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Abstract

Recovery rates are negatively related to default probabilities (Altman et al.,
2005). This paper proposes and estimates a model in which this dependence
is the result of an unobserved credit cycle: When times are bad, the default
probability is high and recovery rates are low; when times are good, the default
probability is low and recovery rates are high. The proposed dynamic model
is shown to produce a better fit to the data than a standard static approach.
It indicates that ignoring the dynamic nature of credit risk could lead to a
severe underestimation of credit risk (e.g. by a factor of up to 1.7 in terms
of the 95% VaR). Also, the model indicates that the credit cycle is related to
but distinct from the business cycle as e.g. determined by the NBER, which
might explain why previous studies have found the power of macroeconomic
variables in explaining default probabilities and recoveries to be low.
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1 Introduction

It has been suggested that default probabilities and / or rating transitions might be

related to the business cycle. Bangia et al. (2002), for example, estimate separate rating

transition matrices for NBER recessions and expansions,1 and Nickell et al. (2000)

estimate different rating transition matrices for periods of high, medium and low GDP

growth and find that rating transition matrices are significantly different across these

phases. In both cases, a downturn in the business cycle seems to go hand in hand with

an increase in default probabilities.

It has also been noted, however, that macroeconomic variables seem to be unable to

fully explain default probabilities. Das et al. (2007) produce evidence to suggest that

apart from the macroeconomic and other covariates that they use to model default

intensities, there are unobserved covariates or factors that drive default probabilities.

This is corroborated by for example Koopman et al. (2006), who find that a latent

or unobserved state variable is important in explaining default probabilities or rating

transitions, even in the presence of macro variables.

What this suggests is that a credit cycle that drives default probabilities exists, but

that it cannot be identified by using only macroeconomic data.

Another strand of literature examines the relationship of default probabilities or

default rates, and finds that default rates and recovery rates are negatively correlated

(see e.g. Altman et al., 2005).

The contribution of this paper is to combine these strands of literature and examine

to what extent it is possible to identify a credit cycle using only the data on recovery

rates and default rates, i.e by letting the credit data speak. Intuitively, we formalize

the idea that in “good times”, default rates are low and recoveries are high, and in

“bad times”, default rates are high and recoveries are low. So far, no attempt has been

made to identify the credit cycle on the basis of both recoveries and default events2.

Credit risk can conceptually be thought of as consisting of both default and recovery

risk. If default rates and recovery rates are negatively correlated through an unobserved

1Bangia et al. (2002) also estimate the NBER business cycle transition matrix, and use this to
simulate the unconditional rating transition matrix by this dynamic model, which they compare to the
static rating transition matrix to find that the static rating transition matrix understates default risk.

2Frye (2000) proposed a model based on Vasicek (1987) that is closest in spirit to what we propose
here. His model, however, is phrased in a static context, and cannot therefore be used to identify a
dynamic credit cycle in a consistent manner.
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credit cycle, this could change the view of the credit risk of portfolios quite dramatically,

which has implications for risk management and possibly also for pricing.

In many commercial credit risk models, the default rate and recovery rates are

assumed to be independent,3 or constant.4 If realizations of recoveries are low exactly

at times when many firms default, assuming that recoveries are independent of default

rates or constant will mean an underestimation of credit risk.

In many pricing models, the recovery rate is also assumed to be a constant, or

independent of other factors in the model, either in the model itself or in its empirical

implementation. This will lead to models that understate risk, and hence produce prices

that are too high or spreads that are too low. It has been argued by Huang and Huang

(2003), for instance, that many structural models of credit produce spreads that are too

low once calibrated to match average default probabilities and average recovery rates.

They suggest that this might be due to assuming a risk premium that is constant, when

in reality it is time-varying. The approach presented here does not understate risk and

hence is likely to produce lower prices and higher yields, even without reference to

time-varying risk premia.

Our credit cycle will be an unobserved two-state Markov chain. Making some distri-

butional assumptions about default rates and recoveries will then allow us to estimate

a model akin to the one presented by Hamilton (1989). We show that the resulting

model can be interpreted as a simple version of a reduced form (or intensity) model of

credit (Jarrow and Turnbull, 1995).

Our estimated model allows comparing our credit downturns to recession periods

as determined by the NBER. The beginning of our credit downturns typically precedes

the start of a recession, and continue until after the end of a recession (see e.g. Figure

1). The average duration of a credit downturn is in the range of 4.9 years, as opposed to

an estimated average duration of 4.1 to 4.7 quarters (Hamilton, 1989). Our estimated

credit cycle indicator exhibits some, but not perfect correlation with various macroeco-

nomic variables (e.g. a correlation of 36% with the S&P 500 return, or a correlation of

34% with GDP growth, see Table 14) This indicates that the credit cycle is related to,

but distinct from the macroeconomic cycle. We argue that this explains why previous

studies have found that macroeconomic variables explain only a small proportion in the

3E.g. J.P. Morgan’s CreditMetricsTM model
4E.g. CSFB’s CreditRisk+TM model
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variation of recovery rates (Altman et al., 2005).

We show how the model can be used to calculate loss distributions for portfolios.

Allowing for dependence between default probabilities and recovery rates via the state

of the credit cycle can increase e.g. the 95% VaR of a given portfolio by a factor

of up to 1.7, and even in credit upturns, the VaR can increase by a factor of up to

1.3. Altman et al. (2005) obtain a very similar difference in VaRs on the basis of a

hypothetical simulation exercise; we can confirm on the basis of our estimated model

that their numbers are very, very plausible. Also, Hu and Perraudin (2002) estimate

the tails of actual loss distributions on the basis of extreme value theory, and compare

that with the tail estimate based on losses calculated by historical simulation assuming

independence between recoveries and default probabilities, and produce a qualitatively

similar result, i.e. they find that for a given confidence level, quantiles of actual losses

are much large than quantiles of hypothetical losses assuming independence. They do

not identify the credit cycle, however.

The difference in VaRs is economically significant, and should be taken into account

e.g. by banks attempting to implement the Advanced Internal Ratings-Based Approach

of Basel II, under which they can calculate their own default probabilities and estimates

of loss given default.

Several hypotheses explaining why recoveries might be low in times when many firms

default have been suggested. Altman et al. (2005) argue that the markets for defaulted

securities have limited capacity (i.e. demand for these securities is not perfectly elastic

as standard asset pricing theory would suggest), and when many of these appear at the

same time, this depresses the price of defaulted securities. If recovery is measured as the

price of a defaulted security as a fraction of par (as is standard practice), then of course

this would depress recoveries in times of large default rates. Regressing recovery rates

on e.g. the aggregate default rate as an indicator of the aggregate supply of defaulted

bonds, they find a negative relationship. When adding macroeconomic variables such

as GDP growth, they also find that these do not contribute much to explaining recovery

rates.

Two competing hypotheses were examined by Acharya et al. (forthcoming), who

argue that recoveries might be low in times when the industry of the defaulting firm

is in distress because this implies both a lower economic worth of the defaulting firm’s

assets, as well as a lower resale value of the firms assets because of the firms of the
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same industry, i.e. those firms that could put the assets to the most productive use,

are financially constrained. This second hypothesis was first developed by Shleifer and

Vishny (1992). Acharya et al. (forthcoming) produce evidence to suggest that the

second “fire-sales” hypothesis is a likely explanation, and note that industry distress

dummies explain a large part of the apparent effect of the aggregate supply of defaulted

bonds. The data seems to indicate that industries are in distress at the same time; this

leaves the question as to why they would be in distress simultaneously.

Kiyotaki and Moore (1997) analyze the effects of productivity shocks on the business

cycle in the presence of interactions between borrowing constraints and asset prices.

Similarly to Shleifer and Vishny (1992), they argue that given a negative productivity

shock, the net worth of firms diminishes and the demand for assets (in the presence

of credit constrains) decreases. This lowers the price of assets and thus the net worth

of these constrained firms. But this might reduce the future net worth of these firms.

