (5 6) is
optimal ift
(i) for some sequence of depletion times (ui) withi T Ko, y is a local martingale
teduced by (v;), and
(ii) as., y(woo) =0 if I'(wo0) <K, ie if inf, . gJ*(w;t) >0

Sufficiency follows from the results of Chapter 3(B). We consider necessity Once
again, we know that, if the star plan is optimal and satisfies (3.34), then, up to null
sets, ¢* > 0, k* > 0, and y is a positive cotlol supermartingale. We now seek to show
that y is a local martingale reduced by any sequence of depletion times v,1 1Ko
—see (3.23) and (3.36) — and further that the transversality condition holds in one of
the equivalent forms (3.37), (3 38) and (3 40) A difficulty arises from the fact that,
unlike the saving model, the sample paths of the discounted capital plan J* need not
be everywhere decreasing. To deal with this, we first prove a Depletion Lemma which
shows that ‘humps’ of J* contribute nothing to the integral E[yj*dt,i.e. to the total
value of investment in discounted units, and can therefore be neglected when
calculating certain directioral derivatives; this Lemma may be of some independent
economic interest. The proof of the sub-martingale inequality for the stopped process
y(t/\vi) = yi(t), and hence of the local martingale property for y, is then accomplished

by constructing suitable alternative plans J > 0 which start and stop at given
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depletion times. The transversality condition follows almost immediately.
(1) Properties of Depletion Times. The stopping time v is by definition the first
(strict) upcrossing time of the level i€[0,K,) by the process Ko,~J*, or equivalently
by the non-decreasing process I' which levels off the ‘troughs’ of K,—J* — see (3 23),
also Figure 1. On wiiting £, = ¢ i) 1t found that the family
A= (£ 0<i<K,) defines a right continuous filtration.
For fixed w, let

B(w) = {te 5 t = y(w,i) for some i€[0,K,)} {81)
ie. B(w) comprises those times t which are depletion times. Bearing in mind that
the sampie functions K,—J* are absolutely continuous, it is clear that K,~J* = T
on B, more precisely that Ko—J*(») =T(y) =1 if v, < oo —see (324) — and
further that Ko—J*(t) = I'(t) >i for t in some right neighbourhood of v, while
Ko—J*(t) < T(t) <i forall t< ; we say for short that each v, is a point of increase
of Ko—J* and of I' It further follows that each t in some right neighbourhood of 2
is again a first upcrossing time of some level 1> 1 and so belongs to B. Thus B(w)
is the union of a finite or infinite sequence of disjoint half-open intervals of positive
length of the form

log(e), B (), n=12,., (82)
where ﬁn = 00 may occur In particular, o = ¥(0) > 0, and a strict inequality
cannot be ruled out. The set {(w,t): teB(w)} is obviously progressive. Further, since
for fixed w wehave I' = K,—J* on B while ' is constant on each complementary
interval [ .o +1), it follows that for a a. t€ 7 the (right) derivative I'(t) = dI'(t)/dt
is defined and satisfies

[{t) = =f*(t) for teB,  I(t) = 0 for t¢B, - (8.3)
and these equalities may be assumed to hold for all t; note that I'(t) = —*(t) >0

for a.a. teB.
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(ii) Depletion Lemma.

Lesms Let 0 <T<i<Koand Ae.fy,andlet A(wt) = A(t) be the indicator

function of the set F—B(w); then

JA[JZEi;Y(t)i*(t)A(t)dt]dP ~ o, "
o [ swrmama] - o o

For brevity we shall prove (4), the argument for (5) being similar. Actually, the
Lemma would remain true if v were 1eplaced by any stopping time x < v, and A
by a set in ﬁx such that J*[w,x(w)] =1 as. for weA; then (5) would be a special
case with i=1=0 and ‘/{I the trivial o—algebra at t = 0.

ProoF. (a) We may assume v < oo for weA We first show that the left side of (4)

I
is not positive. Construct a variation &J = J-J* by setting
5i(t) = —i*(t), J(t) = Ko T(t) for teBNlypn), weA, (8.6)

and éj=0, J =J* otherwise (i.e. J cuts off any humps of J* which occur between
VI and v, but otherwise coincides with J*) To check feasibility, it is enough to
show that 720, g2 0 when J #J* Wiite 0 =2, = flk;t}/k, k, = J,e"(") for
short, also 0* when J = J*, cf (3.6a), (3.8) and Chapter 3fn. 5 If [§,a) is any
interval of B contained in [v1,), then J(t) = J¥(6) > 0 on this interval; also
j(t) = j=0 implies g= [0 —1]J by (3 11), and since J < J* wehave 3> 0*>1,
hence g» 0. On computing D® from (5.5) we have the expression on the left of (4),
which by optimality must be < 0.

(b) To establish the opposite inequality, one would like to set &j(t) = ej*(t) with

¢ > 0 for tEBCﬂ[VI,Vi) if weA, and & =0 otherwise (ie. J would blow up any
humps of J* between »; and v; but otherwise coincide with J*) Unfortunately
the corresponding value of g given by —j+(2—)J could become negative, and we

therefore modify the definition by setting g = 0 whenever this would happen. More
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precisely, we define J on each component interval [§,a) of Bn[y,v.) as the
I7i

solution of the 0.d e.
i = (145 if —(1+e)jf + (0p—1,)d, 2 0 ..(8.7a)
iy = @), otherwise, . (8.7b)

with the initial condition J(8) = J*(8); note that in (7b) we have g =0,

j < (14+€)i* The existence and uniqueness of the solution J(t) on [f,a), indeed on

[8,a], is fairly obvious. Clearly the solution curve cannot ever be above the path
L(t) = J5(t) + dI5(t)-T*(8)

defined by setting j = (14+¢)j* on the whole interval — see Figure 2. On the other

hand, J(t) cannot ever be below J*(t), since J < J* implies 9> 0* > 1, hence

j/d > o*— > j*/J* under (7b) and j/J = (14€)j*/J > (14€)j*/J* under (7a); thus,

to the right of a point where the curves J and J* separate, we must have J > J*

The same argument actually shows that we cannot have J = J* on any interval

contained in (f,«). Consequently
JHt) < J(t) < (14+e)T*(t)—eJ*(0), f<t<a

with J(8) = J(8*), andif o < co then J*(&) = J*(f), which implies J(a) = J*(a)

by continuity In short, the curves of J and J* separate at §, J lies above J* but

not above L throughout (§,a), and rejoins J* at « if a< oo
Clearly the variation is feasible since g > 0 and J > 0 by construction, and we

have §j< ¢j* on each interval [f,«), hence on Bcﬂ[VI,Vi); it follows by optimality

and (5 5) that
i)

