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Abstract

A stylized fact of US in�ation dynamics is one of extreme persistence

and possible unit root behavior. If so, the implications for macroeconomics

and monetary policy are somewhat unpalatable. Our econometric analysis

proposes a parsimonious representation of the in�ation process, the nonlinear

ESTAR, rather than the IMA process with time-varying parameters as in

Stock and Watson (2007). The empirical results con�rm a number of the

key features such as regime changes and implicit Federal Reserve in�ation

targets. We address the issue of whether the source of the Great Moderation

can be ascribed to good luck rather than good policy.

Keywords: Unit Root, In�ation persistence, nonlinear ESTAR.

JEL classi�cation: C15, C22, E31
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1 Introduction

A stylized fact of the dynamics of US in�ation, as �rst highlighted in the

pioneering contribution of Nelson and Schwert (1977), clearly indicate that

it is a very persistent process. In fact, Barsky (1987), Ball and Cecchetti

(1990), and Brunner and Hess (1993) suggested that U.S. in�ation contains

a unit root. Moreover, the unit root property appears to be shared for a wide

array of economies examined in O�Reilly and Whelan (2005) and Cecchetti

et al. (2007). More recently, in in�uential contributions, Stock and Watson

(2007) and Cogley and Sargent (2007) have parsimoniously modeled in�ation

as an unobserved component trend-cycle model with stochastic volatility, a

model that in its reduced form also exhibits a unit root. Stock and Watson

show that the estimate of the moving average coe¢ cient in their implied

IMA(1,1) model for the mean of in�ation has declined sharply since the

early 1980�s. They attribute this to large changes in the variance of the error

in the permanent stochastic trend component relative to the variance of the

error in the transitory component of their model so that the magnitude of

the MA coe¢ cient varies inversely with the ratio of the permanent to the

transitory disturbance variance.

The unit root feature of in�ation is now re�ected in theoretical models

of the in�ationary process. Woodford (2006) allows for the unit root feature

by assuming that the in�ation target follows a random walk. Cogley and

Sbordone (2006) and Sbordone (2007) reformulate the New Keynesian sup-

ply curve, since the standard formulation is based on the assumption that

3



in�ation is stationary.1 There are, however, severe economic and statistical

problems with the assumption of a unit root in the in�ation process. For

instance, the assumption would imply, ceteris paribus, that the nominal ex-

change rate, via purchasing power parity, is an I(2) process. Moreover, asset

arbitrage would require nominal asset returns in general to exhibit I(1) be-

havior, and this is dramatically at odds with empirical �ndings. Further, the

assumption of a random walk in the in�ation target in theoretical models

implies that the target will ultimately take negative values which is also eco-

nomically absurd. Cogley and Sargent (2002) are mindful of the problem -

they impose parameter restrictions to ensure that in�ation is always station-

ary, since otherwise, it would imply in�nite asymptotic variance of in�ation,

which can be ruled out as theoretically absurd, given the central banks�loss

function which includes in�ation variance.

How robust, though, is the stylized fact that in�ation follows a unit root

process? Within the linear framework adopted in the extant literature, an

alternative avenue is to consider whether in�ation is fractionally integrated

(see, e.g., Hassler and Wolters, 1995; Baillie et al., 1996; Baum et al., 1999;

and Baille et al., 2002).2 The fractionally integrated model has the property

that although in�ation is still very persistent, and could ultimately exhibit

1As is well-recognised, and discussed robustly in Cochrane (2007), there are related

issues of indeterminacy in this literature.
2The ARFIMA(p,d,q) class of processes take the form

xt = (1� L)�dut

where xt is a stationary ARMA(p,q) process, and d is a non integer. See, e.g., Granger

and Joyeaux (1980) for discussion of the properties of fractional processes.
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in�nite variance, it is still mean reverting so that in�ation does not exhibit

a unit root. A major shortcoming of this literature, however, is that they do

not allow for possible structural breaks in the series to re�ect regime changes

as re�ected in the analyses of the US Great Moderation. Regime changes are

known to spuriously induce the fractional property (see Diebold and Inoue,

2001; Franses et al., 1999; and Granger and Hyung, 1999). Consequently it is

reasonable, from a linear perspective, to assume that the empirical evidence

supports the extant view that the in�ation series exhibits unit root behavior.

The focus of this paper is to consider an alternative parameterization of

the in�ation process. We borrow from the recent literature on exchange rate

dynamics which mimic the �ndings in in�ation analysis. In the empirical ex-

change rate literature, a commonplace �nding is that real exchange rates can

be described by either a unit root or a fractional processes (see Diebold et

al., 1991; Cheung and Lai, 1993). More recently, and drawing on the theoret-

ical analyses following Dumas (1992), it has been shown that the dynamics

of real exchange rate adjustment, given transactions costs or the sunk costs

of international arbitrage, induce nonlinear adjustment of the real exchange

rate to purchasing power parity (PPP). Whilst globally mean reverting this

nonlinear process has the property of exhibiting near unit root behavior for

small deviations from PPP. Essentially, small deviations from PPP are left

uncorrected if they are not large enough to cover transactions costs or the

�sunk costs of international arbitrage�. Empirical work shows that the Ex-

ponential Smooth Autoregressive (ESTAR) model provides a parsimonious

�t to PPP data (see Michael et al., 1997; and Paya and Peel, 2006). Of par-

ticular interest are the resultant implied dynamics of real exchange rates, as

5



derived from the nonlinear impulse response functions for the ESTAR mod-

els. They show that whilst the speed of adjustment for small shocks around

equilibrium is highly persistent and relatively slow, larger shocks mean-revert

much faster than the �glacial rates�previously reported for linear models.

In this respect the nonlinear models provide a solution to the PPP puzzle

outlined in Rogo¤ (1996).

A natural counterpart in monetary policy analysis is that the central

bank pursues an implicit or explicit in�ation target3 and that adjustment to

this target is nonlinear.4 One model of the policy maker that implies this

reduced form behavior of the in�ation rate is the opportunistic approach to

disin�ation is set out by Orphanides and Wilcox (2002) and Aksoy et al.

(2006). The key feature of their model, as stated by Aksoy et al. (2006), is

that �a central bank controls in�ation aggressively when in�ation is far from

its target, but concentrates on output stabilization when in�ation is close to

its target, allowing supply shocks and unforeseen �uctuations in aggregate

demand to move in�ation within a certain band�. In this regard it is relevant

that Martin and Milas (2007) estimate threshold Taylor rules for the period

3A recent paper which focuses on this issue is Peter Ireland (2005). He draws infer-

ences about the behaviour of the Federal Reserve�s implicit in�ation target within a New

Keynesian model.
4Gregoriou and Kontonikas (2006a) show that deviations of in�ation in several targeting

countries, not including the US, appear stationary on the basis of the Kapetanios et al.

(2003) test. However, in Gregoriou and Kontonikas (2006b) they model the �rst di¤erence

of the deviations of in�ation rates from target as ESTAR process which is inconsistent.