So in the presence of credit limits, effects of a productivity shock can be transmitted

into the future. This creates a business and credit cycle out of productivity shocks

and credit constraints. Although they do not explicitly discuss defaults or recoveries,

it is possible to imagine a version of the model in which more firms default and less is

recovered in situation when prices of assets are depressed.

Suárez and Sussman (2007) present a model that is similar in spirit in which the

presence of financial constraints together with the effects of liquidations on asset prices

can produce endogenous fluctuations (i.e. without productivity shocks).

In conclusion, there is empirical evidence as well as theoretical considerations that

make it plausible that recovery rates and default rates would be related to a credit

cycle, which in turn could be related to the business cycle.

The rest of this paper is structured as follows: The model is presented in section

2. Relationships between the model and standard reduced-form models of credit are

explored in section 3. In section 4 we describe the data set used. Section 5 discusses

the estimation and various tests, and section 6 explores the implications for credit risk

management and pricing. Finally, section 7 concludes.
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2 The model

The basic idea of the model is to let default probabilities and recovery rates be related

by letting them depend only on the state of the credit cycle. Default correlation be-

tween firms, dependence between recoveries of different firms, as well as the relationship

between recovery rates and default rates are driven entirely by the credit cycle. While

this might seem restrictive, this is of course a lot less restrictive than assuming that

variables are independent, and relationships are static.

The credit cycle is described by a two-state Markov chain. Let st be the unobserv-

able state of the cycle, with st = 0 corresponding to a credit downturn and st = 1

corresponding to a credit upturn. Also, let p be the probability of remaining in an

upturn and q the probability of remaining in a downturn. Then, following Hamilton

(1989), we can describe the dynamics of the state of the cycle as

st = (1− q) + (p + q − 1)st−1 + vt (1)

where vt is a martingale difference sequence that can take a finite number of values.

Given the specification in (1) and taking into account that st is a binary variable, we

can easily obtain the probabilities of being in one state or another conditioned on the

state in the previous period.

Each firm in the population has a default probability which only depends on the

state of the cycle. We call the default probabilities in downturns r0, and the default

probability in upturns r1.

We assume that conditional on the cycle, defaults of firms are independent, i.e. that

any (unconditional) dependency is driven entirely by the cycle. The default indicator

1it of a firm i is zero if a firm has not defaulted in the period and is equal to 1 in the

period in which the firm defaults. In terms of this variable, our assumption is that

conditional on the state, 1it ⊥⊥ 1jt for firms i 6= j. As a consequence of this assumption,

the number of defaults dt in the population of size Nt will be binomially distributed

with parameter rs, conditional on knowing the state.

The recovery rate for a default is drawn from a beta distribution. This distribution

is well suited to modelling recoveries as it has support [0, 1], is relatively flexible and

requires only two parameters (which we call α and β). It is in fact often used by rating

agencies for this purpose (see e.g. Gupton and Stein, 2002). We let the parameters of
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this beta distribution depend on the state of the cycle s, the seniority class of the debt

on which default occurs c and the industry of the issuer k, such that the recovery rate

of firm i at time t on debt of class c is drawn from a density

f(ytic) =
1

B(αsck, βsck)
yαsck−1

tic (1− ytic)
βsck−1. (2)

We assume that conditional on the state, ytic1 ⊥⊥ ytjc2 for firms i 6= j and ∀c1, c2, i.e.

once we condition on the unobserved state, recovery rates of one defaulting firm are

assumed independent of recovery rates of all other defaulting firms. This means that

any dependence in the unconditional recoveries across firms will be driven entirely by

the unobserved state.

Also, we assume that recoveries are independent of the default events, i.e. 1it ⊥⊥
ytjc for firms i 6= j, such that (unconditional) dependence between recoveries and the

aggregate number of defaults is entirely driven by the state of the credit cycle. This

assumption is of course crucial, and its validity will be examined below (see section 5).

Often, a single firm defaults on more than one class of debt. Recoveries associated

with one firm but across several classes of debt are unlikely to be independent. It is

likely that a high firm-level recovery implies higher instrument-level recoveries, and that

therefore recoveries on instruments issued by the same firm but of different seniority

classes exhibit positive dependence. Also, it would be natural to expect that higher

seniority classes observe a higher recovery. As it turns out, in the data, it is relatively

frequently the case that higher seniority classes recover less than the lower seniority

classes, however.5

In the absence of a model that relates firm-level recoveries to instrument-level re-

coveries (see e.g. Carey and Gordy, 2004, for a discussions of some of the issues), we

propose the relatively simple assumption that the dependence structure of recovery

rates across different seniority classes for the same firm is given by a Gaussian copula,

such that we can specify a correlation matrix Γ of recoveries across seniority classes.

This means that we do not impose a dependence structure that implies that higher

seniorities will always recover more, since this is not what we see in the data. When a

5This is likely to reflect the fact that the specific terms of debt contracts of a given seniority class
vary across firms, and that the labels of “Senior Unsecured” etc. do not always carry the same meaning
across firms. On average, higher seniority classes recover more, however, so these labels do contain
some information on potential recovery rates. It is also possible that this reflects aggregation issues
and the structure of our data, see section 4 for details.
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firm defaults on only one class of debt, we interpret [2] as the density of the recovery

rate, and in the case where a firm defaults on more than one class of debt, we interpret

[2] as the marginal density of recoveries.

We obtain a likelihood function of the model as described in appendix A by em-

ploying a slightly modified version of the method proposed by Hamilton (1989).

3 Interpretations of the model

As a consequence of having probabilities of being in an upturn or downturn of the credit

cycle, the particular density describing possible recoveries at any particular point in time

will be a mixture of the two different beta densities for the two different states, with

the mixing probabilities being given by the probabilities of being in either state. This

gives considerably more flexibility in matching observed unconditional distributions of

recovery rates, and is in some sense similar to the nonparametric kernel density approach

of Renault and Scaillet (2004).6

We can also view the model as a discrete version of a reduced-form or intensity

model. According to the model, conditional on the state of the credit cycle, the firms

default independently, either with probability r0 (in downturns), or with probability r1

in upturns. This implies that the number of defaults in a given period, dt, is binomially

distributed. Taking limits of the binomial distribution as the size of the population

Nt →∞ and the success probability rs → 0, such that Ntrs = λts, where λts is constant

(for a given state in a given time period), the distribution of dt tends to a Poisson

distribution. In fact, since our Nt is always above 1000, and our per-period default

probabilities do not exceed 3%, the Poisson distribution is a very good approximation

of our implicitly assumed binomial distribution. We can view the counting process

describing the aggregate number of defaulted firms dt as the sum of Nt individual

counting processes that describe the default of individual firms. For this to work, the

intensities of the individual Poisson processes need to sum up to λts. This could be

achieved by e.g. assuming the individual default intensity of firms to be rs. These

intensities depend on an unobserved state; such that we can view the default process

of an individual firm as a Cox process, where the relevant conditioning information is

6It is similar in the sense that we are also using a mixture of beta distributions. The difference is
that obviously, a kernel density estimator will mix over a much larger number of densities (equal to
the number of observations), with mixing probabilities constant and equal across the kernel densities.

8



the (unobserved) state of the credit cycle, i.e. our two-state Markov chain. Recoveries

are also assumed to depend on this unobserved Markov chain.

If the default counting process conditional on knowing the states s = {s0, s1, . . . , sT}
has a Poisson distribution, the default time τ of an individual firm will be exponentially

distributed. The survival probability of an individual firm from time t = 0 until time

T is given by

Pr(τ > T |s) = exp

{
T∑

t=0

rst

}
, (3)

and the unconditional probability is given by

Pr(τ > T ) = E

[
exp

{
T∑

t=0

rst

}]
, (4)

where the expectation is given over the probabilities of the states.

