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1 Introduction

This paper introduces a new class of parameter estimators for partially observed systems, called

Simulated Nonparametric Estimator (hereafter SNE). The SNE works by making the finite dimen-

sional distributions of the model’s observables as close as possible to their empirical counterparts

estimated through standard nonparametric techniques. Since the distribution of the model’s

observables is in general analytically intractable, we recover it through two steps. In the first

step, we simulate the whole partially observed system. In the second step, we obtain model’s

density estimates through the application of the same nonparametric devices used to smooth the

sample data. The result is a consistent and root-T asymptotically normal estimator displaying

a number of attractive properties. First, our estimator is based on simulations. Consequently, it

can be implemented fastly and in a straightforward manner to cope with a variety of estimation

problems. Second, the SNE is purposely designed to minimize distances of densities smoothed

with the same kernel. Therefore, it is consistent regardless of the smoothing parameter behavior;

and it achieves the same asymptotic efficiency as the maximum-likelihood estimator in the case

of fully observed Markov processes. Third, even in the presence of partially observed systems,

the SNE may remain efficient when some suitable prediction functions suggested by economic

theory are used in conjuction with data generated by the original unobserved systems. Finally,

Monte Carlo experiments reveal that our estimator does exhibit a proper finite sample behavior.

Partially observed systems arise naturally in many areas of economics. Examples in macro-

economics include models of stochastic growth with human capital and/or sunspots, job duration

models, or models of investment-specific technological changes. Examples arising in finance in-

clude latent factor models, processes with jumps, continuous time Markov chains, and even scalar

diffusions. While the methods developed in this paper are well suited to address estimation issues

in all such areas, we restrict our attention to the estimation of the typical diffusion models arising

in financial economics.

As is well-known, the major difficulty arising from the estimation of partially observed systems

is related to criterion functions that are extremely complex to evaluate. The simulated method of

moments of Duffie and Singleton (1993), the indirect inference approach of Gouriéroux, Monfort

and Renault (1993), or the efficient method of moments (EMM) of Gallant and Tauchen (1996)

represent the first attempts at addressing this issue through extensions of the generalized method

of moments; see Gouriéroux and Monfort (1996) for a survey on such methods and related

approaches. The main characteristic of these approaches is that they are general-purpose. Their

drawback is that they lead to inefficient estimators even in the case of fully observed systems.

As an example, the EMM estimator is efficient only under the so-called “smooth embedding

condition”; and as Gallant and Long (1997) demonstrated, such a condition holds when the

(parameter) dimension of the auxiliary score gets higher and higher.
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Estimation methods specifically designed to deal with diffusion processes include moments

generating techniques (e.g., Bibby and Sørensen (1995), Hansen and Scheinkman (1995), Single-

ton (2001) and Chacko and Viceira (2003)), approximations to maximum likelihood (e.g., Peder-

sen (1995) and Aït-Sahalia (2002, 2003)) and, on a radically different perspective, Markov Chain

Monte Carlo approaches (see, e.g., Elerian, Chib and Shephard (2001) and Eraker (2001)). As

regards the moments generating approach, Singleton developed estimating conditions generated

by the characteristic function, and identified an optimal (but generally unfeasible) instrument

leading to efficient estimators. On the other hand, both Pedersen’s and Aït-Sahalia’s estimators

constitute arbitrarily accurate approximations to the (generally unfeasible) maximum-likelihood

estimator. These estimators work by approximating the transition density of arbitrary multi-

variate diffusion processes. Specifically, the Pedersen’s estimator recovers the transition density

through Monte Carlo integration; and the Aït-Sahalia’s estimator recovers the transition density

through closed-form expansions based on Hermite polynomials.

Our approach does not rely on the approximation of the maximum-likelihood estimator for

diffusion processes. Instead, we construct criterion functions leading to a general estimation

approach. In many cases of interest, these criterion functions are asymptotically equivalent to

Neyman’s chi-square measures of distance. It is precisely such an asymptotic equivalence which

makes our resulting estimators as efficient as the maximum-likelihood estimator. However, we em-

phasize that our estimators are quite distinct from any possible approximation to the maximum-

likelihood estimator. In the language of indirect inference theory, we rely on “auxiliary criterion

functions”, which generally give rise to asymptotically inefficient but consistent estimators. But

as soon as model’s and data transition densities are estimated through an asymptotically shrink-

ing smoothing parameter, these criterion functions converge to Neyman’s chi-squares, and our

estimators become efficient. In this sense, the role played by the smoothing parameter in our

context parallels the role played by the smooth embedding condition within the efficient method

of moments.1 The distinctive feature of our method is that we do not require that the (parame-

ter) dimension of the “auxiliary” criterion goes to infinity. We only require that the smoothing

parameter goes to zero at a reasonably mild rate. Furthermore, we smooth model-generated data

and observations with the same kernel. Therefore, the behavior of the smoothing parameter does

not affect the consistency of the estimator - as it would happen for example in the case of non-

parametric simulated maximum-likelihood estimators (see, e.g., Fermanian and Salanié (2003)).

An asymptotically shrinking smoothing parameter can only favorably affect the precision of our

estimator.

Our methods display the attractive features of both moments generating techniques and

maximum-likelihood. As we have argued, our methods are general-purpose - just as the general-

ized method of moments and its extensions. In this article, we demonstrate their specific ability

1 We are grateful to Christopher Sims for bringing this point to our attention.

3



to address parameter estimation of arbitrary partially observed, multivariate diffusion processes.

At the same time, our methods can be as efficient as maximum likelihood whenever the state is

a fully observable Markov process. Finally, we demonstrate that the finite sample performance

of our estimators is at least as good as maximum likelihood.

In a related paper, Carrasco, Chernov, Florens and Ghysels (2002) developed an estimation

technology which also leads to asymptotic efficiency in the case of fully observed Markov processes.

The authors built on previous work by Carrasco and Florens (2000), and formulated a “continuum

of moment conditions” leading to match model-based (simulated) characteristic functions with

data-based characteristic functions. Our estimator also relies on a “continuum of moments”, but

it is different. We use more classical ideas from the statistical literature, and develop estimating

equations leading to match (model-based) simulated nonparametric density estimates with their

empirical counterparts. Earlier estimators based on similar ideas include the ones succinctly

surveyed in the next section. Two particularly important contributions related to this literature

are in Aït-Sahalia (1996) and in Diebold, Ohanian and Berkowitz (1998). Aït-Sahalia developed

an estimator matching marginal densities. Diebold, Ohanian and Berkowitz proposed to match

spectra, thereby feeding their resulting estimator with information about the dynamic structure

of a model. At the same time, matching spectra might entail loss of information about potential

nonlinearities. By matching joint and/or conditional densities, we combine the relative strengths

of these two approaches.

The paper is organized in the following manner. The next section motivates the design

of the estimator developed in the core of the paper. Section 3 introduces basic notation and

assumptions, as well as examples of models to which the estimator can be applied. Section 4

provides large sample theory. Section 5 develops conditions under which our methods can be used

to implement parameter estimation of asset pricing models. Section 6 assesses the finite sample

and computational properties of the estimator. Section 7 concludes. The appendix gathers proofs

and regularity conditions omitted in the main text.

2 Methods: a heuristic overview

This section provides a heuristic introduction to the main ideas in this paper. Theory, extensions

and computational features of the method are in sections 3 through 6. Readers willing to access

directly to our results can thus proceed to section 3 without loss of continuity.

2.1 Closeness of density functions

To keep this heuristic presentation as simple as possible, we initially consider a sample {x1, ···, xT}
of independent draws from a distribution with continuous density π0 (x ∈ Rd and d ≥ 1). We

assume that π0 belongs to a specified parametric family π (·; θ) indexed by a vector θ ∈ Θ, where
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Θ denotes the parameter space. The purpose is to estimate the (supposedly) unique θ0 ∈ Θ
making π0(x) = π (x; θ0), x ∈ Rd.

Our estimation methodology is related to a classical field of the statistical literature initiated

by Bickel and Rosenblatt (1973). By and large, this literature aims at testing the closeness of

two arbitrary density functions f and g through the integrated squared difference:

I =

Z
Rd
[f(x)− g(x)]2w(x)dx, (1)

where w is a given weighting function. As an example, suppose that g = π0, and consider testing

the null H0 : π(x, θ0) ≡ f(x) = π0(x) on Rd, against its negation. Let πT be a nonparametric

estimator of π0 obtained as πT (x) ≡ (Tλd)−1
PT

t=1K ((xt − x)/λ), x ∈ Rd, where the bandwidth

λ > 0, and K is a symmetric bounded kernel of the r-th order (see the appendix for more details

on the kernels used in this paper). Consider the following empirical counterpart to (1):

IT (θT ) =

Z
Rd
[π (x; θT )− πT (x)]

2wT (x)dx, (2)

where wT is a weighting function possibly depending on data, and θT is a given consistent

estimator of θ0. Rescaled versions of (2) can now be used to implement tests of H0 (see, e.g.,

Pagan and Ullah (1999, p. 60-71) for a comprehensive survey on those tests).2

The focus of this paper is on using a metric related to (2) to estimate the unknown parameter

vector θ0. Accordingly, consider endogenizing sequence θT in (2), and define

θIT = argmin
θ∈Θ

IT (θ) . (3)

Notice that if wT ≡ πT , θIT collapses to the estimator proposed by Aït-Sahalia (1996) in the

context of scalar diffusion processes.

An important feature of the empirical measure of distance in (2) is that a parametric density

estimate, π (·; θ), is compared with a nonparametric one, πT (·). Under correct model speci-

fication, πT (x)
p→ K ∗ π (x; θ0) ≡

R
Rd λ

−dK ((u− x)/λ)π (u; θ) du (x-pointwise). As is well-

known, the result that πT (x)
p→ π (x; θ0) (x-pointwise) only holds if the bandwidth λ ≡ λT (say),

limT→∞ λT → 0 and limT→∞ TλdT →∞. Therefore, bandwidth choice is critical for (2) and (3)

to be really informative in finite samples. Furthermore, this choice becomes even more funda-

mentally critical in the case of dependent observations that we will deal with later in this paper.

In the next subsection, we discuss how to circumvent this problem through a convenient change

of the distance measure in (2).

2 Corradi and Swanson (2003) have recently developed new specification tests for diffusion processes based on
cumulative probability functions.
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2.2 On “twin-smoothing”

A simple alternative to (2) is an empirical distance in which the nonparametric estimate πT is

matched asymptotically to its probability limit conditional on a given bandwidth value:

LT (θT ) =

Z
Rd
[K ∗ π (x; θT )− πT (x)]

2wT (x) dx, (4)

where θT is an arbitrarily given but consistent estimator of θ0. Fan (1994) developed a class of

bias-corrected goodness of fit tests based on LT (θT ) and weighting function wT ≡ πT .

One basic idea in this paper is to combine the attractive features of θIT in (3) with the bias-

corrected empirical measure in (4). To achieve this objective, we endogenize sequence θT in

(4) rather than in (2), and consider general empirical weighting functions wT . As we argue,

our resulting estimator is free from biases related to density estimates. Specifically, define the

following estimator:

θLT = argmin
θ∈Θ

LT (θ) , (5)

where wT (x)
p→ w(x) (x-pointwise), and w is another positive function satisfying some basic

regularity conditions (see section 4.2). As it turns out, bandwidth conditions affect the two

estimators θIT and θLT in a quite different manner. Consistency of θLT holds independently of the

bandwidth behavior (i.e., λ can be any strictly positive number). Consistency of θIT requires the

additional conditions that limT→∞ λT → 0 and limT→∞ TλdT → ∞. To illustrate one reason

explaining the difference, consider the following decomposition:

IT (θ) = LT (θ) +MT (θ) +NT (θ) ,

where

MT (θ) ≡
Z
Rd
[π (x; θ)−K ∗ π (x; θ)]2wT (x) dx;

NT (θ) ≡ 2

Z
Rd
[π (x; θ)−K ∗ π (x; θ)] [K ∗ π (x; θ)− πT (x)]wT (x) dx.

Let I(θ) ≡ RRd [π (x; θ)− π0(x)]
2w(x)dx. As is well-known, conditions ensuring consistency of θIT

include a uniform weak law of large numbers for IT (θ) or, equivalently, stochastic equicontinuity

of IT (θ) and the condition that ∀θ ∈ Θ, IT (θ)
p→ I(θ) (see appendix A.1). Now consider the

simplest case θ = θ0. Clearly, I(θ0) = 0. Furthermore, LT (θ0)
p→ 0 and NT (θ0)

p→ 0, both by

a generalization of Glick’s (1974) theorem (see appendix B.1). In contrast, MT (θ0) is not op(1)

unless λT → 0 at an appropriate rate. To ensure consistency of θIT , the bandwidth behavior must

be restricted in a way to make the effect of this extra term asymptotically negligible. Results in

Pritsker (1998) (for dependent observations) suggest that under these restrictions, the asymptotic

theory for θIT is of practical guidance only in correspondence of very large sample sizes.
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As for consistency, θLT and θIT are asymptotically normally distributed under different band-

width restrictions. Specifically, one has that in the i.i.d. case considered in this section,

√
T (θsT − θ0)

d→ N (0, V ) , s = I, L, (6)

where V = var[Ψ (x1)], Ψ (x) ≡
£R
Rd |∇θπ (x; θ0)|2w (x) dx

¤−1∇θπ (x; θ0)w (x), and |·|2 denotes

outer product. Such a convergence result holds under mild regularity conditions but different

conditions on λ. Precisely, θLT is asymptotically normal under the standard assumptions that

limT→∞ λT → 0 and limT→∞ TλdT → ∞. Instead, θIT is asymptotically normal under the addi-

tional condition that limT→∞
√
TλrT → 0. Intuitively, this condition ensures that a density bias

estimate vanishes at an appropriate rate without affecting the asymptotic behavior of θIT , and

that a functional central limit theorem can be applied. In contrast, density bias issues are totally

absent if one implements estimator θLT .

Table 1 summarizes our discussion. θIT is consistent if λT → 0 and TλdT →∞.3 Furthermore,

θIT is asymptotic normal under the additional condition that
√
TλrT → 0. In contrast, θLT is

consistent without the conditions λT → 0 and TλdT → ∞. These (and only these) bandwidth

conditions are required in order for θLT to be asymptotic normal. As we demonstrate in the Monte

Carlo experiments of section 6, conditions λT → 0 and TλdT → ∞ are much less restrictive for

asymptotic normality than for consistency.

Table 1 - Bandwitdh assumptions and asymptotic behavior of θIT in (3)
and θLT in (5)

Consistency Asymptotic normality

θIT TλdT →∞, λT → 0 TλdT →∞, λT → 0, and
√
T · λrT → 0

θLT always TλdT →∞, λT → 0

2.3 Efficiency, and robustness

Informal inspection of the variance term in (6) suggests that if the weighting function w is equal

to 1/π0, both θIT and θLT asymptotically achieve the Cramer-Rao lower bound. Efficiency can

thus be implemented with wT = 1/ (πT + αT ), where αT is any strictly positive sequence such

that αT
p→ 0 (e.g., αT = T−1).

3 Other estimators related to (3) suffer from exactly the same drawback. Two examples are 1) estimators based
on nonparametric density estimates of the log-likelihood function obtained through simulations; and 2) estimators
based on the so-called Kullback-Leibler distance (or relative entropy)

R
Rd log[π(x, θ)/π0(x)]π(x, θ)dx (see Robinson

(1991)). We are grateful to Oliver Linton for having suggested the latter example to us.
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We emphasize that such an efficiency property coincides with the classical first-order effi-

ciency criterion prescribed by Rao (1962). Furthermore, results by which estimators based on

closeness of density functions retain efficiency properties are not a novelty in the statistical litera-

ture. In the context of independent observations with fully parametric discrete densities, Lindsay

(1994) presented a class of minimum disparity estimators nesting a number of estimators such as

Hellinger’s distance, Pearson’s chi-square, Neyman’s chi-square, Kullback-Leibler distance, and

maximum likelihood. Lindsay showed that while all these estimators are first-order efficient, they

may differ in terms of second-order efficiency, and robustness. Basu and Lindsay (1994) extended

this theory to the case of continuous densities. Such an extension can be used to illustrate some

fundamental properties of our estimator.