Byers and Peel (2000) model in�ation dynamics in three hyperin�ations with a more

complex ESTAR process exploiting the possible multiple equilibria property of the general

ESTAR model.
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1983.1 �2004.4 for the US that are consistent with the opportunistic model.

They suggest the response of interest rates to in�ation is zero when in�ation

is in the �band�. They also point out that the Opportunistic Approach

to in�ation has similarities with �constrained discretion� as advocated by

Bernanke and Mishkin (1997) and Bernanke (2003).

We conjecture that in�ation behaves as a near unit root process for in-

�ation rates close to the implicit target of the policy maker but is mean

reverting for large deviations. In this respect, the nature of the implied in-

�ation adjustment process is similar to that suggested to explain deviations

from purchasing power parity.

One simple ESTAR process that captures the PPP dynamics and also

the in�ation adjustment mechanism postulated above can be represented as

follows:

yt = �+ e
�
(yt�1��)2

"
pX
i=1

�i(yt�i � �)
#
+ ut (1)

where yt is the in�ation rate, �; is a constant, �(p) =
Pp

i=1 �i, ut is a ran-

dom disturbance term, and the transition function is G(:; 
) = e�
(yt�1��)
2
;

with 
 > 0: Within this framework, the equilibrium or implicit in�ation tar-

get is given by �: The ESTAR transition function is symmetric about yt�1��:

The parameter 
 is the transition speed of the function G(:) towards 0 (or

1) as the absolute deviation grows larger or smaller. Particular emphasis is

reserved for the unit root case, �(p) = 1. In this case, yt behaves as a ran-

dom walk process when it is near the implicit target a: When the deviations

from equilibrium are larger, the magnitude of such deviations along with the

magnitude of 
 imply that G(:) is less than one so that yt is mean reverting.
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This ESTAR model provides an explanation of why PPP deviations or

in�ation deviations analyzed from a linear perspective might appear to be

described by either a non-stationary integrated I(1) process, or alternatively,

described by fractional processes. Pippenger and Goering (1993) show that

the Dickey Fuller tests have low power against data simulated from an ES-

TAR model. Michael et al. (1997) illustrate that data that is generated from

an ESTAR process can appear to exhibit the fractional property. That this

would be the case was an early conjecture by Acosta and Granger (1995).

The remainder of the paper is structured as follows. In the next section we

discuss and carry out a sequence of econometric tests to discriminate between

the linear unit root IMA(1,1) model of Stock and Watson and the ESTAR

model outlined above. Our results establish that the ESTAR model provides

a parsimonious explanation of US in�ation. In section 3 we undertake an

analysis of the impulse response functions from our ESTAR models. We

take into account the distinctive features of nonlinear models which lead

to impulse response functions that are history dependent and depend on the

sign and size of current and future shocks as well. The economic implications

are discussed further in section 4. Our results allow us to consider further

the �ndings and interpretations of Mishkin (2007), Nelson (2005), Romer

and Romer (2002), Sargent (1999) and Stock and Watson amongst others,

in regards to monetary policy characterizations of the postwar US economy.

Concluding comments are o¤ered in Section 5.
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2 Nonlinear Model

2.1 Linearity Testing

We examine quarterly US in�ation measured by the log di¤erence of PCE

chain type index or GDP price index over the period 1947.Q1 to 2004.Q4.

The data is available from the Federal Reserve Economic Database (FRED)

and are seasonally adjusted.5 We divide the sample into two main sub-periods

for detailed analysis. These periods are 1947.Q1 to 1982.Q4, and 1983.Q1

to 2004.Q4, respectively. The second period corresponds to a dramatic re-

duction in the volatility of in�ation following the Volcker de�ation and is

regarded as a di¤erent policy regime as demonstrated in the estimates of

Taylor Rules (see, e.g., Clarida et al., 2000; Dolado et al., 2004; and Martin

and Costas, 2007). There is more debate about the precise beginning and

ending of the �rst regime but the results are robust for the �rst sample and

marginally more signi�cant for the PCE index. Cogley and Sargent (2007)

note colleagues in the Federal Reserve pay more attention to this measure of

in�ation for policy purposes. Consequently we report analysis of the PCE

index.

Within the framework we consider, the key empirical issue is that of

discriminating between alternative representations, so as to chose the most

parsimonious statistical representation of in�ation.

We begin by applying a set of speci�c linearity tests. Escribano and Jorda

(EJ hereafter) (1999) extended the familiar nonlinearity test procedure for-

5This data was kindly made available to us by Timothy Cogley can be found at

http://research.stlouisfed.org/fred2/. The series have FRED mnemonics PCECTPI and

GDPCTPI respectively
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mulated by Terasvirta (1994) and reviewed further in van Dijk et al. (2002).

They proposed a new speci�cation strategy to discriminate between the ES-

TAR and logistic STAR (LSTAR) models.6 Their speci�cation strategy is

shown to be consistent and to generate higher correct selection frequencies

than that of Terasvirta (1994). The test is implemented following a series of

steps. The linear AR process for yt is initially speci�ed using certain model

selection criterion (Akaike, Schwartz). The linearity test is then speci�ed

using the lag length (p) of the linear process and a Taylor expansion of yt for

the cases of an ESTAR and a LSTAR:

yt = �0 + �1xt + �1xtzt�d + �2xtz
2
t�d + �3xtz

3
t�d + �4xtz

4
t�d + �t (2)

where xt = (yt�1; ::::; yt�p)0 with p determined in the �rst step, and zt�d

is the transition variable, in our case equals to yt�d, where d is the delay

parameter. The null hypothesis in this test (H10) is that yt follows a stationary

linear process so that H10:�1 = �2 = �3 = �4 = 0: The computation of the

test is carried out utilizing the F version of the test.7 If linearity is rejected,

we follow the EJ procedure to discriminate between the ESTAR and LSTAR

nonlinear models. The null hypothesis of nonlinear ESTAR corresponds to

HE0 : �2 = �4 = 0 in (2) and its F-statistic (FE) is computed. For the null

of an LSTAR, HL0 : �1 = �3 = 0 in (2) with its corresponding F -statistic

6Logistic LSTAR models embody asymmetric adjustment to deviations from equilib-

rium whilst the adjustment is symmetric in the ESTAR models.
7The �2 version of the test yielded similar results. The delay parameter d can be

determined by searching over a certain range of values (e.g., d 2 [1; 8]) and choose the one

that minimizes the p-value of the test for H10. In our case, we choose d = 1 as is the one

that has a clear economic interpretation.
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(FL): If the minimum p � value corresponds to FL, we select LSTAR, if it

corresponds to FE, we select ESTAR.

In our case, for the null of a linear stationary process (H10) in the US

in�ation series we obtain p�values of 0.006 and 0.66 for the �rst and second

period, respectively. In the �rst period, the minimum p� value corresponds

to the FE test and consequently it is possible to reject the null of linear

stationary process in favor of a nonlinear stationary ESTAR model in the

�rst period.