In fact, this is simply a discrete time version of the continuous-time models e.g.

used by Duffie and Singleton (1999) or Duffee (1999), apart from the fact that here

the unobserved process driving the default intensity is not a continuous-time Feller

square-root process, but a discrete time two-state Markov chain. Also, the recovery

assumptions are different; here, conditional on the state recovery is a beta-distributed

fraction of par.

4 Data

The data is extracted from the Altman-NYU Salomon Center Corporate Bond Default

Master Database. This data set consists of more than 2,000 defaulted bonds of US

firms from 1974 to 2005. Each entry in the database lists the name of the issuer of the

bond (this means that we can determine its industry as described by its SIC code), the

seniority of the bond, the date of default and the price of this bond per 100 dollars of

face value one month after the default event.

Typically, the database contains the prices of many bonds for a given firm and

seniority class on a given date, so we need to aggregate. We do this by taking weighted

averages (weighted by issue size).7

7This is something commonly used in the literature. See for example Varma and Cantor (2005).
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We also aggregate data across time into periods corresponding to calendar years.

We assume that a default of the same firm within twelve months of an initial default

event (e.g. in December and then March of the following year) represent a single default

event 8.

We calculate the recovery rate as the post-default price divided by the face value.

Some of the recovery rates calculated in this way are larger than 1. This probably

reflects the value of coupons. We scale the recovery rates by a factor of .9 to ensure

that our observations lie in the support of the beta distribution. Equivalently, we could

view our beta distribution as being defined over a support that equals the range of our

actual data.

The data set does not contain the total size of the population of firms from which

the defaults are drawn. This variable is necessary in order to calculate the probability of

observing dt defaults in [10]. To determine the population size we use default frequencies

as reported in Standard & Poor’s Quarterly Default Update from May 2006 (taken from

the CreditPro Database). Dividing the number of defaulting firms in each year in the

Altman data by Standard & Poor’s default frequency, we can obtain a number for the

total population of firms under the assumption that both data sets track the same set

of firms. The available default frequency data ranges from 1981 to 2005, so we lose

observations from periods 1974-1980. However, these years cover only 9 observations

in the Altman data.

After these adjustments, the final data set contains 1,078 observations. Descriptive

statistics for these observations are presented in Tables 1 to 3.

Table 1 reports the yearly statistics of our adjusted data set. The first column

shows the annual default frequencies as reported by Standard & Poor’s, while the other

columns refer to the main data set, containing the number of observations per year

and their means and standard deviation. It can already be seen that typical recession

years (as published by the NBER: 1990-91 and 2001) show higher default frequencies

and lower recoveries than years of economic expansion. This will of course play an

important role below.

8It is possible that the fact that we sometimes observe higher recoveries for bonds of lower seniorities
is related to this aggregation. In situations where default occurs on a junior security before they occur
on the senior security, it could between the earlier date and the later date bond prices fall as more
negative information about the firm becomes available, and that the recovery on junior securities could
therefore be higher.
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Tables 2 and 3 report the number of observations and the mean and standard

deviation of recoveries classified by seniority and industry respectively. These are in line

with those reported in other papers, although on average recoveries are slightly lower

here. In Table 2, it is shown that mean recovery increases with increasing seniority,

while standard deviation remains more or less constant across seniorities. In Table 3,

we see that the mean recovery is highest for utilities and lowest for telecoms.

5 Estimation and tests

The work of Altman and Kishore (1996) among others suggests that other important

determinants of recovery rates are seniority and industry. Ultimately, we are therefore

interested in constructing a model that takes into account the effects of the credit

cycle, but also industry and seniority. Initially, however, we examine how well the

model does using only the assumption about state dependence, ignoring the effects of

industry and seniority (i.e. we look at a version of the model where marginal recovery

rate distributions do not vary according to industry and seniority). Also, to sidestep

the issue of dependence of recoveries on issues of the same firm, but with different

seniorities, we initially drop all default events for which we observe recoveries on more

than one seniority (the remaining observations are roughly representative of the whole

sample). We estimate a basic static model, in which recovery rate distributions and

default probabilities do not depend on the state, and contrast this with a basic dynamic

model in which both recovery rate distributions and default probabilities are state

dependent.

We then proceed towards a model that takes into account industry and seniority.

Since we do not have a sufficient number of default events for every possible combination

of industry, seniority and state of the credit cycle, however, we will need to aggregate

industries into broad groups.

In order to check that the aggregation is reasonable, we first allow marginal dis-

tributions to vary across industries only, and check which industries can be grouped.

Next, we allow marginal distributions to vary across seniorities only. We can then look

at the dependence of recoveries on issues of the same firm but with different seniorities.

For this we need to add the observations dropped at the earlier stage back in, and look

at the full data set.
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Finally, we combine information on industry and seniority to construct the dynamic

industry/ seniority model. This will be contrasted with a static industry/ seniority

model.

At the various stages, different tests will be performed.

5.1 Basic model

5.1.1 The basic static model

In the static model recovery rate distributions and default probabilities do not depend

on the state. We also ignore industry and seniority. We estimate on the sub-sample of

observations for which we do not observe recoveries across different seniorities for the

same firm.

Estimates of this model are provided in Table 4. With the estimated distribution

parameters we obtain an implied mean recovery of 37%.9 The default probability in

this static case is found by taking the average of all the default frequencies in our data

set and it is equal to 1.47%.

5.1.2 The basic dynamic model

In the basic dynamic model recovery rate distributions and default probabilities depend

on the state, but we ignore industry and seniority. We estimate on the sub-sample of

observations for which we do not observe recoveries across different seniorities for the

same firm.

The estimated parameters are reported in Table 4. Average recoveries are much

lower in downturns (31% versus 47%), and default probabilities are higher (2.69% versus

0.86%).

We test whether the estimated parameters values for downturns are significantly

different from the estimated parameter values for upturns via likelihood ratio tests: We

first test whether the recovery rate distribution parameters parameters are different,

and then test whether the default probabilities are different. The p-value are less than

0.01% for both tests, so that the null hypothesis of no difference across states is rejected

both for recovery rate distributions and default probabilities. The credit cycle matters.

9The mean of a beta distribution with parameters α and β is α
α+β . Note that we also have to divide

the resulting number by 0.9 in order to undo the scaling adjustment.
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We check the recovery rate densities implied by the models using a method pro-

posed by Diebold et al. (1998), described appendix B. The basic idea is that applying

the probability integral transform based on the predicted (filtered) distributions to the

actual observations (the recovery rates in our case) should yield an i.i.d.-uniform series

(the PIT series) under the null hypothesis that the density forecasts are correct. De-

partures from uniformity are easily visible when plotting histograms, and departures

from i.i.d. are visible when plotting autocorrelation functions of the PIT series. We

also test for departures from uniformity using the Kolmogorov-Smirnov (K-S) test,10

and departures from i.i.d-ness using the Ljung-Box (L-B) test.

The p-value of the K-S statistic for the basic static model is 2.32%, versus 6.38%

for the basic dynamic model, indicating that the dynamic model does a better job at

matching recovery rate distributions. The p-value of the L-B test is virtually zero for

the basic static model, indicating that the static model clearly does not describe the

dynamics of recovery rates adequately. For the basic dynamic model, the p-value of

the L-B test is 20.56%, indicating that it is much better at describing the dynamics of

recovery rates. This can also be seen by examining the histograms and correlograms of

the transformed series (see figures 2 and 3).

We also check the goodness of fit of our estimated default rates. For this purpose, we

regress observed default rates on a constant and estimated default rates of the dynamic

model (for each of its variants). These estimated default rates are obtained by mixing,

for each period, the default rates of both states where the weightings are the (smoothed)

probabilities of being in one state or the other. Given the coefficients of this regression

we can test both the static and dynamic models. The static model would be correct if

the coefficient of the variables is not significantly different from zero, so that the only

explanatory variable was the constant (the static default rate). The null hypothesis for

the dynamic model is that the constant and the coefficient of the variable are equal to

zero and one respectively. Table 12 reports the p-values for all these hypothesis. We

see how the static model is clearly rejected, while we obtain very high p-values (and

then accept) the dynamic model. 11

10The distribution of this test is derived under the null that the distribution to which the empirical
distribution is compared is known, and not estimated, which is not the case in our application. Some
care therefore has to be taken in interpreting the p-values.

