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Abstract

This paper proposes an approach to estimating the relation between risk (con-
ditional variance) and expected returns in the aggregate stock market that allows
us to escape some of the limitations of existing empirical analyses. First, we fo-
cus on a nonparametric volatility measure that is void of any speci�c functional
form assumptions about the stochastic process generating returns. Second, we
o¤er a solution to the error-in-variables problem that arises because of the use
of a proxy for the volatility in estimating the risk-return relation. Third, our
estimation strategy involves the Generalized Method of Moments approach that
overcomes the endogeneity problem in a least squares regression of an estimate
of the conditional mean on the corresponding estimate of the conditional vari-
ance, that arises because both the above quantities are endogenously determined
within a general equilibrium asset pricing model. Finally, we use our approach
to assess the plausibility of the prominent Long Run Risks asset pricing mod-
els studied in the literature based on the restrictions that they imply on the
time series properties of expected returns and conditional variances of market
aggregates.
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1 Introduction

The relation between the expected return and the risk of stock market investment has
long been the subject of both theoretical and empirical research in �nancial economics.
The risk-return relation is an important ingredient in optimal portfolio choice, and is
central to the development of theoretical asset-pricing models aimed at explaining a
host of observed stock market patterns.
Finance theory generally predicts a positive relationship between the risk premium

on the market portfolio and the variance of its return. Prominent examples include
the Intertemporal Capital Asset Pricing Model (ICAPM) of Merton (1973), and the
more recent Long Run Risks (LLR) model of Bansal and Yaron (2004). However,
some researchers have shown that the intertemporal mean-variance relation need not
be positive theoretically, (e.g., Abel (1988), Backus and Gregory (1993), and Whitelaw
(2000)).
Unfortunately, the empirical evidence on the risk-return relation is mixed and in-

conclusive. Bollerslev et al. (1988), Harvey (1989), Campbell and Hentschel (1992),
Ghysels et al. (2005), Pastor, Sinha and Swaminathan (2006) �nd a positive risk-return
relation, while Campbell (1987), Breen et al. (1989), Nelson (1991), Pagan and Hong
(1991), Glosten et al. (1993), Whitelaw (1994), and Lettau and Ludvigson (2003) �nd
a negative relation. French et al. (1987) �nd a negative relation between returns and
the unpredictable component of volatility, a result they interpret as indirect evidence
that ex ante volatility is positively related to ex ante excess returns but they do not
�nd evidence of a direct connection between these variables. Scruggs (1998) and Guo
and Whitelaw (2006) document a positive tradeo¤ within speci�cations that facilitate
hedging demands. However, Scruggs and Glabadanidis (2003) �nd that this partial
relationship is not robust across alternative volatility speci�cations.
The main di¢ culty in testing the risk-return relation is that neither the conditional

expected return nor the conditional variance of the market is directly observable. The
con�icting �ndings of the above studies are mostly the result of di¤erences in the
approaches to modeling the conditional mean and variance. Some studies have relied
on parametric and semi-parametric ARCH or stochastic volatility models that impose a
relatively high degree of structure about which there is little direct empirical evidence.
Other studies have typically measured the conditional expectations underlying the

conditional mean and conditional volatility as projections onto predetermined condi-
tioning variables. Practical constraints, such as choosing among a few conditioning
variables, introduce an element of arbitrariness into the econometric modeling of ex-
pectations and can lead to omitted information estimation bias. Also, as pointed out
by Hansen and Richard (1987), if investors have information not re�ected in the cho-
sen conditioning variables used to model market expectations, measures of conditional
mean and conditional volatility will be misspeci�ed and possibly highly misleading1.

1See also, Campbell (1987) and Harvey (2001).
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In addition to the above critique, these studies typically estimate the risk-return
trade-o¤ using a least squares regression of the estimate of the conditional mean on
the estimate of the conditional variance. However, the conditional mean and the
conditional variance are simultaneously determined within the context of a general
equilibrium asset pricing model. Hence, the least squares regression su¤ers from an
endogeneity problem leading to invalid inference.
Finally, most of the literature ignores the error-in-variables problem that arises as

a result of using an estimate of the conditional variance in estimating the risk-return
relation; hence, inference can be misleading.
In this paper, we propose an approach to estimating the risk-return trade-o¤ in

the stock market that allows us to escape some of the limitations of existing empirical
analyses. First, we focus on a nonparametric volatility measure, realized volatility,
that is void of any speci�c functional form assumptions about the stochastic process
generating returns and is easily computed from high-frequency intra-period returns
(see Anderson, Bollerslev, Diebold, and Labys (2001), Barndor¤-Nielsen and Shephard
(2002, 2004)). The volatility estimates so constructed are model free and the theory
of quadratic variation suggests that, under suitable conditions, realized volatility is an
approximately unbiased and highly e¢ cient estimator of return volatility.
Second, we o¤er a solution to the error-in-variables problem. Barndor¤-Nielsen and

Shephard (2002, 2004) derive the asymptotic distribution of realized volatility as an
estimator of the underlying integrated volatility. We use their result and the standard
setting of continuous time arbitrage-free theory based on a frictionless market to correct
for the generated regressor.
Third, we estimate the risk-return trade-o¤parameters using the GeneralizedMethod

of Moments (GMM) approach of Hansen (1982) in the presence of measurement error
in the volatility proxy. This approach overcomes the endogeneity problem inherent in
a least squares regression of an estimate of the conditional mean on the estimate of the
conditional variance.
Here, we use (N) daily returns on the CRSP value-weighted index to obtain monthly

and quarterly estimates of realized volatility that we use as a proxy for the conditional
variance at the corresponding horizon. We then estimate the parameters of the risk-
return trade-o¤using the GMM approach with T (monthly and quarterly, respectively)
observations on the mean and variance. The measurement error issue is particularly
important in this setting as the regressor is quite poorly estimated because of a small
sample. We then derive the limiting distribution of the estimated coe¢ cients. We dis-
cuss conditions under which the estimators are

p
T -consistent and have an asymptotic

normal distribution. We �nd that if Nx=T ! 1, where x > 1:5, the estimates have
the standard distribution as when there is no measurement-error problem and standard
inference can be applied. Alternatively, one should bias correct, and we �nd that under
the weaker condition that Nx=T !1 , where x > 3, the bias-corrected estimator has
the standard limiting distribution. This improvement is particularly relevant in the
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case we examine where N is quite modest.
We �nd a statistically insigni�cant relation between the mean and the variance at

both the monthly and quarterly frequencies. This �nding is robust to the choice of
instruments and across subsamples. These results motivate the hypothesis that the
relationship between expected returns and the conditional variance exhibits signi�cant
time variation. This could potentially render the estimated coe¢ cient statistically
insigni�cant when estimated over the entire sample. To explore the nature of the time-
variation in the relation, we split the sample into two subsamples based on the realized
volatility estimates. In other words, the �rst subsample consists of two-third of the
observations with low volatility and the second includes the remaining one-third with
high volatility. Our results suggest a signi�cantly positive relation during low volatility
periods while the relation appears �at during periods of high volatility. This �nding is
robust across choice of samples.
Finally, we apply our methodology to assess the empirical plausibility of the LLR

