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Abstract

We develop a model of the gambler’s fallacy – the mistaken belief that random

sequences should exhibit systematic reversals. We show that an individual who holds

this belief and observes a sequence of signals can exaggerate the magnitude of changes

in an underlying state but underestimate their duration. When the state is constant,

and so signals are i.i.d., the individual can predict that long streaks of similar signals

will continue – a hot-hand fallacy. When signals are serially correlated, the individual

typically under-reacts to short streaks, over-reacts to longer ones, and under-reacts to

very long ones. We explore several applications, showing, for example, that investors

may move assets too much in and out of mutual funds, and exaggerate the value of

financial information and expertise.
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1 Introduction

Many people fall under the spell of the “gambler’s fallacy,” expecting outcomes in random

sequences to exhibit systematic reversals. When observing flips of a fair coin, for example,

people believe that a streak of heads makes it more likely that the next flip will be a tail.

The gambler’s fallacy is commonly interpreted as deriving from a fallacious belief in the

“law of small numbers” or “local representativeness,” namely that a small sample should

resemble closely the underlying population. For example, people seem to believe that heads

and tails should balance even in small samples. On the other hand, people also sometimes

predict that random sequences will exhibit excessive persistence rather than reversals. While

several studies have shown the belief to be fallacious, basketball fans believe that players

have “hot hands,” being more likely than average to make the next shot when currently on

a hot streak.1

At first blush, the hot-hand fallacy appears to directly contradict the gambler’s fallacy

because it involves belief in excessive persistence rather than reversals. Several researchers

have, however, suggested that the two fallacies might be related, with the hot-hand fallacy

arising as a consequence of the gambler’s fallacy.2 Consider an investor who believes that the

performance of a mutual fund is a combination of the manager’s ability and luck. Convinced

that luck should revert, the investor underestimates the likelihood that a manager of average

ability will exhibit a streak of above- or below-average performances. Following good or bad

streaks, therefore, the investor will over-infer that the current manager is above or below

average, and so in turn will predict continuation of unusual performances.

This paper develops a model to examine the link between the gambler’s fallacy and the

hot-hand fallacy, as well as the broader implications of the fallacies for people’s predictions

and actions in economic and financial settings. In our model, an individual observes a

sequence of signals that depend on an unobservable underlying state. We show that because

1The representativeness bias is perhaps the most commonly explored bias in judgment research. Section
2 reviews evidence on the gambler’s fallacy, and a more extensive review can be found in Rabin (2002). For
evidence on the hot-hand fallacy see, for example, Gilovich, Vallone, and Tversky (1985) and Tversky and
Gilovich (1989a, 1989b). See also Camerer (1989) who shows that betting markets for basketball games
exhibit a small hot-hand bias.

2See, for example, Camerer (1989) and Rabin (2002). The causal link between the gambler’s fallacy and
the hot-hand fallacy is a common intuition in psychology. Some suggestive evidence comes from an exper-
iment by Edwards (1961) in which subjects observe a very long binary series and are given no information
about the generating process. Subjects seem, by the evolution of their predictions over time, to come to
believe in a hot hand. Since the actual generating process is i.i.d., this is suggestive that a source of the hot
hand is the perception of too many long streaks.
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of the gambler’s fallacy, the individual is prone to exaggerate the magnitude of changes in

the state, but underestimate their duration. We characterize the individual’s predictions

following streaks of similar signals, and determine when a hot-hand fallacy can arise. We

study two applications to investor behavior: the movement of assets in and out of mutual

funds, and the investors’ willingness to pay for financial information.

While providing extensive motivation and elaboration in Section 2, our full model is

presented here. An individual observes a sequence of signals whose probability distribution

depends on an underlying state. The signal st in Period t = 1, 2, .. is

st = θt + εt, (1)

where θt is the state and εt an i.i.d. normal shock with mean zero and variance σ2
ε > 0. The

state evolves according to the auto-regressive process

θt = µ + ρ(θt−1 − µ) + ηt, (2)

where µ is the long-run mean, ρ ∈ [0, 1) the persistence parameter, and ηt an i.i.d. normal

shock with mean zero, variance σ2
η, and independent of εt. As an example that we shall

return to often, consider a mutual fund run by a team of managers. We interpret the signal

as the fund’s return, the state as the managers’ average ability, and the shock εt as the

managers’ luck. Assuming that the ability of any given manager is constant over time, we

interpret 1− ρ as the rate of managerial turnover, and σ2
η as the dispersion in ability across

managers.