03 D& = —jA[ Eg;y-éj-A dt}dp > -EJA”V(I) Fi*A dt] &P | .(88)

CoroLLARY. Let 0<I<i< K, Then, for Ae a{I,

JA[ Eﬁ; y(t)j*(t)dt] dP < 0, (89)

the inequality being strict unless »(I) = 0o as on A
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ProoF of (9). This inequality follows from the preceding Lemma (which shows that
the contribution to the time integral made by B® vanishes) and from the facts that
j* < 0 on the interior of B while y(t) >0 ||
(iii) Local martingale condition. For each fixed i€[0,K,), we define the stopped
process

y =), ) = y(tw) = yletan(w); (8.10)
we have to show that yi is a uniformly integrable martingale. Since each tAv, is an
2-stopping time and y is a positive corlol supermartingale, it follows by the Stopping
Theorem that yi has the same properties, [DM] VI 12, and by the Convergence
Theotem, [DM] VL8, yi(t) converges a.s to a finite limiting variable yi(oo) =y(y-)

The supermartingale inequality and predictability of 2 then yield

7(0) = y'(0) 2 By'(t) 2 By'(oo) = By(v) 2 By(w),  te . (811)
In the paragraphs which follow we shall show that
v(0) < By(v); - (812)

this will imply first that yi is a martingale since Eyi(t) = y(0) for all te 7, and
second that the yi(t) are uniformly integrable because they are positive and we have
7'(t) — ¥(c0) a5 and Byl(t) — Byl(co), t- oo,
see [Mey1] I1.21.
PRrOOF 0F (12). For fixed i€[0,K;), choose numbers #e(0,K—i) and h > 0 and
define a new plan g = g*+4dg, J = J*+4J in three phases (a), (b), (¢) — see Figure 3.
(a) The first phase is defined for 0<t < hiv; speaking informally, we set 6j = —6/h
provided that this leaves g(t) > 0 and set g(t) = 0 otherwise More precisely, for
each we), J(t) is defined up to hAv; as the solution of the o d.e.
i, = -0/ if  —jf+ /b + (01,)J, > 0 (8.13a)
iy = (Dt—rt)Jt otherwise (8.13b)
with initial condition J(0) = K,. The equation g = —j + (0—1)J shows that g >0,

and clearly j< j* —#8/h, or equivalently &(t) < —(6/h).
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We next check that J > 0. Let

M(t) = J*(t) - (0/B)t, t< hAw; ..(8 14)
clearly M >0, since t < 2 implies J*(t) > J*(;) = K1 > 0, and then t <h
implies # > (6/h)t. Now J(0) = M(0), and J(t) < M(t) for 0 <t < hAv; because
j(t) < dM(t)/dt. Obviously J(t) > 0 whenever J =M. On the other hand, if T is
such that J(T) = M(T) but J(t} < M(t) in some (T,T+6), 6> 0, then J(t)
remains positive on this interval if ¢ is small enough, and J < J* implies 2 > 0% > 1,
hence j> 0 by (13b); thus J does not decrease when J < M and so remains
positive It further follows from these considerations that, for 0<t < hm/i,

M(t) > J(t) > minM(t’) > minJ¥t’) - (B/h)(h/wi)

/<t t7 <t
> Ko—i—6 > 0 (8.15)

We further claim that J(t) = M(t) if teB and t < hAv;. To see this, note
first that 0> forall t < hm/i because J < J*, so that the condition
—j*+0/h+(0-1)J > 0 is satisfied whenever j* <0, and in particular for all t€B; thus
(13b) shows that J cannot stari to fall below M at any interior point of B More
precisely, it T is as above, then for small § we have (T,T+4) C (8,a), where (8,0
is one of the component intervals of B® Let (T,7) be the whole of the interval
starting at T on which J < M; we have to show that 7< o in case < hAui.‘ Now
a <7 would imply J(a) < M(a). On the other hand, we have J(a) > J(T) because
JT on (T,7), then J(T) = J*(T) ~ (4/h)T = M(T) by the definition of T, and
finally M(T) > M(a) because T < a and because J*(T) > J*(a) for Te[8,a] by
the definition of B These inequalities yield a contradiction which proves the point.

It follows that the value of J at the end of the first phase satisfies the following

conditions:
J(hAv,) = J(y) = J*(y)~(0/h)v, = K—i—(8/h)v; if »,<h ..(8.16a)
J(havy) = J(h) > Ko~i—0 th<y, . (8.16b)
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The first line holds because v; < co implies v€B, hence J(1;) = M(v) and
J*(v;) = Ko~ The second line follows from (15); on the other hand, if h < v, we
also have

J(h) <M(h) = J*(h)-6, J(h) = J*(h)—# il heB .(8.17)
(b) Incase h < v;, a second phase is defined for h <t < v, by setting j= j* if this

leaves g > 0 and setting g =0 otherwise. More precisely, the o d.e. defining J is

given by
o= J']f if —.}I + (at_lt)‘}t >0 ..(8.18a)
j, = (at_rt)‘]t otherwise .. (8 18b)

with J(h) defined by the terminal value of the first phase This construction
guarantees that g >0 and §j<0.

The proof that J > 0 is similar to that under part (a) and need only be
sketched. Taking into account the initial condition (16b), it is clear that
J(t) < J*(t)—0 on [h,). Now t < v, implies J*(t) > Ko~i > , so that the curve
J*(t)—4 stays positive. On the other hand, JT when J(t) < J¥(t)—@ because 0> 1,
and so J stays positive in this case also Corresponding to (15) we have, for
h<t < v |

T(t)=0 > J(t) > min J¥t')—8 > Ked0 > 0 (819)
h<t/<t

It can further be shown, as under (a), that J(t) = J*(t)-@if teBNlh,»). This implies
I(m) = (1) =0 = Ke-inf i v < ox, .(820)
and this equation also holds if v; =00 and u is a right end—point of one of the com-

ponent intervals [a,5) of B. More generally, (18a) together with (20) and (19) yield

8(v) = —(0/h)v. if »<h
8(v) = -0 if h<wy <oo
8(v) > -0 il ¥ =00 .(8.21)
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(c) If v < oo, athird phaseis defined by

) =0,  wnet<p (822)
where p is the first time in B such that J(t) = J*(t) if this exists, with p = o0
otherwise. (Figure 3 depicts cases with p < co) For t > p, weset J(t) = J*(t).
Feasibility is obvious, since J(t) = J(s;) = Ko—i—f on [v,p) implies J(t) > 0 and
J(t) < J*(t), hence 0>, g = (v—)J > 0. Explicitly, it follows from (21) and the
definition of depletion times that

p=v, I= i+(f/h)w if » <hy P=Vg if h<w . (8.23)

This completes the construction of J. We now substitute into the formula
(5.5) for D® and, noting that &j < —6/h in phase (a), <0 in phase (b), and = —j*

in phase (c), obtain

hAu(i) o
ydt + L(i)y] dt]. (824)

0> D2 > E[(G/h)J
0

According to (23), p may take one of the two values v and v, Y and clearly
iy wE nevertheless we may replace p by » L9 in the second integral in (24)
without disturbing the inequality. This follows from the fact that j* < 0 for

a.a. t€B, whereas the Depletion Lemma shows that B® makes a zero contribution to

the integral. On dividing the resulting inequality by ¢ and rearranging we have
hA(i) v(i+4)
Blam| " vat] < B[@/0)
0 v(i)