model of Bansal and Yaron (2004) and its extension considered by Bansal, Gallant, and
Tauchen (2007). These models have a rich set of pricing implications and show promise
in explaining a host of asset pricing puzzles2. We show that these LLR models imply a
time-invariant, strictly positive, linear relation between the conditional expected excess
return of stock market investment and its conditional variance, a feature that is not
supported by the data.
The remainder of the paper is organized as follows. The theoretical underpinnings

of realized volatility as an estimator of the conditional variance are discussed in Section
2. Section 3 describes the estimation procedure and the asymptotic distribution of the
estimated model parameters is derived in Section 4. In Section 5, we describe the
data and present the empirical results on the risk-return trade-o¤. Section 6 explores
the possible time-variation in the relation. Section 7 outlines the relation between the
conditional expected excess return and the conditional variance of the stock market
that is implied by the LLR models and how our methodology can be applied to gauge
the plausibility of these models. Section 8 concludes. The Appendix contains the
proofs of our main results.

2 Nonparametric Volatility Estimator

Under the standard assumptions that the return process does not allow for arbitrage
and has a �nite instantaneous mean, the asset price process, as well as smooth trans-
formations thereof, belong to the class of special semi-martingales, as detailed by Back

2See also, Alvarez and Jerman (2005), Bansal, Dittmar and Lundblad (2005), Bansal, Kiku and
Yaron (2007), Bekaert, Engstrom and Xing (2005), Hansen, Heaton, and Li (2005), Hansen and
Scheinkman (2007), Kiku (2006), Lettau and Ludvigson (2005), and Malloy, Moskowitz and Vissing-
Jorgensen (2004).
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(1991). If, in addition, it is assumed that the sample paths are continuous, we have
the Martingale Representation Theorem (e.g., Protter (1992), Karatzas and Shreve
(1991)).

Proposition 1 For any square � integrable arbitrage � free logarithmic price
process; p(t); with continuous sample path; there exists a representation such that
for all 0 � t � T; a:s:(P );

r(t; h) � p(t)�p(t�h) = �(t; h)+M(t; h) =

Z h

0

�(t�h+s)ds+
Z h

0

�(t�h+s)dW (s);
(1)

where �(s) denotes an integrable; predictable and finite variation drift; �(s) is a
strictly positive caglad volatility process satisfying

Pr

�Z h

0

�2(t� h+ s)ds <1
�
= 1: (2)

and W (s) is a standard Brownian motion.

The integral representation (1) is equivalent to the standard stochastic di¤erential
equation speci�cation for the logarithmic price process,

dp(t) = �(t)dt+ �(t)dW (t): (3)

Crucial to semimartingales, and to the economics of �nancial risk, is the quadratic
variation (QV) process associated with it, [r; r]t:

Proposition 2 Let a sequence of possibly random partitions of [0; T ], (�m), be given
such that (�m) � f�m;jgj�0, m = 1; 2; : : : ; where �m;0 � �m;1 � �m;2 � ::: satisfy, with
probability one, for m!1,

�m;0 ! 0; sup
j�1

�m;j ! T ; sup
j�0

(�m;j+1 � �m;j)! 0: (4)

Then, for t�[0; T ],

lim
m!1

f
X
j�1
(p(t ^ �m;j)� p(t ^ �m;j�1))2g ! [r; r]t; (5)

where t ^ � � min (t; �), and the convergence is uniform in probability.

A natural theoretical notion of expost return variability in this setting is notional
volatility. Under the maintained assumption of continuous sample path, the notional
volatility equals the so-called integrated volatility. In other words, we have
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De�nition 1 Notional Volatility

The Notional Volatility over [t� h; t], is

�2(t; h) � [r; r]t � [r; r]t�h = [M;M ]t � [M;M ]t�h =

Z h

0

�2(t� h+ s)ds: (6)

It also follows, from the properties of the quadratic variation process, that

E[�2(t; h)jIt�h] = E[M2(t; h)jIt�h] = E[M2(t)jIt�h]�M2(t� h): (7)

Now, in the above setting, the conditional volatility, or expected volatility, over
[t� h; t], is de�ned by

var (r(t; h)jIt�h) � E
�
fr(t; h)� E (r(t; h)jIt�h)g2 jIt�h

�
= E

�
fr(t; h)� E (�(t; h)jIt�h)g2 jIt�h

�
= E

�
f�(t; h)� E (�(t; h)jIt�h) +M(t; h)g2 jIt�h

�
= E[M2(t; h)jIt�h] + E

�
f�(t; h)� E (�(t; h)jIt�h)g2 jIt�h

�
+2E [f�(t; h)� E (�(t; h)jIt�h)gM(t; h)jIt�h]

= Op(h) +Op(h
2) +Op(h

3=2); (8)

where the second equality follows as M is a local martingale, and the third equality
follows from (1).
From equations (7) and (8), we have

var (r(t; h)jIt�h) � E[�2(t; h)jIt�h]: (9)

In other words, expected volatility is well approximated by expected notional volatil-
ity. The above approximation is exact if the mean process, �(t) � 0, of if �(t; h) is
measurable with respect to It�h. However, the result remains approximately valid for
a stochastically evolving mean return process over relevant horizons, as long as the
returns are sampled at su¢ ciently high frequencies. We provide empirical evidence in
Section 5 to justify this approximation for the horizons, h, and sampling frequencies
considered in this paper.
Now, notional volatility or integrated volatility is latent. However, it can be esti-

mated consistently using the so-called realized volatility.

De�nition 2 The Realized Volatility over [t� h; t], for 0 < h � t � T , is de�ned by

b�2(t; h;n) � nX
i=1

r(t� h+ (i=n)h; h=n)2: (10)
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The realized volatility is simply the second (uncentered) sample moment of the
return process over a �xed interval of length h, scaled by the number of observations n
(corresponding to the sampling frequency 1=n), so that it provides a volatility measure
calibrated to the h-period measurement interval.
The theory of quadratic variation implies the following result (see, e.g., Ander-

sen, Bollerslev, Diebold, and Labys (2000b, 2001a,b), Barndor¤-Nielsen and Shephard
(2001a, 2002a,b,c)).

Proposition 3 The Realized V olatility provides a consistent nonparametric measure
of the Notional V olatility,

p lim
n!1

b�(t; h;n) = �2(t; h); 0 < h � t � T; (11)

where the convergence is uniform in probability.