We model the gambler’s fallacy as the mistaken belief that the sequence {εt}t≥1 is not

i.i.d., but rather exhibits reversals: according to the individual,

εt = ωt − αρ

∞∑

k=0

δk
ρεt−1−k, (3)

where the sequence {ωt}t≥1 is i.i.d. normal with mean zero and variance σ2
ω, αρ ≡ αρ,

and δρ ≡ δρ, for some α, δ ∈ [0, 1).3 Intuitively, consistent with the gambler’s fallacy, the

individual believes that high realizations of εt′ in Period t′ < t make a low realization more

likely in Period t. The parameter αρ ∈ [0, 1) measures the strength of the effect, while

3We set εt = 0 for t ≤ 0, so that all terms in the infinite sum are well defined.
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δρ ∈ [0, 1) measures the relative influence of realizations in the recent and more distant

past. We assume that (αρ, δρ) are linear functions of ρ. Our motivation for doing so is our

interpretation of ρ combined with the notion that people expect a small sample to resemble

closely the underlying population only when all elements in the sample are drawn from the

same intrinsic distribution. This is the case, for example, for the sample of performances

of a fund manager whose ability is constant over time. But we assume that people do

not structure the world as demanding forms of mean reversion across distributions; a good

performance by one manager, for example, does not make another manager due for a bad

performance next month. If managers turn over frequently (i.e., ρ is small) therefore, the

gambler’s fallacy has a small effect.4 We develop and motivate these foundations in greater

detail in Section 2. For expositional ease, from now on we follow the convention in the

literature of referring to an individual subject to the gambler’s fallacy (α > 0) as “Freddy,”

and to a Bayesian (α = 0) as “Tommy.”5

In Section 3 we examine how Freddy uses the sequence of past signals to make inferences

about the underlying parameters and to predict future signals. We assume that Freddy infers

as a fully rational Bayesian and fully understands the structure of his environment, except

for a mistaken and dogmatic belief that α > 0. From observing the signals, Freddy infers

both the underlying state θt and the values of any parameters of his model (i.e., σ2
η, ρ, σ2

ω, µ)

about which he is uncertain.

When Freddy is certain about all model parameters, his inference about unobservable

variables can be treated using standard tools of recursive (Kalman) filtering, where the

gambler’s fallacy essentially expands the state vector to include not only the state θt but also

a statistic of past luck realizations. When Freddy is uncertain about parameters, recursive

filtering can be used to evaluate the likelihood of signals conditional on parameters. An

appropriate version of the law of large numbers then implies that after observing many

signals, Freddy converges with probability one to parameter values that maximize a limit

likelihood. While the maximum likelihood when α = 0 leads Tommy to limit posteriors

corresponding to the true parameter values, Freddy’s abiding belief that α > 0 leads him

generally to false limit posteriors. Identifying when and how these limit beliefs are wrong is

the crux of our analysis.

4An earlier version of this paper (Rabin and Vayanos (2005)) assumes that (αρ, δρ) are independent of ρ,
and derives results of a similar flavor as long as δρ < ρ.

5Freddy made his first appearance in Rabin (2002)’s model of the law of small numbers. We relate our
work to Rabin in Section 2.
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In Section 4 we consider the case where signals are i.i.d. This case can arise either because

σ2
η = 0 or ρ = 0, e.g., there is either no variance in managerial ability or all managers are

replaced by new ones in each period. If Freddy is initially uncertain about the values of all

parameters, then irrespective of whether σ2
η = 0 or ρ = 0, he converges to the belief that

ρ = 0. Under this belief he predicts the signals correctly as i.i.d., despite the gambler’s

fallacy. The intuition is that he views each signal as drawn by a new distribution, e.g.,

new managers run the fund in each period. Therefore, his belief that any given manager’s

performance should average out over multiple periods has no effect.

We next assume that Freddy has prior knowledge that ρ > 0, e.g., he is aware that

managers stay in the fund for more than one period. This case is consistent with signals

being i.i.d. as long as σ2
η = 0. Ironically, Freddy is worse off with prior knowledge because

he cannot converge to the belief ρ = 0, which, while incorrect, enables him to predict the

signals correctly. Instead, he converges to the smallest value of ρ to which he gives positive

probability. He also converges to a positive value of σ2
η, believing falsely that managers differ

in ability, so that (given turnover) there is variation over time in average ability. This belief

helps him explain the incidence of streaks despite the gambler’s fallacy: a streak of high

returns, for example, can be readily explained through the belief that good managers might

have joined the fund recently. Of course, Freddy thinks the streak might also have been due

to luck, and expects a reversal. We show that the expectation of a reversal dominates for

short streaks, but because reversals that do not happen make Freddy more confident the

managers have improved, he expects long streaks to continue.

In Section 5 we consider the case where signals are serially correlated. As in the i.i.d. case,

Freddy underestimates ρ and overestimates σ2
η. He does not converge, however, all the way

to ρ = 0 because he must account for the signals’ serial correlation. Because he views shocks

to the state as overly large in magnitude (large σ2
η), he treats signals as very informative,

and tends to over-react to streaks. For very long streaks, however, there is under-reaction

because Freddy’s underestimation of ρ means that he views the information learned from

the signals as overly short-lived. Under-reaction also tends to occur following short streaks

because of the basic gambler’s fallacy intuition – Freddy expects luck to reverse.