We consider separately the two sides of this inequality The random variables

-yj*dt} ‘. . (8.25)

on the left are dominated as h 1 0 because
hAu(i) h h
(l/h)J ydi < (1/h)J ydt  and E[(l/h)J ydt] < y(0), .(826)
0 0 0
the second inequality being due to the supermartingale property of y, and of course
y(0) < D*/K,; see Chapter 6. On passing to the limit under E and taking into

account the right continuity of y, it is seen that the left side of (25) tends to y(0)
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On the right side of (25), we may by the Depletion Lemma restrict the time
integral to Bﬂ[r/i,yi n 9), and on this set —j*(t)dt may, according to (3), be replaced
by I'(t)dt = dT'(t); on the other hand, I'(t) =0 for t¢B, so the whole expression on

the right of (25) is equal to

{140
(U@EJ( sar(e) (827)

ui)
Since T'(t) is non—decreasing and absolutely continuous and #(I) = inf{t: I'(t) > I},
a (pathwise) change of variable gives

W(i+0) (i +8)AT ()
L(i y(1)dr() = Ji,\r(m)

where y[v(I)] = y(o0) in case 1> T'(co), ie incase v(I) = co Now the Stopping

i+6

ﬂWDNISJi ylAD]dI, (828)
Theorem implies that Ey(zp) < Ey(x) for i<I <i+f, and it follows from (28) that
(27) cannot exceed Ey(»;) On collecting results and referring to (25) we have
y(0) < Ey(»;), which completes the proof of (12). |

(iv) Trensversality. It follows from Ey(yi) = y(0) and the argument following
(25) that equality must hold a.s in (28), in other words that y(co) = 0 if
T{0) < Ie[i,i+#), and since i and # are arbitrary subject to 0 <i <i+8 <K, it
follows that, a.s., y(w,00) =0 if I'(00) < Ko, which is (3.37).]
This completes the proof of the Optimality Theorem in Depletion Time Form.
REMARKS.
I. In Condition (i) of the Theorem, ‘some’ may be replaced by ‘any’
I Condition (ii) of the Theorem — which is (3.37) — may be 1eplaced by one of the
conditions (3 38) or (3 40).
HI. If we define processes y and I by

y(wi) = y(wrlw), T(wi) = Nww(w)), 0<i<K,, . (829)

the proof of the Theorem implies the following:
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If (c* k*) is optimal and satisfies (3.34), then ¥is an 9—mastingale and, as.,

F(wi) =0 if i> '(w,c0).

Also IimiTKOE{jr(i){Ko—f‘(i)]} =0,

or 1imiTK0E{Iyi <O} =0 - (8.30)
These conditions are not sufficient for optimality, since they specify properties of y
only at depletion times. As in Chapter 7, Remark I, the additional condition that y is
an U—supermartingale is enough to yield sufficiency, since then the stopped process
(y(tAvy); t€ &) is a uniformly integrable martingale for each i.
IV Suppose that the paths of the discounted capital plan J* are a s uniformly
bounded away from zero on J —1ie. that there exists a (deterministic) function J-(t)
on & such that a.s.

J¥wt) > J(t) > 0 {forall teg, - (831)
or equivalently

Ko —T*(wt) < Ko—J(t) < K, forall te5
Setting

I'{T) = Supth[K‘J —J{t)] Tes
defines a non-decreasing, right continuous function, and we have, a.s,

Ko —J*¥wt) < sup, (o [Ko = J*(wt)] = I(wT) < T(T) < Ko, t€7
Thus K, —T+T) satisfies t—he defining property of J+{T), and we may from now on
assume w1lo g that J- is chosen non-increasing and right continuous, hence that
'-= Ky—J- See Figure 4, which incorporates this assumption.

Now define, for 0 <1< K,,

v(i) = vy = inf{te 7: I'(t) > i}
if such a time exists, and set v(i) = oo incase I'<(t) >i for all 4; clearly »<(-) is
non-decreasing and right continuous in i, with

0 <v{i)Too as iTK,.
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Bearing in mind that »(w) = v{w,i) satisfies Mwy(w)} =1 if this equation has a
finite solution and »;(w) = co otherwise, we have
v(i) ¢ Hwi) as
Now, for each Te 7 thereisan i = i € [0,K,) such that
T =v{i,), hence T < fw,i )as
It has been shown above that, for each i, the stopped process yi = {y(t/\vi); te I} isa
uniformly integrable martingale. Thus, for t < T we have (in abridged notation)
y(t) = Eylui ) = B ETy[u(i )] = B'(T) as,
showing that y is a (true) martingale.
Taking into account the Corollary in Chapter 7, we have the following
COROLLARY
If an optimal plan satisfies the Strong Finite Welfare Condition and there exists a
function J-on & satisfying (8 31) a.s , then y is a true martingale and transversality
holds in the form (1.10) or (3 42) W .lo g, the function J- may be taken to be non-

incieasing and right continuous.
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8. EXISTENCE OF AN OPTIMUM

Once the Feasibility Lemma is established, the main general tesulis on the existence of
an optimum are similar to those in the case of the saving model — see [F1] S.3 — but we
give a slightly different proof of the Existence Lemma and some new applications to
the SNC model.

First some reminders about convergence in L1 spaces with respect to a unitary
measure  Consider as an example the space £, = £ (1) of (classes of similar)
J6—measurable, y—integrable real—valued processes & = £(s) = &(w,t) on o with the
norm ||¢ || =f|¢|dp Recall that dp(s) = q(s)dm(s), see eq.(3.1), where
dm(s) = dm(w,t) = dP{w)dt. In this Chapter we assume that 4 is a unitary measure.
A sequence (fn) from £, is said to converge weakly to 5621 if jgnhdp - jgnhd,u for
every hel (A ,u) An equivalent condition is that the norms [[¢ |dp are uniformly
bounded and that jl{fd,u, = lim ngnd,u for every He %, see [DuS| IV.8.7 1If (&)
converges weakly to £ in 21, then for each integer n there is an integer m, , a set of

integers j=1,..,Jn=J(n) and a set of non—negative numbers (e , .o, ) satisfying
Il

J_n Jn

i§1 Oy = 1 such that m, 4 >m +Jn and {13 —‘]_)51 O‘.jmgmn+‘j” —

see [Be| pp.54 and 91, also [DuS] V.3 14. More briefly, we shall say that, if (gn) — ¢

0 as n — oo,

weakly in £, there is a sequence (Em) of convex combinations,

Im Im
gm - _]'§1 ajm§m+j ’ ]'§1 %m = L, m=mymg, [
converging to ¢ in the norm of £, Since p is a unitary measure, the norm-
convergent sequence (Em) also converges in measure and, selecting a subsequence if
necessary (henceforth ss.i.m ) without changing the notation, converges a.e. to the
same limit.
Next, a sequence (En) from £, is called weakly precompact if it contains a

subsequence converging weakly to some limit in £, AsetZin £ is called weakly
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sequentially compact if every infinite sequence from = is weakly precompact. A
necessary and sufficient condition for this property is that for é€= the norms [|&|dg
are uniformly bounded and the indefinite integrals are uniformly continuous, i.e. that
for every ¢ > 0 thereisa 4> 0 such that, for every ¢€=, the conditions He £ and
#(H) < § imply J'HI Eldp < e It is sufficient if there is a §OE£1 such that, for each
g€, €] <[, ae, and a fortiori if all | €| are uniformly bounded (by a constant).
It is also sufficient if, for some ¢ > 0,

sup [ [1&(s)| 1 Cau(s): feE] <0,
see [Mey1] 11.17—23, [DuS] Ch 1V, also [F1] S 3.