The following result was developed in a series of papers by Jacod (1994), Jacod
and Protter (1998), Barndor¤-Nielsen and Shephard (2002) and Barndor¤-Nielsen and
Shephard (2004):

Proposition 4 Suppose that p � BSM is one�dimensional and that ( for all t <1
)
R t
0
�sds <1; then as n!1

n1=2(b�2(t; h;n)� Z h

0

�2(t� h+ s)ds)!
p
2

Z h

0

�4(t� h+ s)dB(s); (12)

where B is a Brownian motion and the convergence is in law stable as a process:

The above theorem implies that

n1=2(b�2(t+ h; h;n)�
Z h

0

�2t�h+sds =)MN(0; 2

Z h

0

�4t+sds); (13)

where MN denotes a mixed Gaussian distribution.
Barndor¤-Nielsen and Shephard (2002) showed that the above result can be used

in practice as the integrated quarticity
R h
0
�4t+sds can be consistently estimated using

(1=3)RQt+h where

RQt+h = n
nX
i=1

r(t+ (i=n)h; h=n)4: (14)

In particular then

n1=2(b�2(t+ h; h;n)�
R h
0
�2t+sdsq

2
3
RQt+h

=) N(0; 1): (15)

This is a nonparametric result as it does not require us to specify the form of the drift
or di¤usion terms.
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3 Model and Estimator

We focus on a linear relation between the expected returns and the conditional variance
of the aggregate stock market as is implied by several prominent asset pricing models,

Et�1 (rm;t � rf;t) = �+ �vart�1 (rm;t) ; (16)

where rm;t and rf;t are the continuously compounded returns on the stock market and
the riskfree rate respectively over [t� 1; t].
Equations (6) and (9) in Section 2 imply that the above relation implies the following

conditional moment restriction,

Et�1 (rm;t � rf;t � �+ ��t) = 0; (17)

where �t =
R 1
0
�2(t� 1 + s)ds.

The above is an infeasible moment restriction as the integrated volatility,
R h
0
�2(t�

h+s)ds, is not observable. To obtain a proxy for it, we adopt the following framework.
Let frtjgNtj=1 be intra-period (daily) continuously compounded returns on the market

portfolio for each period t = 1; : : : ; T . Suppose that

rtj = N�1
t �tj +N

�1=2
t �tj�tj ; (18)

where �tj � i:i:d:N(0; 1) and �tj is independent of Ftj�1 where Ftj�1 contains all infor-
mation upto time tj�1. Also, suppose that

n
�tj ; �tj

o
is measurable with respect to time

tj�1 information set. The stochastic processes f�tj ; �tjg
Nt;T
j=1;t=1 are not assumed to be

independent of the process f�tjg
Nt;T
j=1;t=1,i.e., we allow for leverage e¤ects. In particular

�tj can a¤ect �sj+k for s > t and k > 1. �2tj is the integral of the volatility function
over a small interval, (see, e.g., Gonçalves and Meddahi (2005)). De�ne

�t = p lim
Nt!1

1

Nt

NtX
j=1

�2tj : (19)

This framework is consistent with rtj being observations from a di¤usion, equation
(3); where W is a standard Brownian motion, and �t being the quadratic variation of
the di¤usion �t =

R t
t�1 �

2(s)ds. Let

b�t = NtX
j=1

r2tj : (20)

Given the volatility estimator, we de�ne the feasible moment condition

Et�1 (rm;t � rf;t � �+ �b�t) = 0 (21)
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Finally, with a set of chosen conditioning variables (that could include, for instance,
lagged volatilities), bzt�1, we have

E [G (rm;t � rf;t; b�t; bzt�1; �)] = 0; (22)

where G (rm;t � rf;t; b�t; zt�1; �) = (rm;t � rf;t � �+ �b�t)
 zt�1, and � = (�; �)0.
Given the above set of moment restrictions, the parameters may be estimated using

the GMM approach of Hansen (1982). Speci�cally, we de�ne the estimator b� 2 �0 � Rp
as any minimizer of




 bGT (�)




W
; bGT (�) =

1

T

TX
t=1

G (rm;t � rf;t; b�t; bzt�1; �) ;
whereW is a symmetric positive de�nite weighting matrix and jjAjjW = (tr(A>WA))1=2.
De�ne also GT (�) = T�1

PT
t=1G (rm;t � rf;t; �t; bzt�1; �) and the infeasible GMM esti-

mator e� that minimizes jjGT (�)jjW :

4 Asymptotic Properties

The asymptotic framework has T ! 1 and Nt ! 1 for each t. Under certain mild
assumptions (see Appendix A for details), we have,
Lemma. Under conditions 1-4 (stated in Appendix A),

T�
�
max
16t6T

(b�t � �t)

�
= op(1): (23)

Note that the above result implies that b�t p! �t uniformly in t. Using the above
result, we give the asymptotic properties of b� and propose a modi�cation that has
better properties.
Let G(�) = E[G (rm;t � rf;t; �t; zt�1; �)] and de�ne

� =
@

@�
G(�0)


 = avar
hp

TGT (�0)
i
:

Then under suitable conditions the infeasible GMM estimator e� satis�es
p
T (e� � �0) = �(�>W�)�1�>W

p
TGT (�0) + op(1) =) N(0;�); (24)

where � = (�>W�)�1�>W
W�(�>W�)�1; (see, e.g., Pakes and Pollard (1989)). This
theory does not requireG (rm;t � rf;t; �t; zt�1; �) to be smooth in � or (rm;t�rf;t; �t; zt�1)
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but does require G(�) to be smooth. However, in most applications G will be smooth
and we shall assume this in the sequel. It is natural to suppose that the process
frm;t � rf;t; vtg is stationary and weakly dependent, e.g., strong mixing, which would
support the central limit theorem in (24). We need further conditions for the precise
results we obtain; these are stated in Appendix B.
De�ne the bias function

bT (�0) =
1

T

TX
t=1

1

N
E
�
Gvtvt (rm;t � rf;t; �t; zt�1; �0) IQ

t
�

+
1

T

TX
t=1

1

N
E
�
Gvt�1vt�1 (rm;t � rf;t; �t; zt�1; �0) IQ

t�1�
+
1

T

TX
t=1

1

N
E
�
Gvt�2vt�2 (rm;t � rf;t; �t; zt�1; �0) IQ

t�2� ;
where Gvtvt denotes the second partial derivative of G with respect to vt; and so on,
and IQt is the integrated quarticity

IQt = p lim
Nt!1

1

Nt

NtX
j=1

�4tj : (25)

We have the following result established in the appendix.
Theorem. Under the regularity conditions given in the appendix, we have

b� � �0 = �(�>W�)�1�>WGT (�0)� (�>W�)�1�>WbT (�0) + op(T
�1=2): (26)

Furthermore, when bT (�0) = o(T�1=2);

p
T (b� � �0) =) N(0;�): (27)