In summary, Sections 4 and 5 confirm the oft-conjectured link from the gambler’s to the

hot-hand fallacy and generate additional predictions. We show that the hot-hand fallacy

can arise in i.i.d. settings if individuals attribute non-zero prior probability that the state

is time-varying (σ2
η > 0). Moreover, if the fallacy arises, it does so following long streaks.
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The hot-hand fallacy always arises in non-i.i.d. settings, in the form of over-reaction relative

to the rational benchmark. Over-reaction occurs following long streaks, but there is under-

reaction for very long streaks and possibly for short ones as well.

We conclude this paper in Section 6 by exploring the implications of our model for finan-

cial decisions. We interpret signals as financial returns, and assume that Freddy allocates

wealth between a risky and a riskless asset under CARA preferences. A first application

concerns Freddy’s trading activity. When returns are i.i.d. and Freddy has prior knowledge

that ρ is bounded away from zero, he ends up believing in predictability. This false belief

can lead Freddy to trade, unlike Tommy who recognizes that there is no predictability. More

surprisingly, over-trading can also occur when there is true predictability and Freddy has no

prior knowledge. The intuition is that Freddy views signals as overly informative about the

state but treats the information as short-lived. Thus, his response to news is to make a large

trade and reverse it shortly afterwards. These results could be relevant for understanding

the large trading volume in actual markets and the large flows in and out of mutual funds.

A second application concerns the willingness to pay for financial information. Because

Freddy can end up believing in predictability even in i.i.d. settings, he can overpay for

information on past returns. He can also exaggerate the value of financial experts if he

believes that the experts’ advantage is to observe past returns. This could help explain

why people invest in actively-managed funds in spite of the evidence that these funds do not

outperform their market benchmarks. In Section 6 we argue that our model could also speak

to other finance puzzles such as the equity-premium puzzle and the presence of momentum

and reversals in stock returns.

2 The Model

Our model is fully described by Eqs. (1) to (3) presented in the Introduction. In this section

we motivate the model by drawing the connection with the experimental evidence on the

gambler’s fallacy. A difficulty with using this evidence is that most experiments concern

sequences that are both binary and i.i.d., such as coin flips. Our goal, by contrast, is to ex-

plore the implications of the gambler’s fallacy in richer settings. Indeed, since our prediction

is that Freddy will always come to believe the world is non-i.i.d., a theory of his beliefs in

this perceived setting is essential. The experimental evidence gives little direct guidance as

5



to how the gambler’s fallacy would manifest itself in non-binary, non-i.i.d. settings. In this

section, however, we make the case that our model represents a natural extrapolation of the

“logic” underlying the behavior of the experimental subjects to richer settings. Of course,

any such extrapolation has an element of arbitrariness to it. But, if nothing else, our speci-

fication of the gambler’s fallacy in the new settings can be viewed as a working hypothesis

about the broader empirical nature of the phenomenon that both highlights features of the

phenomenon that seem to matter and generates testable predictions for experimental and

field research.

Experiments documenting the gambler’s fallacy are mainly of three types: production

tasks, where subjects are asked to produce sequences that look to them like random sequences

of coin flips, recognition tasks, where subjects are asked to identify which sequences look like

coin flips, and prediction tasks, where subjects are asked to predict the next outcome in

coin-flip sequences. In all types of experiments, the typical subject identifies a switching

(i.e., reversal) rate greater than 50% as indicative of random coin flips.6 The most carefully

reported data for our purposes comes from the production-task study of Rapoport and

Budescu (1997). Using their Table 7, we estimate in Table 1 below the subjects’ assessed

probability that the next flip of a coin will be heads given the last three flips.7

According to Table 1, the average effect of changing the most recent flip from heads

(H) to tails (T) is to raise the probability that the next flip will be H from 40.2% (=
30.1%+38.1%+41.1%+51.5%

4
) to 59.8%, i.e., an increase of 19.6%. This corresponds well to the

6See Bar-Hillel and Wagenaar (1991) for a review of the literature, and Rapoport and Budescu (1992,1997)
and Budescu and Rapoport (1994) for more recent studies. The experimental evidence has some shortcom-
ings. For example, most prediction-task studies report the fraction of subjects predicting a switch but not
the subjects’ assessed probability of a switch. Thus, it could be that the vast majority of subjects predict a
switch, and yet their assessed probability is only marginally larger than 50%. Even worse, the probability
could be exactly 50%, since under that probability subjects are indifferent as to their prediction.

Some prediction-task studies attempt to measure assessed probabilities more accurately. For example,
Gold and Hester (1987) find evidence in support of the gambler’s fallacy in settings where subjects are
given a choice between a sure payoff and a random payoff contingent on a specific coin outcome. Supporting
evidence also comes from settings outside the laboratory. For example, Clotfelter and Cook (1993) and Terrell
(1994) study pari-mutuel lotteries, where the winnings from a number are shared among all people betting
on that number. They find that people avoid systematically to bet on numbers that won recently. This is a
strict mistake because the numbers with the fewest bets are those with the largest expected winnings.