11The p-values are those of standard t-tests. In order to verify that these are appropriate, we
bootstrapped the t-statistics of the regression to confirm that they do indeed follow a t-distribution.
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We also plot the (smoothed) probabilities of being in the credit downturn over time

and compare these to NBER recession dates in figure 1. As can be seen, the credit cycle

had two major downturns, around the recession of the early 90s and around 2001, but

in each case, the credit downturn started well before the recession and ended after it.12

This difference between the credit cycle and the business cycle might explain the low

explanatory variable of macroeconomic variables documented by Altman et al. (2005).

Raw correlations between the smoothed upturn indicator and various macroeco-

nomic variables are reported in Table 14. We can see for instance that the upturn

indicator is positively correlated with consumption growth (a correlation of 34%).

We also examine our assumption that recoveries and default probabilities are inde-

pendent conditional on the state of the credit cycle (see equation 7). We regress annual

mean recoveries on default rates for the whole sample. The coefficient is significantly

different from zero at 5% (the correlation between the two variables is -0.43). We also

run two regressions separately in the two subsamples given by the periods for which

the smoothed probabilities of being in a credit upturn or downturn are unambiguous

(i.e. either 1 or 0). The coefficients of the regressions in the two sub-samples are not

significantly different from zero at 5% (the correlations are 0.47 in upturns and -0.12

in downturns). This seems to support our assumption.

5.2 Adding information on industry

We now let the parameters of the recovery rate density depend on industry, as well as

on the unobserved credit cycle. We have 12 industries, which implies that we need to

estimated 48 recovery rate distribution parameters (2 states, 12 industries, 2 parame-

ters per beta distribution), 2 transition probabilities and 2 default probabilities. The

estimated parameters of the recovery rate distributions and the implied mean recoveries

are provided in Table 5.

As discussed, in order to construct a combined industry / seniority model, due to

data limitations, we will have to aggregate. We aggregate industry into three groups:

1. Group A: Financials, Leisure, Transportation, Utilities

2. Group B: Consumer, Energy, Manufacturing, Others

12The “semi-downturn” of 1986 consists mostly of defaulting oil companies. It is probable that this
is related to the drop in oil prices at the time.
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3. Group C: Building, Mining, Services, Telecoms

For the given sample, these groupings roughly correspond to industries with high,

medium and low mean recovery rates respectively. We test whether the parameters

of the recovery rate distribution are significantly different within these groups (i.e.

whether it the groupings are reasonable). The p-value of the likelihood ratio test is

10%, which indicates that the null of the same parameters within the groups cannot be

rejected at conventional levels of significance.

5.3 Adding information on seniority

We now estimate a model in which the parameters of the recovery rate densities depend

on the state of the credit cycle and seniority (and ignore industry for the time being).

We observe 4 different categories of seniority (Senior Secured, Senior Unsecured, Senior

Subordinated, Subordinated). The estimated recovery rate parameters and the mean

recoveries implied by these parameters are shown in Table 6. We observe that although

senior secured bonds have a higher recovery in upturns on average (52%), they have

very similar (low) recoveries to bonds of all other seniorities in downturns (29%). As

has been pointed out by Frye (2000), this might have important consequences for risk

management, as instruments that are though of as “safe” turn out to be safe only in good

times. Acharya et al. (forthcoming) also find that in times of distress, senior securities

recover significantly less, while recoveries on bank debt and junior securities are not

significantly affected. They hypothesize that it is especially holders of senior debt that

lose their bargaining power in times of distress, and hence recover less. Acharya et

al. (forthcoming) also argue that that if the senior debt is collateralized, this effect is

mitigated. Based on our estimation results, we cannot corroborate this result. For our

data, senior debt is strongly affected by a credit downturn, regardless of whether or not

it is secured.

5.3.1 Dependence across seniorities

So far we have dealt only with observations for which we do not observe several re-

coveries across different seniorities for the same firm, which we now add back in. It

is unreasonable to assume that these observations of recoveries represent independent
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draws. As described above, letting our marginal recovery rate densities be beta densities

as before, we model this dependence with a Gaussian copula.

In order to estimate this dependence, we add the observations of default events for

which we observe recovery rates across instruments of different seniorities back in. For

these observations, seniority seems to mean something quite different, as can be seen

from Table 2. One explanation for this would be that recovery on a bond that is labelled

as “senior unsecured” (for example) depends not so much on this label, but much more

on whether or not there exists a cushion of junior debt.

Since categories of seniority seem to have a very different meaning when we observe

recoveries across instruments of different seniorities, we allow the parameters of our

marginal recovery rate densities for a given seniority to be distinct for the cases where

either recovery only on a single seniority is observed, or whether recovery is observed

on more than one seniority.

The estimated parameters of the marginal beta densities are reported in Table 7,

and the estimated correlation matrix is presented in Table 8.

Implied mean recoveries of this model are presented in Table 7. We can see that

junior debt recovers less and senior debt recovers more for default events for which we

observe recoveries for more than one seniority. For example, in an upturn, Senior Unse-

cured debt would recover (on average) 46% and Subordinated debt would recover 34%

if recoveries are observed on more than one seniority, whereas they would recover (on

average) 42% and 37% respectively if recovery was only observed on a single seniority.

At 5% significance, only the correlations between Senior Unsecured, Senior Subor-

dinated and Subordinated seniorities are significantly different from zero. These cor-

relations are positive, indicating that a high recovery on e.g. Senior Unsecured debt

for a defaulting firm indicates a likely high recovery on its Senior Subordinated Debt.

The recovery on Senior Secured debt seems to be less strongly related to recoveries

on different seniorities. This could reflect that the existence of a junior debt cushion

matters less, and the quality of the collateral matters more for Senior Secured debt.

5.4 The industry / seniority dynamic model

Having decided on groupings of industries such that we now have a sufficient amount

of data for each possible combination of seniority group, industry group, and state of

the business cycle, we are now in a position to estimate a combined industry / seniority
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model. The recovery rate density parameters are in tables 9 and 11.

For comparison purposes, we also estimate a static industry / seniority dynamic

model, which is identical with the dynamic industry / seniority model except for the

fact that the static model ignores the credit cycle. We calculate the PIT series for

both models, and plot histograms and correlograms in figures 2 and 3. We can see that

the unconditional distributions seem to be closer to uniformity, suggesting that taking

into account industry and seniority helps in describing distributions of recovery rates.

Looking at the correlograms, it is also apparent, however, that the static version of the

industry / seniority model is again unable to explain the dynamics of recovery rates.

We conclude that allowing the parameters of the density of recoveries to depend on the

credit cycle allows for a better match of the empirically observed recovery rates.13

6 Implications

Altman et al. (2005) suggest that a correlation between default rates and recovery rates

can imply much higher VaR numbers than those implied by independence between these

two variables. In a completely static model, they compare VaRs calculated in the case

of independence, and in the case of perfect rank correlation between default rates and

recovery rates.

We are in a position to calculate the loss distributions and statistics of loss distri-

butions (such as the VaR) implied by our estimated model; i.e. taking into account the

estimated degree of dependence between default probabilities and recovery rates, which

in our case is driven entirely by the credit cycle.

We calculate (by simulation of 10,000 paths) the one-year loss distribution of a hy-

pothetical portfolio of 500 bonds. For this calculation, we have to chose the probability

that we attach to being in a credit downturn today. We examine cases with this prob-

ability being equal to one (we know that we are in a downturn today), zero (we know

that we are in an upturn today) and 33.5%, which corresponds to the unconditional

probability of being in a downturn, given our estimated transition probabilities (we

have no information on the current state of the cycle).