When (27) holds, standard inference can be applied. Speci�cally, when G(rm;t �
rf;t; vt; zt�1; �) is a martingale di¤erence sequence, we take

b� =
1

T

TX
t=1

@

@�
G(rm;t � rf;t; bvt; bzt�1;b�)

b
 =
1

T

TX
t=1

G(rm;t � rf;t; bvt; bzt�1;b�)G(rm;t � rf;t; bvt; bzt�1;b�)>:
Then b� = (b�>Wb�)�1b�>W b
Wb�(b�>Wb�)�1 is a consistent estimator of �: The condi-
tion bT (�0) = o(T�1=2) requires that N1:5=T !1:When that condition is not satis�ed,
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we may not have T 1=2 consistency because of the asymptotic bias. However, we show
that a bias corrected estimator b� + (�>W�)�1�>WbT (�0) would be T 1=2 consistent
provided only the weaker condition that a little more than N3=T ! 1 holds. We
propose to make a bias correction, which requires that we estimate bT (�0): Provided
the estimation error is small enough we will achieve the limiting distribution in (27).
We can either correct the estimator or the moment condition. De�ne the estimated
bias function

bbT (�) =
1

T

TX
t=1

1

N
Gvtvt(rm;t � rf;t; bvt; bzt�1; �0)cIQt

(28)

+
1

T

TX
t=1

1

N
Gvt�1vt�1(rm;t � rf;t; bvt; bzt�1; �0)cIQt�1

+
1

T

TX
t=1

1

N
Gvt�2vt�2(rm;t � rf;t; bvt; bzt�1; �0)cIQt�2

;

where cIQt
= Nt

3

PNt
j=1 r

4
tj
is an estimator of the integrated quarticity. Then de�ne the

bias corrected estimator b�bc = b� + (b�>Wb�)�1b�>WbbT (b�):
Then under some conditions,

p
T (b�bc � �0) has the limiting distribution in (27).3

5 Data Description and Empirical Results

We focus on the risk-return relation at the monthly and quarterly frequencies. The
empirical analysis is based on data from the Centre for Research in Security Prices
(CRSP) daily returns data �le. Our market proxy is the CRSP value-weighted index
(all stocks). The proxy for the riskfree rate is the one-month Treasury Bill rate (from
Ibbotson Associates). The sample extends from January 1928 - December 2005. The
monthly market return is computed as the sum of daily continuously compounded
market returns and the realized monthly market variance as the sum of squares of the
daily continuously compounded market returns, and the quarterly returns and realized
market variances are computed analogously. The monthly excess market return is the
di¤erence between the monthly market return and the monthly risk free rate, and so
on.

3Alternatively, de�ne the bias corrected moment functionbGbcT (�) = bGT (�) +bbT (�)
and the bias corrected estimator b�bc = argmin� jj bGbcT (�)jjW :
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To set the stage, Table 1 reports summary statistics for the excess returns and
the corresponding realized volatilities for the di¤erent horizons. The table reports
results for the full sample and for two subsamples of equal length. The monthly excess
market return has a mean of 0.5% and a variance of 0.3% in the full sample. This
table reports variances instead of the more customary standard deviations because the
risk-return trade-o¤ postulates a relation between returns and their variances, and not
standard deviations. Returns are slightly negatively skewed and leptokurtic. The �rst
order autocorrelation of monthly returns is 0.102. The average market return during
1928:01-1966:12 is higher than that observed during 1967:01-2005:12 (0.6% vs. 0.4%).
The variance of monthly returns is also higher in the �rst subsample (0.4% vs. 0.2%).
Both subsamples exhibit negative skewness and high kurtosis. The realized variance
has a mean of 0.2% in the overall sample, which closely matches the variance of monthly
returns. The mean of the variance in the �rst subsample is higher than in the second
(0.3% vs. 0.2%), mostly because of the period of the Great Depression. The realized
variance process displays considerable persistence, with an autoregressive coe¢ cient
of 0.563 in the entire sample and has a much smaller variance compared to monthly
excess returns (2.2�10-5 vs. 0.003). The �rst subsample shows more persistence in the
variance process (0.656 vs. 0.226). As expected, realized variance is highly skewed and
leptokurtic. Most of these features of the data have been previously documented in
the literature. Also, most of these characteristics of returns and the realized variances
persist at the quarterly horizon.
Next, we turn to our main empirical results. The analysis in Section 4 showed

that the estimation of the risk-return trade-o¤ parameters can be posed as a GMM
estimation problem, with the following moment speci�cation,

E [G (rm;t � rf;t; b�t; bzt�1; �)] = 0; (29)

where G (rm;t � rf;t; b�t; bzt�1; �) = (rm;t � rf;t � �+ �b�t)
 bzt�1, � = (�; �)0, and zt�1 is
a vector of instruments. Table 2 reports results for the exactly identi�ed case using
the lagged notional (or integrated) volatility as an instrument and Table 3 reports
results for an overidenti�ed case where three lags of the notional volatility are used as
instruments. Note that for these speci�cations of the moment restrictions and choice
of instruments, the bias-correction is identically zero (see equation (28)). Once again,
results are reported for the full sample and two subsamples of equal length. Table 2
reveals a weak and statistically insigni�cant relation between the risk and the return.
For monthly data, the slope coe¢ cient is negative in the full sample as well as the
subsamples but not statistically signi�cant. This is consistent with the �ndings of
French, Schwert and Stambaugh (1987) and Whitelaw (1994). For quarterly data,
the estimated coe¢ cients are mostly positive but not statistically signi�cant. Table 3
con�rms the �ndings in Table 2.
The rationale for using lagged integrated volatility as an instrument in Tables 2

and 3 is that it is a highly persistent process (the �rst order autocorrelation coe¢ cient
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of the realized volatility process is 0.563 and 0.0.554 respectively, in monthly and
quarterly data for the full sample). Hence, the lagged variance is useful in predicting
the contemporaneous variance which enters the moment speci�cation. This makes it a
good choice of instrument improving the e¢ ciency of the estimation exercise.
For robustness, we repeated the estimation for choice of instruments other than

the lagged variance. In particular, we consider �nancial variables that are known to
predict the mean returns. Examples include the dividend yield, the default spread and
the interest rate. In Tables 4, 5, and 6, we report estimation results for these choice of
instruments respectively. The Tables reveal a statistically insigni�cant relation, over
the full sample as well as the subsamples, that is robust to the choice of instruments.

6 Time-Variation in the Risk-Return Tradeo¤

A closely related literature on return predictability has reported evidence in favour of
structural breaks in the OLS coe¢ cient in the forecasting regression of returns on the
lagged price-dividend ratio (e.g., Viceira (1996), Paye and Timmermann (2005)). This
renders the forecasting relationship unstable if such shifts are not taken into account.
In particular, Lettau and Van Nieuwerburgh (2006) �nd evidence for two breaks in
the mean of the log dividend-price ratio around 1954 and 1994. They demonstrate
that if these breaks are ignored, the estimated OLS coe¢ cient appears statistically
insigni�cant over the full sample. However, when the sample is split into subsamples
corresponding to the break dates, signi�cant coe¢ cient estimates are obtained in each
subsample. These results suggest that if the relationship between expected returns
and the conditional variance exhibits signi�cant time variation, this could potentially
render the estimated coe¢ cient statistically insigni�cant when estimated over the entire
sample.
Motivated by the above possibility, we split the sample into two subsamples based

on the higher one-third quartile of the realized volatility estimates. In other words,
the �rst subsample consists of two-third of the observations with low volatility and
the second includes the remaining one-third with high volatility. Table 7 reports the
estimation results for this choice of subsamples with the speci�cation of the moment
restrictions as in Table 2. This table reveals that the risk-return tradeo¤ is signi�-
cantly positive at the monthly and quarterly horizons for the low volatility subsample.
The estimated coe¢ cients are 25.97 and 26.36 at the monthly and quarterly horizons
respectively and are signi�cant at conventional levels. However, the estimates for the
high volatility period are, although positive, substantially lower than those for the low
volatility period, and insigni�cantly di¤erent from zero for the above horizons.
For additional robustness, we repeat the above exercise excluding the time-period

1928-1954. This time-period includes periods of great economic uncertainty like the
Great Depression, theWorldWars I andII, and hence could potentially bias the results.
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The results are presented in Table 8. The results are largely similar to those obtained
in Table 7. The risk-return relation is signi�cantly positive during the low volatility
regime but appears quite unstable during high volatility periods.