7Rapoport and Budescu report occurrences of short sequences of heads (H) and tails (T) within the
larger sequences (of 150 elements) produced by the subjects. To translate these occurrences into conditional
probabilities, we use relative frequencies: for example, we estimate the probability of H conditional on the
sequence HHH as the ratio of occurrences of HHHH to the sum of occurrences of HHHH and HHHT. This
represents the fraction of the time that subjects chose to repeat H after HHH. We believe that this fraction
is a good measure of the subjects’ assessed probability: for example, a subject believing that HHH should
be followed by H with 40% probability could be choosing H after HHH 40% of the time when constructing
a random sequence.
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3rd-to-last 2nd-to-last Very last Prob. next will be H (%)

H H H 30.1

T H H 38.1

H T H 41.1

H H T 48.5

H T T 61.9

T H T 58.9

T T H 51.5

T T T 69.9

Table 1: Assessed probability that the next flip of a coin will be heads (H) given the last
three flips being heads or tails (T). Based on Rapoport and Budescu (1997), Table 7, p. 613.

general stylized fact in the literature that subjects tend to view randomness in coin-flip

sequences as corresponding to a switching rate of 60% rather than 50%. Table 1 also shows

that the effect of the gambler’s fallacy is not limited to the most recent flip. For example, the

average effect of changing the second most recent flip from H to T is to raise the probability

of H from 43.9% to 56.1%, i.e., an increase of 12.2%. The average effect of changing the

third most recent flip from H to T is to raise the probability of H from 45.4% to 54.6%, i.e.,

an increase of 9.2%.

How would a believer in the gambler’s fallacy, exhibiting behavior such as in Table 1,

form predictions in non-binary, non-i.i.d. settings? Our extrapolation approach consists in

viewing the richer settings as combinations of coins. We first consider a setting that is non-

binary but i.i.d. Suppose that the signal Freddy is observing in each period is the sum of a

large number of independent coin flips, where we set H=1 and T=-1. For example, with 100

coins, Freddy is observing a signal between 100 and -100, and a signal of 10 means that 55

coins came H and 45 came T. Suppose that Freddy applies his gambler’s fallacy reasoning to

each of the coins, and his beliefs are as in Table 1. Then, after a signal of 10, he assumes that

the 55 H coins have probability 40.2% to come H again, while the 45 T coins have probability

59.8% to switch to H. Thus, he expects on average 40.2% × 55 + 59.8% × 45 = 49.02 coins

to come H, and this translates to an expectation of 49.02 − (100 − 49.02) = −1.96 for the

next signal.

The “multiple-coin” story shares many of our model’s key features. To explain why, we

specialize the model to i.i.d. signals, taking the state θt to be known and constant over time.

We generate a constant state by setting ρ = 1 and σ2
η = 0 in (2). For simplicity, we also
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normalize the constant value of the state to zero. For ρ = 1, (3) becomes

εt = ωt − α

∞∑

k=0

δkεt−1−k. (4)

When the state is equal to zero, (1) becomes st = εt. Substituting into (4) and taking

expectations conditional on Period t− 1, we find

Et−1(st) = −α

∞∑

k=0

δkst−1−k. (5)

Comparing (5) with the predictions of the multiple-coin story, we can calibrate the param-

eters (α, δ) and test our model specification. Suppose that st−1 = 10 and that signals in

prior periods are equal to their average of zero. Eq. (5) then implies that Et−1(st) = −10α.

According to the multiple-coin story Et−1(st) should be -1.96, which yields α = −0.196. To

calibrate δ, we repeat the exercise for st−2 and st−3. Using the data in Table 1, we find

αδ = −0.122 and αδ2 = −0.096. Thus, the decay in influence between the most and second

most recent signal is 0.122/0.196 = 0.62, while the decay between the second and third most

recent signal is 0.092/0.122 = 0.75. The two rates are not identical as our model assumes,

but are quite close. Thus, our geometric-decay specification seems reasonable, and we can

take α = 0.2 and δ = 0.7 as a plausible calibration. With the obvious caution that this

is based on the limited evidence of one experiment, we use these values as part of a more

general calibration exercise in Section 6.4.

Several other features of our specification deserve comment. One is normality: since ωt is

normal, (4) implies that the distribution of st = εt conditional on Period t−1 is normal. The

multiple-coin story also generates approximate normality if we take the number of coins to

be large. A second feature is linearity: if we double st−1 in (5), holding other signals to zero,

then Et−1(st) doubles. The multiple-coin story shares this feature: a signal of 20 means that

60 coins came H and 40 came T, and this doubles the expectation of the next signal. A third

feature is additivity: according to (5), the effect of each signal on Et−1(st) is independent of

the other signals. Table 1 generates some support for additivity. For example, changing the

most recent flip from H to T increases the probability of H by 20.8% when the second and

third most recent flips are identical (HH or TT) and by 18.4% when they differ (HT or TH).