An alternative linearity testing procedure would be, given theoretical pri-

ors, to have a linear unit root in�ation as the null hypothesis. Stock and

Watson (2005) �t a stochastic volatility process to the in�ation series. In

particular, they assume an unobserved component model for in�ation yt with

the following state-space representation:

yt = � t + "yt

� t = � t�1 + "�t

where the innovations are conditionally normal martingale di¤erences

with the following variances

hyt = hyt�1e
�y�yt

h�t = h�t�1e
����t

where �yt; ��t are i.i.d. Gaussian shocks with mean zero and mutually

independent. The model implies an integrated I(1) process for in�ation.

Consequently we also undertake the tests of Kapetanios et al. (2003) (KSS
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hereafter) and Kilic (2003) where the null of a linear unit root process is tested

against the alternative of a globally stationary nonlinear ESTAR model.

Under the null hypothesis, using a �rst order Taylor approximation of the

nonlinear model KSS obtain the following auxiliary regression8

�y�t =
pP
j=1

�y�t�j + �y
�3
t�1 + error (3)

Testing for � = 0 against � < 0 corresponds to testing the null hypothesis,

and the t� statistic is given by

tNL(ĉ
0
) =

�̂

s:e(�̂)
(4)

where s:e(�̂) denotes the estimator standard error. The asymptotic distrib-

ution of (4) is not standard since, under the null, the underlying process is

nonstationary. KSS show that their test has greater power than the ADF

and also that of Enders and Granger (1998) to discriminate against ESTAR.

We obtain values for the KSS test of -5.77 and -4.79 for the two sub-periods.

These values are highly signi�cant using the conventional critical values pro-

vided in KSS, and therefore suggesting we can reject the null of a unit root

in in�ation in favor of the ESTAR process.

In order to make certain that the implementation of the KSS test is robust

within our framework we carry out a Monte Carlo exercise. In particular,

we generate the true DGP as the unobserved component trend-cycle model

with stochastic volatility (IMAV) of Stock and Watson calibrated with the

8KSS examine the properties of their test under three di¤erent assumptions of stochastic

processes with nonzero mean and/or linear deterministic trend. In the cases where y�t

exhibits signi�cant constant or trend, y�t should be viewed as the de-meaned and/or de-

trended variable.
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values in our sub-samples. We use the same sample size as the actual data

which is 144 observations for the �rst period and 88 for the second one, and

simulate 9,999 data samples for each sub period. We then apply the KSS test

to this simulated data for each sub-period in order to obtain the new ninety

�ve percent critical values. These are -4.95 and -4.59, which are below our

actual values obtained for the real data. Consequently the KSS test points

to a clear rejection of the null of a linear unit root in favor of an ESTAR

process.9

The third linearity test we perform is the one developed in Harvey and

Leybourne (2007) (HL hereafter). They test the null hypothesis of a linear

process, which could be either stationary or non-stationary, since their statis-

tic is consistent against either form. Their methodology is based on a Taylor

approximation of a nonlinear stationary or nonstationary series which yields

the following regression equation

9An alternative test of the unit root test null against a nonlinear ESTAR alternative

is developed by Kiliç (2003). This test uses a grid search over the space of values for the

parameters 
 and c to obtain the largest possible t-value for � in the following regression

�y�t = �y
�3
t�1(1� exp(�
(zt � c)2)) + error

where zt is the transition variable, in this case (�y�t�1). The null hypothesis is H0 : � = 0

(unit root case) and the alternative H1 : � < 0. The Kiliç (2003) test has potential

advantages over the KSS test. First, it computes the test statistic even when the threshold

parameter needs to be estimated in addition to the transition parameter. Second, Kilic

claims that it has more power. For the same reasons as in the case of the KSS test above,

we undertake the same Monte Carlo experiment and obtain new 95% critical values of

-3.45, and -3.47 respectively. The values obtained with our actual data in the two periods

were -4.91 and -4.24 giving further support to the alternative of an ESTAR.
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yt = �0 + �1yt�1 + �2y
2
t�1 + �3y

3
t�1 + �4�yt�1 + �5(�yt�1)

2 +

+�6(�yt�1)
3 + "t (5)

The null hypothesis of linearity is H0L : �2 = �3 = �5 = �6 = 0: The alter-

native hypothesis (nonlinearity) is that at least one of those �0s is di¤erent

from zero. The statistic is then

W �
T = exp(�b jDFT j

�1)
RSS1 �RSS0
RSS0=T

(6)

where jDFT j is the absolute value of the ADF statistic, and the value of b

is provided in HL such that, for a given signi�cance level, the critical value

of W �
T coincides with that from a �2 distribution.10 The values we obtain

for the �rst and second periods are 23.73 and 7.44, respectively. Linearity is

clearly rejected in the �rst period but not in the second one.11

A second step of the test is to determine the stationarity or nonstation-

arity of the processes using the Harris, McCabe and Leybourne (2003) test

statistic. In our case stationarity could not be rejected. Given the existence

of a discrepancy between the KSS and the HL tests for the second period

we check the power of both statistics under the alternative of an ESTAR

process with a range of parameter values similar to the ones obtained in the

10Actually, HL provides the coe¢ cients of the seventh-order polynomial of b in � (sig-

ni�cance level) such that it is possible to compute b for any desired signi�cance level

�(= 0:99; 0:95; 0:90; ::):
11As our prior for the alternative model is an ESTAR we included a fourth power in

(5) for the test in the second period using the same rational than Escribano and Jorda.

However, the test still rejects the null hypothesis with a p-value of 0.28. Using only three

powers in (5) yields a p-value of 0.82.
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estimation provided in the next section. The KSS test appears to be more

powerful in this case as, according to table 3 in KSS and table 3 in HL, the

power of the KSS and HL tests is 0.98 and 0.25, respectively.

Overall, our battery of tests clearly suggest that a linear process, either

stationary or non stationary, can be rejected in favour of a nonlinear ESTAR

process in the �rst period. For the second period a non-stationary linear

process can be clearly rejected on the basis of the KSS test in favour of the

ESTAR process.12

2.2 Nonlinear Estimates: the ESTAR model

In Tables 1a and 1b we present the results of the estimation of ESTARmodels

using non-linear least squares for the main sub-periods, as justi�ed above, and

a few other periods for comparison of parameter stability. In the estimation of

ESTAR model, the transition parameter, 
; is estimated by scaling it by the

variance of the transition variable. This scaling is suggested for two reasons.

One is to avoid problems in the convergence of the algorithm. Second, it

makes it easier to compare speeds of adjustment (see Terasvirta,1994).