7 Implications for the Long Run Risks model

Theoretical asset pricing models are aimed at explaining key stylized facts of stock
market data including the 6% equity premium, the low risk-free rate, market volatility
of 19% per annum, �uctuating and highly persistent conditional variance of the market
return, and predictive power of price-dividend ratios for long-horizon equity returns.
Bansal and Yaron (2004) introduce a �long-run risks�(LLR) state variable that simul-
taneously drives aggregate consumption growth and aggregate dividend growth4. In
conjunction with Kreps and Porteus (1978) preferences, this LLR model has a rich set
of pricing implications and shows promise in explaining the host of asset pricing puzzles
mentioned above as well as the cross-section of expected returns of various classes of
�nancial assets.
In particular, Bansal and Yaron (2004) model consumption, �ct+1, and dividend,

�dt+1, growth rates as containing (1) a small persistent expected growth rate compo-
nent, xt, and (2) �uctuating volatility, �t, that captures time-varying economic uncer-
tainty,

�ct+1 = �c + xt + �t�t+1 (30)

�dt+1 = �d + �xt + 'd�tuj;t+1

xt+1 = �xt + 'e�tet+1

�2t+1 = �2 + �(�2t � �2) + �wwt+1

�t+1; uj;t+1; et+1; wt+1 � i:i:d:N(0; 1)

with the shocks �t+1; uj;t+1; et+1; wt+1 being mutually independent.
Using the log-linearization of returns as in Campbell and Shiller (1988), and con-

jecturing that the log price-dividend ratios of the unobservable consumption claim, zt,
and the observable aggregate dividend claim (the market portfolio), zm;t, are linear in
the state variables, xt and �2t ,

zt = A0 + A1xt + A2�
2
t

zm;t = A0;m + A1;mxt + A2;m�
2
t ;

4See also, Alvarez and Jerman (2005), Bansal, Dittmar and Lundblad (2005), Bansal, Gallant
and Tauchen (2007), Bansal, Kiku and Yaron (2007), Bekaert, Engstrom and Xing (2005), Hansen,
Heaton, and Li (2005), Hansen and Scheinkman (2007), Kiku (2006), Lettau and Ludvigson (2005),
and Malloy, Moskowitz and Vissing-Jorgensen (2004).
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(see Bansal and Yaron (2004) for expressions for A0, A1, A2, A0;m, A1;m, A2;m), they
derive the following expression for the equity risk premium,

Et [rm;t+1 � rf;t] = (1��)�1A1�1;mA1;m'2e�2t+(1��)�1A2�1;mA2;m�2w�0:5vart (rm;t+1) :
(31)

Thus, the model predicts a linear relation between the ex ante expected excess re-
turns on the market portfolio and the conditional variance of consumption growth, �2t .
The model also implies a linear relation between the conditional variance of consump-
tion growth and the conditional variance of returns on the market,

vart (rm;t+1) =
�
�21;mA

2
1;m'

2
e + '2d

�
�2t + �21;mA

2
2;m�

2
w: (32)

Substituting the expression for �2t , we have:

Et [rm;t+1 � rf;t] = �+ �vart (rm;t+1) (33)

� =
(� � 1)�1A1�31;mA1;mA22;m'2e�2w

�21;mA
2
1;m'

2
e + '2d

� (� � 1)�1A2�1;mA2;m�2w

� =
�(� � 1)�1A1�1;mA1;m'2e

�21;mA
2
1;m'

2
e + '2d

� 1
2
;

where � � 1 � 
=(1 � 1
 
). Thus, the model predicts a time-invariant, linear relation

between the conditional mean of the market portfolio and its conditional variance, a
feature that is violated in the data (see Sections 5 and 6).
Bansal, Gallant, and Tauchen (2007) consider an extension of the LLR model that

imposes a cointegrating restriction between the logarithms of aggregate consumption
and dividend levels,

dt � ct = �dc + st; (34)

where st is an I(0) process,

st+1 = �sxxt + �sst +  s�tzs;+1:

With the same speci�cation of the dynamics of the consumption growth process,
the LLR variable, and the stochastic volatility as in (30), and noting that (34) implies
that �dt+1 = �ct+1 + �st+1, the model may be solved using similar techniques as in
Bansal and Yaron (2004) to yield a time-invariant, linear relation between the ex ante
expected excess return of the stock market and its conditional variance.
Hence, in order to explain the empirical �nding that the risk-return relation exhibits

signi�cant time-variation, the speci�cation of the model must be quite di¤erent from
those emphasized in the existing LLR literature.
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8 Conclusion

This paper proposes an approach to estimating the risk-return tradeo¤ in the stock
market that allows us to escape some of the limitations of existing empirical analyses.
First, we focus on a nonparametric volatility measure, namely realized volatility, that is
void of any speci�c functional form assumptions about the stochastic process governing
returns. Second, we o¤er a solution to the error-in-variables problem that arises because
of the use of a volatility proxy in the risk-return relation. Third, we estimate the
risk-return trade-o¤ parameters using the Generalized Method of Moments (GMM)
approach. This approach overcomes the endogeneity problem inherent in a least squares
regression of an estimate of the conditional mean on the estimate of the conditional
variance as both these quantities are simultaneously determined.
The results indicate a weak, statistically insigni�cant relation between the condi-

tional mean and the conditional variance of the stock market return. This �nding is
robust across di¤erent return horizons and choice of instruments. However, when the
sample is split into subsamples based on the estimate of the variance, we �nd a positive
and statistically signi�cant relation during low volatility periods while the relation ap-
pears �at during the high volatility regime. These results are suggestive of signi�cant
time-variation in the risk-return relation.
These empirical �ndings are especially interesting because they run counter to the

notion of a time-invariant, linear relation between volatility and expected returns at
the market level that is implied by models such as the Long Run Risks Model of
Bansal and Yaron (2004) and its extension by Bansal, Gallant, and Tauchen (2007) that
imposes a cointegrating relationship between the logarithms of aggregate consumption
and dividend levels. These models have a rich set of pricing implications and show
promise in explaining a host of asset pricing puzzles as well as the cross-section of
expected returns of various classes of �nancial assets. In order to explain the empirical
�nding that the risk-return relation exhibits signi�cant time-variation, the speci�cation
of the models must be quite di¤erent from those emphasized in the existing LLR
literature.
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A Appendix