Thus, in this experiment the effect of the most recent flip depends only weakly on prior flips.

We next extend our approach to non-i.i.d. settings. Suppose that the signal Freddy

8



is observing in each period is the sum of a large number of independent coin flips, but

where coins differ in their probabilities of H and T, and are replaced over time randomly

by new coins. Signals are thus serially correlated: they tend to be high at times where the

replacement process brings many new coins biased towards H, and vice-versa. If Freddy

applies his gambler’s fallacy reasoning to each individual coin, then this will generate a

gambler’s fallacy for the signals. The strength of the latter fallacy, however, depends on

the rate at which coins are replaced. If, for example, Freddy believes that replacement is

frequent, then his incorrect belief that the outcomes of a given coin should average out over

time has little effect.

To relate the above story to our model, we recast it in a setting with normal distribu-

tions. Consider a mutual fund that consists of a continuum with mass one of managers, and

suppose that a random fraction 1− ρ of managers are replaced by new ones in each period.

Suppose that the fund’s return st is an average of returns attributable to each manager, and

a manager’s return is the sum of ability and luck, both normally distributed. Ability is con-

stant over time for a given manager, while luck is i.i.d. Thus, a manager’s returns are i.i.d.

conditional on ability, and the manager can be viewed as a “coin” with the probability of

H and T corresponding to ability. To ensure that aggregate variables are stochastic despite

the continuum assumption, we assume that ability and luck are identical within the cohort

of managers who enter the fund in a given period.8

We next show that if Freddy applies his gambler’s fallacy reasoning to each manager,

per our specification (4) for i.i.d. settings, then this generates a gambler’s fallacy for fund

returns, per our specification (3) for non-i.i.d. settings. Defining εt,t′ as the luck in Period t

of the cohort entering in Period t′ ≤ t, we can write (4) for a manager in that cohort as

εt,t′ = ωt,t′ − α

∞∑

k=0

δkεt−1−k,t′ , (6)

where {ωt,t′}t≥t′≥0 is an i.i.d. sequence, and εt′′,t′ ≡ 0 for t′′ < t′. To aggregate (6) for the

fund, we note that in Period t the average luck εt of all managers is

εt = (1− ρ)
∑

t′≤t

ρt−t′εt,t′ , (7)

8The intuition behind the example would be the same, but more plausible, with a single manager in each
period who is replaced by a new one with Poisson probability 1 − ρ. We assume a continuum because this
preserves normality. The assumption that all managers in a cohort have the same ability and luck can be
motivated in reference to the single-manager setting.
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since (1− ρ)ρt−t′ managers from the cohort entering in Period t′ are still in the fund. Com-

bining (6) and (7), we find

εt = ωt − αρ

∞∑

k=0

δk
ρεt−1−k, (8)

for αρ ≡ αρ, δρ ≡ δρ, and the i.i.d. sequence ωt ≡ (1 − ρ)
∑

t′≤t ρ
t−t′ωt,t′ . Eq. (8) coincides

with (3), our specification of the gambler’s fallacy in non-i.i.d. settings. The difference

between (8) and its i.i.d. counterpart (4) is that the parameters (α, δ) of the gambler’s

fallacy are multiplied by ρ. Thus, the fallacy is weaker the larger managerial turnover is.

Intuitively, with large turnover, Freddy’s belief that a given manager’s performance should

average out over multiple periods has little effect.9

The model closest to ours, and from which we build, is Rabin’s (2002) model of the law

of small numbers. In Rabin, the signal is the color of a ball drawn from an urn. Balls are

drawn with replacement, but Freddy believes that the urn is replenished only every odd

period. Thus, he overestimates the probability that the ball drawn in an even period is of a

different color than the one drawn in the previous period.

The model employed here provides a broader framework with substantial additional struc-

ture, and addresses a wider range of questions. Besides eliminating the artificial distinction

between odd and even periods, which Rabin introduces to prevent the urn from running out

of balls, we assume continuous rather than binary signals, and move beyond i.i.d. settings

because we allow the state (urn type in Rabin) to vary over time. This makes our model

suitable for analyzing the hot-hand fallacy, which involves precisely a belief in the state’s

time-variation.10 Within our model we can also examine how frequently Freddy believes that

the state is changing, and many of our results are based on his overestimation of that fre-

quency. Finally, because of the time-varying state, learning in our model continues to occur

in a stochastic steady state, while learning eventually ceases in a constant-state model.