We return to the Standard Model Given a sequence (c )} from %, we denote
by (U_) the corresponding utility sequence defined by U (s) = ulc (s);s] — see (3.6)
The sequence is called maximising if cp(cn) =/ U du— ¢* with ¢* = sup{y(c): ce ¥}
finite. We have the

EXISTENCE LEMMA.
Let ¢* be finite. Suppose that there is a maximising sequence (c ) from % such
that (U ) is weakly precompact in £, =L ( #,p1). Then thereis a cq € % such
that ¢(cy) = ¢*
Proor. It may be assumed s.5i.n. that (Un) converges weakly to some Uy in £,

Consequently there is a sequence (ﬁm) of convex combinations

~ Jm Jm
U, = j{ll aijm—l-‘j , ,j§1 Gy = 1, m = m,,my,. T oo, . (91)
converging to Uy in the norm of £, and we have
JU*(S)dp = lim J ﬁm(s)dp, =1lim J U (s)dp = ¢* . (9.2)
m—aw n—w

by the definition of weak and norm convergence and the fact that (U ) is maximising.
Since g is a unitary measure the sequence ﬁm also converges in measure and s.s.in.
converges a.e. to the same limit Using the non-negative constants a].m we define the

convex combinations of consumption plans
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Im
¢ = Y a. .
m =1 a,JmCm-l-‘] !

and Em € ¥ since this set is convex By the concavity of u we have

m=mm,, , .{9.3)

I .
Now define a function c4 by
Cx(s) = lim infC_(s) - (9.5)
nl—wm

and note that c4x € % by (B)(iv) of the Feasibility Lemma in Chapter 4 TUsing the
continuity and monotonicity of u with respect to its first argument and the a e.

convergence of the U_we have

u[cx(s),s] = lim infuf€ (s);5] 2 lim infﬁ'm(s) = Ux(s) ae, (9.6)
M—w N—o

and integrating on both sides yields

j wea(s)sldp > f UHs)du = o* (97
Since ¢4 € € and ¢* is the supremum of the utility integral on ¢ we have equality in
(7) and cy4 is optimal ||

As in the case of the saving model, it is immediate that an optimum exists if
|u| is bounded on [0,00] x o, since then * is finite and all U—plans are uniformly
bounded, so that every sequence is weakly precompact. For unbounded utility
functions, there are essential differences between the cases of u bounded above and
u bounded below, or equivalently u<0 and u> 0.

CRITERION FOR NEGATIVE UTILITY.
In case u < 0, an optimum exists if

there is a plan ¢, € € such that (hc,) > —oo for each h € (0,1] ..{98)
Proor. This is the same, up to changes of notation, as for the corresponding
proposition in the saving model, see [F1] Assumption (iii), taking into account the

convexity of # established by B(iii) of the Feasibility Lemma.
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APPLICATION Suppose

0 < (1-blulc;wt) < Cl_beC(w’t) for 0<c<co ae ..(99)
where ( is a progressive process and b > 1. Assuming for brevity that {> 0 always,
hence D(k;t) > 0 for any plan, the feasibility condition (4 9) shows that a sufficient

condition for a process ¢ > 0 to define a plan is that

1]
J c(t)dt < Ko as. .(910)
0
Consequently a sure (i.e. non-random) plan may be defined by setting
ot) = AKee ™, teTas, A>0 (9.11)
Then
1))
(1-b)e(e) < (K)o p (Mg, (9.12)
0

and the convergence of this integral for some (small) A > 0 is sufficient for existence

of an optimum.

In particular, consider the $NC model defined in Chapter 2 with b > 1, and

suppose that e is m—integrable; then we may set ¢ =¢, (1-b)u = cl_b, g=¢e"
asin (2.36) and (= 0. For c constructed as in (11) we have
m
(1=b)p = (AKO)H’J o(D—L)A pw(t)yy L (9.13)

0
and convergence of this integral implies both existence and m—integrability of ¢" In

the BYC model, we have w(t) =a_t + aWBW(t) where B__ is a Brownian motion — cf
Chapter 2, fn. 6 — so that

EeW(t) _ e[aw + Loglt

and o + %JW < 0 1is a sufficient condition for existence.l

t An attempt to find a criterion analogous to (9.13) by choosing a sure @ = ce*

(instead of a sure ¢) does not work, because in general ¢ =c¢ = ce™ will not then
satisfy (10) unless x is uniformly bounded below, which in interesting cases is not so
However, if one drops the assumption 9(0) = 0 and introduces a small but sure
exogenous income 9¥(0;t) > d-exp{—A’t}, where § and A’ are positive constants, it

becomes feasible to set ¢(t) = é-exp{—A’t}. Then, setting (1-b)u(c) = (ce* )l_b,
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CRITERION FOR POSITIVE UTILITY.
Suppose u > 0. Ifthereisan ¢ > 0 such that

sup {J Ui+e du: ce €} < o0, (9 14)
then ¢* < cc and an optimum exists
ProorF. The finiteness of ¢* = sup fU cd,u, follows from the fact that
[jUgdp,]l/r T with 1 > 0. Also, (14) implies that the set {Uc: ce ¥} is weakly
sequentially compact in .21( 7 ,i1). The Existence Lemma does the rest.
APPLICATION. Consider the sNc model with 0 < b < 1 and e" m—integrable, and as
in(236)set c=c¢, (1-b)u= cl_b, q=-¢", du=e"dtdP. Define
M(1,c) = (fcrd,u,)l/r, M*(r) = sup{M(z,c): c€e ¥} and = sup{r>0: M*(rj<oco} It
follows easily from the above Criterion that ¢* < 00 and an optimum exists if
I-b < 1‘+, whereas ¢* = oo if I-b > r+; only in case 1-b = 1t isit an open
question whether one can have ¢* < oo without existence.