For the proof of Lemma 1 we make the following assumptions:
1. There exists a small � > 0 such that with probability one for large enough T and

some constant M;

max
1�t�T

1

Nt

NtX
j=1

�4tj �MT �

2.
h
1
Nt

PNt
j=1 �

2
tj
� p limNt!1

1
Nt

PNt
j=1 �

2
tj

i
= Op(

1
Nt
)

3. LetN = T�1
PT

t=1Nt; N = max1�t�T Nt andN = min1�t�T Nt: 0 < infT (N=N) <
supT (N=N) <1: N = T 
 for some 
 > 0

4.
n
�2tj(�

2
tj
� 1)

oNt;T
j=1;t=1

is a strictly stationary stochastic process with �nite kth

moment, k > 3, and exponentially decaying ��mixing coe¢ cient, �(k) = expf�ckg.

A.1 Proof of Lemma 1

We have

b�2t =
NtX
j=1

r2tj

=
1

Nt

NtX
j=1

�2tj(�
2
tj
� 1) + 1

Nt

NtX
j=1

�2tj :

Hence,

(b�2t � �2t ) =
1

Nt

NtX
j=1

�2tj(�
2
tj
� 1) +

"
1

Nt

NtX
j=1

�2tj � p lim
Nt!1

1

Nt

NtX
j=1

�2tj

#
:

Consider the �rst term
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 > �; by assumption 1.
Hence,

1

Nt
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T �

Nt

!
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Thus, the second term is of smaller order than the �rst and

(b�2t � �2t ) �
1

Nt

NtX
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2
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Now, by the Bonferroni inequality
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Consider the �rst term. On the set �T = fmax 16t6T

16j6Nt
�2tj < Ntg, we can apply the

exponential inequality for strongly-mixing time series processes (Theorem 1.4 of Bosq
(1998)). Therefore,
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where:

a1 = 2
Nt

q
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1 +
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25m2
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for each Nt > 2, each integer q 2
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�
, each � > 0, and each k > 3. c > 0 depends

on the distribution of the time series.
Assuming Nt = N for all t, and given assumption 4, we have
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Consider now the second term,

22



TX
t=1

Pr

24����� 1N
NtX
j=1

�2tj(�
2
tj
� 1)

����� > �; max
16t6T
16j6Nt

�2tj > N

35
6

TX
t=1

Pr

24 max
16t6T
16j6Nt

�2tj > N

35
= T Pr

24 max
16t6T
16j6Nt

�2tj > N

35
6 T

TX
t=1

NtX
j=1

Pr
h
�2tj > N

i

6 T 2N
E
�
�2ktj

�
Nk

! 0

provided 2+ 
� 
k < 0, i.e., 
 > 2
k�1 . Thus, in order to have 
 < 1, we require k > 3.

Thus, it follows that

max
1�t�T

jb�2t � �2t j = Op

�
T �

N1=2

�
:

So, provided �+ � < 

2
, the result follows.

A.2 Proof of Theorem 1

Asset pricing models imply the moment restriction

E
�
G(Xt; �

2
t ; �

2
t�1; �

2
t�2; �0)

�
= 0;

where Xt are observed variables and � is a p-vector of parameters, where p � q; with
true value �0.
The infeasible GMM estimator minimizes

e� = arg min
�2��Rp

GT (�)
0WTGT (�);

where fWTg1T=1 is a sequence of positive de�nite weighting matrices.
The feasible GMM estimator minimizes

b� = arg min
�2��Rp

bGT (�)
0WT

bGT (�);
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where

bGT (�) =
1

T

TX
t=1

G(Xt; b�2t ; b�2t�1; b�2t�2; �0):
A.2.1 Consistency of b�:
Assumptions:

1. De�ne Estimator. For some set � � Rp;

kGT (�T )kW = inf
�2�

kGT (�)kW + op(1);

2. Identi�cation. kG(�0)k = 0; and for all � > 0 there exists � > 0 such that

inf
k���0k>�

kG(�)kW � �;

3. ULLN.
sup
�2�

kGT (�)�G(�)kW = op(1):

4. The �rst four partial derivatives of G with respect to �j; j = 1; : : : ; p and �2t exist
and satisfy dominance conditions, namely for all vectors � (pertaining to (�2t ; �))
with j�j � 4; and for some sequence �T ! 0;

sup
jxj;jx0j;jx00j��T

sup
�2�



D�G(Xt; �
2
t + x; �2t�1 + x0; �2t�2 + x00; �)



 � Ut;

where EUt <1:

We just verify the ULLN condition. By the triangle inequality

sup
�2�

k bGT (�)�G(�)kW � sup
�2�

k bGT (�)�GT (�)kW + sup
�2�

kGT (�)�G(�)kW :

Let AT = fmax1�t�T jb�2t � �2t j � �Tg; were �T is a sequence such that Pr(AcT ) = o(1);
such a sequence is guaranteed by Lemma 1 with � = 0; which just requires 
 > 2�.
Then

Pr

�
sup
�2�

k bGT (�)�GT (�)kW > �

�
� Pr

�
sup
�2�

k bGT (�)�GT (�)kW > �;AT

�
+ Pr [AcT ]

= Pr

�
sup
�2�

k bGT (�)�GT (�)kW > �;AT

�
+ o(1):
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By the Mean Value Theorem,

bGT (�)�GT (�) =
1

T

TX
t=1

G�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �)(b�2t � �2t ) +

1

T

TX
t=1

G�t�1(Xt; �
2
t ; �

2
t�1; �

2
t�2; �)(b�2t�1 � �2t�1) +

1

T

TX
t=1

G�t�2(Xt; �
2
t ; �

2
t�1; �

2
t�2; �)(b�2t�2 � �2t�2);

where �t is intermediate between b�2t and �2t , and so on. Furthermore, on the set AT ;
sup
�2�

k bGT (�)�GT (�)kW 6 3 sup
�2�






 1T
TX
t=1

G�(Xt; �
2
t ; �

2
t�1; �

2
t�2; �)(b�2t � �2t )







W

� 3�T
1

T

TX
t=1

Ut = op(1):

Consistency then follows from the identi�cation condition and the ULLN condition
on the infeasible moment conditions sup�2� kGT (�)�G(�)kW = op(1):

A.2.2 Asymptotic Normality

Assumptions

1. kGT (�T )kW = inf� kGT (�)kW + op(1=
p
T );

2. The matrix

�(�) =
@

@�
G(�)

is continuous in � and is of full (column) rank at � = �0:

3. For all sequences of positive numbers �T such that �T ! 0,

sup
k���0k��T

kGT (�)�G(�)kW = Op(1=
p
T );

sup
k���0k��T

k
p
T [GT (�)�G(�)]�

p
T [GT (�0)�G(�0)]kW = op(1);

4.
p
TGT (�0)=) N(0;
)

5. �0 is in the interior of �:
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6. the daily processes f�tjg
Nt;T
j=1;t=1 and f�tjg

Nt;T
j=1;t=1 are independent of the monthly/quarterly

processes Xt and �2t .