Our estimator θLT in (5) can be thought of as a member belonging to a general class of

minimum disparity estimators θT defined by the following estimating equation:

0 =

Z
A(δ(x)) [∇θ (K ∗ π (x; θT ))] dx,

where

δ(x) ≡ K ∗ πT (x)−K ∗ π (x; θT )
K ∗ π (x; θT ) ,

and A is an increasing continuous function in (−1,∞).4 Under regularity conditions, function A

determines how sensible an estimator is to the presence of outliers. Indeed, function δ is high

exactly when a point in the sample space has been accounted much more than predicted by the

model. Accordingly, a robust estimator is one able to mitigate the effect of large values of δ. As

a benchmark example, the likelihood disparity sets A(δ) = δ. Estimators with the property that

A(δ) ¿ δ for large δ are more robust to the presence of outliers than maximum likelihood. For

instance, the Hellinger’s distance sets A(δ) = 2[
√
δ + 1 − 1], and the Kullback-Leibler distance

has A(δ) = log(1 + δ). It is easily seen that if wT = 1/ (πT + αT ), our LT is asymptotically a

Neyman’s chi-squared measure of distance, with A(δ) = δ/ (1 + δ). These simple facts suggest

that the class of estimators that we consider displays interesting robustness properties.

Naturally, this article aims at extending the above class of estimators to the case of dynamic

models. However, we do not further investigate the robustness properties of our resulting es-

timators. Using robustness, and/or second-order efficiency criteria as discrimination devices of

alternative parameter estimators of diffusion models is an interesting area that we leave for future

research.
4 When λ ↓ 0, A and δ collapse to what Lindsay (1994) termed residual adjustment function and Pearson’s

residual, respectively.
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2.4 Unknown density functions

A fundamental objective of this paper is to extend the previous ideas and results to more general

situations. Specifically, suppose that the analytical solution for density π (x; θ) in (4) is unknown,

but that it is still possible to simulate from that density. Consider the following estimator:

θT = argmin
θ∈Θ

Z
Rd

"
1

S

SX
i=1

πiT (x; θ)− πT (x)

#2
wT (x)dx, (7)

where S is a positive integer, πiT (x; θ) ≡ (Tλd)−1
PT

t=1K((x
(i)
t (θ) − x)/λ), and {x(i)t (θ)}Tt=1 is

the i-th sequence simulated from π (·; θ).
The appealing feature of this estimator is that πiT and πT are computed with the same

kernel and bandwidth. Such a “twin” kernel smoothing procedure operates on sample and model

generated data in exactly the same manner as in (4). Consequently, the asymptotic properties of

θT in (7) and θLT in (5) are identical under the same bandw



of biases in the density estimates, θIT performs worst at all horizons in terms of MSE. This

problem is absent within the SNEs. While the SNEs are implemented with simulations, the

MSEs associated with the SNEs are even less than the MSEs associated with θIT . Furthermore,

the Opt-SNE performs better than the basic SNE. Finally, maximum likelihood performs better

than the other three methods.

2.5 Extensions

This paper extends the previous ideas and examples to deal with parameter estimation of dynamic

models. In the i.i.d. case covered in this heuristic section, estimators minimizing disparity

measures of marginal densities have interesting properties. In sections 2.2 and 2.3, we argued

that they are consistent and asymptotically efficient. And the simple Monte Carlo experiment of

section 2.4 revealed that the asymptotic theory does provide practical guidance in finite samples.

The use of marginal densities is no longer appropriate in the dynamic case. To exploit all the

information conveyed by the probabilistic structure of a dynamic model, this paper introduces

estimators based on more general measures of closeness. Accordingly, we develop three estimators

that share the same “twin-smoothing” features described in section 2.2 and 2.4.

The first, basic estimator (the SNE) extends the framework of the previous sections to the

case of joint densities (see section 4.2). The second estimator minimizes measures of closeness

of conditional densities, and is called Conditional Density (CD)-SNE (see section 4.3). As it

turns out, the CD-SNE can be made as efficient as the MLE if the state is fully observable,

and Markov. The third estimator is the CD-SNE applied to “functionals of state variables” (see

section 5). By “functionals of state variables”, we mean that the processes of interest may have

state variables, some of which not observable, that are linked to other observable variables by some

nonlinear (deterministic) function(al)s. Typically, such function(al)s are suggested by standard

asset pricing theories - for these theories predict that asset prices are deterministic functions of the

underlying state. We derive conditions for partially observed systems to be embedded in this new

(functionally interdependent) format, and then develop conditions ensuring both feasibility and

efficiency of our CD-SNE. Finally, we investigate the finite sample properties of our estimators.

In section 6, we show that even in the presence of persistent data and limited sample sizes, the

use of joint and/or conditional densities makes the resulting estimators work as expected by the

asymptotic theory.
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3 The model of interest

Let Θ ⊂ Rpθ be a compact parameter set, and for a given parameter vector θ ∈ Θ, consider the

following data generating process y = {y(τ)}τ≥0:

dy(τ) = b (y(τ), θ) dτ + a (y(τ), θ) dW (τ), τ ≥ 0, (8)

where W is a standard d-dimensional Brownian motion; b and a are vector and matrix val-

ued functions in Rd and Rd×d, respectively; a is full rank almost surely; and y takes values

in Y ⊆ Rd. To simplify the presentation, we do not describe parameter estimation for jump-

diffusion processes. Yet jump-diffusion processes are continuous time Markov processes. If their

finite-dimensional distributions satisfy assumption 1 below, our results can be extended to cover

parameter estimation in this class of models under the same assumptions developed for the (pure)

multidimensional diffusion case (8).

The following regularity conditions are imposed to system (8) throughout the paper.

Maintained assumptions I. System (8) admits a strong solution and it is strictly stationary.

The purpose of this paper is to provide estimators of the true parameter vector θ0 ∈ Θ. We

consider a general situation in which some components of y are not observed. Accordingly, we

partition vector y as:

y =

 yo

· · ·
yu

 ,

where yo ∈ Y o ⊆ Rq∗ is the vector of observable variables and yu ∈ Y u ⊆ Rd−q∗ is the vector of

unobservable variables. Data are assumed to be sampled at regular intervals, and are collected

in a q∗ × T matrix with elements {yoj,t}j=1,···,q∗;t=1,···,T , where yoj,t denotes the t-th observation of

the j-th component of vector yo, and T is the sample size. Since our general interest lies in the

estimation of partially observed diffusion processes, we may wish to recover as much information

as possible about the dependence structure of the observables in (8). We thus set q = q∗(1 + l),

let yot = (y
o
1,t, · · ·, yoq∗,t) and

xt ≡
¡
yot , · · ·, yot−l

¢
, t = tl ≡ 1 + l, · · ·, T, (9)

and define X ⊆ Rq as the domain of xt.

We now provide examples of models that can be dealt with the methods introduced in this

paper, and formulate some further assumptions.
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Example 1. (Affine three-factor short-term rate models with stochastic volatility and stochastic

central tendency) Consider the following data generating process: y = {r(τ), σ(τ), c(τ)}τ≥0, with

dr(τ) = b1 (c(τ)− r(τ)) dτ + a1σ(τ)dW
(1)(τ)

dσ(τ)2 =
¡
b2 − b3σ(τ)

2
¢
dτ + a2σ(τ)dW

(2)(τ)

dc(τ) = (b4 − b5c(τ)) dτ + a3dW
(3)

(10)

where {Wi(τ)}3i=1 are independent Brownian motions, (r, σ, c) denote the short-term rate, sto-

chastic volatility and central tendency processes, and θ ≡ (b1, · · ·, b5, a1, a2, a3) is the parameter

vector. This model was introduced by Balduzzi, Das, Foresi and Sundaram (1996), and is called

affine because the characteristic function associated with it is exponential-affine in y.5 Suppose

that the short-term rate r is the only observable of this system. Then, yo = r and q∗ = 1. A

possible choice for the variables of interest could then be xt = (rt, rt−1) (i.e. q = 2). The exten-

sion to correlated Brownian motions and more elaborated affine models (as in Dai and Singleton

(2000) for example) is immediate, as it is the extension to nonaffine models.

In some situations of interest, the Maintained Assumptions I can not be entirely satisfied. The

celebrated geometric Brownian motion is one counterexample to those assumptions. Fortunately,

our method may also work with data generated by this kind of processes. For example, if the

price of a share Q(τ) follows a geometric Brownian motion, then its m-period returns Rq
t (m) ≡

log(Q(τ t)/Q(τ t −m)) (t = 1, 2, · · ·) forms a stationary sequence (see Das and Sundaran (1999)

for a detailed analysis of the moments of Rq
t (m) in a fairly general stochastic volatility model

such as the one in example 2 below). We then extend stationarity properties to this kind of data

transformations:

Maintained assumptions II and admissible data transformation. Nonstationary compo-

nents yo of vector x are replaced with functionals of yo and its k lags, ϕt ≡ ϕ(yot , ..., y
o
t−k), which

are stationary.

5 See, for instance, Duffie, Pan and Singleton (2000) for an analysis of more general affine models. Conditions
for the existence of a strong solution in settings more general than (10) are established in a theorem in Duffie and
Kan (1996, p. 388).
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Example 2. (Stochastic volatility share price models) Consider a share price process Q(τ)

solution to 
dQ(τ)

Q(τ)
= µ · dτ + σ(τ)dW1(τ)

dσ(τ)2 = κ
¡
v − σ(τ)2

¢
dτ + ψσ(τ)ξ

³
ρdW1(τ) +

p
1− ρ2dW2(τ)

´ (11)

where θ ≡ (µ, κ, v, ψ, ξ, ρ). In this example, q∗ = 1 and yo = Q, and it is easy to find the

parametric restrictions that ensure a strong solution to (11) up to an explosion time.6 Even if (11)

has a strong solution, Q does not satisfy the stationarity condition of our Maintained Assumptions

I. This difficulty can be circumvented by choosing xt = (Rt, Rt−1) and Rt = log(Qt/Qt−1).

By our maintained assumptions, the finite dimensional distributions associated with x are well-

defined, and we let π(x; θ) denote the joint density induced by (8) on x when the parameter vector

is θ ∈ Θ. Let π0(x) ≡ π(x; θ0) and let |∇θπ (x; θ)|2 denote the outer product of vector ∇θπ (x; θ).

The following assumption further characterizes the family of processes we are investigating. It

contains mild regularity conditions on π as well as one standard condition that is necessary for

identifiability of the diffusion:

Assumption 1. π(x; θ) is continuous and bounded on X×Θ. For all x ∈ X, function θ 7→ π(x; θ)

is twice differentiable and its derivatives are bounded on Θ. Finally, there exists a neighborhood

N of θ0 such that matrix E [|∇θπ (x; θ)|2] has full rank in N ∩Θ.

The maintained assumption that (8) is stationary implies that the “observed skeleton” of the

diffusion inherits the same features of the continuous time process. To ensure the feasibility of the

asymptotic theory, we also need to make the following assumption on the decay of dependence

in the observables in (8):

Assumption 2. Vector y is a β-mixing sequence7 with mixing coefficients βk satisfying

limk→∞ kδβk → 0, for some finite δ > 1.
6 As it is well-known (see Aït-Sahalia (1996, appendix)), there exists a strong solution to the volatility equation

in (11), up to an explosion time. Parametric restrictions are then found through two steps. The first step makes
use of the classical boundary classification analysis (see, e.g., Karatzas and Shreve (1991, p. 342-353)), and aims at
finding restrictions on κ, v, ψ and ξ ensuring that both boundaries of σ2 (i.e. zero and infinity) are unattainable in
finite expected time. The second step aims at finding parameter restrictions ensuring that σ2 is square-integrable
against its invariant measure. Under such a square-integrability condition, Q is solution to dQ = Q · dL, where L

is a square-integrable semimartingale. Strongness of (11) then follows from Revuz and Yor (1999, theorem 2.1 p.
375). Finally, note that the characteristic function associated with this model is exponential affine if and only if
ξ ≡ 1/2.

7 A strictly stationary process x on a finite-dimensional Euclidean space is β-mixing (or absolutely regular) if
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The mixing condition of assumption 2 is critical for the application of a functional central limit

theorem due to Arcones and Yu (1994). Precisely, assumption 2 ensures convergence of suitably

rescaled integrals of kernel functions to stochastic integrals involving time-changed Brownian

Bridges. This kind of convergence is exactly what we need to prove asymptotic normality of

our estimators (see appendixes A.2, B.2 and C.2). Chen, Hansen and Carrasco (1999) provide

primitive conditions guaranteeing that assumption 2 holds in the case of scalar diffusions. A

scalar diffusion is β-mixing with exponential decay if their “pull measure”, defined as b
a − 1

2
∂a
∂y ,

is negative (positive) at the right (left) boundary (the authors also provide conditions ensuring

β-mixing with polynomial decay in the case of zero pull measure at one of the boundaries (see

their remark 5)). As regards multidimensional diffusions, β-mixing with exponential decay can

be checked through results developed by Meyn and Tweedie (1993, section 6 p. 535-537) for

exponential ergodicity, as in Carrasco, Hansen and Chen (1999). Finally, Carrasco, Hansen and

Chen (1999) provide more specific results pertaining to the partially observed diffusions case

(such as our model example 2).

4 Theory

4.1 Simulations

The first step of our estimation strategy requires simulated paths of the observable variables

in (8). To generate such simulated paths, various discretization schemes can be used (see, e.g.,

Kloeden and Platen (1999)). In this paper, we consider the simple Euler-Maruyama discrete time

approximation to (8):

hyh(k+1) − hyhk = b (hyhk, θ) · h+ a (hyhk, θ) ·
√
h · �k+1, k = 0, 1, · · ·, (12)

where h



Assumption 3. For all θ ∈ Θ,

i) the high frequency simulator (12) converges weakly (or in distribution)9 to the solution of

(8) i.e., for each i, yih(θ)⇒ y(θ) as h ↓ 0;
ii) the diffusion and drift functions a and b are Lipschitz continuous in y; their components

are four times continuously differentiable in y; and a, b and their partial derivatives up to the

fourth order have polynomial growth in y;

iii) as h ↓ 0 and T →∞, h ·√T → 0.

Since the simulation step h can not be zero in practice, assumption 2 needs to be extended

to cover the “pseudo”-skeleton behavior:

Assumption 4. For all θ ∈ Θ, there exists a h0 > 0 such that for all h < h0 and i, yih(θ) is a

strictly stationary β-mixing sequence satisfying assumption 2.

Primitive conditions ensuring that assumption 3-i holds are well-known and can be found in

Stroock and Varadhan (1979), for instance. Primitive conditions guaranteeing that assumption

4 holds are also well-known (see, e.g., Tjøstheim (1990) for conditions ensuring that the solution

of (12) is exponentially ergodic). Assumptions 3-ii,iii make our estimators asymptotically free of

biases arising from the imperfect simulation of model (8) (model (8) is imperfectly simulated so

long as h > 0). Precisely, such biases arise through terms taking the form
√
T [E(K(xit,h(θ0)) −

E(K(xt))], where K is a symmetric bounded kernel (see, e.g., eq. (A6) in appendix A.2). But by

results summarized in Kloeden and Platen (1999, chapter 14),
√
T [E(K(xit,h(θ0))−E(K(xt))] =

O(h·√T ) whenever assumptions 3-i,ii hold and K is as differentiable as a and b are in assumption

3-ii. The role of assumption 3-iii is then to asymptotically eliminate such bias terms. Naturally,

more precise high frequency simulators would allow h to shrink to zero at an even lower rate.

Finally, assumption 3-ii can considerably be weakened. For example, one may simply require

that a, b be Hölder continuous, as in Kloeden and Platen (1999, theorem 14.1.5 p. 460). These

extensions are not considered here to keep the presentation as simple as possible.