These remarks apply in particular to the BNC model, with w(t) = a b+ O'WBW(t).‘
Then the condition that eW(t) is m—integrable, i.e. that a, + —1,-0‘; < 0, is necessary
if ¢* is to be finite for any be(0,1). To see this, choose ¢ = ¢ asin (11) and
evaluate (1-b)p asin (13); if a_ + %a‘i’; > 0 then (1-b)y = oo for small A, andif
o, T %a‘; =0 then (1-b)p= ()\Ko)l_"b/)\(l—b) — o0 as A — 0. This argument
shows that a.+ %o‘; < 0 is necessary for existence if b < 1, whereas for b > 1 this

condition is sufficient.2

c=c¢, q=exp(v) asin (2.37) and (=0, one finds that the convergence of an
expression like (13) but with 4§, A/, v in place of AK,, A, w implies both the
existence of an optimum and the integrability of exp(v). With the stronger
assumption %(0) > §> 0 ae, thetermin A’ drops out, and in the BNC case with

v(t) = ayt + oyBy(t) one obtains ay + 0% < 0 as a sufficient condition for existence
Concerning the case of an exogenous income, see also Chapter 3, fn 4 and [F4}]

2 Pursuing this analogy, it may be shown as in the preceding footnote that, if the value

J:_/)(O) = é) is Ielﬁace% by f, positive constant, the condition ay + 4¢% < 0 is necessary
or existence when b <
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DIRECT TEST FOR POSITIVE UTILITY.
One can give a general condition which often allows existence in the Standard Model to
be inferred directly from the data of the problem. The argument is an extension of
that for the saving model given in [F1]. Suppose u satisfies {9) but with 0 < b < 1.
Note that d(k;t) < £/(0;t) = 0(0;t) for all x > 0 —see (34) — and write
Do(T) = [, o(0;t)dt. We have D(k;T) < Do(T) for all plans — see (4 7a), and (4.9)

shows that a plan must satisfy

J'm c(t)e_ﬁ)”(t)dt <K, as ..(9.15)
0

Then, for ¢ € ¥ and H € # we have, using Holder’s inequality,
0 < (l—b)J U dp < J {cl_b e q}dm
g © H
< ” c e—’Dde}l-b x U [e(l_b)©°+c q]l/bdm}b .. (9 16)
H H

where D, = Do(T). In view of (15), the integral of ce~ 20 does not exceed Ko; thus,
if the last integral in (16) converges with H = of ie if

[t
J Efel172)Po(t)+{(t) iy 1/bgs < oo, (9 17)
0

it follows that the norms [|U_|dy are uniformly bounded and the indefinite integrals

/ HIU Cldu uniformly g-continuous. But then every sequence from {U o CEE } is
weakly precompact in 21( 7 ,i), and the existence of an optimum follows from the
Existence Lemma.

APPLICATION. In the BNC model with b < 1 we may set Do(t) = t¢’(0), (=10,
c=g¢, (I-blu= A0 and q=-e", provided that a.+ %a‘z < 0. The criterion
(17) reduces to (1-b)¢’(0) + a_ + 402 /b <0, which implies the preceding

inequality and so is a sufficient condition for existence.
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ReMARK. The sufficient conditions for existence in the B¥¢ model given above, while
simple, are not the best possible It follows from the results of [F5—6] that, for b > 1,
an optimum exists if
. - 2
either (i) a_ + 407 <0
or (i) a,+403<0 and (1-b)y'(0) +a_ + 502 <O . (9.18)
while, for 0 < b < 1, an optimum exists if
. : . - ’ 1 2
cither (i) (1-b)9’'(0) +a_+ 30 <0
or (i) a,+30)<0 and a_+ 402 <0 .. (9.19)
Sufficient conditions for logarithmic utility are obtained by setting b =1 in (18)

or (19) Work in progress suggests that these conditions are also necessary.

As in [F1], the results for positive and negative utilities can be combined if u is
unbounded both above and below; we omit the details of the argument but state the
result as part (v) of the following theorem.

EXISTENCE THEOREM.

An optimum exists in the following cases:

(i) if |u| is bounded;

(i)  if u<0 and (98) holds;

(iii) if u> 0, ¢* < oo, and if this 1emains true when u is replaced by ulte

with some ¢ > 0;

(iv) it 0< (1-bjufc;s) < 1 e for g >0 ae, 0<b<1, where ¢ isa
progressive process and (9.17) holds;
(v)  if u is unbounded in both directions and satisfies (possibly with different

choices of scale and origin) fizst (9.8), and secondly either (9.14) or both (9.9)
and (9.17), with u 1eplaced by u* = u-J[(c,s): u(c;s) > 0] in (9.9) or (9.14).
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UNIQUENESS
In general, an optimal plan is not unique. However, if (c*k*) and (c,k) are distinct
optimal plans,ie. ¢*# ¢ on a non—null progressive set and ¢(c*) = ¢(c) = ¢*, then
Property (iii) of Chapter 4 shows that the convex combination of consumption plans
8% = ac+(1—a)c* is also feasible, as is the convex combination of capital plans
k% = ok+(1—a)k* with corresponding consumption plan c¢® = f(k*)—k® Then
c®» &% —see (411) — together with the concavity of ¢ implies

#c®) 2 @€Y 2 ap(c) + (1—a)p(c*) = ¢, (9 20)
so that ¢® and &% are both optimal. If now it is assumed that f/(;wt) is (strictly)
decreasing for (w,t) in some progressive set of positive measure, then on that set
(4.11) is replaced by ¢®> &% hence o(c® > p(8Y), a contradiction which shows
that in this case an optimum must be unique. Similarly, if u’(.;w,t) is (strictly)

decreasing on some progressive set of positive measure, the second inequality in (20)

becomes sharp, which again implies uniqueness.
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10 LIPSCHITZ versus INADA

(A) Survey and Ezample.

Our formulation of the growth model is unusual in that the generalised Lipschitz
condition (3.2) is imposed for X > 0, whereas most authors adopt an ‘Inada’ condition
at Kk =0, say in the form

£(0;w,t) = o0, (wt)ee’ {101)
The main reason for considering the Inada condition is that it allows certain
production functions such as Cobb-Douglas with nice properties of homogeneity .= The
Inada condition has also on occasion been justified on other grounds of convenience in
theoretical work, but it is in some respects very inconvenient, in particular because of
the occurience of multiple solutions of (1 1) at points with zero capital. In addition,
the average returns process D(k;T) = jg o[k(t);t]dt may diverge to infinity along
capital paths k(t) which reach zero at finite times, thus destroying the equivalence
between the o.d.e. (1.1) and the integral equations (4.8) or (3.12) Also, the possibility
must be considered that paths of k*(t) reach zero at finite times with
R(T) = jg /[k*(t);$]dt diverging to infinity, which would invalidate formulae
expressed in discounted units. The purpose of this chapter is to explore the
implications of these problems for the theory presented in the preceding chapters.