When the ESTAR transition parameter is estimated as zero we obtain

a unit root process. Consequently the critical signi�cance values are non

standard. Accordingly the critical values for the normalized speed of adjust-

ment coe¢ cient have been obtained through Monte Carlo simulation. We

generate 9,999 series as the DGP series for each sub-period from the IMAV

model of Stock and Watson calibrated with values in each sub-sample. We

12These results are also in contrast to those found in Pivetta and Reis (2007) where they

could not reject the unit root using a modi�ed version of the Cogley and Sargent (2002)

model where stationarity restrictions had been removed.
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then estimate ESTAR processes on the simulated data so as to obtain the

distribution of the t-statistic of the 
 parameter at various signi�cance levels.

The ESTARmodel in the �rst period is jointly estimated with a GARCH(1,1)

process.13 In the second period this is unnecessary as there is no evidence of

residual mispeci�cation.14 The estimated coe¢ cients in Table 1a are signif-

icant and in�ation appears parsimoniously explained by an ESTAR process

with two autoregressive lags. Even though we discuss the economic interpre-

tation of these results in section 4, it is worth mentioning that the second

period displays signi�cantly lower target in�ation, �; and signi�cantly larger

speed of adjustment of in�ation towards � than the �rst period. Figures 1a

and 2a plot the actual in�ation series, the �tted series and the residuals for

the two sub-samples reported in Table1a. It is evident from these �gures

that the variance of the residuals varies at the begining and at the end of

the �rst sub-sample, the size of the residuals is larger in the �rst period and

that in�ation moves around a lower level in the second period. For compar-

ison purposes, Figures 1b and 2b plot the actual, �tted, and residual series

obtained from the IMA(1,1) model.

An alternative approach is to �t the ESTAR process for the whole period

allowing the intercept and the speed of adjustment to change by introduc-

tion of a dummy variable (d82). This takes the value of zero up to the

fourth quarter of 1982 and unity afterwards. To obtain critical values for

13The estimated GARCH(1,1) takes the following form: �2t = k + '"
2
t�1 + ��

2
t�1:

14The diagnostic residuals in each estimation reported in Table 1b were satisfactory

except for the period 1980.1-1995.2 where there was remaining autocorrelation at lag 4,

on the basis of the test of Eitrheim and Terasvirta (1996). Standard errors for this case

are computed using the Newey-West procedure.
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the dummy variable coe¢ cients we employ the wild bootstrap which allows

for heteroskedasticity of any form or changing over the longer sample period

(see, e.g., Wu, 1986; Mammen, 1993; and Davidson and Flachaire, 2001).15

The result displayed in Table 2, for the sample period where the dummies are

most signi�cant, is consistent with the results reported in Table1 con�rming

the signi�cant di¤erences in the implicit in�ation target and the speed of

response to shocks in the two periods.

15Employing each time the actual residuals from the model reported in Table 2 we create

a new series of residuals based on these estimated residuals as

ubi = but�i
where �i is drawn from the two-point distribution

�i = 1 with probability p = 0:5

�i = �1 with probability p = 0:5

The �i are mutually independent drawings from a distribution independent of the orig-

inal data. The distribution has the properties that E�i = 0; E(�2i ) = 1; E(�3i ) = 0;and

E(�4i ) = 1: As a consequence any heteroskedasticity and non-normality due to the fourth

moment in the estimated residuals, but; is preserved in the created residuals, ubi :We then
simulate the ESTAR model in Table 2 , 10,000 times with the coe¢ cients on the dummy

variables set to zero, using residuals. ubi ; i = 1; 2::10; 000 , using the actual inital values of

yt�1; yt�2 as starting values.We then estimate the ESTAR model with the dummy vari-

ables included to obtain the critical values. Analysis by Goncalves and Kilian (2002) is

suggestive, in a slightly di¤erent context, that the wild bootstrap will perform as well as

the conventional bootstrap, which is based on re-sampling of residuals with replacement,

even when the errors are homoskedastic.The converse is not true.
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3 Nonlinear Impulse Response Functions

In this section we examine the speed of mean reversion of the nonlinear

model of in�ation. To calculate the half-lives of in�ation deviations (yt � a)

within the nonlinear framework we need to obtain the Generalized Impulse

Response Function (GIRF) for nonlinear models introduced by Koop et al.

(1996). They di¤er from the linear response functions in that they depend

on initial conditions, on the size and sign of the current shock, and on the

future shocks as well. The GIRF is de�ned as the average di¤erence between

two realizations of the stochastic process fyt+hg which start with identical

histories up to time t � 1 (initial conditions) but one realization is �hit�by

a shock at time t while for the other one is not

GIRFh(h; �; !t�1) = E(yt+hjut = �; !t�1)� E(yt+hjut = 0; !t�1) (7)

where h = 1; 2; ::; denotes horizon, ut = � is an arbitrary shock occurring

at time t; and !t�1 de�nes the history set of yt: The value of (7) has to be

approximated using stochastic simulation since it is not possible to obtain

an analytic expression for the conditional expectation involved in (7) for

horizons larger than one (see Gallant et al., 1993; and Koop et al., 1996).16

For each history, we construct 5,000 replications of the sample paths ŷ�0; :::; ŷ
�
h

based on ut = � and ut = 0 by randomly drawn residuals as noise for h � 1:

The di¤erence of these paths is averaged across the 5,000 replications and

it is stored. In order to obtain the �nal value for (7) we average across

all histories. In the case of nonlinear models, monotonicity in the impulse
16See Murray and Papell (2002) and Killian and Zha (2002) for a comprehensive analysis

of impulse responses and estimating procedures.
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response need not hold and shock absorption becomes slower as the shock

becomes smaller. Hence, we calculate the x�life of shocks for (1�x) = 0:50;

and 0:75 where (1�x) corresponds to the fraction of the initial e¤ect ut that

has been absorbed.

For a particular value of in�ation at time t, the series is hit with a shock of

size �: The shock size is usually determined in terms of the residual standard

deviation (b�u) of the model, such that � = kb�u: In this way, one can compare
shocks absorption for a given value of k but for models with di¤erent standard

errors. Moreover, it is also possible to convert it to a common measure in

terms of the level of the dependent variable. In our case, the residual standard

deviation in the �rst period is b�1;u = 0:0046 which corresponds roughly to

an additive 2% per annum shock on the level of in�ation at quarter t. In the

�rst sub-sample the largest change in in�ation on a given quarter took place

in the early �fties and was equal to 0:024(' 5b�1;u); or roughly 10% in annul

terms. However, in the second period b�2;u = 0:0024 which corresponds to a
1% per annum shock to in�ation level in a particular quarter. The largest

change in in�ation in the second sub-sample equals 0:007(' 3b�2;u) and took
place in the eighties. We therefore consider the following set of values for

k = 1; 3; 5: The particular choice of k�s allows us to compare and contrast

the persistence of small, and large shocks within and across periods.