Under these conditions
p
T (e�T � �0) =) N(0; (�>W�)�1�>W
W�(�>W�)�1):

For the asymptotic expansion our proof parallels the work of Pakes and Pollard
(1989). We expand the estimated moment condition out to third order

bGT (�0)�GT (�0) =
1

T

TX
t=1

G�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)(b�2t � �2t ) [3]

+
1

2T

TX
t=1

G�t�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)(b�2t � �2t )

2 [3]

+
1

2T

TX
t=1

G�t�t�1(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)(b�2t � �2t )(b�2t�1 � �2t�1) [6]

+
1

6T

TX
t=1

G�t�t�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)(b�2t � �2t )

3 [3]

+
1

6T

TX
t=1

G�t�t�t�1(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)(b�2t � �2t )

2 (b�2t�1 � �2t�1); [24]

where �2t is intermediate between b�2t and �2t and so on. The symbol [3] indicates the
sum of the term given plus 3 similar terms obtained via partial di¤erentiation with
respect to the other arguments.
Consider the �rst term,

1

T

TX
t=1

G�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)(b�2t��2t ) = 1

T

TX
t=1

G�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)

1

N

NX
j=1

�2tj(�
2
tj
�1)

We have

E

"
1

T

TX
t=1

1

N

NX
j=1

G�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)�

2
tj
(�2tj � 1)

#

=
1

T

TX
t=1

1

N

NX
j=1

E
�
G�t(Xt; �

2
t ; �

2
t�1; �

2
t�2; �0)

�
E
h
�2tj(�

2
tj
� 1)

i
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by assumption 6.
Also,

var

"
1

T

TX
t=1

1

N

NX
j=1

G�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)�

2
tj
(�2tj � 1)

#

=
1

N2T 2

TX
t=1

NX
j=1

E
�
G�t(Xt; �

2
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2
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2
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2
�
E
h
�4tj(�

2
tj
� 1)2

i
+

1

N2T 2

TX
t=1

TX
s=1
t6=s

NX
j=1

NX
k=1
j 6=k

E
�
G�t(Xt; �

2
t ; �

2
t�1; �

2
t�2; �0)G�s(Xt; �

2
t ; �

2
t�1; �

2
t�2; �0)

�
�E

h
�2tj�

2
tk
(�2tj � 1)(�

2
tk
� 1)

i
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1

N2T 2

TX
t=1

NX
j=1

E
�
G�t(Xt; �

2
t ; �

2
t�1; �

2
t�2; �0)

2
�
E
h
�4tj(�

2
tj
� 1)2

i
= 2E

�
G�t(Xt; �

2
t ; �

2
t�1; �

2
t�2; �0)

2
� 1

N2T 2

TX
t=1

NX
j=1

E
h
�4tj

i
6 1

NT
MT � = O

�
T �

NT

�
= o

�
1

T

�
;

provided 
 > �.
Next, consider the second term,

1

2T

TX
t=1

G�t�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)(b�2t � �2t )

2

=
1

2T

TX
t=1

G�t�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)

"
1

N

NX
j=1

�2tj(�
2
tj
� 1)

#2

=
1

2T

TX
t=1

1

N2

NX
j=1

G�t�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)�

4
tj
(�2tj � 1)

2

+
1

2T

TX
t=1

1

N2

NX
j=1

NX
k=1
j 6=k

G�t�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)�

2
tj
�2tk(�

2
tj
� 1)(�2tk � 1):

Hence
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provided 
 > �.
Next, consider the third term
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2
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2
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NX
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2
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2
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2
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2
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2
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 > �.
Consider next the fourth term,
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6T
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t=1

G�t�t�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)(b�2t � �2t )
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�
�
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1�t�T

��b�2t � �2t
���3 1

6T

TX
t=1

sup
jxj;jx0j;jx00j��T

jG���(Xt; �
2
t + x; �2t�1 + x; �2t�2 + x; �0)j

= Op(T
�3�):

For this term to be op(T�1=2), we require � > 1=6. This requires 
 > 1
3
(1 + 6�).
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Finally, the �nal term is also op(T�1=2) under the same conditions as the fourth
term.
Hence,

bGT (�0) ' GT (�0) +
1

T

TX
t=1

1

N
E
�
G�t�t(Xt; �

2
t ; �
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= GT (�0) + bT (�0):

Therefore, we haveb� � �0 = �(�>W�)�1�>WGT (�0)� (�>W�)�1�>WbT (�0) + op(T
�1=2):

Case 1:
p
TbT (�0) = op(1)
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�
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provided 
 > �+ 1=2: This requires Nx

T
!1 where x > 1:5. In this case,
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p
T
�b� � �0

�
= �(�>W�)�1�>W

p
TGT (�0) + op(1):

Hence,

p
T
�b� � �0

�
d! N(0;�); where � = (�0W�)�1�0W
W�(�0W�)�1:

Case 2: When the above condition is not satis�ed, we may not have T 1=2 consistency
because of the asymptotic bias. However, we show that a bias corrected estimator b�+
(�>W�)�1�>WbT (�0) would be T 1=2 consistent. We propose to make a bias correction,
which requires that we estimate bT (�0): Provided the estimation error is small enough
we will achieve the limiting distribution in (27). De�ne the estimated bias function

bbT (�) =
1

T

TX
t=1

1

N
G�t�t(Xt; b�2t ; b�2t�1; b�2t�2; �0)cIQt

+
1

T

TX
t=1

1

N
G�t�1�t�1(Xt; b�2t ; b�2t�1; b�2t�2; �0)cIQt�1

+
1

T

TX
t=1

1

N
G�t�2�t�2(Xt; b�2t ; b�2t�1; b�2t�2; �0)cIQt�2

;

where cIQt
=

Nt

3

NtX
j=1

r4tj

is an estimator of the integrated quarticity. Then de�ne the bias corrected estimator

b�bc = b� + (b�>Wb�)�1b�>WbbT (b�):
Then, p

T (b�bc � �0) =) N(0;�):

provided that

p
TbbT (b�)�pTbT (�0) = op(1):
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mean variance skewness kurtosis AR(1) AR(1-12) T
28:01-05:12 0.005 0.003 -0.478 9.819 0.102 0.209 936

(rmt � rft)
mon 28:01-66:12 0.006 0.004 -0.370 9.915 0.123 0.294 468

67:01-05:12 0.004 0.002 -0.758 5.758 0.062 0.062 468
28:01-05:12 0.002 2.2�10-5 6.327 58.60 0.563 4.441 936