Because of the steady state and the normal-linear structure, our model is more tractable

and suitable for applications. For example, we can characterize fully Freddy’s predictions

9Our specification of the gambler’s fallacy becomes ambiguous in the special case where Freddy believes
that while managers turn over (ρ < 1), they are all of the same ability (σ2

η = 0). In that case, he views
the returns of all managers as generated by a common distribution. Therefore, his fallacious belief on small
samples can apply equally plausibly to the common distribution as to the distribution of a single manager’s
returns. In other words, (8) is equally plausible for (α, δ) as for (αρ, δρ), i.e., ρ can be replaced by one. In
what follows we ignore this ambiguity since in almost all cases we consider Freddy entertains the possibility
that σ2

η > 0, thus viewing different managers as potentially different distributions.
10Rabin shows a static cousin of the hot-hand fallacy called fictitious variation: Freddy overestimates the

cross-sectional dispersion in urn types.
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after streaks of signals, while Rabin can do so (with numerical examples) only for short

streaks. The Finance applications in Section 6 illustrate further our model’s tractability

and applicability. We show that quantities such as trading volume and value of information

can be computed easily, and we establish several novel results on how the gambler’s fallacy

influences these quantities.

3 Inference - General Results

In this section we formulate Freddy’s inference problem, and establish some general results

that serve as the basis for the more specific results of Sections 4-6. The inference problem

consists in using the signals to learn about the underlying state θt and possibly about the

parameters of the model. Freddy’s model is characterized by the variance σ2
η of the shocks

to the state, the persistence ρ, the variance σ2
ω of the shocks affecting the signal noise, the

long-run mean µ, and the parameters (α, δ) of the gambler’s fallacy. We assume that Freddy

does not question his belief in the gambler’s fallacy, i.e., has a dogmatic point prior on (α, δ).

He can, however, learn about the other parameters. From now on, we reserve the notation

(σ2
η, ρ, σ2

ω, µ) for the true parameter values, and denote generic values by (σ̃2
η, ρ̃, σ̃2

ω, µ̃). Thus,

Freddy can learn about the parameter vector p̃ ≡ (σ̃2
η, ρ̃, σ̃2

ω, µ̃).

3.1 No Parameter Uncertainty

We start with the case where Freddy is certain that the parameter vector takes a specific

value p̃. This case is relatively simple and serves as an input for the parameter-uncertainty

case. Freddy’s inference problem can be formulated as one of recursive (Kalman) filtering.

Recursive filtering is a technique for solving inference problems where (i) inference concerns

a “state vector” evolving according to a stochastic process, (ii) a noisy signal of the state

vector is observed in each period, (iii) the stochastic structure is linear and normal.11

To formulate the recursive-filtering problem, we must define the state vector, the equation

according to which the state vector evolves, and the equation linking the state vector to the

signal. The state vector must include not only the state θt, but also some measure of the past

11For textbooks on recursive filtering see, for example, Anderson and Moore (1979) and Balakrishnan
(1987). We are using the somewhat cumbersome term “state vector” because we are reserving the term
“state” for θt, and the two concepts differ in our model.
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realizations of luck since according to Freddy luck reverses predictably. It turns out that

all past luck realizations can be condensed into an one-dimensional statistic. This statistic

can be appended to the state θt, and therefore, recursive filtering can be used even in the

presence of the gambler’s fallacy. We define the state vector as

xt ≡
[
θt − µ̃, εδ

t

]′
,

where the statistic of past luck realizations is

εδ
t ≡

∞∑

k=0

δk
ρ̃εt−k,

and v′ denotes the transpose of the vector v. Eqs. (2) and (3) imply that the state vector

evolves according to

xt = Ãxt−1 + wt, (9)

where

Ã ≡
[

ρ̃ 0
0 δρ̃ − αρ̃

]

and

wt ≡ [ηt, ωt]
′.

Eqs. (1)-(3) imply that the signal is related to the state vector through

st = µ̃ + C̃xt−1 + vt, (10)

where

C̃ ≡ [ρ̃,−αρ̃]

and vt ≡ ηt +ωt. To start the recursion, we must specify Freddy’s prior beliefs for the initial

state x0. We denote the mean and variance of θ0 by θ0 and σ2
θ,0, respectively. Since εt = 0

for t ≤ 0, the mean and variance of εδ
0 are zero. Proposition 1 determines Freddy’s beliefs

about the state in Period t, conditional on the history of signals Ht ≡ {st′}t′=1,..,t up to that

period.

Proposition 1 Conditional on Ht, xt is normal with mean xt(p̃) given recursively by

xt(p̃) = Ãxt−1(p̃) + G̃t

[
st − µ̃− C̃xt−1(p̃)

]
, x0(p̃) = [θ0 − µ̃, 0]′, (11)
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and covariance matrix Σ̃t given recursively by

Σ̃t = ÃΣ̃t−1Ã
′ −

[
C̃Σ̃t−1C̃

′ + Ṽ
]
G̃tG̃

′
t + W̃ , Σ̃0 =

[
σ2

θ,0 0
0 0

]
, (12)

where

G̃t ≡ 1

C̃Σ̃t−1C̃ ′ + Ṽ

[
ÃΣ̃t−1C̃

′ + Ũ
]
, (13)

Ṽ ≡ Ẽ(v2
t ), W̃ ≡ Ẽ(wtw

′
t), Ũ ≡ Ẽ(vtwt), and Ẽ is Freddy’s expectation operator.