It is instructive to begin with an example. Consider the Cobb-Douglas production

function, which in the notation of Chapter 2 takes the form (up to a scaling constant)

U(R,L) = S Y(K) = g ..(102)
where 0 < A< 1 — cf (22)and (2.6) Then,foraplan k=k, c=c in
standardised units with k > 0 for all {w,t), (2 38) yields

fk(wt); wyt] = k(w) ™ e x(@t) (103)
where exp{—Ax(w,t)} is required to be a s. locally integrable so as to satisfy (3 2) for

K > 0. Thus, omitting w, (1.1) with (4.1} has the form
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k()20 ey k) > o, (10 4a)
—e(t) K(t) < 0 (10.4b)

Let (c, .k, ) be a sequence of plans with ¢ >0andk >0 forall (wt). Let v bea

k(t) =

finite stopping time, and suppose that there are processes c. and km such that, for
eachw,c_Tc for t<v and k 1k for t<w with k (t) >0 for t < v and

n o n w m
k (v) =0 Further, for t v let (c k) besuchthat c (t) = ok (t);t] with some

constant § € [0,1); then, on dropping the subscript n, (4a) yields

k() = (1-0k) =) ¢y (10 5)
and the ‘initial’ value k(») =k (v) >0 determines a unique forward solution
T
K(T) = [k(u)/\ + M1-0) J e_’\x(*)dt] A 1y, (10 6)
v
where

¢(T) = He_”\X(T)[k(V)Aﬁ—A(l—f’)JTe_AX(t)dtJ(I_A)/A, Tyv  (107)

Now let n — oco. For T < v, it is easily seen, as in the proof of Property (iv) in
Chapter 4(B), that k s the unique solution of (4) through (K,,0) corresponding
to ¢ For T>vlet ¢ (T) and k (T) be defined by the limits of (7) and (6) with
c=c,k=k ,sothat here ¢ lc_and k 1k  Clearly k_ is a solution of (4)
corresponding to . satisfying k(») = 0; thus both processes are non—negative on I
Nevertheless (cm,km) cannot be regarded as a ‘proper’ plan if # > 0, because km
‘bounces’ back to positive values after reaching zero at v, whereas the natural
interpretation of the conditions k(v) =0 and f(0;t) = 0 for t > v is that production
cannot get started again without positive capital. Of course, there is another forward

solution of (4) with initial condition k() =0 corresponding to ¢_, namely
T
k(T) = -j c (dt, T2y, (108)
v

which is not obtainable as a limit of the Cp this solution is not feasible unless c = 0

for a.a. T > v, but it has a natural interpretation as the cumulative amount which it
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would be necessary to borrow (if this were possible) in order to sustain the
consumption c_-

In the special case where c, = 0 for T > v, corresponding to § =0, the pair
(cm,k.) does define a proper, feasible plan, albeit one which represents stazvation. To
be explicit, note that k =k.= 0 for T > v in (4) implies ¢ = 0, apart from null sets.
On the other hand, if ¢ is specified by setting c = c_ for T<v and c=01for T > v,
then (4) has two solutions for T > v, namely the ‘proper’ but ‘special’ solution k_=0
and the ‘improper’ but ‘general’ solution k > 0 defined by (6) with k(») =0 and
# = 0; note that proper convex combinations of these two solutions are not solutions.

Although in the preceding calculations we have chosen ¢ and k  so that
€, H c for t < v, c, 1 c for t > v and kIl ! km for all t, it is also possible to
represent (cm,km) as the limit of a sequence of plans ('(':n,f(n) with € Tec En bk
for all t. For example, it suffices to take € =c (I-1/n) and let f(n be the
corresponding solution of (1.1) with 1211(0) = K, The use of such monotone sequences
simplifies the general theory.

We return to the general discussion of the Standard Model but postpone formal
definitions Let II denote the set of proper plans (c,k), ie those for which k stays
at zero after first arrival, II* the subset of plans with positive capital, i.e. those with
k{(t) >0 on Jas, and Tl the set of extended plans, i.e. pairs of processes (ck)
which can be represented as limits ¢ Te, k, | k with (cn,kn)el'[; elements of ﬁ\l’[
are improper plans.

Now, the existence theory of Chapter 9 depends on the closure of the set of
(proper) c—plans under passage to the limit inferior, at least in the case of maximising
sequences, whereas the Cobb—Douglas example shows that, with f'(0) = oc, the limit
of a sequence (Cn’kn) from II may be improper Thus the procedure of Chapters 4
and 9, suitably modified, will deliver at most an optimum in II. The first main

problem will therefore be to establish the form in which the properties of feasible sets
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in Chapter 4 carry over to fI; once this is done, the main existence results in Chapter 9
will carry over to i

The second main problem is then to characterise an optimum in . Tt is easily
seen that the Conditions for Optimality (3.28—33) remain sufficient for an optimum
in fl, which under these conditions must bein II and evern in II*, while the
conditions (3 29—34) remain necessary for an optimum relative to II*. As regards
necessity for an optimum in ﬁ, we shall not 1eview all the discussion of earlier
chapters, but rather outline an argument to show that (under slight assumptions) an
optimum (c* k*) in fTis in I+ At first sight this may seem obvious, and it is indeed
casily shown, as in Chapter 6, that u’(0;t) = oo implies ¢* > 0 a.e, and then in view
of f(0;t) = 0 it follows that, a.s , k*(t) > 0 except perhaps on a Lebesgue null set of 7
(which may vary with w) The problem is to show that k*(t) > 0 for all t After
all, it might seem attractive to run out of capital from time to time and then take off
again along an improper solution of (1.1)

Of course, these difficulties do not arise in cases where it is possible to construct
a plan in TI* which satisfies a set of sufficient conditions. In particular, in the BNC
model with Cobb-Douglas production, an optimal consumption function with positive
consumption can be constructed, for suitable values of the parameters, as the solution
of a boundary value problem along lines similar to [F5-6]. (However the boundary
conditions for optimal consumption as K -~ 0 are quite different and give rise to

interesting new technical problems; I hope to present this theory elsewhere )

(B) Definitions concerning Plans — cf Chapters 3(A) and 4(A).
We turn now to a more systematic review of parts of the theory for the Standard
Model, but set out details only where changes of substance are needed. In this Chapter

it will be assumed for simplicity that, for each ¥ > 0, {'(&;w;t) > 0, f(Kwit) > 0 for
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each (wt)e ¢, and

Jg f(gwi)dt < oo foreach (w,T)eof, ..{10.9)
also, of course, {/(0;w,t) = oo, f(0;w,t} = 0, while (3 2) remains in force for K > 0.

The discussion in Chapter 4(A) of the existence and uniqueness of pathwise
solutions of (1.1) with (4.1) then needs some changes For fixed w, let a locally
integrable c(t) > 0 be given, and refer to the conditions set out in the paragraph
following (4 1). Given K> 0, t >0 and a rectangle

Q = [k K] x [t,tq], Ky <K< Ky,
the existence of a local forward solution through (&,t) now results from

0 ¢ fx) € fiy),  (KE)eQ,
together with (8) and the local integrability of ¢ If k >0, one can choose K; >0,
and then the local uniqueness follows from

| £ (Ryit) € [HR"E)A®R )] < Rk |1 (y5),

(x/,t) and (x",t) in Q,
and the validity of (3.2) for k > 0. For K < 0, existence and uniqueness are trivial.
For K = 0 uniqueness generally fails, but it is known that there is a maximal and a
minimal solution through (X,t).