(bvt)mon 28:01-66:12 0.003 3.3�10-5 4.413 29.15 0.656 5.248 468
67:01-05:12 0.002 1.0�10-5 13.08 229.5 0.226 1.239 468
28:01-05:04 0.014 0.012 0.175 9.865 -0.051 -0.141 312

(rmt � rft)
quar 28:01-66:04 0.017 0.016 0.456 9.950 -0.086 -0.095 156

67:01-05:04 0.011 0.008 -0.762 4.155 0.013 -0.286 156
28:01-05:04 0.007 0.0001 4.268 25.24 0.554 4.307 312

(bvt)quar 28:01-66:04 0.009 0.0002 3.285 15.55 0.601 4.755 156
67:01-05:04 0.005 4.6�10-5 6.139 54.84 0.263 1.042 156

Table 1. Summary statistics of logarithmic excess returns and realized variance. The table
reports summary statistics of the continuously compounded excess returns on the stock mar-
ket and the associated realized variance. Estimates are reported for the monthly, quarterly,
and annual frequencies. Monthly returns are calculated by compounding daily returns within
calendar months. Monthly realized volatilities are constructed by cumulating squares of daily
returns within each month, and so on. Our market proxy is the CRSP value-weighted index
(all stocks). The proxy for the riskfree rate is the one-month Treasury Bill rate (from Ib-
botson Associates). The table shows the mean, variance, skewness, kurtosis, �rst-order serial
correlation, and the sum of the �rst 12 autocorrelations, AC(1-12), for each of the variables.
The statistics are shown for the full sample and for two subsamples of equal length.
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� �

1928:01-2005:12 0.006 -0.493
(1.896) (-0.340)

monthly 1928:01-1966:12 0.007 -0.288
(1.648) (-0.186)

1967:01-2005:12 0.009 -3.071
(1.195) (-0.711)

1928:1-2005:4 0.011 0.472
(0.926) (0.248)

quarterly 1928:1-1966:4 0.018 -0.073
(1.245) (-0.036)

1967:1-2005:4 -0.021 5.904
(-1.130) (1.810)

Table 2. This table shows the GMM estimates for the model
E[G(:)] = 0 where

G =

�
rm;t+1 � rf;t+1 � �� �vt+1

(rm;t+1 � rf;t+1 � �� �vt+1) vt

�
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� �

1928:01-2005:12 0.005 -0.135
(1.780) (-0.099)

monthly 1928:01-1966:12 0.007 -0.420
(2.011) (-0.288)

1967:01-2005:12 0.0001 1.920
(0.026) (0.598)

1928:1-2005:4 0.013 0.102
(1.054) (0.049)

quarterly 1928:1-1966:4 0.018 -0.110
(1.151) (-0.049)

1967:1-2005:4 -0.004 2.806
(-0.214) (0.839)

Table 3. This table shows the estimates for the model
E[G(:)] = 0 where

G =

0BB@
rm;t+1 � rf;t+1 � �� �vt

(rm;t+1 � rf;t+1 � �� �vt) vt�1
(rm;t+1 � rf;t+1 � �� �vt) vt�2
(rm;t+1 � rf;t+1 � �� �vt) vt�3

1CCA
The table reports the coe¢ cient estimates along with the associated t-stats in parentheses

and the J-stat for overidentifying restrictions.
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1928:01-2005:12 -0.014 7.991
(-0.698) (0.919)

monthly 1928:01-1966:12 -0.006 3.795
(-0.325) (0.654)

1967:01-2005:12 -0.009 7.066
(-0.210) (0.297)

1928:1-2005:4 -0.145 22.24
(-0.404) (0.439)

quarterly 1928:1-1966:4 -0.035 5.747
(-0.258) (0.385)

1967:1-2005:4 0.034 -4.520
(1.472) (-1.077)

Table 4. This table shows the GMM estimates for the model
E[G(:)] = 0 where

G =

�
rm;t+1 � rf;t+1 � �� �vt+1

(rm;t+1 � rf;t+1 � �� �vt+1) dyt

�
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1928:01-2005:12 0.003 0.719
(0.798) (0.384)

monthly 1928:01-1966:12 0.005 0.161
(1.221) (0.085)

1967:01-2005:12 -0.075 44.74
(-1.079) (1.130)

1928:1-2005:4 0.008 0.884
(0.586) (0.402)

quarterly 1928:1-1966:4 0.013 0.443
(0.866) (0.198)

1967:1-2005:4 -0.331 64.23
(-0.468) (0.483)

Table 5. This table shows the GMM estimates for the model
E[G(:)] = 0 where

G =

�
rm;t+1 � rf;t+1 � �� �vt+1

(rm;t+1 � rf;t+1 � �� �vt+1) deft

�
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� �

1928:01-2005:12 -0.006 4.389
(-0.711) (1.272)

monthly 1928:01-1966:12 -0.011 5.731
(-0.581) (0.888)

1967:01-2005:12 -0.100 58.47
(-0.415) (0.424)

1928:1-2005:4 -0.020 4.764
(-0.695) (1.157)

quarterly 1928:1-1966:4 -0.056 8.125
(-0.564) (0.771)

1967:1-2005:4 -3.982 751.0
(-0.024) (0.024)

Table 6. This table shows the GMM estimates for the model
E[G(:)] = 0 where

G =

�
rm;t+1 � rf;t+1 � �� �vt+1

(rm;t+1 � rf;t+1 � �� �vt+1) rf;t

�
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� �

low vol -0.008 25.97
(-1.298) (3.485)

monthly high vol -0.016 1.019
(-1.449) (0.476)

low vol -0.035 26.36
(-1.398) (2.842)

quarterly high vol -0.032 0.491
(-0.758) (0.173)

Table 7. This table shows the estimates for the model
E[G(rm;t+1 � rf;t; vt; vt�1; vt�2; �0)] = 0 where

G =

�
rm;t+1 � rf;t+1 � �� �vt+1

(rm;t+1 � rf;t+1 � �� �vt+1) vt

�
The table reports the coe¢ cient estimates along with the associated t-stats in parentheses.

The statistics are shown for two subsamples that are chosen to correspond to low and high
volatility periods (the sample is split based on the higher one-third quantile of the volatility
estimate).
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low vol -0.022 46.48
(-2.287) (3.409)

monthly high vol 0.0004 -2.067
(0.0136) (-0.222)

low vol -0.030 24.03
(-1.247) (2.402)

quarterly high vol -0.538 55.51
(-0.752) (0.783)

Table 8. This table shows the estimates for the model
E[G(rm;t+1 � rf;t; vt; vt�1; vt�2; �0)] = 0 where

G =

�
rm;t+1 � rf;t+1 � �� �vt+1

(rm;t+1 � rf;t+1 � �� �vt+1) vt

�
The table reports the coe¢ cient estimates along with the associated t-stats in parentheses.

The statistics are shown for two subsamples that are chosen to correspond to low and high
volatility periods (the sample is split based on the higher one-third quantile of the volatility
estimate). The sample extends from 1955:01-2005:12.
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