13We also calculate a Kolmogorov-Smirnov test on the PIT series, and find a p-value of 9.91% for
the static model, and a p-value of 14.37% for the dynamic model. Note that the caveat mentioned
above applies.
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Comparing the basic static model and the basic dynamic model (i.e. ignoring indus-

try and seniority for the time being), we can see from Table 13 that the 95% VaR is a

2.39% loss on the portfolio assuming the world is dynamic as described in our model,

versus a 1.58% loss on the portfolio if we had assumed that the world is static. This is

a very sizeable difference in risk. It arises because the dynamic model allows for credit

downturns, in which not only the default rate is very high, but also, the recovery rate

is very low. This amplifies losses vis-a-vis the static case.

Even supposing that we are in an upturn today, the dynamic model still produces

a 95% VaR of 1.96%, which is larger than the static VaR because even though we are

in an upturn today, we might go into a credit downturn tomorrow, with higher default

rates and lower recoveries.

The loss density implied by the dynamic model based on the unconditional prob-

ability of being in a downturn is compared to the loss density implied by the static

model in figure 4. The dynamic model loss density is bimodal, reflecting the possibility

of ending up either in an upturn with low default probabilities and high recoveries, or

ending up in a downturn, with high default probabilities and low recoveries. As can be

seen, the tail of the loss distribution implied by the dynamic model is much larger.

We also show this comparison for the case of assuming that we are in an upturn

today in figure 4. It can be seen that even being in an upturn today, the possibility of

going into a downturn tomorrow produces a bimodality in the loss distribution (albeit

smaller) implied by the dynamic model, and a larger tail than that produced by the

static model.

Looking at our industry / seniority model, we can see that the underestimation of

the VaR of the static model seems to be most pronounced for Group C, our low recovery

industries (including e.g. Telecoms), where the VaR based on the dynamic model can

be up to 1.7 times as large.

It is possible that these results have implications for capital requirements. Altman

et al. (2005) argue that credit risk is cyclical, which would lead to capital requirements

calculated under the Basel II Internal Ratings-based Approach to be cyclical. Con-

cretely, capital requirements should increase in credit downturns, as the estimated loss

given default and the default probability rise simultaneously. They note that regula-

tion should encourage banks to use “long-term average recovery rates” (and presumably

default probabilities) in calculating capital requirements to dampen the procyclicality
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of capital requirements. In terms of the model presented here, one could argue that

the appropriate “long-term” recovery rates and default probabilities to use would be

the unconditional ones. This would be tantamount to discarding information on the

state of the cycle when calculating capital requirements, but at least it would avoid

calculating them on the of a wrong (static) model.

Of course, this assumes that the data on bond defaults and recoveries is indicative

of bank loans (which might not necessarily be the case). The fact that Acharya et al.

(forthcoming) report that recoveries on bank debt seem to be largely unaffected by their

distress variable (while reporting other results that appear to be largely consistent with

our results) casts doubt on this idea, although it is likely that default rates of bank loans

and bonds are more similar. To answer the question conclusively, our model would have

to be estimated on bank loan data.

Also, the increase in risk associated with negatively correlated default frequencies

and recovery rates is likely to have an effect on pricing, and might (at least in part)

explain the “corporate spread puzzle” (see e.g. Chen et al., 2006), i.e. the fact that

structural models of corporate debt that assume that the recovery rate is a fixed pa-

rameter seem to be unable to match observed corporate bond yields with reasonable

risk-aversion parameters.

7 Conclusions

This paper formalizes the idea that default probabilities and recovery rates are related

through the credit cycle: it proposes a model that is estimated and found to fit the

data reasonably well in various ways. We demonstrate that taking into account the

dynamic nature of credit risk in this way implies dramatically higher risk, as evident

in our VaR calculations, since default probabilities and recovery rates are negatively

related. The estimated credit downturns seem to start much earlier and end later than

the recessions as reported by the NBER, indicating that the credit cycle is to some

extent distinct from the business cycle, which might explain why Altman et al. (2005)

find that macroeconomic variables in general have low explanatory power for recovery

rates.
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A The likelihood function

Let dt be the number of defaulted firms observed in t. Firms are be indexed by i. In

terms of the previously defined default indicator, dt =
∑

i 1it. Different seniority classes

are indexed by c (c ranges from 1 to C).

Let Yt be a matrix of dimension dt ×C containing observations on the dt defaulted

firms, one row per firm, for all different seniority classes c. Denote the typical element

as ytic, and denote each row in this matrix as yti..

Then our objective is to maximize the following likelihood function

L =
T∑

t=1

log f(Yt, dt|Ωt−1), (5)

where Ωt−1 is all information available at t − 1, which includes observed defaults up

to that point. Note that we have made explicit that there is information in both the

matrix of recoveries Yt and the number of its rows, dt, about the state, i.e. identification

of the state is obtained through both the number of defaults and recoveries.

Letting s denote state as above, we can write

f(Yt, dt|Ωt−1) = f(Yt, dt|st = 1, Ωt−1) Pr(st = 1|Ωt−1)

+ f(Yt, dt|st = 0, Ωt−1) Pr(st = 0|Ωt−1). (6)

We assumed independence between recovery rates and defaults. This implies that

the values of the recovery rates in the rows of Yt, yti., are independent of dt conditional

on the state. Once the state is known, the number of defaults does not contain infor-

mation about the likely values of recoveries, and the values of recoveries do not contain

information about the likely number of defaults. This allows us to write

f(Yt, dt|Ωt−1) = f(Yt|st = 1, Ωt−1) Pr(dt|st = 1, Ωt−1) Pr(st = 1|Ωt−1)

+ f(Yt|st = 0, Ωt−1) Pr(dt|st = 0, Ωt−1) Pr(st = 0|Ωt−1). (7)

The contribution to the likelihood function of a given period is given by the sum of two

products, one for each state. The components of these products are the state-conditional

density function of the observed recovery rates, the state-conditional probability of the

number of defaults and the probability of being in that state. These components are

now described separately.
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A.1 State-conditional recoveries

We have assumed that conditional on the state, recoveries of different firms are inde-

pendent. This allows us to factorize, such that the conditional density for a given state

st can be written as

f(Yt|st, Ωt−1) =
dt∏

i=1

f(yti.|st, Ωt−1). (8)

The parameters of our marginal distributions of recovery rates vary according to

state s, seniority class c and industry k. The marginal density was assumed to be given

by

f(ytic|st, Ωt−1) =
1

B(αsck, βsck)
yαsck−1

tic (1− ytic)
βsck−1. (9)

We assumed that the copula of the elements of yti. is Gaussian with correlation ma-

trix Γ. Together with the assumption of the marginal distribution in [9] this determines

the densities f(yti.|st, Ωt−1) in [8].

A.2 State-conditional number of defaults

Since we assumed that conditional on the state, defaults are independent with probabil-

ity rs, the probability of observing dt defaults is binomial conditional on the state. Let

Nt be the number of (defaulted and non-defaulted) firms in the population in period t,

then we can calculate the probability of observing dt defaults in a given state st as

Pr(dt|st, Ωt−1) =

(
Nt

dt

)
rNt
s (1− rs)

Nt−dt (10)

A.3 Probabilities of the states

Finally, the probability of being in one state can be derived from the total probability

theorem. Obviously,

Pr(st = 1|Ωt−1) = p · Pr(st−1 = 1|Ωt−1) + (1− q) · Pr(st−1 = 0|Ωt−1), (11)

where we used the notation defined previously, p = Pr(st = 1|st−1 = 1, Ωt−1), the

probability of remaining in state 1, and (1 − q) = Pr(st = 0|st−1 = 0, Ωt−1), the

probability of moving from state 0 to state 1.
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We can rearrange [11] to obtain

Pr(st = 1|Ωt−1) = (1− q) + (p + q − 1) Pr(st−1 = 1|Ωt−1) (12)

The probability Pr(st−1 = 1|Ωt−1) can be obtained via a recursive application of Bayes’

rule:

Pr(st−1 = 1|Ωt−1) =

f(Yt−1|st−1 = 1, Ωt−2) Pr(dt−1|st−1 = 1, Ωt−2) Pr(st−1 = 1|Ωt−2)

f(Yt−1|Ωt−2)
(13)

For a given parameter vector, the likelihood can therefore be calculated recursively,

given some suitable initial conditions, e.g. the unconditional probabilities of being in

each state implied by the transition matrix.
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B The Diebold-Gunther-Tay test

Diebold et al. (1998) propose a test (DGT test) for evaluating density forecasts. The

basic idea is that since under the null hypothesis the forecasts are equal to the true den-

sities (conditioned on past information), applying the cumulative distribution function

(the probability integral transform) to the series of observations should yield a series of

iid uniform-[0, 1] variables. Whether the transformed variables are iid uniform can be

tested in various ways, e.g. via a Kolmogorov-Smirnov test. Departures from unifor-

mity or iid-ness are also easily visible when looking at histograms and autocorrelation

functions of the transformed series.