Freddy’s conditional expectation evolves according to (11). This is simply a regression

equation: the state vector in Period t is regressed on that period’s signal, conditional on the

history up to Period t − 1. The regression coefficient G̃t depends on Freddy’s conditional

variance of the state Σ̃t−1. Proposition 2 shows that when t goes to∞, this variance converges

to a limit that is independent of the initial value Σ̃0.

Proposition 2 Limt→∞Σ̃t = Σ̃, where Σ̃ is the unique solution in the set of positive matri-

ces of

Σ̃ = ÃΣ̃Ã′ − 1

C̃Σ̃C̃ ′ + Ṽ

[
ÃΣ̃C̃ ′ + Ũ

] [
ÃΣ̃C̃ ′ + Ũ

]′
+ W̃ . (14)

Proposition 2 implies that there is convergence to a steady state where the conditional

variance Σ̃t is equal to the constant Σ̃, the regression coefficient G̃t is equal to the constant

G̃ ≡ 1

C̃Σ̃C̃ ′ + Ṽ

[
ÃΣ̃C̃ ′ + Ũ

]
, (15)

and the conditional expectation of the state vector xt evolves according to a linear equation

with constant coefficients. This steady state plays an important role in our analysis: it is also

the limit in the case of parameter uncertainty because Freddy eventually becomes certain

about the parameter values.

3.2 Parameter Uncertainty

We next allow Freddy to be uncertain about the parameters of his model. Parameter uncer-

tainty is a natural assumption in many settings. For example, Freddy might be uncertain

about the extent to which fund managers differ in ability (σ2
η) or turn over (ρ).
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Because parameter uncertainty eliminates the normality that is necessary for recursive

filtering, Freddy’s inference problem threatens to be less tractable. Recursive filtering can,

however, be used as part of a two-stage procedure. In a first stage, we fix each model

parameter to a given value and compute the likelihood of a history of signals conditional

on these values. Because the conditional probability distribution is normal, the likelihood

can be computed using the recursive-filtering formulas of Section 3.1. In a second stage,

we combine the likelihood with Freddy’s prior beliefs, through Bayes’ law, and determine

Freddy’s posteriors on the parameters. We show, in particular, that Freddy’s posteriors in

the limit when t goes to ∞ can be derived by maximizing a limit likelihood over all possible

parameter values.

We describe Freddy’s prior beliefs over parameter vectors by a probability measure π0

and denote by P the closed support of π0.
12 As we show below, π0 affects Freddy’s limit

posteriors only through P .

The likelihood function Lt(Ht|p̃) associated to a parameter vector p̃ and history Ht =

{st′}t′=1,..,t is the probability density of observing the signals conditional on p̃. From Bayes’

law, this density is

Lt(Ht|p̃) = Lt(s1 · · · st|p̃) =
t∏

t′=1

`t′(st′ |s1 · · · st′−1, p̃) =
t∏

t′=1

`t′(st′|Ht′−1, p̃),

where `t(st|Ht−1, p̃) denotes the density of st conditional on p̃ and Ht−1. The latter density

can be computed using the recursive-filtering formulas of Section 3.1. Indeed, Proposition 1

shows that conditional on p̃ and Ht−1, xt−1 is normal. Since st is a linear function of xt−1,

it is also normal with a mean and variance that we denote by st(p̃) and σ2
s,t(p̃), respectively.

Thus:

`t(st|Ht−1, p̃) =
1√

2πσ2
s,t(p̃)

exp

[
− [st − st(p̃)]2

2σ2
s,t(p̃)

]
,

and

Lt(Ht|p̃) =
1√

(2π)t
∏t

t′=1 σ2
s,t′(p̃)

exp

[
−

t∑

t′=1

[st′ − st′(p̃)]2

2σ2
s,t′(p̃)

]
. (16)

Freddy’s posterior beliefs over parameter vectors can be derived from his prior beliefs and

the likelihood through Bayes’ law. To determine posteriors in the limit when t goes to ∞, we

12The closed support of π0 is the intersection of all closed sets C such that π0(C) = 1. Any neighborhood
B of an element of the closed support satisfies π0(B) > 0. (Billingsley, 12.9, p.181)
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need to determine the asymptotic behavior of the likelihood function Lt(Ht|p̃). Intuitively,

this behavior depends on how well Freddy can fit the data (i.e., the history of signals) using

the model corresponding to p̃. To evaluate the fit of a model, we consider the true model

according to which the data are generated. The true model is characterized by α = 0 and

the true parameters p ≡ (σ2
η, ρ, σ2

ω, µ). We denote by st and σ2
s,t, respectively, the true mean

and variance of st conditional on Ht−1, and by E the true expectation operator.

Theorem 1

lim
t→∞

log Lt(Ht|p̃)

t
= −1

2

[
log

[
2πσ2

s(p̃)
]
+

σ2
s + e(p̃)

σ2
s(p̃)

]
≡ F (p̃) (17)

almost surely, where

σ2
s(p̃) ≡ lim

t→∞
σ2

s,t(p̃),

σ2
s ≡ lim

t→∞
σ2

s,t,

e(p̃) ≡ lim
t→∞

E [st(p̃)− st]
2 .