4.2 Simulated Nonparametric Estimators

Densities of sample data and densities of simulated data are estimated with the same nonpara-

metric kernels. As regards sample data, define πT (x) ≡ (TλqT )
−1PT

t=tl
K ((xt − x) /λT ). As

9 Let (hyhk)∞k=1 be a discrete time Markov process, and (y(τ))τ≥0 be a diffusion process. When the probability
laws generating the entire sample paths of (hyhk)∞k=1 converge to the probability laws generating (y(τ))τ≥0 as h ↓ 0,
(hyhk)

∞
k=1 is said to converge weakly (or in distribution) to (y(τ))τ≥0; such a kind of convergence is usually denoted

as hy ⇒ y; the symbol d→ will be used here to denote convergence in distribution of a random variable.
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regards the simulations, define πiT,h (x; θ) ≡ (TλqT )
−1PT

t=tl
K((xit,h(θ) − x)/λT ), i = 1, · · ·, S.

Our assumption concerning the bandwidth behavior is:

Assumption 5. limT→∞ λT → 0, limT→∞ TλqT →∞.

It is well-known that assumption 5 ensures that πT (x)
p→ π0(x) pointwise (see, e.g., Pagan

and Ullah (1999, chapter 2)). Assumption 5 is the only bandwidth condition we actually need

to develop our asymptotic theory. As it will be discussed after theorem 1 below, we do not need

the additional condition that:

lim
T→∞

√
T · λrT → 0 (13)

(where r denotes the order of the kernel). As shown in appendix A.2 (see remark 3), condition

(13) would be important if the theory required a functional limit theorem for
√
T (
R
πT −

R
π0).

We do not need such a demanding result. We only need a functional limit theorem for
√
T (
R
πT −R

E (πT )). Therefore, the order of the kernel plays no role within our asymptotic theory.

We are now in a position to provide the definition of the most basic estimator considered in

this paper:

Definition 1. (SNE) For each positive integer S, the Simulated Nonparametric Estimator (SNE)

is the sequence {θT,S,h}h,T given by:

θT,S,h = argmin
θ∈Θ

Z
X

"
1

S

SX
i=1

πiT,h (x; θ)− πT (x)

#2
πT (x)dx. (14)

The following result provides the asymptotic properties of the SNE:

Theorem 1. In addition to assumptions 1, 2, 3-i, 4, let assumptions 7-8 in the appendix hold ;

then, as h ↓ 0 and T → ∞, the SNE is (weakly) consistent. Furthermore, let assumptions 1-5

and assumptions 7-9 in the appendix hold, and define Ψ (x) ≡ [E |∇θπ (x; θ0)|2]−1 π0(x)∇θπ (x; θ).

Then, as h ↓ 0 and T →∞,

√
T (θT,S,h − θ0)

d→ N

µ
0,

µ
1 +

1

S

¶
V

¶
,

where V ≡ var[Ψ (x1)] + 2
P∞

j=1cov[Ψ (x1) ,Ψ (x1+j)].

Proof. In appendix A. ¥
Three elements characterize the asymptotic theory of the SNE. First, consistency does not

rely on any condition regarding the bandwidth parameter. The familiar assumption 5 is only

required to make the SNE asymptotically normal.
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Second, the (unscaled) variance V of theorem 1 collapses to the variance of the Aït-Sahalia

(1996) estimator in the scalar case. However, we emphasize that the two estimators are radically

different. The Aït-Sahalia (1996) estimator recovers the model’s density by means of parametric

density estimates. Consequently, assumption 5 is needed to ensure consistency of his estimator.

The SNE recovers the model’s finite dimensional distributions by means of simulations. In ad-

dition to be consistent independently of bandwidth issues, the SNE can then be easily applied

to address estimation of multivariate models driven by partially observed state variables with

unknown distribution. Also, we explicitly consider matching joint densities of data, not marginal

densities. Furthermore, the SNE minimizes a measure of closeness of two nonparametric density

estimates - one on true data and the second on simulated data. Under correct model’s speci-

fication, the resulting biases in the two kernel estimates cancel out each other, and asymptotic

normality can then be obtained without condition (13). (A more detailed description of this

phenomenon is in remark 3 in appendix A.2.) These characteristics give the SNE the potential

to exhibit a finite sample behavior that is well approximated by the asymptotic theory. Such a

finite sample behavior is indeed documented by our Monte Carlo experiments in section 6.

Third, similarly to the familiar asymptotics of Indirect Inference estimators (Gouriéroux,

Monfort and Renault (1993)), a scaling term (1 + S−1) appears in the variance of the estimator.

Such a scaling term emerges because the (unknown) density of the model is recovered by means

of simulations.

The basic SNE in definition 1 overweights discrepancies occurring where observed data have

more mass. Theorem 1 can be extended to accommodate any well-behaved weighting function.

Consider the following estimator:

θT,S,h = argmin
θ∈Θ

Z
X

"
1

S

SX
i=1

πiT,h (x; θ)− πT (x)

#2
wT (x)dx, (15)

where wT is a sequence of weighting functions possibly dependent on data. In addition to the

basic regularity conditions of appendix B (assumptions 10 and 11), we assume that sequence wT

satisfies:

Assumption 6. For all x ∈ X and almost all points in the sample space, there exist two bounded

functions wj
T (x, λ), j = 1, 2, such that wT (x) ≡ wT (x, λ) = w1T (x, λ)

±
w2T (x, λ) and, for fixed

λ, wj
T (x, λ)

p→ wj(x, λ), j = 1, 2, x-pointwise, where wj(x, λ), j = 1, 2, are bounded functions

such that for all x ∈ X, w1(x, λ) = w2(x, λ) · w(x, λ) for some function w(x, λ). Finally, there

exist three functions w(x) and wj(x), j = 1, 2, such that limλ↓0wj(x, λ) = wj(x), j = 1, 2 and

w1(x) = w2(x) · w(x) all x ∈ X.

Asymptotically unbounded weighting functions are not ruled out by assumption 6. Naturally,
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a given unbounded weighting function does not jeopardize per se finiteness of the objective

function in (15). Additional regularity conditions ensuring consistency of all of our resulting

estimators are spelled out in assumption 10 in appendix B. In appendix B, we also show that

under assumptions 6, 10 and 11, the asymptotic behavior of θT,S,h in (15) is as in theorem 1,

with the exception that function Ψ is now replaced by:

Ψ (x) ≡
·Z

X
|∇θπ (x; θ0)|2w (x) dx

¸−1
w (x)∇θπ (x; θ) . (16)

The previous formula reveals that the asymptotic variance of the estimator depends indeed on

the weighting function w at hand. However, a weighting function minimizing such an asymptotic

variance is unknown, even in the case of fully observable diffusions.10 In the next section, we

show that in the case of fully observable diffusions, this problem can considerably be simplified

through an appropriate change of the objective function in (15).

4.3 Conditional Density SNE, and Efficiency

This section introduces a modification of the SNE, and addresses efficiency issues within the case

of fully observable diffusions. We show that by casting the estimation problem as a matching of

conditional densities (instead of joint ones), our resulting estimator is asymptotically (first-order)

efficient whenever the state y in (8) is fully observable.

To prepare the analysis, consider again vector x ∈ X ⊆ Rq in (9). For each t, partition xt as

xt = (zt, vt), where zt ≡ yot ∈ Z ⊆ Rq∗ is the vector of observable variables, and vt ∈ V ⊆ Rq−q∗ ,
is the vector of predetermined variables:

vt ≡
¡
yot−1, · · ·, yot−l

¢
, t = tl ≡ 1 + l, · · ·, T.

Consider the following conditional density matching estimator:

Definition 2. (CD-SNE) For each positive integer S, the Conditional Density SNE (CD-SNE)

is the sequence {θT,S,h}h,T given by:

θT,S,h = argmin
θ∈Θ

Z
Z

Z
V

"
1

S

SX
i=1

πiT,h (z|v; θ)− πT (z|v)
#2

wT (z, v)dzdv, (17)

where πT (z|v) ≡ πT (z, v) /πT (v), πiT,h (z|v; θ) ≡ πiT,h (z, v, θ) /π
i
T,h (v, θ) (i = 1, · · ·, S), and wT

is a sequence of weighting functions satisfying assumption 6.

10 An exception arises exactly in an hypothetical i.i.d. case. Under the regularity conditions given in the general
case of corollary 1 below, the optimal weighting function in the i.i.d. case is given by wT (x) = 1/ (πT (x) + αT ),
where αT is as in section 2.2.
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Under our assumptions, πT (z|v) is bounded (see, e.g. Chen, Linton and Robinson (2001,

property 2)). Under the standard bandwidth assumption 5, πT (z|v) p→ π (z|v) ≡ π (z, v) /π (v),

(z, v)-pointwise. Chen, Linton and Robinson (2001) provide further discussion on bandwidth

selection strategies for the estimation of conditional densities and dependent observations. Our

practical implementation of the CD-SNE relies on some of their suggestions, which we briefly

illustrate in Appendix E.

The following result provides the asymptotic properties of the CD-SNE.

Theorem 2. In addition to assumptions 1, 2, 3-i, 4, let assumptions 7, 12 and 13 in the ap-

pendix hold ; then, as h ↓ 0 and T → ∞, the CD-SNE is (weakly) consistent. Furthermore,

let assumptions 1-5 and assumptions 7, 9, 12 and 13 in the appendix hold ; then, as h ↓ 0 and

T →∞, √
T (θT,S,h − θ0)

d→ N (0, V ) ,

where V ≡ var(Ψ1) + 2
P∞

j=1cov(Ψ1,Ψ1+j), Ψ ≡ D−14 [
1
S

PS
i=1(D

i
1 + Di

3) + D2], and the terms

{Di
1}Si=1, D2, {Di

3}Si=1 and D4 are given in appendix C.2.

Proof. In appendixes C.1 and C.2. ¥
The previous theorem contains a general statement about the asymptotic behavior of the

CD-SNE. It holds for any weighting function satisfying our regularity conditions, and even when

the state vector y is partially observed. Furthermore, the variance structure of the CD-SNE

differs from the one characterizing the asymptotic distribution of the SNE in section 4.2. In the

CD-SNE case, one has to cope with additional terms arising because conditional densities are

estimated as ratios of two densities (joints over marginals). Such additional terms are represented

by {Di
3}Si=1. As we show in appendix C.3, there exist weighting functions making these terms

identically zero. In those cases, the variance terms in theorem 2 have the same representation as

the variance terms in section 4.2. Proposition 3 in appendix C.3 summarizes our results on these

issues.

We now heuristically demonstrate that when vector y is fully observable, there exists a simple

choice of wT that makes the CD-SNE asymptotically attain the Cramer-Rao lower bound. (As

it turns out, such a function belongs to the class of functions considered in proposition 3 (see

appendix C.3).) Specifically, consider the following weighting function:

wT (z, v) =
πT (v)

2

πT (z, v) + αT
, (18)

where αT is any strictly positive sequence satisfying αT → 0. The simple role played by sequence

αT is to ensure that wT does not blow up in finite samples. And asymptotically, our objec-

tive function in (17) is finite under additional regularity conditions given in the appendix (see
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assumption 12 in appendix C.1). If wT is as in (18), the criterion in (17) reduces to:

Z
Z

Z
V

"
1

S

SX
i=1

Ã
πiT,h (z|v; θ)
πT (z|v) − 1

!#2
πT (z, v)

2

πT (z, v) + αT
dzdv,

which asymptotically becomes a Neyman’s chi-squared measure of distance.

The first order conditions satisfied by the CD-SNE are:

0 =

Z
Z

Z
V

1

S

SX
i=1

"
πiT,h (z| v; θT,S,h)

πT (z| v) − 1
#

πT (z, v)
2

πT (z, v) + αT

∇θπ
i
T,h (z| v; θT,S,h)
πT (z| v) dzdv,

and a Taylor’s expansion about θ0 then yields that in large samples,

√
T (θT,S,h − θ0) ∼ −JT,S,h(θ0)−1

"
H0
T,S,h(θ0) +

1

S

SX
i=1

Hi
T,S,h(θ0)

#
, (19)

where ∼ stands for asymptotic equivalence (in distribution), and

JT,S,h(θ0) ≡ 1

S

SX
i=1

Z
Z

Z
V

¯̄∇θ lnπ
i
T,h (z|v; θ0)

¯̄
2
πT (z, v) dzdv,

H0
T,S,h(θ0) ≡

Z
Z

Z
V

√
T [πT (z, v)−E (πT (z, v))]

"
1

S

SX
i=1

∇θ lnπ
i
T,h (z|v; θ0)

#
dzdv,

Hi
T,S,h(θ0) ≡

Z
Z

Z
V

"
1

S

SX
i=1

√
T
¡
πiT,h (z, v; θ0)−E(πiT,h (z, v; θ0))

¢# £∇θ lnπ
i
T,h (z|v; θ0)

¤
dzdv.

By a law of large numbers and a central limit theorem developed in appendix C.2, JT,S,h(θ0)
p→

E [|∇θ lnπ (z|v; θ0)|2] and

Hi
T,S,h(θ0)

d→ N (0, var (∇θ lnπ (z|v; θ0))) , i = 0, 1, · · ·, S, (20)

as h ↓ 0 and T →∞.

By the Markov property of a diffusion (see, e.g., Arnold (1992), theorem 9.2.3 p. 146),

1

T
log π

¡{yt}Tt=1; θ0¢ = 1

T
log π (y1; θ0) +

1

T

TX
t=2

log π (yt|yt−1; θ0) . (21)

Since the system is fully observable, zt = yt, and ∇θ lnπ (yt|yt−1; θ0) is a martingale difference

with respect to the sigma-fields generated by y. Therefore, by taking vt = yt−1, we have that the

variance of the CD-SNE (rescaled by (1 + S−1)) does attain the Cramer-Rao lower bound

E [|∇θ lnπ (yt|yt−1; θ0)|2]−1 .
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Naturally, the previous arguments are heuristic. Nevertheless, the efficiency result can be made

rigorous, as in the following corollary:

Corollary 1. (Cramer-Rao lower bound) Suppose that the state is fully observable (i.e., q∗ = d).

Let the CD-SNE match one-step ahead conditional densities (i.e., (z, v) ≡ (zt, zt−1) in (17))

and let wT (z, v) = πT (v)
2
±
[πT (z, v) + αT ], where αT is any strictly positive sequence satisfying

αT
p→ 0. Then, under the assumptions in theorem 2, the CD-SNE is as in theorem 2, and it

attains the Cramer-Rao lower bound as S →∞.

Proof. In appendix C.3. ¥
Put differently, the previous efficiency result follows because the weighting function in (18)

makes the resulting estimator asymptotically equivalent to the score function when the system is

fully observable (see eqs. (19) and (20)). We now turn to analyze how our CD-SNE can be used

to implement parameter estismation of partially observed systems coupled with new information

provided by asset pricing theories. We study both feasibility and asymptotic efficiency of our

resulting estimators.

5 Asset pricing, prediction functions and statistical efficiency

This section analyzes situations in which the original partially observed system (8) can be es-

timated by augmenting it with a number of observable deterministic functions of the state. In

many situations of interest, such deterministic functions are suggested by asset pricing theories

in a natural way. Typical examples include derivative asset price functions or any deterministic

function(als) of asset prices (e.g., asset returns, bond yields, implied volatility, etc.). The idea to

use predictions of asset pricing theories to improve the fit of models with unobservable factors is

not new (see, e.g., Christensen (1992), Pastorello, Renault and Touzi (2000), Chernov and Ghy-

sels (2000) and Singleton (2001, sections 3.2 and 3.3)). In this section, we provide a theoretical

description of the mechanism leading to efficiency within the class of our estimators.