In order to apply the DGT test to our predicted recovery rate densities, we create

a vector y† with typical element y†t = vec
(
Yt

T
)
. For each element in the vector, we

can now create a density forecast from our estimated model which conditions on all

previous elements in this vector, and uses the filtered state probabilities. Due to our

independence assumptions, this is mostly straightforward (most previous elements do

not enter the conditional distributions). A slight complication arises due to the as-

sumption of a Gaussian copula between recoveries of the same firm but across different

seniorities. For these observations, conditional densities can easily be calculated via the

conditional Gaussian distribution, though.

Applying the cumulative distribution function associated with these density fore-

casts to the vector y† yields a vector of transformed variables which we call z. Under

the null hypothesis that the density forecasts are correct, the elements of z should be

an iid uniform series. Serial correlation of the series would indicate that we have not

correctly conditioned on the relevant information. A departure from uniformity would

indicate that the marginal distributions are inappropriate.
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C Tables and Figures

C.1 Tables

Table 1
Recovery Rates Statistics by Year

This table reports some annual statistics of the sample used in the paper.
First column figures are default frequencies extracted from Standard & Poor’s
(2006). The other three columns are the number of observations and the mean
and standard deviation for recovery rates.

Year
Default

frequency
Number of

observations
Mean

Recovery
Standard
Deviation

1981 0.14% 1 12.00 -
1982 1.18% 12 39.64 14.27
1983 0.75% 5 48.24 20.35
1984 0.90% 11 48.88 16.59
1985 1.10% 14 48.17 21.28
1986 1.71% 26 35.19 18.16
1987 0.94% 19 52.89 27.05
1988 1.42% 35 37.19 20.33
1989 1.67% 41 43.55 28.29
1990 2.71% 81 25.49 21.80
1991 3.26% 94 40.37 26.27
1992 1.37% 37 51.50 24.02
1993 0.55% 21 37.58 19.61
1994 0.61% 16 43.77 24.88
1995 1.01% 24 43.76 24.69
1996 0.49% 18 43.59 23.79
1997 0.62% 23 54.95 23.76
1998 1.31% 32 46.55 24.52
1999 2.15% 94 30.29 19.92
2000 2.36% 112 28.03 23.81
2001 3.78% 137 24.71 18.05
2002 3.60% 100 29.78 16.69
2003 1.92% 58 39.24 23.48
2004 0.73% 35 50.59 24.13
2005 0.55% 32 58.71 23.41
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Table 2
Recovery Rates by Seniority

This table reports the number of observations and the mean and standard
deviation of recovery rates in our sample classified by seniority, for the whole
sample (all default events), for default events for which we only observe
recovery on a single instrument (with only one seniority), and for default
events for which we observe recoveries on at least two different seniorities.

Seniority
Number of

observations
Mean

Recovery
Standard
Deviation

All default events
Senior Secured 210 42.26 25.76
Senior Unsecured 376 36.86 23.54
Senior Subordinated 334 32.73 23.66
Subordinated 158 34.17 23.00
Default events with single seniority only
Senior Secured 158 40.11 23.90
Senior Unsecured 276 35.62 22.09
Senior Subordinated 226 33.69 23.29
Subordinated 90 37.91 20.21
Default events with multiple seniorities only
Senior Secured 52 48.81 29.77
Senior Unsecured 100 40.30 26.85
Senior Subordinated 108 30.70 24.28
Subordinated 68 29.24 25.42

28



Table 3
Recovery Rates by Industry

This table reports the number of observations and the mean and standard
deviation of recovery rates in our sample classified by industry.

Industry
Number of

observations
Mean

Recovery
Standard
Deviation

Building 15 32.19 30.32
Consumer 152 35.56 22.89
Energy 50 37.65 17.09
Financial 104 36.91 25.99
Leisure 53 46.03 27.77
Manufacturing 368 35.78 22.89
Mining 15 35.05 18.67
Services 76 33.41 25.83
Telecom 123 31.53 21.14
Transportation 66 38.99 24.01
Utility 23 46.93 28.14
Others 33 38.01 23.44

29



T
a
b
le

4
B

a
si

c
M

o
d
e
l
-

P
a
ra

m
e
te

r
E
st

im
a
te

s

T
hi

s
ta

bl
e

re
po

rt
s
th

e
pa

ra
m

et
er

es
ti

m
at

es
fo

r
th

e
th

e
ba

si
c

m
od

el
(n

o
in

du
st

ry
an

d
se

ni
or

it
y)

,i
n

th
e

st
at

ic
ve

rs
io

n
(i

.e
.

de
fa

ul
t
pr

ob
ab

ili
ty

an
d

re
co

ve
ry

ra
te

di
st

ri
bu

ti
on

ar
e

co
ns

ta
nt

,
th

er
e

is
no

cr
ed

it
cy

cl
e)

an
d

th
e

dy
na

m
ic

ve
rs

io
n

(d
ef

au
lt

pr
ob

ab
ili

ty
an

d
re

co
ve

ry
ra

te
di

st
ri

bu
ti

on
de

pe
nd

on
th

e
cr

ed
it

cy
cl

e)
.

T
he

fir
st

co
lu

m
n

in
di

ca
te

s
th

e
m

od
el

be
in

g
es

ti
m

at
ed

.
T

he
se

co
nd

co
lu

m
n

re
fe

rs
to

th
e

st
at

e
of

th
e

cy
cl

e
(w

he
n

ap
pl

ic
ab

le
).

T
he

ne
xt

th
re

e
co

lu
m

ns
sh

ow
th

e
es

ti
m

at
ed

pa
ra

m
et

er
s

α
an

d
β

an
d

th
e

m
ea

n
of

th
e

es
ti

m
at

ed
re

co
ve

ry
ra

te
di

st
ri

bu
ti

on
.

T
he

la
st

tw
o

co
lu

m
ns

ar
e

th
e

de
fa

ul
t

an
d

tr
an

si
ti

on
pr

ob
ab

ili
ty

of
ea

ch
st

at
e

re
sp

ec
ti

ve
ly

.

C
y
cl

e
α

β
Im

p
li
ed

M
ea

n
D

ef
au

lt
P

ro
b
ab

il
it
y

of
st

ay
in

g
R

ec
ov

er
y

P
ro

b
ab

il
it
y

in
th

e
sa

m
e

st
at

e
B

as
ic

S
ta

ti
c

1.
44

74
2.

92
88

0.
36

75
0.

01
47

-
B

as
ic

D
y
n
am

ic
U

p
tu

rn
1.

98
60

2.
72

41
0.

46
85

0.
00

86
0.

87
07

D
ow

n
tu

rn
1.

41
81

3.
59

90
0.

31
41

0.
02

69
0.