Table 3 shows the results for the GIRFs in both sub-samples. Two points

are worth mentioning. First, the in�ation series displays a clear nonlinear

pattern. In particular large shocks tend to be absorbed much faster than

small shocks. In Figures 3 and 4 we display the GIRFs for both sub-periods,

and it is visually evident that larger shocks revert quicker than small shocks.
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Second, in�ation was signi�cantly more persistent in the �rst period than

in the second period. However, the magnitude of shocks is higher in the

�rst period. Figures 5 and 6 display the GIRFs for both sub-periods along

with the impulse response from the IMA models. Not surprisingly, impulse

responses for the IMA models do not die out after the second period implying

a much more persistent in�ation series.

Assuming these shocks are exogenous to the policy maker, one might

wonder what would have happened if the �model�in the second period had

been hit by shocks of the same size of the �rst period? To address this issue,

we carry out a counterfactual exercise of subjecting the second period model

to �rst period shocks. In Table 3 column four, we display in brackets the

result of deriving the impulse responses for the second period model with the

�rst period residuals. The answer appears to be that in�ation would have

been much less persistent.

As a further check we also undertake the following experiment. Residuals

in the �rst period have a standard deviation around twice as high as the

residuals in the second period. Consequently we simulate the second period

impulse responses with shocks twice as large as the benchmark and compared

results. That is, we simulated the impulse responses in the second-period

with shocks of k = 2; 6; 10 to compare with shocks of k = 1; 3; 5. The

absorption of shocks are slightly slower than using the residuals from �rst

period �the results however are qualitatively the same.
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4 Policy Implications

Mishkin (2007) amongst others reminds us that in interpreting stylized facts

about changes in in�ation dynamics, we must be cautious in interpretation

based on reduced-form relationships as they are about correlations and not

necessarily about true structural relationships. Given this caveat the reduced

form ESTAR models for the two main sample periods and the associated im-

pulse response functions suggest that economic policy was conducted in a

distinctively di¤erent manner in the two periods. In particular our estimates

support the view that the policy maker had a signi�cantly di¤erent equilib-

rium or implicit in�ation target in the two periods �approximately 4.89 %

per annum in the �rst period and 2.79% in the second.

The speed of response to shocks appears to be signi�cantly di¤erent in

the two periods. In the �rst period we estimate that �fty percent of a 2%

shock would be dissipated within �ve quarters whilst in the second period

this dissipation rate would take less than 2 quarters. On the other hand,

in the �rst period we estimate a 10% shock would take 3 quarters for 50%

dissipation whilst in the second period 50% would be fully dissipated within

the quarter. Consequently the ESTARmodel estimates suggest that in�ation

is now much less persistent than in the �rst period.

This is also the conclusion of Stock and Watson based on their reduced

form model. However, their model attributes the decrease in the persistence

of in�ation to a reduction in the variance of the permanent component of

in�ation relative to the transitory component. One interpretation, from the

perspective of the ESTAR model, is that the variance of shocks was greater

in the �rst period than in the second. Furthermore policy makers responded
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less aggressively to shocks in the �rst period. In particular their response

to shocks of small magnitude was more benign, than was the case in the

second period �or would have been the case in the second period if shocks

had been of a similar magnitude to those in the �rst period. In this respect

the ESTAR estimates are consistent with �rst, the good-luck hypothesis, that

is that shocks were smaller in the second period (Stock and Watson, 2003;

Ahmed, Levin, and Wilson, 2004), and second, improved policymaking in

the sense that the Fed had a lower implicit in�ation target and responded

more rapidly to in�ation shocks. This change in policy makers preferences

between the two periods suggests that the more favorable in�ation scenario

can persist in the future, that is lower in�ation is not simply due to good

luck.

The opportunistic approach to disin�ation set out by Orphanides and

Wilcox (2002) and Aksoy et al. (2006) provides a general framework that

allows in�ation to move within a band and can motivate the ESTAR model

in both periods. However to explain why the target in the second period

appears to have been lower on average and the speed of response to shocks

faster we have to look elsewhere.

Nelson (2005) (also see Romer and Romer, 2002) argues for the monetary

policy neglect hypothesis whereby policy makers took a non-monetary view

of the in�ation process. We can interpret this as implying both a slower

response to in�ation shocks and possibly a higher equilibrium or implicit

in�ation target.17

17Nelson stresses that a satisfactory explanation must be consistent with the estimated

monetary policy reaction function. However although we agree with this observation recent

empirical evidence suggests such policy responses are nonlinear rather than linear as he
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Orphanides (2003) and Sargent (1999) provide di¤erent reasons to Nelson

and Mishkin as to why the implicit in�ation target might have been higher in

the �rst period and Sargent also provides a rationale as to why the response to

shocks might have been slower. Orphanides suggests that the policy makers

were too optimistic about the economy�s productive potential so that ex post

they appeared to follow excessively expansionary monetary policy. Sargent

(1999) suggests that policy makers acted on the basis that there was a long

run trade-o¤ between in�ation and real output. Moreover, their perception

was that this trade-o¤ had worsened so that increasing in�ation rates were

required to obtain a given real output gain. This led to higher levels of

in�ation (and hence higher average in�ation in the period) before the policy

maker was forced to de�ate.

With similar implications Mishkin (2007) argues that since the late 1970s,

the Federal Reserve has increased their commitment to price stability, in both

words and actions, and has pursued more-aggressive monetary policy to con-

trol in�ation. He also argues that such policies have helped anchor in�ation

expectations so that any given shock to in�ation will now have a much less

persistent e¤ect on actual in�ation. The impact of a shock on in�ation dy-

namics is, of course, not independent of the policy response, that is, the

coe¢ cient on in�ation in the Taylor rule. However it is also clear that the

dynamic response of in�ation to a shock, for a given policy response, is also

not independent of expectations of in�ation in any structural model of the in-

�ationary process. From the perspective of anchoring in�ation expectations

as stressed in Mishkin it is informative to note that the Federal Reserve of

Cleveland�s daily ten year ahead series in�ation expectations derived from

assumes in his informative paper.
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real and nominal bonds (TIPS) between 2005 and 2007, whether in raw or

adjusted form, appears to exhibits a unit root.18 This would suggest that

long term in�ation expectations are not anchored. However visual inspection

of the series clearly suggest otherwise - in�ation expectations remaining in

a relatively narrow range over the period (see �gures 7-8) as opposed to the

drift in a unit root process. In fact, as displayed in Table 4, an ESTAR

model parsimoniously captures the dynamics of these expectations series il-

lustrating their mean reverting property. This then is consistent with long

run in�ation expectations being anchored.

5 Conclusions

There is, by now, a vast literature that has focused on regime changes in the

conduct of monetary policy in the US. In particular, the issue of whether the

Great Moderation is a result of dramatic changes in monetary policy (changes

in coe¢ cients) or a re�ection of the covariance structure of disturbances. In

this paper we have sought to examine a particularly unpalatable feature of

in�ation dynamics in the US, namely it�s unit root property. We undertake

a comprehensive array of statistical tests to show that ESTAR models par-

simoniously capture the dynamic behavior of US in�ation in the post-war

18We consider two daily series for in�ation expectations (TIPS1, TIPS2) obtained from

the Federal Reserve of Cleveland over the period 01/01/2005 - 07/16/2007. The table

below displays the unit root and stationarity tests for each of the two series where an

asterisk denotes rejection of the null.