We consider a standard Markov pricing setting. For fixed t ≥ 0, we let M be the expira-

tion date of a contingent claim with rational price process c = {c(y(τ),M − τ)}τ∈[t,M), and let

{ζ(y(τ))}τ∈[t,M ] and Π(y) be the associated intermediate payoff process and final payoff function,

respectively. Let ∂/ ∂τ + L be the usual infinitesimal generator of (8) taken under the risk-

neutral measure.11 In a frictionless economy without arbitrage opportunities, c is the solution to

11 See, e.g., Duffie (1996) for details on the change of measure for diffusion models in financial applications.
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the following partial differential equation:
0 =

µ
∂

∂τ
+ L−R

¶
c(y,M − τ) + ζ(y), ∀(y, τ) ∈ Y × [t,M)

c(y, 0) = Π(y), ∀y ∈ Y

(22)

where R ≡ R(y) is the short-term rate. We call prediction function any continuous and twice

differentiable function c (y;M − τ) solution to the partial differential equation (22).

We now augment system (8) with d− q∗ prediction functions. Precisely, we let:

C(τ) ≡ (c (y(τ),M1 − τ) , · · ·, c (y(τ),Md−q∗ − τ)) , τ ∈ [t,M1]

where {Mi}d−q
∗

i=1 is an increasing sequence of fixed maturity dates. Furthermore, we define the

measurable vector valued function:

φ (y(τ); θ, γ) ≡ (yo(τ), C (y(τ))) , τ ∈ [t,M1], (θ, γ) ∈ Θ× Γ,

where Γ ⊂ Rpγ is a compact parameter set containing additional parameters. These new para-

meters arise from the change of measure leading to the pricing model (22) (see, e.g., example 3

below), and are now part of our estimation problem.

We assume that the pricing model (22) is correctly specified. That is, all contingent claim

prices in the economy are taken to be generated by the prediction function c(y,M − τ) for some

(θ0, γ0) ∈ Θ × Γ. For simplicity, we also consider a stylized situation in which all contingent

claims have the same contractual characteristics specified by C ≡ (ζ,Π). More generally, one

may define a series of classes of contingent claims {Cj}Jj=1, where class of contingent claims j has

contractual characteristics specified by Cj ≡
¡
ζj ,Πj

¢
.12 The number of prediction functions that

we would introduce in this case would be equal to d− q∗ =PJ
j=1M

j , where M j is the number of

prediction functions within class of assets j. To keep the presentation simple, we do not consider

such a more general situation here.

Example 3. (Example 2 continued) In the setting of model (11), y = (yo, yu) ≡ (Q,σ). If in

addition ξ ≡ 1/ 2, model (11) collapses to the Heston’s (1993) affine stochastic volatility model,

with θ ≡ (µ,w, ϕ, ψ, ρ). The price of a European option is given by the prediction function

c (Q(τ), σ(τ),M − τ ; θ, γ), where γ is a parameter related to the price of volatility risk.13 The

augmented price system is thus (Q(τ), c(Q(τ), σ(τ),M − τ ; θ, γ)).

12 As an example, assets belonging to class C1 can be European options; assets belonging to class C1 can be bonds;
and so on.

13 See eq. (6) (p. 329) and formulae # (10)-(18) (p. 330-331) in Heston (1993).
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Our objective is to provide estimators of the parameter vector (θ0, γ0) under which observa-

tions were generated. In exactly the same spirit as the previous sections, we want our CD-SN

estimator of (θ0, γ0) to make the finite dimensional distributions of φ implied by model (8) and

(22) as close as possible to their sample counterparts. Let Φ ⊆ Rd be the domain on which φ

takes values. As illustrated in Figure 2, our program is to move from the “unfeasible” domain Y

of the original state variables in y (observables and not) to the domain Φ on which all observable

variables take value. Ideally, we would like to implement such a change in domain in order to

recover as much information as possible on the original unobserved process in (8). Clearly, φ is

fully revealing whenever it is globally invertible. However, we will show that our methods can be

implemented even when φ is only locally one-to-one. Further intuition on this distinction will be

provided after the statement of theorem 3 below.

An important feature of the theory in this section is that it does not hinge upon the availability

of contingent prices data covering the same sample period covered by the observables in (8). First,

the price of a given contingent claim is typically not available for a long sample period. As an

example, available option data often include option prices with a life span smaller than the usual

sample span of the underlying asset prices; in contrast, it is common to observe long time series

of option prices having the same maturity. Second, the price of a single contingent claim depends

on time-to-maturity of the claim; therefore, it does not satisfy the stationarity assumptions

maintained in this paper. To address these issues, we deal with data on assets having the same

characteristics at each point in time. Precisely, consider the data generated by the following

random processes:

Definition 3. (Intertertemporal (c,N)-cohort of contingent claim prices) Given a prediction

function c (y;M − τ) and a N -dimensional vector c ≡ (c1, · · ·, cN ) of fixed maturities, an in-

tertemporal (c,N)-cohort of contingent claim prices is any collection of contingent claim price

processes c (τ , c) ≡ (c(y(τ), c1), · · ·, c(y(τ), cN )) (τ ≥ 0) generated by the pricing model (22).

Consider for example a sample realization of three-months at-the-money option prices, or a

sample realization of six-months zero-coupon bond prices. Long sequences such as the ones in

these examples are common to observe. If these sequences were generated by (22), as in definition

3, they would be deterministic functions of y, and hence stationary. We now develop conditions

ensuring both feasibility and first-order efficiency of the CD-SNE procedure as applied to this

kind of data. Let a denote the matrix having the first q∗ rows of a, and let ∇C denote the

Jacobian of C with respect to y. We have:
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Theorem 3. (Asset pricing and Cramer-Rao lower bound) Suppose to observe an intertemporal

(c, d − q∗)-cohort of contingent claim prices c (τ , c), and that there exist prediction functions C

in Rd−q∗ with the property that for θ = θ0 and γ = γ0,Ã
a(τ) · a(τ)−1
∇C(τ)

!
6= 0, P ⊗ dτ -a.s. all τ ∈ [t, t+ 1], (23)

where C satisfies the initial condition C(t) = c (t, c) ≡ (c(y(t), c1), · · ·, c(y(t), cd−q∗)). Let (z, v) ≡¡
φct , φ

c
t−1
¢
, where φct = (yo(t), c(y(t), c1), · · ·, c(y(t), cd−q∗)). Then, under the assumptions in

theorem 2, the CD-SNE has the same properties as in theorem 2, with the variance terms being

taken with respect to the fields generated by φct . Finally, suppose that φct is Markov, and set

wT (z, v) = πT (z)
2
±
[πT (z, v) + αT ], where αT is as in corollary 1. Then, the CD-SNE attains

the Cramer-Rao lower bound (with respect to the fields generated by φct) as S →∞.

Proof. In appendix D. ¥
According to theorem 3, our CD-SNE is feasible whenever φ is locally invertible for a time

span equal to the sampling interval. As figure 2 illustrates, condition (23) is satisfied whenever

φ is locally one-to-one and onto.14 If φ is also globally invertible for the same time span, φc is

Markov. The last part of this theorem then says that in this case, the CD-SNE is asymptotically

efficient. We emphasize that such an efficiency result is simply about first-order efficiency in the

joint estimation of θ and γ given the observations on φc. We are not claiming that our estimator

is first-order efficient in the estimation of θ in the case in which y is fully observable.

Naturally, condition (23) does not ensure that φ is globally one-to-one and onto. In other

terms, φ might have many locally invertible restrictions.15 In practice, φ might fail to be globally

invertible because monotonicity properties of φ may break down in multidimensional diffusion

models. In models with stochastic volatility, for example, option prices can be decreasing in

the underlying asset price (see Bergman, Grundy and Wiener (1996)); and in the corresponding

stochastic volatility yield curve models, medium-long term bond prices can be increasing in the

short-term rate (see Mele (2003)). Intuitively, these pathological situations may occur because

there is no guarantee that the solution to a stochastic differential system is nondecreasing in the

initial condition of one if its components - as it is instead the case in the scalar case.

When all components of vector yo represent the prices of assets actively traded in frictionless

markets, (23) corresponds to a condition ensuring market completeness in the sense of Harrison

and Pliska (1983). As an example, condition (23) for model (11) is ∂c/ ∂σ 6= 0 P ⊗ dτ -a.s. This

14 Local invertibility of φ means that for every y ∈ Y , there exists an open set Y∗ containing y such that the
restriction of φ to Y∗ is invertible. And φ is locally invertible on Y∗ if detJφ 6= 0 (where Jφ is the Jacobian of φ),
which is condition (23).

15 As an example, consider the mapping R2 7→ R2 defined as φ(y1, y2) = (ey1 cos y2, e
y1 sin y2). The Jacobian

satisfies det Jφ(y1, y2) = e2y1 , yet φ is 2π-periodic with respect to y2. For example, φ(0, 2π) = φ(0, 0).
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condition is satisfied by the Heston’s model in example 3. In fact, Romano and Touzi (1997)

showed that within a fairly general class of stochastic volatility models, option prices are always

strictly increasing in σ whenever they are convex in Q.16 This suggests that many two-factor

stochastic volatility models may be efficiently estimated along the lines indicated in theorem 3.17

Theorem 3 can be used to implement efficient estimators in other complex multidimen-

sional models. This is the case of the short-term rate model (10) of example 1. Let u(i) =

u (r(τ), σ(τ), c(τ);Mi − τ) denote the time τ rational price of a pure discount bond expiring at

Mi ≥ τ , i = 1, 2 and take M1 < M2. Let φ ≡ (r, u(1), u(2)). Condition (23) for model (10) is then:

u(1)σ u
(2)
c − u

(1)
c u(2)σ 6= 0, P ⊗ dt-a.s. τ ∈ [t, t+ 1] (24)

where subscripts denote partial derivatives. It is easily checked that this same condition must be

satisfied by models with correlated Brownian motions and by yet more general models. Classes of

models of the short-term rate for which condition (24) holds are more intricate to identify than in

the European option pricing literature mentioned above (see Mele (2003) for an analysis regarding

general qualitative properties of bond price functions up to three-factor models). Finally, it is

well-known that bond prices can be computed fastly within the class of the exponential-affine

models (see, e.g., Dai and Singleton (2000) and Duffie, Pan and Singleton (2000)). Approximate

solutions for nonlinear models can also be obtained by truncation of the formula: u(y;M − τ) =P∞
n=0 (fn(y) · (M − τ)n/n!), where fn+1(y) = Lfn(y)− rfn(y), f0 ≡ 1.18

6 Monte Carlo experiments

Our estimation methodology relies on both simulations and nonparametric techniques. There-

fore, it is important to investigate whether the finite sample behavior of our estimators is well

approximated by the asymptotic theory. In this section, we conduct Monte Carlo experiments on

both one-factor and two-factor models. As regards the one-factor case, we consider the celebrated

Vasicek (1977) model of the short-term rate:

dr(τ) = b2 × (b1 − r(τ)) dτ + a1 × dW (τ), (25)

16 Convexity with respect to Q is not a general property of option prices in models with stochastic volatility.
While concavity of option prices should not be a property of real data, the only conditions that are currently
known to ensure convexity of option prices are that the risk-neutral drift of the volatility process is independent
of Q (see Romano and Touzi (1997)).

17 While the model of example 3 can be implemented very easily by using the closed-form solution provided by
Heston (1993), numerical solutions of other models can be obtained very fastly for short-term (say, three months)
at-the-money options.

18 This formula represents a straightforward multidimensional generalization of the one given by Chapman et al.
(1999, proposition 3 p. 781).
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where b1, b2 and a1 are parameters. As regards the two-factor case, we consider a simple extension

of (25) in which volatility is a process with constant elasticity of variance:
dr(τ) = b2 × (b1 − r(τ)) dτ + a1 × σ(τ)dW1(τ)

dσ(τ) = b3 × (1− σ(τ)) dτ + a2 × σ(τ)dW2(τ)

(26)

where W1 and W2 are uncorrelated, and b3, a2 are further parameters. Models (25) and (26) have

both been chosen to keep the computational burden of the experiments as low as possible.

6.1 The common setup

In all experiments, data are assumed to be sampled weekly. Typically, we consider sample sizes

of 500 and 1000 observations. The high-frequency generator is the Euler-Maruyama scheme (12),

with h = 1/(5× 52). We use S = 5 path simulations, and every piece of the experiment is made

up of 1000 replications. Nonparametric density estimates are implemented through Gaussian

kernels. We consider highly persistent data generating processes. Therefore, we initially pay

special attention to bandwidth choice. Bandwidth choice in the case of conditional distributions

and dependent data has been addressed by Chen, Linton and Robinson (2001). We closely follow

the suggestions in their paper, and select the bandwidth by searching over values minimizing the

average asymptotic mean integrated squared error. In appendix E, we provide further details

on the factual implementation of this procedure. We evaluate the various objective functions at

sample points. That is, we consider the empirical counterparts of (14) and (17). As an example,

the empirical counterpart of the criterion in (14) is T−1
PT

t=1[S
−1PS

i=1 π
i
T,h (xt; θ) − πT (xt)]

2.

The choice between the two alternatives (i.e. (14) and (17) versus their empirical counterparts) is

mainly driven by computational issues because the empirical counterparts to (14) and (17) do not

involve any integration issue. Under assumption 5, the two alternatives lead to asymptotically

equivalent criteria.19

6.2 Vasicek

The baseline parametrization of the Vasicek model (25) is given by b1 = 0.06, b2 = 0.5 and

a1 = 0.03. These parameter values imply that the resulting model-generated data have approx-

imately the same mean, variance, and autocorrelations as US short-term interest rate. Table

2A reports estimation results obtained with this baseline parametrization. We provide mean,

median, standard deviation, and the root mean square error of both the CD-SNE (with opti-

mal weighting function and optimal bandwidth) and the MLE. When the size of the simulated

19 Our estimators are implemented with Fortran90. The objective functions are optimized through a DFP algo-
rithm, with a convergence criterion of the order of 10−5.
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samples is 1000, the performance of the two methods is comparable in terms of precision of the

estimates (see Panel A). Specifically, the CD-SNE is more precise than the MLE as regards the

estimation of the parameter b2 tuning the persistence of r; and the MLE is more precise than

the CD-SNE as regards the estimation of the diffusion parameter a1. As regards bias issues, the

MLE tends to underestimate the dependence of the data. Such a finite sample property of the

MLE is very well-known. Interestingly, this phenomenon disappears when the model is estimated

with the CD-SNE. When the simulated samples have smaller size, the variability of the estimates

increases with both the CD-SNE and the MLE (see Panel B). As regards b2, the mean bias of the

MLE doubles. The mean bias of the CD-SNE increases as well, but it remains small if compared

to the MLE mean bias.

As is well-known, the practical performance of nonparametric methods hinges on the proper

choice of the bandwidth parameter. We then analyze the effects of the bandwidth selection on

the performance of our CD-SNE. We implement two experiments: in one, we double the size

of the optimal bandwidth (see Table 2B, panel A); in another, we halve the size of the optimal

bandwidth (see Table 2B, panel B). On average, the experiments reported in Table 2A produced a

bandwidth choice of λ = 1.65×10−2. The results in Table 2B now suggest that while not-optimal

bandwidth choice produces some effects on the estimates, these effects are only marginal (with

the CD-SNE being slightly more sensitive to oversmoothing than to undersmoothing). If any,

these effects are visible more in terms of precision than in terms of bias of the estimates. This is

perfectly in line with our analytical results.