74
08

30



T
a
b
le

5
In

d
u
st

ry
M

o
d
e
l
-

P
a
ra

m
e
te

r
E
st

im
a
te

s

T
hi

s
ta

bl
e

re
po

rt
s

th
e

pa
ra

m
et

er
es

ti
m

at
es

fo
r

th
e

in
du

st
ry

dy
na

m
ic

m
od

el
.

T
he

fir
st

co
lu

m
n

in
di

ca
te

s
th

e
in

du
st

ry
,
w

hi
le

th
e

se
co

nd
co

lu
m

n
re

fe
rs

to
th

e
st

at
e

of
th

e
cy

cl
e.

T
he

ne
xt

th
re

e
co

lu
m

ns
sh

ow
th

e
es

ti
m

at
ed

pa
ra

m
et

er
s

α
an

d
β

an
d

th
e

m
ea

n
of

th
e

es
ti

m
at

ed
re

co
ve

ry
ra

te
di

st
ri

bu
ti

on
.

T
he

la
st

tw
o

co
lu

m
ns

ar
e

th
e

de
fa

ul
t

an
d

tr
an

si
ti

on
pr

ob
ab

ili
ty

of
ea

ch
st

at
e

re
sp

ec
ti

ve
ly

.

In
d
u
st

ry
C

y
cl

e
α

β
Im

p
li
ed

M
ea

n
D

ef
au

lt
P

ro
b
ab

il
it
y

of
st

ay
in

g
R

ec
ov

er
y

P
ro

b
ab

il
it
y

in
th

e
sa

m
e

st
at

e
B

u
il
d
in

g
U

p
tu

rn
2.

95
65

4.
27

68
0.

45
41

0.
00

86
0.

87
45

D
ow

n
tu

rn
0.

87
83

6.
04

05
0.

14
10

0.
02

69
0.

74
88

C
on

su
m

er
U

p
tu

rn
1.

78
18

2.
83

30
0.

42
90

0.
00

86
0.

87
45

D
ow

n
tu

rn
1.

63
79

3.
49

76
0.

35
44

0.
02

69
0.

74
88

E
n
er

gy
U

p
tu

rn
3.

61
12

5.
74

15
0.

42
90

0.
00

86
0.

87
45

D
ow

n
tu

rn
4.

88
78

8.
49

01
0.

40
60

0.
02

69
0.

74
88

F
in

an
ci

al
U

p
tu

rn
1.

70
54

2.
12

17
0.

49
51

0.
00

86
0.

87
45

D
ow

n
tu

rn
1.

25
34

1.
76

97
0.

46
07

0.
02

69
0.

74
88

L
ei

su
re

U
p
tu

rn
1.

44
90

1.
85

21
0.

48
77

0.
00

86
0.

87
45

D
ow

n
tu

rn
1.

75
19

2.
95

08
0.

41
39

0.
02

69
0.

74
88

M
an

u
fa

ct
u
ri

n
g

U
p
tu

rn
2.

23
61

2.
73

25
0.

50
01

0.
00

86
0.

87
45

D
ow

n
tu

rn
1.

44
09

4.
00

63
0.

29
39

0.
02

69
0.

74
88

M
in

in
g

U
p
tu

rn
2.

93
27

3.
62

64
0.

49
68

0.
00

86
0.

87
45

D
ow

n
tu

rn
2.

71
32

7.
15

98
0.

30
53

0.
02

69
0.

74
88

S
er

v
ic

es
U

p
tu

rn
2.

65
56

4.
16

52
0.

43
26

0.
00

86
0.

87
45

D
ow

n
tu

rn
0.

99
50

3.
04

80
0.

27
34

0.
02

69
0.

74
88

T
el

ec
om

U
p
tu

rn
2.

79
92

5.
06

56
0.

39
55

0.
00

86
0.

87
45

D
ow

n
tu

rn
1.

63
47

5.
24

45
0.

26
40

0.
02

69
0.

74
88

T
ra

n
sp

or
ta

ti
on

U
p
tu

rn
1.

36
72

2.
41

68
0.

40
15

0.
00

86
0.

87
45

D
ow

n
tu

rn
2.

15
64

5.
32

68
0.

32
02

0.
02

69
0.

74
88

U
ti

li
ty

U
p
tu

rn
3.

36
97

2.
73

82
0.

61
30

0.
00

86
0.

87
45

D
ow

n
tu

rn
1.

00
17

2.
26

49
0.

34
07

0.
02

69
0.

74
88

O
th

er
s

U
p
tu

rn
3.

57
37

4.
57

83
0.

48
71

0.
00

86
0.

87
45

D
ow

n
tu

rn
2.

16
49

5.
61

49
0.

30
92

0.
02

69
0.

74
88

31



T
a
b
le

6
S
e
n
io

ri
ty

M
o
d
e
l
-

P
a
ra

m
e
te

r
E
st

im
a
te

s

T
hi

s
ta

bl
e

re
po

rt
s

th
e

pa
ra

m
et

er
es

ti
m

at
es

fo
r

th
e

dy
na

m
ic

se
ni

or
it
y

m
od

el
,e

st
im

at
ed

on
ly

on
de

fa
ul

t
ev

en
ts

fo
r

w
hi

ch
w

e
do

no
t

ob
se

rv
e

re
co

ve
ri

es
ac

ro
ss

se
ni

or
it
y

cl
as

se
s,

so
th

at
w

e
ca

n
ig

no
re

de
pe

nd
en

ce
ac

ro
ss

se
ni

or
it

ie
s.

T
he

fir
st

co
lu

m
n

in
di

ca
te

s
th

e
se

ni
or

it
y,

w
hi

le
th

e
se

co
nd

co
lu

m
n

re
fe

rs
to

th
e

st
at

e
of

th
e

cy
cl

e.
T

he
ne

xt
th

re
e

co
lu

m
ns

sh
ow

th
e

es
ti

m
at

ed
pa

ra
m

et
er

s
α

an
d

β
an

d
th

e
m

ea
n

of
th

e
es

ti
m

at
ed

re
co

ve
ry

ra
te

di
st

ri
bu

ti
on

.
T

he
la

st
tw

o
co

lu
m

ns
ar

e
th

e
de

fa
ul

t
an

d
tr

an
si

ti
on

pr
ob

ab
ili

ty
of

ea
ch

st
at

e
re

sp
ec

ti
ve

ly
.

S
en

io
ri
ty

C
y
cl

e
α

β
Im

p
li
ed

M
ea

n
D

ef
au

lt
P

ro
b
ab

il
it
y

of
st

ay
in

g
R

ec
ov

er
y

P
ro

b
ab

il
it
y

in
th

e
sa

m
e

st
at

e
S
en

io
r

S
ec

u
re

d
U

p
tu

rn
2.

81
79

2.
60

14
0.

57
77

0.
00

84
0.

82
49

D
ow

n
tu

rn
1.

50
80

3.
72

42
0.

32
02

0.
02

67
0.

68
68

S
en

io
r

U
n
se

cu
re

d
U

p
tu

rn
2.

16
64

2.
95

63
0.

46
99

0.
00

84
0.

82
49

D
ow

n
tu

rn
1.

58
72

4.
10

10
0.

31
00

0.
02

67
0.

68
68

S
en

io
r

S
u
b
or

d
in

at
ed

U
p
tu

rn
1.

42
65

2.
24

03
0.

43
23

0.
00

84
0.

82
49

D
ow

n
tu

rn
1.

21
65

3.
14

25
0.

31
01

0.
02

67
0.

68
68

S
u
b
or

d
in

at
ed

U
p
tu

rn
2.

82
77

4.
75

24
0.

41
45

0.
00

84
0.

82
49

D
ow

n
tu

rn
1.

62
46

3.
49

69
0.

35
25

0.
02

67
0.