Series ADF PP KPSS

TIPS1 �2:19 �2:24 0:54�

TIPS2 �2:66 �2:79 0:85�
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period. Our results show that whilst in�ation is a near unit root process

when close to target or equilibrium, it is globally mean reverting. This prop-

erty is, a priori, surely more appealing from an economic perspective than

the unit root alternative. Moreover, the implied dynamics, as derived from

the impulse response functions, indicate distinctive speeds of adjustment

between the generally accepted policy regimes. Overall, the results deliver

adjustment speeds that are much faster and plausible than is implied in the

extant literature.

The model estimates imply that in�ation persistence is less and the im-

plicit in�ation target or equilibrium in�ation rate lower after 1982 than in

the earlier period. These appear consistent with monetary policies been fol-

lowed in each of the two distinct periods within the general framework of

the opportunist policy maker. The model estimates and derived impulse re-

sponse functions are consistent with the hypothesis that policy makers in the

second period were fortunate to face shocks of lower variance than in the �rst

period but also responded more aggressively to these shocks in the context

of a lower in�ation target. Hence, rather than the usual characterization of

good policy/good luck in the literature, our results support the view that

monetary policy was, in the second period, better in the sense of targeting

lower in�ation, but also bene�ted from good luck.

25



REFERENCES

Acosta, Aparicio F.M. and Granger, Clive W.J. �A Linearity Test

for Near-Unit Root Time Series.�Discussion paper no. 95-12. San Diego:

Univ. California, Dept. Econ, 1995.

Ahmed, Shaghil; Levin, Andrew and Wilson, Beth Anne. �Re-

cent U.S. Macroeconomic Stability: Good Policies, Good Practices, or Good

Luck?�The Review of Economic and Statistics, 2004, 86(3), pp. 824-32.

Aksoy, Yunus; Orphanides, Athanasios; Small, David; Weiland,

Volker and Wilcox, David. �A Quantitative Exploration of the Oppor-

tunistic Approach to Disin�ation.� Journal of Monetary Economics, 2006,

53, pp. 1877-1893.

Baille, Richard T.; Han, Y.W. and Kwon, T.G. �Further Long

Memory Properties of In�ationary Shocks.� Southern Economic Journal,

2002, 68, pp. 496-510.

Baillie, Richard T; Chung, Ching Fan, and Tieslau, Margie

A. �Analysing In�ation by the Fractionally Integrated ARFIMA-GARCH

Model.�Journal of Applied Econometrics, 1996, 11(1), pp. 23-40.

Ball, Laurence and Cecchetti, Stephen G. �In�ation and Uncer-

tainty at Short and Long Horizons.�Brookings Papers on Economic Activity,

1990, 2, pp. 15-54

Barsky, Robert B. �The Fisher Hypothesis and the Forecastability and

Persistence of In�ation.�Journal of Monetary Economics, 1987, 19, pp. 3-24.

Baum, Christopher E.; Barkoulas, John T. and Caglayan, Mustafa.

�Persistence in International In�ation Rates.�Southern Economic Journal,

1999, 65, pp. 900-13.

26



Bernanke, Ben S. �Constrained Discretion andMonetary Policy,�speech

at New York University, 2003.

Bernanke, Ben S. and Mishkin, Frederic. �In�ation Targeting: A

New Framework for Monetary Policy?� Journal of Economic Perspectives,

1997, 11, pp. 97-116.

Brunner, Allan D. and Hess, Gregory D. �Are Higher Levels of

In�ation Less Predictable? A State-Dependent Conditional Heteroskedastic-

ity Approach.�Journal of Business and Economic Statistics, 1993, 11, pp.

187-97.

Byers, David; and Peel, David A. �Non-linear Dynamics of In�ation

in High In�ation Economies.�Manchester School, 2000, 68, pp. 23-37.

Cecchetti, Stephen G.; Hooper, Peter; Kasman, Bruce C.; Schoen-

holtz, Kermit L. and Watson, Mark W. �Understanding the Evolving

In�ation Process,�presentation at the U.S. Monetary Policy Forum, Wash-

ington, D.C., March 9, 2007.

Cheung, Yin Wong and Lai, Kon S. �A Fractional Cointegration

Analysis of Purchasing Power Parity.� Journal of Business and Economic

Statistics, 1993, 11(1), pp. 103-112.

Clarida, Richard; Gali, Jordi and Gertler, Mark. �Monetary Pol-

icy Rules and Macroeconomic Stability: Evidence and Some Theory,�Quar-

terly Journal of Economics, 2000, 115, pp. 147�180.

Cochrane, John H. �In�ation Determination with Taylor Rules: A

Critical Review.�NBER Working paper 13409, 2007.

Cogley, Timothy W. and Sargent, Thomas J. �Evolving Post-War

U.S. In�ation Dynamics.� in Ben S. Bernanke and Kennedth Rogo¤, eds.,

27



NBER Macroeconomics Annual , Vol. 16. Cambridge MIT Press, 2002, pp.

331-73.

Cogley, Timothy W. and Sargent, Thomas J. �In�ation-Gap Per-

sistence�in the U.S. Federal Reserve Bank of New York Sta¤Reports, 2007.

Cogley, Timothy W. and Sbordone, Aargia M. �Trend In�ation

and In�ation Persistence in the New Keynesian Phillips Curve.�Federal Re-

serve Bank of New York Sta¤ Reports, 2006.

Davidson, Russell and Flachaire, Emmanuel. �The Wild Boot-

strap, Tamed at Last.�Queen�s Institute for Economic Research Working

Paper No. 1000, 2001.

Diebold, Francis X. and Inoue, Atsushi. �Long Memory and Regime

Switching.�Journal of Econometrics, 2001, 105, pp. 131-59.

Diebold, Francis X.; Husteded, Steven and Rush, Mark. �Real

Exchange Rates Under the Gold Standard.�Journal of Political Economy,

1991, 99, pp. 1252-1271.

Dolado, Juan; Dolores, Ramon M. and Ruge-Murcia, Francisco

R. �Nonlinear Monetary Policy Rules: Some New Evidence for the U.S.�

Studies in Nonlinear Dynamics and Econometrics, 2004, 8, pp. 1155-75.

Dumas, Bernard. �Dynamic Equilibrium and the Real Exchange Rate

in a Spatially Separated World.�Review of Financial Studies, 1992, 5, pp.

153-80.

Eitrheim, Oyvind and Teräsvirta, Timo. �Testing the Adequacy of

Smooth Transition Autoregressive Models.�Journal of Econometrics, 1996,

74, pp. 59�75.