Next, we tackle the choice between the CD-SNE and the SNE. The results are reported in

Table 2C. We consider two experiments. In the first one, we compare the CD-SNE with the SNE

in definition 1 (see eq. (14)). That is, we match the joint density of any two adjacent obser-

vations πT (rt, rt−1), and use wT (rt, rt−1) = πT (rt, rt−1) as a weighting function. In the second

experiment, we modify the definition of the SNE and replace simulated nonparametric estimates

S−1
PS

i=1 π
i
T,h(rt, rt−1; θ) of the joint density πvas (rt, rt−1; θ) (say) with πvas (rt, rt−1; θ).20 More

precisely, the objective function in the second experiment takes the form:Z
(rt,rt−1)∈R2

[πvas (rt, rt−1; θ)− πT (rt, rt−1)]2 πT (rt, rt−1)drtdrt−1. (27)

As we demonstrated in section 4.3, the CD-SNE can be made first order efficient in the case

of fully observed systems (see corollary 1). Both experiments then aim at investigating the

effects of suboptimal choice of the objective function on the estimates produced by our class of

estimators. At the same time, the second experiment also allows us to gauge the effects arising

from dismissing the “twin-smoothing” idea discussed in section 2.2. The results reported in Panel
20 As is well known, the transition density πvas (rs|rt; θ) from date t to date s (s > t) is Gaussian with expecta-

tion equal to b1/b2 + [r(t)− (b1/b2)] exp (−b2(s− t)) and variance equal to
£
b23/(2b2)

¤
[1− exp (−2b2(s− t))]. The

marginal density is obtained by letting s→∞.
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A clearly demonstrate that moving from CD-SNE to SNE causes an increase in the variability

of the estimates; this result is pronounced as regards the diffusion parameter a1. As regards

the second experiment, the results reported in panel B reveal a much larger variability of the

estimates of b2 and a1. More interestingly, these two parameters are estimated with large biases.

In particular, minimizing (27) underestimates the dependence of data (the mean bias of b2 is

0.07) and overestimates the diffusion coefficient by 20% (the mean bias of a1 is 0.006). Again,

these results are perfectly consistent with our theoretical explanation of possible second order

bias effects on parameter estimates (see section 2.2). They also extend to the dependent case

results of our simple Monte Carlo experiments in section 2.4.

Finally, we address the issue arising from data generating process as characterized by different

levels of persistence. We alter the baseline case of Table 2A and consider two cases with lower

dependence, one with b2 = 1 and another with b2 = 5. The corresponding results are in Table

2D. Both the MLE and the CD-SNE produce relatively better results than in the baseline case.

In particular, the MLE bias of the b2 parameter seems to decrease. As regards the CD-SNE,

we have observed the interesting phenomenon that on average, the optimal bandwidth increases

with the dependence of data. As we mentioned earlier, the optimal average bandwidth was equal

to 1.65× 10−2 in the baseline case (b2 = 0.5). In this set of experiments, the optimal bandwidth

was equal to 1.51 × 10−2 on average when b2 = 1; and it was equal to 1.20 × 10−2 on average

when b2 = 5.

6.3 Stochastic Volatility

The baseline parametrization of the stochastic volatility model (26) is b1 = 0.06, b2 = 0.5,

a1 = 0.03, b3 = 1.0 and a2 = 0.3. It implies that the unobservable volatility process is strongly

dependent, but not as strongly as the r process itself. Such a difference in persistence that we

are imposing is consistent with some empirical evidence that we have gathered on US short-term

rate data (results are available upon request). However, we will also consider the reverse case in

which b2 = 0.5 and b3 = 0.4.

Initially, we implement the CD-SNE with the weighting function in (18) of section 4.3 (see

corollary 1), and we match the transition density of any two adjacent observations of r. While

the joint process (r, σ) is Markov in (26), r is not if taken by itself. Therefore, the conditions of

corollary 1 do not apply anymore, and the weighting function in (18) does not make the resulting

CD-SNE asymptotically efficient in the case under consideration. (In the remainder we keep on

referring to this weighting function as “optimal” due to a lack of better terminology.)

Table 3A reports the results obtained with this baseline set-up. We consider simulated samples

of both 1000 and 500 observations. As regards the larger simple size case, the precision and the

bias associated with b1, b2 and a1 are of the same order of magnitude as in the observable case

(see Table 2A, Panel A). While larger standard deviations are associated to the parameters b3
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and a2, we do not observe any sizeable bias in the estimates of these parameters. Apart from

a somehow larger sample variability, results are similar in the case of smaller sample sizes (see

Panel B). Next, we compare the performance of the CD-SNE with the SNE. We implement the

SNE (see eq. (14)) using πT (rt, rt−1) as a weighting function. Table 3B reports the results. These

results improve upon the ones obtained with the CD-SNE implemented through the weighting

function in (18) (particularly, in terms of the variability of the estimates). Finally, we investigate

the impact of persistence in volatility on the estimates. Specifically, we set b3 = 0.4. Table 3C

reports the results. We do not observe major differences between this case and the case with

lower persistence in volatility.

7 Conclusions

This paper has introduced new methods to estimate the parameters of the typical partially

observed diffusion models arising in financial applications. The building block of these methods is

indeed very simple. It consists in simulating the model of interest for the purpose of recovering the

corresponding density function. Our estimators are the ones which make densities on simulated

data as close as possible to their empirical counterparts. We made use of ideas in the statistical

literature to build up convenient measures of closeness of densities. Our estimators are easy

to implement, fast to compute and in the special case of fully observed Markov systems, they

can attain the same asymptotic efficiency as the maximum likelihood estimator. Furthermore,

Monte Carlo experiments revealed that their finite sample performance is very satisfactory, even

in comparison to the maximum likelihood benchmark.

Using simulations to recover model-implied density is not only convenient “just” because

it allows one to recover estimates of densities unknown in closed-form. We demonstrated that

this feature of our methods stands as a great improvement upon alternative techniques matching

“closed-form” model-implied densities to data-implied densities. Consistenly with our asymptotic

theory, finite sample results suggest that a careful choice of both the measures of closeness of

density functions and the bandwidth functions does enhance the performance of our estimators,

but only in terms of their precision. Our trick to use simulations to recover model-implied

densities makes our estimators attain a high degree of accuracy in terms of unbiasedness, even

in cases of unsophisticated objective functions and/or bandwidth selection procedures.

This paper has illustrated how to implement our methods to estimate the typical continuous

time models arising in finance. These methods are flexible and can be adapted to address related

estimation problems. As an example, the typical (discrete time) Markov models arising in applied

macroeconomics may also be estimated with our methods. In these cases, too, the previous

asymptotic efficiency and encouraging finite sample properties make our methods stand as a

promising alternative to previous simulation-based inference methods.
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Appendix

Preliminaries

Appendix A through D present regularity conditions omitted in the main text, and all proofs. To

facilitate the presentation, proofs regarding asymptotic normality are organized with an hypo-

thetical i.i.d. case being proven in the first place. Given these preliminary results and the mixing

conditions of the main text, we will show that the extension to time series can be made with

a mere change in notation. While it is conjectured that our theory can be developed with the

functional differentiation methods of Aït-Sahalia (1994), here we adopt standard tools of analysis.

A final appendix E provides a succinct description of our bandwidth selection procedure.

First, we remind some basic definitions pertaining to kernels that are of interest in this paper.

A symmetric kernel K is a symmetric function around zero that integrates to one. Kernels

considered in this paper are symmetric bounded kernels which are continuously differentiable

with bounded derivatives up to the fourth order. A kernel K is said to be of the r-th order if: 1)

∀µ ∈ Nq : |µ| ∈ {1, · · ·, r− 1} (|µ| ≡Pq
j=1 µj),

R
u
µ1
1 · · · uµqq K(u)du = 0; 2) ∃µ ∈ Nq : |µ| = r andR

u
µ1
1 · · · uµqq K(u)du 6= 0; and 3)

R kukrK(u)du <∞.

The following pieces of notation are then employed throughout the appendix. First, we write

x(θ) ≡ {xt(θ)}Tt=tl to denote one hypothetical sequence that it would be possible to observe if

the true parameter in (8) were θ. The real positive number h0 denotes the same critical number

introduced in assumption 4. Weak convergence as h ↓ 0 (see footnote 8) is denoted with ⇒ and

convergence in probability is denoted with
p→. If b is a column vector, |b|2 denotes the outer

product b · b>. For any real number a, |a| is the absolute value of a, and |A|i,j is the absolute

value of the (i, j)-entry of a matrix A. Also, 0n is a column vector of n zeros. To keep notation

as simple as possible, we omit to mention that all statements hold for almost all ω, eω ∈ Ω, where

ω and eω denote a sample point and S simulated points in the sample space Ω. We let:

eπT (x; θ) ≡ 1

S

SX
i=1

πiT,h(x; θ) and eπT (z|v; θ) ≡ 1

S

SX
i=1

πiT,h (z, v; θ)

πiT,h (v; θ)
,

where x ∈ X ⊆ Rq, z ∈ Z ⊆ Rq∗ and v ∈ V ⊆ Rq−q∗ , as in the main text. The expectation of

the kernel for a given bandwidth value λ is denoted as:

m(x, θ) ≡ K ∗ π(x; θ) = 1

λq
·
Z

K

µ
x− u

λ

¶
π(u; θ)du.

We set:

LT (θ) ≡
Z
[eπT (x; θ)− πT (x)]

2wT (x, λ)dx;

L(θ) ≡
Z
[m (x; θ)−m (x; θ0)]

2w(x, λ)dx.
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In appendix A, wT (x, λ) ≡ πT (x) and w(x, λ) ≡ m (x; θ0). In the remaining appendixes, both

wT (x, λ) and w(x, λ) are as in assumption 6. In appendix C,

LT (θ) ≡
Z
[eπT (z| v; θ)− πT (z| v)]2wT (x, λ)dx;

L (θ) ≡
Z
[n (z, v, θ)− n (z, v, θ0)]

2w(x, λ)dx.

where n (z, v, θ) ≡ λ−q
∗ ·m (z, v, θ)/m (v, θ). In all appendixes, the previously defined asymptotic

criteria are required to satisfy the following regularity and identifiability conditions:

Assumption 7. For all θ ∈ Θ, L (θ) is continuous, and the equation L(θ) = 0 has exactly one

solution in the interior of Θ.

A. Proof of theorem 1

A.1 Consistency

Consistency of the SNE is ensured by the following additional assumption:

Assumption 8. There exists a α > 0 and a sequence κT bounded in probability as T becomes

large such that for all h < h0 and all θ+, θ ∈ Θ¯̄
LT

¡
θ+
¢− LT (θ)

¯̄ ≤ κT · °°θ+ − θ
°°α
2
. (A1)

Assumptions 7 and 8 are high level assumptions. Their role is quite standard and it will be

further elucidated after the statement of proposition 1 below.

Remark 1. If data are smoothed with the popular Gaussian kernels, assumption 8 holds as h ↓ 0
if a and b satisfy local Lipschitz and growth conditions with respect to θ. Indeed, according to

Pedersen (1994, thm. 5 p. 23-24) and Friedman (1975, section 5 p. 117-123), xt(θ) is differentiable

with respect to θ in the L2-sense under the previous Lipschitz and growth conditions. And again

by the previous results of Pedersen and Friedman, as h ↓ 0, ∇θeπT and ∇θθeπT stay bounded in the

case of Gaussian kernels. As we emphasize in the next remark, boundedness of these derivatives

then implies that assumption 8 holds for h ↓ 0.

Remark 2. An example of conditions under which assumption 8 does hold is a global modulus of

continuity condition on eπT (x; ·) similar to the standard one used by Duffie and Singleton (1993,
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p. 938) in a related problem:

∀x ∈ X, ∀θ+, θ ∈ Θ, ¯̄eπT ¡x; θ+¢− eπT (x; θ)¯̄ ≤ kT (x) · °°θ+ − θ
°°α
2
, α > 0, (A2)

where kT (x) is a sequence of functions such that

βpT ≡
Z

kT (x)
pπT (x)dx <∞, all T and p = 1, 2.

By the mean-value theorem, Cauchy-Schwartz inequality and compacteness of Θ, (A2) holds for

α = 1 whenever ∇θeπT (x; θ) is continuous and bounded (see, also, related results by Andrews

(1992, p. 248-249)). The claim that (A2) implies (A1) will be demonstrated after the proof of

the next proposition.

Proposition 1. Let assumptions 1-4 hold. Then, as h ↓ 0 and T →∞, LT (θ)
p→ L(θ), ∀θ ∈ Θ.

According to a well-known result (see Newey (1991, thm. 2.1 p. 1162); and Davidson (1994,

p. 337-340) for a discussion of this and related results), the following conditions are equivalent:

C1: limT→∞ P (supθ∈Θ |LT (θ)− L(θ)| > �) = 0.

C2: ∀θ ∈ Θ, LT (θ)
p→ L(θ), and LT (θ) is stochastically equicontinuous.

By Newey and McFadden (1994, lemma 2.9 p. 2138), assumption 8 guarantees that

LT (θ) is stochastically equicontinuous, and so weak consistency follows from the equivalence

of C1 and C2 above, assumptions 7-8, lemma 1, compacteness of Θ and the classical strategy of

proof in Amemiya (1985, thm. 4.1.1 pp. 106-107).

To prove proposition 1, we need the following preliminary result:

Lemma 1. (Glick’s (1974) theorem) Let fT be a density estimate on Rq, and let f be a density

on Rq. If fT
p→ f pointwise, then

R
Rq |fT (x)− f(x)| dx p→ 0.

Proof of proposition 1. We have:

|LT (θ)− L(θ)|

≤
Z

| [eπT (x; θ)− πT (x)]
2 πT (x)− [m (x; θ)−m (x; θ0)]

2 · m (x; θ0)
+ |eπT (x; θ)− πT (x)| · |m (x; θ)−m (x; θ0)| · [|πT (x)−m (x; θ0)|− (πT (x)−m (x; θ0))] | dx
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=

Z
||eπT (x; θ)− πT (x)| · πT (x) · [|eπT (x; θ)− πT (x)|− |m (x; θ)−m (x; θ0)|]

+ |m (x; θ)−m (x; θ0)| · m (x; θ0) · [|eπT (x; θ)− πT (x)|− |m (x; θ)−m (x; θ0)|]
+ |eπT (x; θ)− πT (x)| · |m (x; θ)−m (x; θ0)| · |πT (x)−m (x; θ0)|| dx

≤
Z

{ |[eπT (x; θ)−m (x; θ)]− [πT (x)−m (x; θ0)]| · |eπT (x; θ)− πT (x)| · πT (x)
+ |[eπT (x; θ)−m (x; θ)]− [πT (x)−m (x; θ0)]| · |m (x; θ)−m (x; θ0)| · m (x; θ0)
+ |m (x; θ)−m (x; θ0)| · |πT (x)−m (x; θ0)| · |eπT (x; θ)− πT (x)| }dx

≡
Z

gT,S,h(x, θ)dx.

By boundedness of eπT (x; θ), πT (x) and m (x; θ), there exists a sequence ζT bounded in probability

as T becomes large such thatZ
gT,S,h (x; θ) dx ≤ ζT ·

·Z
|eπT (x; θ)−m (x; θ)| dx+

Z
|πT (x)−m (x; θ0)| dx

¸
,

where all integrals are finite for all θ ∈ Θ.

By assumptions 1, 5 and 9, πT (x)
p→ m (x; θ0) pointwise. By assumption 3, xih(θ) ⇒ x(θ)

as h ↓ 0, i = 1, · · ·, S (for fixed T ). By continuity of πiT,h(x; θ) with respect to the simulated

points {xit,h(θ)}Tt=tl and independence of the simulated strings
©
xih(θ)

ªS
i=1

, for all i = 1, · · ·, S,

πiT,h(x; θ)⇒ πiT (x; θ) ≡
PT

t=tl
K ((xt(θ)− x)/λT )

.¡
TλqT

¢
as h ↓ 0 (all θ ∈ Θ), and πiT (x; θ)

p→
m (x; θ) as T → ∞ (all θ ∈ Θ) both x-pointwise. Since

R
Rq πT (x)dx = 1 and, for all θ ∈ Θ,R

Rq eπT (x; θ)dx = 1 and
R
Rq m (x; θ) dx = 1,

∀θ ∈ Θ,
Z
X

|eπT (x; θ)−m (x; θ)| dx ≤
Z
Rq

|eπT (x; θ)−m (x; θ)| dx p→ 0,

and Z
X

|πT (x)−m (x; θ0)| ≤
Z
Rq

|πT (x)−m (x; θ0)| p→ 0,

by Glick’s (1974) theorem in lemma 1, and the proof is complete.21 The case in which λT ↓ 0 is

identical. ¥

21 The previous results (obtained with any nonzero λT ) do not contradict lemma 5 (p. 900) in Devroye (1983).
Devroye’s lemma 5 refers to data drawn from a density f∞ and convergence issues of |fT − f∞|L1 , where fT is a
nonparametric density estimate of f∞. Here we were simply concerned with convergence issues of

¯̄
fT − f∞

¯̄
L1

(say), where both fT and f∞ integrate to one in Rq and fT
p→ f∞ pointwise.
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Modulus of continuity example. (Ineq. (A2) implies ineq. (A1)) We have:

LT

¡
θ+
¢− LT (θ)

=

Z £eπT (x; θ+)− eπT (x; θ)¤2 πT (x)dx
+2

Z £eπT (x; θ+)− eπT (x; θ)¤ [eπT (x; θ)− πT (x)]πT (x)dx.