To check that no solution of (1.1) can explode to 400 in finite time, suppose
that k(t) passes through (&,t) with X > 0 and note that, since £>0,f >0 and
c2 0, k(t) is bounded above for t> t by the solution k+(t) of k = f{k;t) through
(K,%); but kT (t) is non—decreasing in t and stays finite because

i) = k) < HR+HET ()R (K58),
while f(x:t) and f/(X;t) are integrable on finite intervals of 9 On the other hand,
no solution can explode to —oco because f—¢ > — and c is integrable on finite
intervals Thus all solutions can be continued forward on .7, though perhaps not
uniquely. In particular, for given c(t) it makes sense to speak of the maximal (or the

minimal) solution on  through (X,,0).
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Returning to Chapter 3(A), we now amend the definition of plans as follows.
Let ¢ be a progressive, non—negative and a.s. locally integrable process and let k be
a progressive, non—negative process with k(0) = K, such that, a s, k(w,-)is a
solution of (1.1) on 7 coriesponding to ¢ Let a stopping time 7 be defined by

Ww) =inf{te 72 k(w,t) =0 } . (10.10)
if this exists and P(w) = oo otherwise. Since K, > 0, the solution k(w,-} is unique
on some interval [0,7(w)) of positive length

Given such c, k, 7, we say that (ck) is a proper plan, or simply a plan, if
k{wt) =0 for t> P{w) as,; (clearly, this implies that c(w,t) =0 for
aa t>P(w),as) Incase ¥=o00 as,we havea plan with positive capital A
sequence of plans (cn,kn) of plans is called monotone if . 1 a.e., hence
k. ] on  as.; then, making changes on null sets if necessary, it may be assumed
that . T and kn } for all {w,t) A stationary sequence is monotone. Given ¢, k,
and 7 asin the preceding paragraph, we say that (ck) is an extended plan if there is
a monotone sequence (c k) of plans such that ¢ Tc and k } k forall (wt). An
extended plan is called improper if

P{w: k(wit) > 0 for some t > #(w)} > 0 ..(10.11)
The sets of proper plans, plans with positive capital, and extended plans are denoted
by II, II* and il Extending the notation of Chapter 3(A) in an obvious way, we also
write

¢ = {3k (ckell}, & = {k 3c, (ck)ell} (10.12)
etc., and assume that the functional ¢ (or &) is well defined on 3 (or F or ﬁ)
and obeys a finite supremum condition there It follows by monotone convergence that
the supremum ¢* of ¢ on % is also the supremum on %  The definition of an
extended plan contains some redundancy: it is enough to say that (c,k) is a pair of
progressive processes such that c n Tc and k]1 | k for some sequence from II. That

¢ and k are then progressive and non—negative is obvious. To show that ¢ is locally
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integrable and k is a solution of (1 1) corresponding to c, it is enough to verify that,
for fixed w, we have
T . T , T,
Jo c(t)dt = lim Jo cn(t)dt = hmn{jo f[kn(t);t]dt - kn(T) + Ko}
= Jo flk(t)tldt —k(T) + Ko < o0, Ted .(10.13)

The first equality results from monotone convergence. The second follows directly
from (1.1). The third equality (and the finiteness) aze due to the continuity and
monotonicity of f and dominated convergence; explicitly,

0 < k(t) < kl(t) implies 0 < f[k(t);t] € f[kl(t);t),
and f[k,(t);t) is integrable on [0,T] because k; is a plan, so that we may pass o

the limit under the integral sign and then use k_ |k, f(k ) | f{k)

(C) Properties of the Set of Extended Plans — cf Chapters 4(B) and 9.
The extension to I of the properties of 11 established in Chapter 4(B) is not quite
straightforward, though the proofs are simplified by the assumption that {1 in K

First, if (c,k) is improper and D(k;w,T) is the average returns process defined
by (4.7a), the stopping time t = inf{T: D(k,T) = oo} may take finite values with
positive probability, and then for T > t the integral equation (4 8) is no longer
equivalent to (11) with k(0) = K, and in particular says nothing about the sign of
k(T); this calls for some changes in the later argument. Note that {2 7.

We now set out the new version of Properties (i)—(iv), with proofs where
needed.
ProPERTY (i). If ¢ =0, there exists k such that (ck)ell C g
ProperTY (i1) If (cl,kl)efl and 0<cqy <) ae, ¢, progiessive, there exists k,

such that (cz,kz)eﬁ; moreover 0 < ky(t) <ky(t) on Tas.

1 It can be shown that (c,k) is an improper plan iff ¢ is progressive, non—negative,
locally integrable, k is the mazimal solution of (1.1) on J with k(0) = Ko, and k is
non—negative and such that (11) holds.
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Proor. Note first that the corresponding assertions for II*+ and II are obvious under
present assumptions, because with £ 1 in K it is clear that 0 < Cy < Cq implies

kg > k;. Nowlet (c;k ) beimproper, with 0<¢c; T, ko Lk, (e .k JelL,
and let 0< cy £ ¢4 with Co progiessive Define Con = (c2 / cl)c111 if c; >0 and
Cop = 0 otherwise; then 0 < Con < Cipr 5O that by the preceding remark we have
(czn,kzn)eﬂ with unique k211 such that k211 > klIl > kl" Also 0¢ Cop T €9 € €y, 50
that k2n | some limit function k2 > k1 > 0 It then follows from the definition of an
extended plan that (cz,kz)ef{. I

PropERTY (111) Let (c*k*) and (ck) = (c*+6bc, k*+6k) be elements of II, and for
0<a<l let ¢%= act+(1—-a)c*, k* = ak+(1-a)k* For each q,

(a) there exists k® such that (EQ,EQ)Eﬁ, ie & is convex;

(b) if (c,k)ell*, or if (c,k)ell and k > 0 on {k#k*}, there exists c¢® such that

(c® kel

Proor By definition, there exist (c*k*) and (c k) in II such that c} T c¥

¢y Tc, k; ] k¥, k, ]l k. Since f is continuous and non—decreasing in K, it follows
from (1.1) that I&; | k¥, kn 1k

(a) Let ég = ac_ +(1—a)e}. Since the proof of Property (iii) in Chapter 4 remains
valid for proper plans, there is some Eg such that (Eg,f{g)eﬂ When n - co,
c%1¢% 50 kY| somelimit k% 0, and it follows as before that (82 kHerl.