Enders, Walter and Granger, Clive W.J. �Unit Root Tests and

28



Asymmetric Adjustment with an Example Using the Term Structure of In-

terest Rates.� Journal of Business and Economic Statistics, 1998, 16, pp.

304�11.

Escribano, Alvaro and Jorda, Oscar. �Improved Testing and Spec-

i�cation of Smooth Transition Regression Models.� in Nonlinear Time Se-

ries Analysis of Economic and Financial Data, Kluwer Academic Publishers,

USA, 1999.

Franses, Philip Hans; Ooms, Marius and Bos, Charles S. �Long

Memory and Level Shifts: Re-analyzing In�ation Rates.� Empirical Eco-

nomics, 1999, 24, pp. 427-449.

Gallant A.Ronald; Rossi, Peter E. and Tauchen, George. �Non-

linear Dynamic Structures.�Econometrica, 1993, 61, pp. 871-908.

Goncalves, Silvia and Kilian, Lutz. �Bootstrapping Autoregressions

with Conditional Hetereroskedasticity of Unknown Form.�Mimeo; Univer-

sity of Michigan, 2002.

Granger, CliveW.J. and Joyeux, R. �An Introduction to Long Mem-

ory Time Series Models and Fractional Di¤erencing.�Journal of Time Series

Analysis, 1980, 1, pp. 15-29.

Granger,Clive W.J. and Hyung, Namwon. �Occasional Structural

Breaks and Long Memory.�UCSD Economics Discussion Paper 99-14, 1999.

Gregoriou, Andros and Kontonikas, Alexandros. �In�ation Tar-

geting and the Stationarity of In�ation: New Results From an ESTAR Unit

Root Test.�Bulletin of Economic Research, 2006a, 58(4), pp. 309-322.

Gregoriou Andros and Kontonikas, Alexandros. �Modeling the

Non-linear Behaviour of In�ation Deviations From the Target.�Mimeo Uni-

29



versity of Glasgow, 2006b.

Harris, David; McCabe, Brendan and Leybourne, Stephen. �Some

Limit Theory for Autocovariances Whose Order Depend on Sample Size.�

Econometric Theory, 2003, 19, pp. 829�64.

Harvey, David and Leybourne, Stephen. �Testing for Time Series

Linearity.�Econometrics Journal, 2007, 10, pp. 149�165.

Hassler, Uwe, and Wolters, Jurgen. �Long Memory in In�ation

Rates: International Evidence.� Journal of Business and Economic Statis-

tics, 1995, 13(1), pp. 37-45.

Ireland, Peter N. �Changes in the Federal Reserve�s In�ation Target:

Causes and Consequences.� Journal of Money, Credit and Banking forth-

coming, 2005.

Kapetanios, George; Shin, Yongcheol and Snell, Andy. �Testing

for a Unit Root in the Nonlinear STAR Framework.�Journal of Economet-

rics, 2003, 112, pp. 359-79.

Kilian, Lutz and Zha, Tao. �Quantifying the Uncertainty About the

Half-Life of Deviations from PPP.�Journal of Applied Econometrics, 2002,

17, pp. 107-25.

Kiliç, Rehim. �A Testing Procedure for a Unit Root in the STAR

Model.�Working Paper, School of Economics, Georgia Institute of Technol-

ogy, 2003.

Koop, Gary; Pesaran, Hashem and Potter, Simon M. �Impulse

Response Analysis in Nonlinear Multivariate Models.�Journal of Economet-

rics, 1996, 74, pp. 119-47.

Mammen, Enno. �Bootstrap andWild Bootstrap for High Dimensional

30



Linear Models.�Annals of Statistics, 1993, 21, pp. 255-85.

Martin, Christhoper and Milas, Costas. �Testing the Opportunistic

Approach to Monetary Policy.�Keele Discussion Paper Series, 2007.

Michael, Panos; Nobay, A.Robert and Peel, David A. �Transac-

tions Costs and Nonlinear Adjustment in Real Exchange Rates: an Empirical

Investigation.�Journal of Political Economy, 1997, 105(4), pp. 862-79.

Mishkin, Frederic S. �In�ation Dynamics.�National Bureau of Eco-

nomic Research. Working Paper 13147, 2007.

Murray, Christian J. and Papell, David H. �The Purchasing Power

Parity Persistence Paradigm.�Journal of International Economics, 2002, 56,

pp. 1-19.

Nelson, Edward. �The Great In�ation of the Seventies: What Really

Happened?�Advances in Macroeconomics, 2005, 5(1), Article 3.

Nelson, Charles R. and Schwert, G.W. �Short-Term Interest Rates

as Predictors of In�ation. On Testing the Hypothesis That the Real Rate of

Interest Is Constant.�American Economic Review, 1977, 67, pp. 478-86.

O�Reilly, Gerard and Whelan, Karl. �Has Euro-area In�ation Per-

sistence Changed Over Time?�The Review of Economic and Statistics, 2005,

87, pp. 709-20.

Orphanides, Athanasios. �Monetary Policy Rules, Macroeconomic

Stability and In�ation: A View From the Trenches.� Journal of Money,

Credit and Banking, 2004, 36(2), pp. 151-75.

Orphanides, Athanasios and Wilcox, David W. �The Opportunis-

tic Approach to Disin�ation.�International Finance, 2002, 5(1), pp. 47-71.

Paya, Ivan and Peel, David A. �A New Analysis of the Determinants

31



of the Real Dollar-Sterling Exchange Rate: 1871-1994.�Journal of Money,

Credit and Banking, 2006, 38, pp. 1971-90.

Pippenger, Michael K. and Goering, Gregory. �A Note on the

Empirical Power of Unit Root Tests Under Threshold Processes.�Oxford

Bulletin of Economics and Statistics, 1993, 55, pp. 473-81.

Pivetta, Frederic and Reis, Ricardo. �The Persistence of In�ation

in the United States.�Journal of Economic Dynamics and Control, 2007, 31,

pp. 1326-58.

Rogo¤, Kenneth. �The Purchasing Power Parity Puzzle.�Journal of

Economic Literature, 1996, 34, pp. 647-68.

Romer, Christina D. and Romer, David H. �The Evolution of Eco-

nomic Understanding and Postwar Stabilization Policy.�in Rethinking Stabi-

lization Policy, Federal Reserve Bank of Kansas City, Symposoum Proceed-

ings, August 29-31, 2000 Jackson Hole Conference, 2003, pp. 11-78.

Sbordone, Aargia M. �In�ation Persistence: Alternative Interpreta-

tions and Policy Interpretations.�Sta¤Report 286, Federal Reserve Bank of

New York, 2007.

Sargent, Thomas J. �The Conquest of American In�ation.�Princeton,

N.J. Princeton University Press, 1999.

Stock, James H. and Watson, Mark W. �Has the Business Cycle

Changed? Evidence and Explanations.� Federal Reserve Bank of Kansas

City symposium Monetary Policy and Uncertainty, Jackson Hole, Wyoming,

2003.