Next, let B ≡ maxθ,θ0∈Θ
°°θ0 − θ

°°α
2
. By Θ compact, B <∞. By using (A2),¯̄

LT

¡
θ+
¢− LT (θ)

¯̄
≤ °°θ+ − θ

°°2α
2

· β2T + 2
°°θ+ − θ

°°α
2

·
Z

kT (x) |eπT (x; θ)− πT (x)|πT (x)dx

≤ °°θ+ − θ
°°2α
2

· β2T +
°°θ+ − θ

°°α
2

· ξT · β1T

≤ °°θ+ − θ
°°α
2

· (B · β2T + ξT · β1T ) ,

where

ξT ≡ 2 · sup
x∈X, θ∈Θ

|eπT (x; θ)− πT (x)| <∞ all T,

Since β1T , β2T and ξT are bounded in probability as T becomes large, so is B · β2T + ξT · β1T .

Set then κT ≡ B · β2T + ξT · β1T to conclude the example. ¥

A.2 Asymptotic normality

As discussed in appendix A1, all of our assumptions ensure that ∇θeπT and ∇θθeπT exist in the

case of Gaussian kernels and perfect simulations (as h ↓ 0) if a and b satisfy local Lipschitz and

growth conditions with respect to θ. In the case of a fixed h and general kernels, we formulate

the following condition:

Assumption 9. For all x ∈ X and h < h0, function θ 7→ eπT (x; θ) is twice differentiable, and its

derivatives are continuous and bounded on Θ. Furthermore, for all h < h0,
R
[supθ∈Θ |∇θf(x, θ)|+

supθ∈Θ |∇θθf(x, θ)|]πT (x)dx <∞, where f(x, θ) ≡ [eπT (x; θ)− πT (x)]
2.

By assumption 9, the order of derivation and integration in∇θLT (θ)may be interchanged (see

Newey and McFadden (1994, lemma 3.6 p. 2152-2153)), and the first order conditions satisfied
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by the SNE are:

0pθ =

Z
[eπT (x; θT,S,h)− πT (x)] πT (x)∇θeπT (x; θT,S,h)dx. (A3)

Next, consider the c-parametrized curves θ(c) = c◦(θ0−θT,S,h)+θT,S,h, where, for any c ∈ (0, 1)p
and θ ∈ Θ, c ◦ θ denotes the vector in Θ whose i-th element is c(i)θ(i). By assumption 9 and the

intermediate value theorem, there exists a c∗ in (0, 1)p such that:

0p =
√
T

Z
[eπT (x; θ0)− πT (x)] πT (x)∇θeπT (x; θ0)dx

+

½Z £¯̄∇θeπT (x; θ)¯̄2 + (eπT (x; θ)− πT (x))∇θθeπT (x; θ)¤πT (x)dx¾ ·
√
T (θT,S,h − θ0),

(A4)

where θ ≡ θ(c∗).
Next, ¯̄̄̄Z ¡eπT (x; θ)− πT (x)

¢
πT (x)∇θθeπT (x; θ)dx¯̄̄̄

i,j

≤
Z ¯̄eπT (x; θ)− πT (x)

¯̄ ¯̄∇θθeπT (x; θ)¯̄i,j πT (x)dx
≤ sup

x∈X

h¯̄∇θθeπT (x; θ)¯̄i,ji ·
Z ¯̄eπT (x; θ)− πT (x)

¯̄
dx, all i, j.

By assumption 5, πT (x)
p→ π0(x) pointwise. By assumption 3, xih(θ)⇒ x(θ) as h ↓ 0, i = 1, · · ·, S.

By continuity of πiT,h(x; θ) with respect to simulated points {xit,h(θ)}Tt=tl and independence of the

simulated strings (xih(θ))
S
i=1, π

i
T,h(x; θ0)⇒ πT (x) (i = 1, · · ·, S) for fixed T . By assumption 9,

∀� > 0, ∃M� : P

½
sup
θ∈Θ

|∇θeπT (x; θ)|i + sup
θ∈Θ

|∇θθeπT (x; θ)|i,j < M�

¾
≥ 1− �, all i, j.

By the previous inequality, the mean value theorem, assumptions 4-5 and 9, consistency of θT,S,h,

and the definition of θ, as h ↓ 0 and T →∞, eπT (x; θ) p→ π(x; θ0) pointwise and
¯̄∇θeπT (x; θ)¯̄2 p→

|∇θπ(x; θ0)|2 both componentwise and pointwise and so, by Glick’s (1974) theorem in lemma 1,Z £¯̄∇θeπT (x; θ)¯̄2 + ¡eπT (x; θ)− πT (x)
¢ ∇θθeπT (x; θ)¤ πT (x)dx p→ E [|∇θπ(x; θ0)|2] . (A5)
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Next, consider the first term in (A4):

√
T

Z
[eπT (x; θ0)− πT (x)] πT (x)∇θeπT (x; θ0)dx

=

Z √
T [eπT (x; θ0)−E(eπT (x; θ0))] πT (x)∇θeπT (x; θ0)dx

−
Z √

T [πT (x)−E(πT (x))] πT (x)∇θeπT (x; θ0)dx
+

Z √
T [E(eπT (x; θ0))−E(πT (x))] πT (x)∇θeπT (x; θ0)dx. (A6)

Under assumption 3-ii and the assumption that the kernel is four times continuously differentiable

(see the preliminaries of the appendix), the last term in (A6) is O(
√
Th) by Kloeden and Platen

(1999, thm. 14.5.1 p. 473), and it asymptotically vanishes by assumption 3-iii.

As regards the first two terms in (A6), let F (x; θ) =
R x
0 π(v; θ)dv, FT (x) =

R x
0 πT (v)dv and

F (x) =
R x
0 π0(v)dv. Let Q(t) be a local martingale with quadratic variation c ≡ hQi (t) =

F (t). By the Dambis-Dubins-Schwarz theorem (see, e.g., Karatzas and Shreve (1991, thm. 4.6

p. 174)), we can define a time-changed process B(F (t)) = Q(t), t ∈ [0,∞), where B(c) =

Q(F−1(c)) is a standard Brownian motion in [0, 1]. Let G(F ) denote a centered Gaussian process

with variance F (x)(1 − F (x)). By Arcones and Yu (1994, corollary 2.1 p. 59-60), the mixing

conditions of assumption 2 (which are trivially satisfied in the i.i.d. case) and assumption 5,

AT ≡
√
T (FT (x)−E(FT (x)))⇒ G(F ). By construction, G(F ) is a Brownian Bridge in [0, 1] and

its continuous version can be written as:

B0(F (x)) ≡ B(F (x))− F (x)B(1) = Q(x)− F (x)Q(F−1(1)). (A7)

We have,

√
T

Z
[πT (x)−E (πT (x))] ∇θeπT (x; θ0) πT (x)dx ≡

Z
∇θeπT (x; θ0)πT (x)dAT (x)

d→
Z
∇θπ(x; θ0))π0(x)dB

0(F (x))

by assumptions 2 and 5, and an argument similar to the one utilized to show (A5).

This stochastic integral isZ
∇θπ(x; θ0)π0(x)dB

0(F (x)) =

Z
∇θπ(x; θ0)π0(x)dQ(x)−Q(F−1(1))·

Z
∇θπ(x; θ0)π0(x)dF (x),
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and is centered Gaussian with variance:

var
·Z
∇θπ(x; θ0)π0(x)dB

0(F (x))

¸

=

Z
|∇θπ(x; θ0)π0(x)|2 F 0(x)dx+E

·¯̄̄̄
Q(F−1(1))

µZ
∇θπ(x; θ0)π0(x)F

0(x)dx
¶¯̄̄̄
2

¸
−2E

"
Q(F−1(1))

µZ
∇θπ(x; θ0)π0(x)dQ(x)

¶µZ
∇θπ(x; θ0)π0(x)F

0(x)dx
¶>#

= E [|∇θπ(x; θ0)π0(x)|2] +E
£¯̄
Q(F−1(1))E(∇θπ(x; θ0)π0(x))

¯̄
2

¤
−2E

·µZ
∇θπ(x; θ0)π0(x)Q(F

−1(1))dQ(x)
¶
E(∇θπ(x; θ0)π0(x))

>
¸

= E [|∇θπ(x; θ0)π0(x)|2] + |E [∇θπ(x; θ0)π0(x)]|2
−2E

·µZ
∇θπ(x; θ0)π0(x)F

0(x)dx
¶
E (∇θπ(x; θ0)π0(x))

>
¸

= E [|∇θπ(x; θ0)π0(x)|2]− |E [∇θπ(x; θ0)π0(x)]|2

= var [∇θπ(x; θ0)π0(x)] , (A8)

where we made use of (A7), the definition of Q as a local martingale with quadratic variation F ,

and the fact that E[Q(F−1(1))]2 = E[B(1)2]2 = 1 and E[Q(F−1(1)) · dQ(x)] = E[B(1)dB(c)] =

dc = F 0(x)dx.

Finally, let F i
T,h(x; θ) ≡

R x
0 πiT,h(v, θ)dv, i = 1, · · ·, S. By assumptions 3-5, the independence

of the S simulations, and again by Arcones and Yu (1994, corollary 2.1 p. 59-60), Ai
T,h(x; θ0) ≡√

T [F i
T,h(x; θ0) − E(F i

T,h(x; θ0))] ⇒ Gi(F ) as h ↓ 0 and T → ∞, where Gi(F ) are independent

Brownian Bridges in [0, 1]. Hence,

√
T

SX
i=1

£
F i
T,h(x; θ0)−E(F i

T,h(x; θ0))
¤⇒ SX

i=1

Gi(F ).

Since E(F i
T,h(x; θ0)) = E(F j

T,h(x; θ0)) for all i, j = 1, · · ·, S, we use the same arguments lead-

ing to (A8) and conclude that
R
[
√
T (eπT (x; θ0)−E(eπT (x; θ0)))]∇θeπT (x; θ0) πT (x)dx d→ N(0,

var(∇θπ(x; θ0)π0(x)/S)). Finally, A and Ai
T,h, i = 1, · · ·, S, are all independent. Therefore, by

the decomposition in (A6),

√
T

Z
[eπT (x; θ0)− πT (x)] ∇θeπT (x; θ0)πT (x)dx d→ N

µ
0,

µ
1 +

1

S

¶
var (∇θπ(x; θ0)π0(x))

¶
.

(A9)
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The desired result now follows from (A4), (A5), (A9) and the Slutzky’s theorem: we have

√
T (θT,S,h − θ0)

d→ N

µ
0,

µ
1 +

1

S

¶
V

¶
,

where

V ≡ [E |∇θπ(x; θ0)|2]−1 · var (∇θπ(x; θ0)π0(x)) · [E |∇θπ(x; θ0)|2]>−1 ,
which is theorem 1 in the i.i.d. case.

As regards the general dependent case, let G be a measurable V-C subgraph class of uniformly

bounded functions (see, e.g., Arcones and Yu (1994, definition 2.2 p. 51)). Again by Arcones

and Yu (1994, corollary 2.1 p. 59-60), if yo satisfies assumption 2, then, for each G ∈ G,

T−1/2
PT

t=tl
[G(xt)−EG] converges in law to a Gaussian process. Now λ−qT K ((xt − x)/λT ) ∈ G,

and the variance terms that are reported in the theorem follow.

Remark 3. A crucial step of the previous proof is given by the weak convergence
√
T [FT (x)−

E(FT (x))] ⇒ G(F ). Because
√
T (FT − F ) =

√
T [FT − E(FT )] +

√
T [E(FT ) − F ], we see that√

T [FT (x) − F (x)] ⇒ G(F ) under the more stringent condition (13). This condition is needed

to asymptotically zero the bias term
√
T [E(FT )− F ], and is exactly assumption A4(r,0) in Aït-

Sahalia (1994, lemma 1 p. 20). As we noted in the main text, we do not need such a more severe

condition because bias effects cancel out each other through the decomposition in eq. (A6).

B. Asymptotic behavior of the SNE for general weighting func-
tions

B.1 Consistency

We set

ρT (x; θ) ≡ |eπT (x; θ)− πT (x)|wT (x;λ) and ρ(x, θ) ≡ |m (x; θ)−m (x; θ0)|w(x, λ),

The following assumption further characterizes the class of weighting functions that we consider

in this paper:

Assumption 10. For all θ ∈ Θ,

10.1: |eπT (x; θ)− πT (x)| · |wT (x, λ)− w(x, λ)| · |m (x; θ)−m (x; θ0)| p→ 0 as h ↓ 0 and T → ∞,

x-pointwise;

10.2: for all h < h0, and every S and T , functions ρT (x; θ)πT (x), ρT (x; θ) eπT (x; θ), ρ (x; θ)m (x; θ)
and ρ (x; θ)m (x; θ0) are bounded for all x ∈ X, and integrable.
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Assumption 10.1 always holds for weighting functions which make w2(x, λ) > 0 (see as-

sumption 6). This is trivially the case in appendix A.1, where w1(·, λ) ≡ m and w2(·, λ) ≡ 1.
Assumption 10.1 also covers the case of weighting functions implying w2(x, λ) = 0 for some x.

Finally, assumption 10.2 guarantees that ∀θ ∈ Θ, L(θ) < ∞ and that for sufficiently small h,

LT (θ) <∞, for all S and T .

We have:

Proposition 2. Let assumptions 1-4 and 10 hold. Then, as h ↓ 0 and T → ∞, LT (θ)
p→ L(θ),

∀θ ∈ Θ.

As in appendix A.1, consistency now follows as soon as LT (θ) also fulfils condition (A1). An

example of conditions guaranteeing that (A1) holds in the setting of this appendix is: for all

x ∈ X and θ, θ+ ∈ Θ,¯̄eπT (x; θ+)− eπT (x; θ)¯̄ · wT (x, λ) ≤ kT (x) · °°θ+ − θ
°°α
2
,

where kT (x) is a sequence of functions such that for all T ,

β1T ≡ sup
θ,θ0∈Θ

Z
kT (x) · ¯̄eπT (x; θ0)− eπT (x; θ)¯̄ dx <∞;

β2T ≡ sup
θ∈Θ

Z
kT (x) · |eπT (x; θ)− πT (x)| dx <∞.

Indeed, simple algebra reveals that under the previous condition,¯̄
LT

¡
θ+
¢− LT (θ)

¯̄ ≤ °°θ+ − θ
°°α
2

· (β1T + 2β2T ) .

As regards the proof of proposition 2, the following result will be useful.

Lemma 2. (Generalization of Glick’s (1974) theorem) Let assumption 10 hold. Then, as h ↓ 0
and T →∞,Z

|eπT (x; θ)− πT (x)| · |m (x; θ)−m (x; θ0)| · |wT (x, λ)− w(x, λ)| dx p→ 0, for all θ ∈ Θ.

Proof of lemma 2. For all θ ∈ Θ, |eπT (x; θ)− πT (x)| · |m (x; θ)−m (x; θ0)| · |wT (x, λ)− w(x, λ)|
is bounded and integrable by assumption 10.2. By Lebesgue’s dominated convergence theorem
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and by assumption 10.1, as h ↓ 0,
lim
T→∞

E [|eπT (x; θ)− πT (x)| · |m (x; θ)−m (x; θ0)| · |wT (x, λ)− w(x, λ)|]

= E

·
lim
T→∞

|eπT (x; θ)− πT (x)| · |m (x; θ)−m (x; θ0)| · |wT (x, λ)− w(x, λ)|
¸

= 0 ∀(x, θ) ∈ X ×Θ.
By Fubini’s theorem, ∀θ ∈ Θ

E

·Z
|eπT (x; θ)− πT (x)| · |m (x; θ)−m (x; θ0)| · |wT (x, λ)− w(x, λ)| dx

¸

=

Z
E [|eπT (x; θ)− πT (x)| · |m (x; θ)−m (x; θ0)| · |wT (x, λ)− w(x, λ)|] dx.