68
68

32



T
a
b
le

7
D

e
p
e
n
d
e
n
ce

a
cr

o
ss

S
e
n
io

ri
ti

e
s

M
o
d
e
l
-

P
a
ra

m
e
te

r
E
st

im
a
te

s
(M

a
rg

in
a
ls

)

T
hi

s
ta

bl
e

re
po

rt
s
th

e
pa

ra
m

et
er

es
ti

m
at

es
of

th
e

dy
na

m
ic

se
ni

or
it
y

m
od

el
,e

st
im

at
ed

on
al

ld
ef

au
lt

ev
en

ts
(i

nc
lu

di
ng

th
os

e
w

it
h

re
co

ve
ri

es
ac

ro
ss

m
ul

ti
pl

e
se

ni
or

it
y

cl
as

se
s)

.
H

er
e,

on
ly

th
e

pa
ra

m
et

er
s

fo
r

m
ar

gi
na

ld
is

tr
ib

ut
io

ns
ar

e
re

po
rt

ed
.

P
le

as
e

se
e

T
ab

le
8

fo
r

th
e

es
ti

m
at

ed
co

rr
el

at
io

ns
be

tw
ee

n
se

ni
or

it
ie

s.
E

st
im

at
es

ar
e

gr
ou

pe
d

in
to

Si
ng

le
se

ni
or

it
y

on
ly

an
d

M
ul

ti
pl

e
se

ni
or

it
y

on
ly

.
T

he
se

co
nd

co
lu

m
n

in
di

ca
te

s
th

e
se

ni
or

it
y,

w
hi

le
th

e
th

ir
d

co
lu

m
n

re
fe

rs
to

th
e

st
at

e
of

th
e

cy
cl

e.
T

he
ne

xt
th

re
e

co
lu

m
ns

sh
ow

th
e

es
ti

m
at

ed
pa

ra
m

et
er

s
α

an
d

β
an

d
th

e
m

ea
n

of
th

e
es

ti
m

at
ed

re
co

ve
ry

ra
te

di
st

ri
bu

ti
on

.
T

he
la

st
tw

o
co

lu
m

ns
ar

e
th

e
de

fa
ul

t
an

d
tr

an
si

ti
on

pr
ob

ab
ili

ty
of

ea
ch

st
at

e
re

sp
ec

ti
ve

ly
.

T
y
p
e

S
en

io
ri

ty
C

y
cl

e
α

β
Im

p
li
ed

M
ea

n
D

ef
au

lt
P

ro
b
ab

il
it
y

of
st

ay
in

g
R

ec
ov

er
y

P
ro

b
ab

il
it
y

in
th

e
sa

m
e

st
at

e
S
in

gl
e

S
en

io
r

S
ec

u
re

d
U

p
tu

rn
2.

82
07

2.
63

49
0.

57
45

0.
00

86
0.

81
54

se
n
io

ri
ty

D
ow

n
tu

rn
1.

49
53

3.
68

63
0.

32
06

0.
02

71
0.

62
61

on
ly

S
en

io
r

U
n
se

cu
re

d
U

p
tu

rn
2.

17
88

2.
97

97
0.

46
93

0.
00

86
0.

81
54

D
ow

n
tu

rn
1.

58
09

4.
08

32
0.

31
01

0.
02

71
0.

62
61

S
en

io
r

S
u
b
or

d
in

at
ed

U
p
tu

rn
1.

41
70

2.
28

70
0.

42
51

0.
00

86
0.

81
54

D
ow

n
tu

rn
1.

21
17

3.
14

84
0.

30
88

0.
02

71
0.

62
61

S
u
b
or

d
in

at
ed

U
p
tu

rn
2.

84
52

4.
92

85
0.

40
67

0.
00

86
0.

81
54

D
ow

n
tu

rn
1.

49
51

3.
17

91
0.

35
54

0.
02

71
0.

62
61

M
u
lt

ip
le

S
en

io
r

S
ec

u
re

d
U

p
tu

rn
5.

86
17

2.
28

75
0.

79
92

0.
00

86
0.

81
54

se
n
io

ri
ty

D
ow

n
tu

rn
1.

32
92

2.
55

14
0.

38
16

0.
02

71
0.

62
61

on
ly

S
en

io
r

U
n
se

cu
re

d
U

p
tu

rn
1.

43
27

1.
66

64
0.

51
37

0.
00

86
0.

81
54

D
ow

n
tu

rn
1.

07
24

2.
45

44
0.

33
79

0.
02

71
0.

62
61

S
en

io
r

S
u
b
or

d
in

at
ed

U
p
tu

rn
1.

17
86

2.
10

21
0.

39
92

0.
00

86
0.

81
54

D
ow

n
tu

rn
0.

88
75

2.
46

01
0.

29
46

0.
02

71
0.

62
61

S
u
b
or

d
in

at
ed

U
p
tu

rn
1.

54
57

3.
00

64
0.

37
73

0.
00

86
0.

81
54

D
ow

n
tu

rn
0.

65
90

2.
87

74
0.

20
71

0.
02

71
0.

62
61

33



Table 8
Dependence across Seniorities Model - Parameter

Estimates (Correlations)

These are the correlations implied by the Dependence across Seniorities
Model. None of the correlations involving Senior Secured are different from
zero at a 5% level of significance.

S.Sec. S.Uns. S.Sub. Sub.
S.Sec. 1.0000
S.Uns. 0.2942 1.0000
S.Sub. 0.1935 0.5449 1.0000
Sub. -0.2427 0.4976 0.8008 1.0000
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Table 11
Industry / Seniority Model - Parameter Estimates

(Correlations)

These are the correlations implied by the Full Model. None of the correlations
involving Senior Secured are different from zero at a 5% level of significance.

S.Sec. S.Uns. S.Sub. Sub.
S.Sec. 1.0000
S.Uns. 0.4216 1.0000
S.Sub. 0.1606 0.5281 1.0000
Sub. -0.2429 0.6911 0.7595 1.0000

Table 12
Diagnostic Tests

This table presents diagnostic tests of the recoveries and default frequencies.
Recovery rates tests are in Panel A. The first column is the p-value for the
Kolmogorov-Smirnov (K-S) test where the null hypothesis is that the trans-
formed series is drawn from a uniform(0,1) distribution. The second column
reports the p-values of the Ljung-Box (L-B) test, where the null is that the
transformed series is white noise. Panel B reports the test for the estimated
default frequencies. The p-value reported is under the null hypothesis that
the model is correctly specified.

Panel A: Recovery Rates
Model K-S L-B
Basic Static 0.0232 0.0000
Basic Dynamic 0.0638 0.2056
Full Static 0.0991 0.0000
Full Dynamic 0.1437 0.4892

Panel B: Default rates
Model p-value
Basic Static 0.0000
Basic Dynamic 0.9641
Full Static 0.0000
Full Dynamic 0.9190
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C.2 Figures
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Figure 1. Probabilities of being in the credit downturn versus NBER
recessions (annual)
This figure plots the annual smoothed probability of being in a credit downturn as estimated on the
basis of the basic dynamic model (no industry and seniority), assuming that the last quarter of 1981
was a credit downturn with a probability corresponding to the unconditional probability of being in a
downturn. This is contrasted with NBER recessions (grey areas).
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Figure 2. Histograms of the DGT-transformed recoveries.
This figure presents the histograms of the DGT-transformed recoveries for (a) the basic static model,
(b) the basic dynamic model, (c) the full static model, and (d) the full dynamic model.
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Figure 3. Correlograms of the DGT-transformed recoveries
This figure presents the correlograms of the DGT-transformed recoveries for (a) the basic static model,
(b) the basic dynamic model, (c) the full static model, and (d) the full dynamic model
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Figure 4. Simulated loss density
This figure contrasts the simulated loss density (pdf), of the basic model (no industry and seniority),
for the static version (i.e. default probability and recovery rate distribution do not vary with the credit
cycle) and the dynamic version (default probability and recovery rate distribution depend on the credit
cycle). For the dynamic model, the probability of being in a credit downturn is assumed to be equal
to zero in the upper panel, the unconditional probability in the middle one and one in the lower panel.
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