Stock, James H. and Watson, Mark W. �Why Has U.S. In�ation

Become Harder to Forecast?�Journal of Money, Credit and Banking, 2007,

32



39, pp. 3-34.

Terasvirta, Timo. �Speci�cation, Estimation and Evaluation of Smooth

Transition Autoregressive Models.�Journal of the American Statistical As-

sociation, 1994, 89, pp. 208�18.

van Dijk, Dick, Terasvirta, Timo and Franses, Philip Hans.

�Smooth Transition Autoregressive Models �A Survey of Recent Develope-

ments.�Econometric Reviews, 2002, 21, pp. 1-47.

Woodford, Michael. �How Important Is Money in the Conduct of

Monetary Policy.�Columbia University, 2006.

Wu, C.F. Je¤. �Jackknife, Bootstrap and Other Resampling Methods

in Regression Analysis (with discussion).�Annals of Statististics, 1986, 14,

pp. 1261-1350.

33



Table 1a. Results for estimated ESTAR model

Estimated model: yt = a+B(L)yt�1e�
(yt�1�a)
2
+ �t

PCE in�ation 1947Q1-1982Q4

a �1 �2 
 s R2

0.012 0.72 1� �1 0.064 0.0047 0.66

(0.00) (0.08) (0.024)

[0.048]

GARCH: ' = 0:15 � = 0:78

Diagnostics: JB = 0:01 Q(1) = 0:76

Q(4) = 0:65 A(1) = 0:89 A(4) = 0:43

PCE in�ation 1983Q1-2004Q4

a �1 �2 
 s R2

0.0069 0.73 1� �2 0.188 0.0025 0.35

(0.00) (0.11) (0.065)

[0.012]

Diagnostics: JB = 0:96 Q(1) = 0:46

Q(4) = 0:22 A(1) = 0:39 A(4) = 0:58

Notes: Figures in brackets are the Newey-West standard errors.

s denotes standard error of the regression Q(l), A(l) and JB are

the p�values of the Eitrheim and Terasvirta (1996) LM test for

autocorrelation in nonlinear series for l number of lags; the LM test

for ARCH e¤ects up to l lags, and the normality Jarque-Bera test,

respectively. Figures in square brackets represent the p�value

of the 
 parameter obtained through Monte Carlo simulation.
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Table 1b. ESTAR estimates for di¤erent regime policies

Estimated Model: yt = a+B(L)yt�1e�
(yt�1�a)
2
+ �t

Period a �1 �2 
 s R2

1960.1-1982.4 0.013 0.84 1� �2 0.045 0.0030 0.83

(0.00) (0.11) [0.10]

1966.1-1979.2 0.016 1 0.060 0.0033 0.70

(0.00) [0.12]

1980.1-1995.2* 0.014 0.70 1� �2 0.048 0.0030 0.71

(0.00) (0.13) [0.08]

1983.1-2004.4 0.0069 0.75 1� �2 0.187 0.0026 0.30

(0.000) (0.11) [0.02]

1987.1-2004.4 0.007 0.75 1� �2 0.137 0.0025 0.33

(0.000) (0.11) [0.08]

Notes: An asterisk denotes signi�cant autocorrelation and Newey-West standard errors

Square brackets denote p-values using Monte Carlos simulation under the unit root null

35



Table 2. Results for estimated ESTAR model

Estimated model: yt = a+ a�d82 + [�1(yt�1 � a� a�d82)

+ �2(yt�2 � a� a�d82)]e(�
�

�d82)(yt�1�a�a�d82)2

US PCE in�ation 1953Q1-2004Q4

a a� �1 �2 
 
� s R2

0.013 -0.006 0.74 1� �1 0.028 0.75 0.003 0.78

(0.001) (0.0017) (0.08) (0.011) (0.25)

[0.10] [0.09] [0.00]

Diagnostics: Q(1) = 0:61 Q(4) = 0:25

A(1) = 0:16 A(4) = 0:003 JB = 0:01

Notes: Figures in square brackets represent the p�value of the t statistics obtained

through wild Bootstrap simulation.
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Table 3. Generalized Impulse Response Function

Time Period

Shock size Absorption(1� x) 1947� 1982 1983� 2004

k = 1 50% 5 2(2)

75% 12 5(4)

k = 3 50% 5 0(0)

75% 12 4(1)

k = 5 50% 3 0(0)

75% 10 3(0)

37



Table 4. Results for estimated ESTAR model

Estimated model: yt = a+B(L)yt�1e�
(yt�1�a)
2
+ �t

TIPS1

a �1 
 s R2

0.0062 1 0.009 0.021 0.97

(0.000) (0.002)

[0.001]

ARCH ' = 0:11

Diagnostics: JB = 0:015 Q(1) = 0:50

Q(4) = 0:22 A(1) = 0:90 A(4) = 0:93

TIPS2

a �1 �2 
 s R2

0.0057 0.89 1� �1 0.013 0.049 0.95

(0.000) (0.003)

[0.001]

ARCH ' = 0:14

Diagnostics: JB = 0:00 Q(1) = 0:88

Q(4) = 0:50 A(1) = 0:64 A(4) = 0:97

Notes: Figures in brackets are the Newey-West standard errors.

s denotes standard error of the regression Q(l), A(l) and JB are

the p�values of the Eitrheim and Terasvirta (1996) LM test for

autocorrelation in nonlinear series for l number of lags; the LM test

for ARCH e¤ects up to l lags, and the normality Jarque-Bera test,

respectively. Figures in square brackets represent the p�value

of the 
 parameter obtained through Monte Carlo simulation.

38



­.02

­.01

.00

.01

.02

­.01

.00

.01

.02

.03

.04

1950 1955 1960 1965 1970 1975 1980

Residual Actual Fitted

Figure 1a. Actual, �tted in�ation, and residual series using model (1) for

the period 1947-1982.
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Figure 1b. Actual, �tted in�ation, and residual series using IMA(1,1) model

for the period 1947-1982.
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Figure 2a. Actual and �tted in�ation series along with residual using model

(1) for the period 1983-2004
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Figure 2b. Actual, �tted in�ation, and residual series using model (1) for

the period 1983-2004
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Figure 3. GIRFs First period. Solid line: 5% shock, Dotted line: 3% shock,

Triangle Line: 1% shock
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Figure 4. GIRFs Second period. Solid line: 5% shock, Dotted line: 3%

shock, Triangle Line: 1% shock
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Figure 5. Impulse Response Functions First Period. Solid lines are GIRFs

from ESTAR model, and stars lines are from IMA models.
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Figure 6. Impulse Response Functions Second Period. Solid lines are

GIRFs from ESTAR model, and stars lines are from IMA model.
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Figure 7. Expected in�ation (series Tips1) obtained from Federal Reserve

of Cleveland.
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Figure 8. Expected in�ation (series tips2) obtained from the Federal

Reserve of Cleveland.
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