Again by Lebesgue’s dominated convergence theorem, as h ↓ 0,

lim
T→∞

E

·Z
|eπT (x; θ)− πT (x)| · |m (x; θ)−m (x; θ0)| · |wT (x, λ)− w(x, λ)| dx

¸

= lim
T→∞

Z
E [|eπT (x; θ)− πT (x)| · |m (x; θ)−m (x; θ0)| · |wT (x, λ)− w(x, λ)|] dx

=

Z
lim
T→∞

E [|eπT (x; θ)− πT (x)| · |m (x; θ)−m (x; θ0)| · |wT (x, λ)− w(x, λ)|] dx

= 0, all θ ∈ Θ.
The result follows by taking limits in the Markov’s inequality:

∀� > 0, P

½Z
|eπT (x; θ)− πT (x)| · |m (x; θ)−m (x; θ0)| · |wT (x, λ)− w(x, λ)| dx > �

¾

≤ E
£R |eπT (x; θ)− πT (x)| · |m (x, θ)−m (x; θ0)| · |wT (x, λ)− w(x, λ)| dx¤

�
, all θ ∈ Θ.

¥

Proof of proposition 2. We have:

|LT (θ)− L(θ)|

≤
Z

| [eπT (x; θ)− πT (x)]
2wT (x, λ)− [m (x; θ)−m (x; θ0)]

2w(x, λ)

+ |eπT (x; θ)− πT (x)| |m (x; θ)−m (x; θ0)| [|wT (x, λ)− w(x, λ)|− (wT (x, λ)−w(x, λ))] | dx
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=

Z
||eπT (x; θ)− πT (x)| · wT (x, λ) · [|eπT (x, θ)− πT (x)|− |m (x; θ)−m (x; θ0)|]

+ |m (x; θ)−m (x; θ0)| · w(x, λ) · [|eπT (x; θ)− πT (x)|− |m (x; θ)−m (x; θ0)|]
+ |eπT (x; θ)− πT (x)| · |m (x; θ)−m (x; θ0)| · |wT (x, λ)− w(x, λ)|| dx

≤
Z

gT,S,h (x; θ) dx,

where

gT,S,h (x; θ) ≡ |eπT (x; θ)− πT (x)| · wT (x;λ) · |[eπT (x; θ)−m (x; θ)]− [πT (x)−m (x; θ0)]|
+ |m (x; θ)−m (x; θ0)| · w(x, λ) · |[eπT (x; θ)−m (x; θ)]− [πT (x)−m (x; θ0)]|
+ |eπT (x; θ)− πT (x)| · |m (x; θ)−m (x; θ0)| · |wT (x, λ)− w(x, λ)|

≡ G1 +G2 +G3.

By lemma 2,
R
G3

p→ 0 for all θ ∈ Θ. Furthermore, for all θ ∈ Θ,

G1 +G2 ≤ [ρ (x; θ) + ρT (x; θ)]

× [2 (πT (x) +m (x; θ)) + |eπT (x; θ)− πT (x)|+ |m (x; θ)−m (x; θ0)|] ,

which is bounded and integrable by assumption 10.2. A repeated use of Lebesgue’s dominated

convergence theorem and Fubini’s theorem then reveals that
R
(G1 +G2)

p→ 0, as in the proof of

lemma 2, and the proof of proposition 2 is complete. The case λT ↓ 0 is identical. ¥

B.2 Asymptotic normality

We show that the SNE in (15) behaves as the SNE in theorem 1, but with function Ψ given

by (16). The proof is sketchy because its steps only generalize steps of proofs produced in the

previous appendixes. The sequence of the weighting functions is required to satisfy an additional

set of regularity conditions:

Assumption 11. There exists a neighborhood N of θ0 such that matrix
R
X |∇θπ (x; θ)|2w(x)dx

has full rank in N ∩Θ. Furthermore, assumption 5 holds, and as h ↓ 0 and T →∞,

11.1: ∇θeπT (x; θ0) · wT (x, λ)
p→∇θπ (x; θ) · w(x), x-pointwise;

11.2: var[∇θπ (x; θ) · w(x)] <∞.

11.3: For all h < h0,
R
[supθ∈Θ |∇θf(x, θ)| + supθ∈Θ |∇θθf(x, θ)|]wT (x, λ)dx < ∞, where f is as

in assumption 9.
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Assumption 11.1 regards pointwise convergence to a deterministic function ζ(x) ≡ ∇θπ (x; θ0)·
w(x). Assumption 11.2 is a condition on second order moments finiteness of function ζ when

x is taken to be a random variate. Finally, assumption 11.3 allows to interchange the order of

derivation and integration in the first order conditions.

We now state a simple but powerful result that will also be used to show other results in

appendix C.2:

Lemma 3. Let B0 be a Brownian Bridge. For any Rl-valued function ζ with finite moments,R
ζ(x)dB0(F (x)) is centered Gaussian with

var
·Z

ζ(x)dB0(F (x))

¸
= var [ζ(x)] ,

where the variance in the last term is taken with respect to F .

Proof. The result follows from a straightforward generalization of (A8) in appendix A.2. ¥

The optimality conditions for the SNE with general weighting function lead to:

0pθ =
√
T

Z
[eπT (x; θ0)− πT (x)] ∇θeπT (x; θ0) wT (x, λ)dx

+

½Z £¯̄∇θeπT (x; θ)¯̄2 + ¡eπT (x; θ)− πT (x)
¢ ∇θθeπT (x; θ)¤ wT (x, λ)dx

¾
·
√
T (θT,S,h − θ0) ,

where θ is defined similarly as in eq. (A4) in appendix A.2. Use the arguments of appendix A.2

and lemma 3 to conclude: function Ψ generating the variance/covariance matrix is exactly the

one given in (16).

C. Proof of theorem 2 and corollary 1

Appendixes C.1 and C.2 provide the general theory underlying theorem 2. The efficiency impli-

cation of corollary 1 is developed in appendix C.3.

C.1 Consistency

The consistency proof is nearly identical to the proof of consistency given in appendix B.1. We

only need a change in notation. We let:

rT (z, v, θ) ≡ |eπT (z| v, θ)− πT (z| v)|wT (z, v, λ),

r(z, v, θ) ≡ |n (z, v, θ)− n (z, v, θ0)|w(z, v, λ),
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and formulate the following assumption:

Assumption 12. For all θ ∈ Θ,

12.1: |eπT (z| v, θ)− πT (z| v)| · |wT (z, v, λ)− w(z, v, λ)| · |n (z, v, θ)− n (z, v, θ0)| p→ 0 as h ↓ 0 and

T →∞, (z, v)-pointwise;

12.2: for all h < h0, and every S and T , functions rT (z, v, θ)πT (z| v), rT (z, v, θ) eπT (z| v, θ),
r (z, v, θ)n (z, v, θ) and r (z, v, θ)n (z, v, θ0) are bounded for all (z, v) ∈ Z × V , and inte-

grable.

Consistency now follows by the same arguments produced in appendix B.1.

C.2 Asymptotic normality

We consider weighting functions satisfying regularity conditions mirroring the ones in assumption

11:

Assumption 13. There exists a neighborhood N of θ0 such that matrix
R
Z

R
V |∇θπ (z| v; θ)|2w(z,

v)dzdv has full rank in N ∩Θ. Furthermore, assumption 5 holds, and as h ↓ 0 and T →∞,

13.1: ∇θeπT (z| v, θ0)wT (z, v, λ)/πT (v)
p→ ∇θπ(z| v, θ0)w(z, v)/π (v, θ0) and, for all i = 1, · · ·, S,

∇θeπT (z| v, θ0)wT (z, v, λ)/π
i
T,h (v; θ0)

p→ ∇θπ(z| v, θ0)w(z, v)/π (v, θ0), both (z, v)-pointwise;

13.2: var{∇θπ(z| v, θ0)w(z, v)/π (v, θ0)} <∞.

13.3: For all h < h0,
R R
[supθ∈Θ |∇θg(z, v; θ)|+supθ∈Θ |∇θθg(z, v; θ)|]wT (z, v, λ)dzdv <∞, where

g(z, v; θ) ≡ [eπT (z| v; θ)− πT (z| v)]2.

The usual expansion of the first order conditions satisfied by the CD-SNE (definition 2) leaves:

0pθ =
1

S

SX
i=1

√
T

Z Z "
πiT,h (z, v, θ0)

πiT,h (v, θ0)
− πT (z, v)

πT (v)

#
∇θeπT (z| v, θ0) wT (z, v, λ)dzdv

+

·Z Z ¯̄∇θeπT (z| v, θ)¯̄
2
wT (z, v, λ)dzdv

¸
·√T (θT,S,h − θ0) + op(1),

where θ is defined similarly as in appendix A.2 (see eq. (A4)), and the op(1) term in the last line

emerges as a result of an argument similar to the one used to show (A5) in appendix A.2.

If assumption 3-ii holds and the kernel is four times continuously differentiable, then√
T [E(πiT,h(z, v; θ0)) − E(πT (z, v))] ≈ O(h

√
T ) and

√
T [E(πiT,h(v; θ0)) − E(πT (v))] ≈ O(h

√
T )
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(i = 1, · · ·, S), as in appendix A.2 (see eq. (A6)). Therefore, as h ↓ 0 as prescribed by assumption

3-iii,

0pθ =
1

S

SX
i=1

¡
Di
T,h,1 +Di

T,h,3

¢−DT,h,2 +DT,h,4 ·
√
T (θT,S,h − θ0) + op(1),

where

Di
T,h,1 ≡

Z Z ∇θeπT (z| v; θ0)wT (z, v, λ)

πiT,h (v; θ0)
dAi

T,h (z, v, θ0) ;

DT,h,2 ≡
Z Z ∇θeπT (z| v, θ0)wT (z, v, λ)

πT (v)
dAT (z, v) ;

Di
T,h,3 ≡

Z Z ∇θeπT (z| v, θ0)E [πT (z, v)]wT (z, v, λ)

πiT,h (v, θ0) · πT (v) dz
h
dAT (v)− dAi

T,h (v, θ0)
i
;

DT,h,4 ≡
Z Z

|∇θeπT (z| v, θ0)|2 wT (z, v, λ)dzdv;

and Ai
T,h (z, v, θ0), AT (z, v), AT (v) and Ai

T,h (v, θ0) are defined similarly as in appendix A.2.

By exactly the same arguments of appendix A.2, we have that as h ↓ 0 and T →∞,

Di
T,h,1

d→ Di
1 ≡

Z Z ∇θπ (z| v; θ0)w (z, v)
π (v, θ0)

dB0i (F (z, v, θ0)) , i = 1, · · ·, S;

DT,h,2
d→ D2 ≡

Z Z ∇θπ (z| v; θ0)w(z, v)
π (v, θ0)

dB0 (F (z, v)) ;

Di
T,h,3

d→ Di
3 ≡

Z Z ∇θπ (z| v; θ0)π (z, v)w(z, v)
π (v, θ0)

2 dz
h
dB0v (F (v))− dB0v,i (F (v, θ0))

i
,

i = 1, · · ·, S;
DT,h,4

p→ D4 ≡
Z Z

|∇θπ (z| v; θ0)|2 w(z, v)dxdv;

where B0 and B0i , i = 1, · · ·, S, are independent Brownian Bridges; and B0v and B0v,i, i = 1, · · ·, S,

are also independent Brownian Bridges.

By lemma 3 in appendix B.2, Di
1, i = 1, · · ·, S, and D2 are all independent and asymptotically

centered Gaussian with variance

var
·∇θπ (z| v; θ0) · w(z, v)

π(v; θ0)

¸
,

and we have the following result:

√
T (θT,S,h − θ0)

d→ N (0, V ) ,
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where V = D−14 · Σ · D >−1
4 and Σ = var[ 1S

PS
i=1(D

i
1 + Di

3) + D2]. Finally, the same result

holds in the dependent case, with variance terms given by var(Ψt) + 2
P∞

j=1cov(Ψt,Ψt+j), where

Ψ ≡ D−14 [
1
S

PS
i=1(D

i
1 +Di

3) +D2].

C.3 Proof of corollary 1 (Cramer-Rao lower bound)

Define:

ξ(z, v) ≡ π(z, v)w(z, v)

π(v)2
. (C1)

We have:

Di
3 =

Z
Z

Z
V
∇θπ (z| v; θ0) ξ(z, v)dz

£
dB0v (F (v))− dB0v,i (F (v, θ0))

¤
=

Z
V
γ(v, θ0)

£
dB0v (F (v))− dB0v,i (F (v, θ0))

¤
,

where

γ(v, θ0) ≡
Z
Z
∇θπ (z| v; θ0) ξ(z, v)dz. (C2)

Again by lemma 3, and the independence of the Brownian Bridges B0v and B0v,i, i = 1, · · ·, S, Di
3,

i = 1, · · ·, S, is also centered Gaussian with variance equal to 2·var(γ(v, θ0)). Next, consider the

following class of weighting functions:

W ξ
T ≡

½
wT (z, v, λ) : wT (z, v, λ) = ξT (v) · πT (v)

2

πT (z, v) + αT
all (v, z) ∈ V × Z

¾
,

where for each T , αT > 0, and αT ≈ op(1), v 7→ ξT (v) is a continuous function possibly dependent

on data, with ξT (v)
p→ ξ(v) pointwise, and ξ is another continuous function. For any w ∈ W ξ

T ,

the corresponding limiting function ξ(z, v) in (C1) must necessarily take the form ξ(z, v) = ξ(v).

Now for all v ∈ V ,
R
Z ∇θπ (z| v; θ0) dz = 0. By replacing ξ(v) into (C2), we conclude that

for all v, γ(v, θ0) = 0.

Therefore, Di
3 ≡ 0, and by a trivial extension of the arguments to the dependent case, we have:

Proposition 3. Under the assumptions of theorem 2, CD-SNEs with weighting functions w ∈W ξ
T

are consistent and asymptotically normal with variance/covariance matrix V given by
¡
1 + S−1

¢ ·
[var(Ψ1) + 2

P∞
j=1cov(Ψ1,Ψ1+j)], where

Ψ ≡
·Z

Z

Z
V

|∇θπ (z| v; θ0)|2 · w (z, v) dzdv
¸−1 ∇θπ (z| v; θ0) · w(z, v)

π(v; θ0)
. (C3)
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Finally, we claim that when the state x is fully observable and Markov, variance V is minimized

with w ∈ W ξ
T , ξ(t) = 1 all t, ξT (t) = 1, all t and T . Indeed, by plugging the limiting function

w(z, v) ≡ π(v)2
±
π(z, v) into (C3),

Ψ =

·Z
Z

Z
V

¯̄̄̄∇θπ (z| v; θ0)
π (z| v; θ0)

¯̄̄̄
2

· π (z, v; θ0) dzdv
¸−1 ∇θπ (z| v; θ0)

π (z| v; θ0) ,

and the claim immediately follows by the usual score martingale difference argument.

D. Proof of theorem 3

Let πt ≡ πt (φ (y(t+ 1),M− (t+ 1)1d−q∗)|φ (y(t),M− t1d−q∗)) denote the transition density of

φ (y(t),M− t1d−q∗) ≡ φ (y(t)) ≡ (yo(t), c(y(t),M1 − t), · · ·, c(y(t),Md−q∗ − t)),

where we have emphasized the dependence of φ on the time-to-expiration vector:

M− t1d−q∗ ≡ (M1 − t, · · ·,Md−q∗ − t).