(b) For brevity we consider only the case (c,k)ell*. Let kg = ak_+(1—a)k} Using
Property (iii) again and abridging the notation, we have (¢ kel with

cg = f(kg)—kf;. Now let ¢% = f(k%—%k® Since kgl k% and kgl k%, it is clear
that cg = ca, but the last convergence need not be monotonic; (if it were, the present
argument, could be used to prove the convexity of 53 , which is not claimed). We
accordingly consider the processes 53 = ini'mchIi; since 0< 53‘5 clcf, it follows from
Property (ii) in Chapter 4 that (€K, )l for some K>k When n-oo, ¢ 1c”

50 fg ! some limit %> k% it then follows as before that (ca,fa)eﬁ, so that K2 is
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a solution of (1.1) with ¢ = ¢%and k(0) = K, Now k% is a solution of this equation,
and k% is positive because k is positive; but then k% is the unique solution,
implying §% = k% and (c®k%ell* ||

This argument also proves

ProPERTY (iv) Let (cn,kn)eﬁ, n=1,2, ., and define ¢, = Iimninfmzncm as in

(4 12); there exists ky such that (c*,k*)efi.‘

Once these properties are proved, the Existence Lemma in Chapter 9 applies,
except that it is now asserted that thereis a ¢y € € (rather than in %) such that
v(cx) = ¢*. Ounly part (a) of Property (i11) is needed in this argument . Similarly the
Criteria for Negative and for Positive Utility assert the existence of an optimum in il
rather than in IT The Applications immediately following the statements of these
Criteria remain valid (subject to a minor change of proof in the negative case to avoid

reference to eq.(4 9) ); however the proof of the Direct Test for Positive Utility fails.

(D) Conditions for Optimality — cf. Chapters 3(B) and 5-6.

Let (c*k*) be a distinguished element of I and let 7 be the first arrival time of k*
at zero — cf.{10) Further, let R be the process defined as in (3.7) and define a
stopping time ¢ by

o(w) = inf{Te I R(w,T) = oo} . (10 14)
if such a number exists and o{w) = o¢ otherwise; obviously ¢2 7 as. The
definitions (3.8—10) of J, G and y yleld J(T) =0, G(T) = G(o) and y(T) =
for T > o, so that formulae involving these processes and their derivatives are in
general either trivial or invalid for T > ¢. The Conditions for Optimality (3.28—33),
even if meaningful, cannot be fulfilled if P{c < oo} >0 since x T oo as. implies
P{ Xy > o} > 0 forlarge n, hence Ey( Xn) = oo, contrary to the definition of a local
martingale. Clearly our approach to characterising an optimum will not work for il

unless R is finite on 7, a s ; but since R represents the marginal logreturn to
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capital along the star plan, and exp(—R) the discount process, it is to be expected on
economic grounds that this condition will be satisfied by an optimal plan.

Consider first the sufficiency of the Conditions for Optimality (3 28-33). By
assumption, y is a local martingale, so ¢* is positive a e, R is finite on J a s, the
meaning of the Conditions presents no problems and the proof of sufficiency stands
(However, if P{? < oo} > 0, the Conditions cannot be fulfilled with Xp =¥ asin
(3.36), because then i T Ko implies . 17 as)

Turning to necessity, let (¢*,k*) be optimal in 1. We wish to show that, under
slight assumptions to be stated, (c*,k*) is actually in II*, i.e that 7= co a.s This
will imply that the Conditions (3 29—34) are necessary for optimality. We proceed
somewhat informally in order to avoid undue repetition of eailier arguments. Starting
with Chapter 5, we assume as usual that (5 6) is satisfied. By virtue of Property (ii1)
the formula (5 1) for Dy(c*,éc) has meaning for (c,k) = (c*+6c,k*+8k)ell, while
formula (5.2) for D®(k*,6k) has meaning if (c,k)ell*or if k > 0 on {ék # 0}. The
formulae (5.3—5} and (5.7) obtained by differentiating under the integral sign then
remain valid under assumption (5.6), (with the reservation that the versions involving
g, J, G, J etc. require R to be finite). It then follows, as in Chapter 6, that
c*(w,t) > 0 a e, but unlike the situation in Chapter 6 we can at this stage only infer
that the absolutely continuous function k*(w,-) is positive for almost all t€ 7, hence is
positive on a sequence of intervals of positive length, all of them open except the first
which has the form [0,7(w)).

We next sketch a proof that optimality requires that R{w,T) < co on 7, a.s.
Suppose on the contrary that P{¢ < o0} > 0. For t < ¢ and we may choose a
variation éc < 0, say ¢ = —ec*, ¢ = (1—¢)c® with 0 < e < 1; this is feasible since
¢* > 0 ae. Now, abridging the notation, we have

Sk(t) = flk(1);t] — f[k*(t);t] + ec*(t),

and clearly &k(t) > 0 for t < ¢ By concavity of f,
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k(8);t] — ERF(] > ok(e)-f [k(t)st]
hence 6k(t) > k(t)-1’[k(t);t] Bearing in mind that ¢ is a predictable time, we
choose a time 7 such that 0 < 7< o, hence &(7) > 0 a.s, and obtain

Bk(0)/k(r) > exp{f% ¢ [k(t)stldt}

As €] 0,k | k* £[k(t);t] T £/[k*(t);t] = 1(t), leading to

limfl0 fk(o)/6k(7) > exp{R(c)-R(7)} = oo if o< 00
In other words, an arbitrarily small proportional cut in consumption (which may even
be restricted to a short interval preceding o) permits the accumulation of an arbitrarily
large sum of additional capital dk(c) at o. Taking into account (5.6), it is found as in
the discussion leading to (5 7) that the loss of welfare before ¢ is finite and tends to
ze1o with e, On the other hand, ék(o) may be consumed after ¢, and for e small
enough the additional consumption can be chosen so that the increment of welfare
after o exceeds the loss before o, contrary to optimality.

Turning to Chapter 6, the proof of the supermartingale property of y depends
essentially only on finiteness of R and on variations of the consumption plan, and so
the property remains valid. We assume (6.18), so that we may choose c* right
continuous, and then k* is also right continuous. Now suppose that Hw) < oc for
we A with PA > 0,sothat k*(#) =0 for we A while k*(t) > 0 on some
(random) right neighbourhood of 7, hence also f[k*(t);t] > 0. By 1ight continuity, we
have k(t) > 0 on some (possibly smaller) right neighbourhood of 7. Since
cH(t) = flk*(t);t] — k*(t) > 0 and 0 < flk*(t);t] - flk*(9);7] = 0 as t | 7, it follows that
c*(t) < flk*(t);t] and c*(t) = c*(7) =0 But then y(¥) = co for we A, contrary to
the supermartingale property. This contradiction shows that 7 = 0o a5, so that
(c* k¥ )ell* |

The main results of this Chapter may be summed up, somewhat imprecisely, in

the following
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OPTIMALITY THEOREM FOR THE STANDARD MODEL WITH INADA CONDITION.

Suppose that, for each (w,t), f/(0; w,t) = oo and £(0; w,t) =0, also f/(k; w,t) >0 and
f(x; wit) > 0 for each x > 0; further that, for each w and each & > 0, '(X; w,")
and f(K; w,-) are integrable on finite intervals of 7,

The Feasibility Lemma remains valid, apart from the assertions involving
(4 7-9), if plans are replaced by extended plans and Properties (i)—(iv) by (1)—(Iv).
The Existence Lemma and the Existence Criteria for Negative and Positive Utilities
then remain valid for extended plans.

The Conditions for Optimality (3 28—33) are sufficient for an optimum in the
set 11 of extended plans. Under the additional assumptions (5.6) and (6 18), an
optimal extended plan is proper and is a plan with positive capital; therefore (3 29-34)

are necessary conditions for optimality in i
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