By a(τ) full rank P ⊗ dτ -a.s., and Itô’s lemma, φ satisfies, for τ ∈ [t, t+ 1],
dyo(τ) = bo(τ)dτ + F (τ)a(τ)dW (τ)

dc(τ) = bc(τ)dτ +∇c(τ)a(τ)dW (τ)

where bo and bc are, respectively, q∗-dimensional and (d− q∗)-dimensional measurable functions,

and F (τ) ≡ a(τ) · a(τ)−1 P ⊗ dτ -a.s. Under condition (23), πt is not degenerate. Furthermore,

C (y(t); c) ≡ C(t) is deterministic in c ≡ (c1, · · ·, cd−q∗). That is, for all (c, c+) ∈ Rd × Rd,

there exists a function µ such that for any neighbourhood N(c+) of c+, there exists another

neighborhood N(µ(c+)) of µ(c+) such that,©
ω ∈ Ω : φ (y(t+ 1),M− (t+ 1)1d−q∗) ∈ N(c+)

¯̄
φ (y(t),M− t1d−q∗) = c

ª
=

©
ω ∈ Ω : (yo(t+ 1), c(y(t+ 1),M1 − t)), · · ·, c(y(t+ 1),Md−q∗ − t)) ∈ N(µ(c+))

|φ (y(t),M− t1d−q∗) = c}

=
©
ω ∈ Ω : (yo(t+ 1), c(y(t+ 1),M1 − t)), · · ·, c(y(t+ 1),Md−q∗ − t)) ∈ N(µ(c+))

|(yo(t), c(y(t),M1 − t), · · ·, c(y(t),Md−q∗ − t)) = c}
where the last equality follows by the definition of φ. In particular, the transition laws of φct given

φct−1 are not degenerate; and φct is stationary. The feasibility of the CD-SNE is proved. The final

(efficiency) claim follows by the Markov property of φ, eq. (21), and the usual score martingale

difference argument advocated in proving corollary 1.
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E. Practical bandwidth choice with SNE

In this paper, our bandwidth choice relied on results in Chen, Linton and Robinson (2001) (CLR,

henceforth), which we now succinctly describe. Let AB(z, v) be the asymptotic bias, defined as

the leading term in the deviation of the ratio of expectations of numerator and denominator of

the estimated density faac(z|v) from the actual density f(z|v). Here the subscripts aac identify

the bandwidth used to estimate a bivariate density f(z, v) through product kernels (aa) and the

marginal f(v) (c). Let AV (z, v) be the asymptotic variance of kernel density faac(z|v).
By CLR (lemma 1),22

AB(z, v) = a2B1(z, v)− c2B2(z, v) + o(max(a2, c2)),

where B1(z, v) =
£
∂2f(z, v)

±
∂z2 + ∂2f(z, v)

±
∂v2

¤ R
u2K(u)du

±
[2f(v)] and B2(z, v) = f(z|v)×£

d2f(v)
±
dv2
¤ R

u2K(u)du
±
[2f(v)].

By CLR (lemma 2),

AV (z, v) =
V1(z, v)

Tc
+

V2(z, v)

Ta2
− V3(z, v, a, c)

Tc
+ o

µ
1

T ·min(a2, c)
¶
,

where V1(z, v) = f(z|v)2 R K(u)2du± f(v), V2(z, v) = f(z|v) £R K(u)2du¤2 /f(v), and V3(z, v, a, c)

= 2 f(z|v)2 R K(u)K(auc )du± f(v).
The previous results provide practical guidance to bandwidth selection. The asymptotic mean

squared error of faac(z|v) is AMSE(z, v) ≡ AV (z, v) +AB(z, v)2.

If a = c (which is our choice),

AMSE(z, v) =
V2(z, v)

Ta2
+ a4 [B1(z, v)−B2(z, v)]

2 .

For any fixed (z, v), the AMSE is mimimized by a(z, v) = {V2(z, v)/[2T (B1(z, v)−B2(z, v))2]} 1
6 .

In the practical implementation of our estimators, we searched for those bandwidths minimizing

the AMSE averaged over the sample points. The computation of the AMSE required an initial

choice of the bandwidth in order to have an initial estimate of the densities entering in the AMSE

formula. Towards this end, we used the optimal bandwidth under the assumption that f(z, v) is

Gaussian.

22 All of our assumptions imply that the regularity conditions in CLR are met.
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Table 2A - Baseline Monte Carlo study of the Vasicek model. Finite sample

properties of the CD-SNE with optimal weighting function and optimal bandwidth as

compared to the MLE for the Vasicek model. Parameter values in the experiment are:

b1 = 0.06, b2 = 0.5 and a1 = 0.03. Results are obtained through 1000 replications of

samples with 1000 and 500 observations.

Panel A: Sample size = 1000

mean

median

mean bias

std

Rmse

CD-SNE (Opt band; Opt weight)

b1 b2 a1

0.0638 0.4987 0.0306

0.0612 0.4929 0.0305

0.0038 -0.0012 0.0007

0.0154 0.1160 0.0011

0.0158 0.1163 0.0013

MLE
b1 b2 a1

0.0587 0.5490 0.0301

0.0580 0.5136 0.0300

-0.0013 0.0490 0.0001

0.0138 0.1754 0.0007

0.0138 0.1822 0.0007

Panel B: Sample size = 500

mean

median

mean bias

std

Rmse

CD-SNE (Opt band; Opt weight)

b1 b2 a1

0.0595 0.5562 0.0303

0.0579 0.5332 0.0302

0.0005 0.0562 0.0004

0.0220 0.1818 0.0012

0.0197 0.1556 0.0013

MLE
b1 b2 a1

0.0567 0.5903 0.0301

0.0181 0.2598 0.0009

-0.0032 0.0903 0.0001

0.0182 0.2598 0.0009

0.0184 0.2751 0.0009
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Table 2B - Monte Carlo study of bandwidth sensitivity (Vasicek model).
Finite sample properties of the CD-SNE with optimal weighting function and optimal

bandwidth as compared to the CD-SNE with doubled and halved bandwidth. Para-

meter values in the experiment are: b1 = 0.06, b2 = 0.5 and a1 = 0.03. Results are

obtained through 1000 replications of samples with 1000 observations.

Panel A: Sample size = 1000

mean

median

mean bias

std

Rmse

CD-SNE (Opt band; Opt weight)

b1 b2 a1

0.0638 0.4987 0.0306

0.0612 0.4929 0.0305

0.0038 -0.0012 0.0007

0.0154 0.1160 0.0011

0.0158 0.1163 0.0013

CD-SNE (doubled bandwidth)

b1 b2 a1

0.0657 0.4812 0.0298

0.0611 0.4864 0.0030

0.0057 -0.0188 -0.0002

0.0249 0.1405 0.0013

0.0256 0.1418 0.0014

Panel B: Sample size = 1000

mean

median

mean bias

std

Rmse

CD-SNE (Opt band; Opt weight)

b1 b2 a1

0.0638 0.4987 0.0306

0.0612 0.4929 0.0305

0.0038 −0.0012 0.0007

0.0154 0.1160 0.0011

0.0158 0.1163 0.0013

CD-SNE (halved bandwidth)

b1 b2 a1

0.0627 0.5062 0.0307

0.0600 0.4997 0.0304

0.0027 0.0062 0.0007

0.0157 0.1310 0.0010

0.0160 0.1312 0.0012
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Table 2C - Monte Carlo study of weighting function choice, and twin
smoothing (Vasicek model). Panel A compares the finite sample properties of

the CD-SNE with optimal weighting function and optimal bandwidth with the finite

sample properties of the SNE with weighting function equal to π(rt, rt−1). Panel B

compares the finite sample properties of the CD-SNE (with optimal weighting func-

tion and bandwidth) with the finite sample properties of estimators replacing model-

simulated nonparametric density estimates with model-implied densities expressed

in analytical form. Parameter values in the experiment are: b1 = 0.06, b2 = 0.5

and a1 = 0.03. Results are obtained through 1000 replications of samples with 1000

observations.

Panel A: Sample size = 1000

mean

median

mean bias

std

Rmse

CD-SNE (Opt band; Opt weight)

b1 b2 a1

0.0638 0.4987 0.0306

0.0612 0.4929 0.0305

0.0038 -0.0012 0.0007

0.0154 0.1160 0.0011

0.0158 0.1163 0.0013

SNE (weight = π(rt, rt−1))
b1 b2 a1

0.0591 0.5479 0.0288

0.0587 0.5146 0.0299

-0.0009 0.0479 -0.0012

0.0142 0.1898 0.0035

0.0142 0.1948 0.0037

Panel B: Sample size = 1000

mean

median

mean bias

std

Rmse

CD-SNE (Opt band; Opt weight)

b1 b2 a1

0.0638 0.4987 0.0306

0.0612 0.4929 0.0305

0.0038 -0.0012 0.0007

0.0154 0.1160 0.0011

0.0158 0.1163 0.0013

Analytical form

b1 b2 a1

0.0596 0.5736 0.0355

0 0607 0.4831 0.0346

-0.0003 0.0736 0.0055

0.0247 0.3079 0.0062

0.0247 0.3157 0.0083
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Table 2D - Monte Carlo study of persistence effects (Vasicek model). Finite

sample properties of the CD-SNE with optimal weighting function and optimal band-

width versus the MLE in the case of different levels of persistence. Parameter values

of the experiment are: b1 = 0.03, b2 = 1.0 and a1 = 0.03 (Panel A); and b1 = 0.006,

b2 = 5.0 and a1 = 0.03 (Panel B). Results are obtained through 1000 replications of

samples with 1000 observations.

Panel A: Sample size = 1000

mean

median

mean bias

std

Rmse

CD-SNE (Opt band; Opt weight)

b1 b2 a1

0.0620 0.9803 0.0308

0.0599 0.9989 0.0306

0.0020 -0.0197 0.0008

0.0093 0.1399 0.0011

0.0095 0.1413 0.0013

MLE
b1 b2 a1

0.0392 1.0396 0.0301

0.0334 1.0003 0.0301

-0.0208 0.0396 0.0001

0.0166 0.2174 0.0007

0.0266 0.2210 0.0007

Panel B: Sample size = 1000

mean

median

mean bias

std

Rmse

CD-SNE (Opt band; Opt weight)

b1 b2 a1

0.0612 4.9390 0.0308

0.0602 4.9497 0.0308

0.0011 -0.0610 0.0008

0.0162 0.7964 0.0010

0.0162 0.7987 0.0013

MLE
b1 b2 a1

0.0613 5.0042 0.0303

0.0602 4.9997 0.0302

-0.0013 -0.0042 0.0003

0.0106 0.4423 0.0007

0.0108 0.4423 0.0007
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Table 3A - Baseline Monte Carlo study of the stochastic volatility model.
Finite sample properties of the CD-SNE with “optimal” weighting function and op-

timal bandwidth for the stochastic volatility model (26). Parameter values in the

experiment are: b1 = 0.06, b2 = 0.5, a1 = 0.03, b3 = 1.0 and a2 = 0.3. Results are

obtained through 1000 replications of samples with 1000 and 500 observations.

Panel A: Sample size = 1000

mean

median

mean bias

std

Rmse

CD-SNE (Opt band; Opt weight)

b1 b2 a1 b3 a2

0.0615 0.5228 0.0309 1.0624 0.3185

0.0603 0.5002 0.0307 0.9988 0.3034

0.0015 0.0228 0.0009 0.0624 0.0185

0.0160 0.1352 0.0016 0.5923 0.1610

0.0161 0.1371 0.0018 0.5955 0.1620

Panel B: Sample size = 500

mean

median

bias

std

Rmse

CD-SNE (Opt band; Opt weight)

b1 b2 a1 b3 a2

0.0649 0.5190 0.0309 1.0905 0.3266

0.0601 0.5017 0.0306 1.0028 0.3011

0.0049 0.0190 0.0009 0.0905 0.0266

0.0281 0.1722 0.0021 0.5636 0.1787

0.0286 0.1733 0.0023 0.5708 0.1807
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Table 3B - Monte Carlo study of weighting function choice. Finite sample

properties of the CD-SNE with “optimal” weighting function and optimal bandwidth

as compared to the SNE implemented with weighting function equal to π(rt, rt−1).
Parameter values in the experiment are: b1 = 0.06, b2 = 0.5, a1 = 0.03, b3 = 1.0

and a2 = 0.3. Results are obtained through 1000 replications of samples with 1000

observations.

Panel A: Sample size = 1000

mean

median

mean bias

std

Rmse

CD-SNE (Opt band; Opt weight)

b1 b2 a1 b3 a2

0.0615 0.5228 0.0309 1.0624 0.3185

0.0603 0.5002 0.0307 0.9988 0.3034

0.0015 0.0228 0.0009 0.0624 0.0185

0.0160 0.1352 0.0016 0.5923 0.1610

0.0161 0.1371 0.0018 0.5955 0.1620

Panel B: Sample size = 1000

mean

median

mean bias

std

Rmse

SNE (weight = π(rt, rt−1))
b1 b2 a1 b3 a2

0.0629 0.4970 0.0292 1.0227 0.2196

0.0608 0.4834 0.0292 1.0058 0.2334

0.0029 -0.0029 -0.0008 0.0227 -0.0804

0.0159 0.1185 0.0012 0.2426 0.1115

0.0163 0.1185 0.0014 0.2434 0.1372
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Table 3C - Monte Carlo study of persistence in volatility effects (stochastic
volatility model). Finite sample properties of the CD-SNE with “optimal” weight-

ing function and optimal bandwidth for the stochastic volatility model (26) in the

case of different levels of persistence in volatility. Parameter values in the experiment

are: b1 = 0.06, b2 = 0.5, a1 = 0.03, b3 = 1.0 and a2 = 0.3 (panel A); and b1 = 0.06,

b2 = 0.5, a1 = 0.03, b3 = 0.4 and a2 = 0.3 (panel B). Results are obtained through

1000 replications of samples with 1000 observations.

Panel A: Sample size = 1000

mean

median

mean bias

std

Rmse

CD-SNE (Opt band; Opt weight)

b1 b2 a1 b3 a2

0.0615 0.5228 0.0309 1.0624 0.3185

0.0603 0.5002 0.0307 0.9988 0.3034

0.0015 0.0228 0.0009 0.0624 0.0185

0.0160 0.1352 0.0016 0.5923 0.1610

0.0161 0.1371 0.0018 0.5955 0.1620

Panel B: Sample size = 1000

mean

median

mean bias

std

Rmse

CD-SNE (Opt band; Opt weight)

b1 b2 a1 b3 a2

0.0634 0.5071 0.0310 0.4490 0.3002

0.0612 0.4953 0.0306 0.4035 0.2950

0.0034 0.0071 -0.0011 0.0490 0.0002

0.0165 0.1469 0.0024 0.2704 0.1265

0.0168 0.1470 0.0026 0.2748 0.1266
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Panel A - Average against sample size

Panel B - Mean squared error against sample size

Figure 1 - This figure reports the results of a Monte Carlo experiment in which the

standard deviation of a standard normal distribution is estimated with four estimators

- the MLE, estimator θI in (3) with weighting function equal to πT , the SNE in (7)

with wT = πT and, finally, the SNE in (7) with optimal wT (opt-SNE). Panel A

reports the average of the estimates. Panel B reports the MSE of the estimates.
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Φ
Y

φ−1(y;θ0,γ0)

φ(y;θ0,γ0)

Figure 2 - Asset pricing, the Markov property, and statistical efficiency. Y

is the domain on which the partially observed primitive state process y ≡ (yo yu)>

takes values, Φ is the domain on which the observed system φ ≡ (yo C(y))> takes

values in Markovian economies, and C(y) is a contingent claim price process in Rd−q∗ .
Let φc = (yo, c(y, c1), · · ·, c(y, cd−q∗)), where {c(y, cj)}d−q

∗
j=1 forms an intertemporal

cohort of contingent claim prices, as in definition 3. If local restrictions of φ are one-

to-one and onto, the CD-SNE applied to φc is feasible. If φ is also globally invertible,

the CD-SNE applied to φc achieves the maximum likelihood first-order asymptotic

efficiency.
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