Theorem 1 implies that the likelihood function is asymptotically equal to

Lt(Ht|p̃) ∼ exp [tF (p̃)] ,

thus growing exponentially at the rate F (p̃). Note that F (p̃) does not depend on the specific

history Ht of signals, and is thus deterministic. That the likelihood function becomes deter-

ministic for large t follows from the law of large numbers, which is the main result that we

need to prove the theorem. The appropriate large-numbers law in our setting is one applying

to non-independent and non-identically distributed random variables. Non-independence is

because the expected values st(p̃) and st involve the entire history of past signals, and non-

identical distributions are because at any finite time we are not at the steady state.

The growth rate F (p̃) can be interpreted as the fit of the model corresponding to p̃. A

natural conjecture is that when t goes to ∞, Freddy gives weight only to values of p̃ that

maximize F (p̃) over P . Lemma 1 confirms this conjecture under Assumption 1.

Assumption 1 The set P takes the product form Pσ,ρ × Pµ, where Pσ,ρ ⊂ R3 is a set of

values for (σ̃2
η, ρ̃, σ̃2

ω) and Pµ ⊂ R a set of values for µ̃.
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Lemma 1 Under Assumption 1, the set m(P ) ≡ argmaxp̃∈P F (p̃) is non-empty. When t goes

to ∞, and for almost all histories, the posterior measure πt converges weakly to a measure

giving weight only to m(P ).

Lemma 2 characterizes the solution to the fit-maximization problem under Assumptions

1 and 2.

Assumption 2 The set Pσ,ρ satisfies the cone property

(σ̃2
η, ρ̃, σ̃2

ω) ∈ Pσ,ρ ⇒ (λσ̃2
η, ρ̃, λσ̃2

ω) ∈ Pσ,ρ, ∀λ > 0.

Lemma 2 Under Assumptions 1 and 2, p̃ ∈ m(P ) if and only if

• e(p̃) = minp̃′∈P e(p̃′) ≡ e(P )

• σ2
s(p̃) = σ2

s + e(p̃).

The characterization of Lemma 2 is intuitive. The function e(p̃) is the expected squared

difference between the conditional mean of st that Freddy computes under p̃, and the true

conditional mean. Thus, e(p̃) measures the error in Freddy’s predictions relative to the true

model, and a model maximizing the fit must minimize this error.

A model maximizing the fit must also generate the right measure of uncertainty about

the future signals. Freddy’s uncertainty under the model corresponding to p̃ is measured

by σ2
s(p̃), the conditional variance of st. This must equal to the true error in Freddy’s

predictions, which is the sum of two orthogonal components: the error e(p̃) relative to the

true model, and the error in the true model’s predictions, i.e., the true conditional variance

σ2
s .

The cone property ensures that in maximizing the fit, there is no conflict between mini-

mizing e(p̃) and setting σ2
s(p̃) = σ2

s + e(p̃). Indeed, e(p̃) depends on σ̃2
η and σ̃2

ω only through

their ratio because only the ratio affects the vector G of regression coefficients. The cone

property ensures that given any feasible ratio, we can scale σ̃2
η and σ̃2

ω to make σ2
s(p̃) equal to

σ2
s +e(p̃). The cone property is satisfied, in particular, when the set P includes all parameter

values:13

P = P0 ≡
{
(σ̃2

η, ρ̃, σ̃2
ω, µ̃) : σ̃2

η ∈ R+, ρ̃ ∈ [0, 1], σ̃2
ω ∈ R+, µ̃ ∈ R}

.

13Although Freddy considers only ρ̃ ∈ [0, 1), P0 includes ρ̃ = 1 because it is a closed set.
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Lemma 3 computes the error e(p̃). In both the lemma and subsequent analysis, we denote

matrices corresponding to the true model by omitting the tilde. For example, the true-model

counterpart of C̃ ≡ [ρ̃,−αρ̃] is C ≡ [ρ, 0].

Lemma 3 The error e(p̃) is given by

e(p̃) = σ2
s

∞∑

k=1

(Ñk −Nk)
2 + (Nµ)2(µ̃− µ)2, (18)

where

Ñk ≡ C̃(Ã− G̃C̃)k−1G̃ +
k−1∑

k′=1

C̃(Ã− G̃C̃)k−1−k′G̃CAk′−1G, (19)

Nk ≡ CAk−1G, (20)

Nµ ≡ 1− C̃

∞∑

k=1

(Ã− G̃C̃)k−1G̃. (21)

The terms Ñk and Nk can be given an intuitive interpretation. Suppose that we are in

steady state (i.e., a large number of periods have elapsed) and set ζt ≡ st − st. The shock

ζt represents the “surprise” in Period t, i.e., the difference between the signal st and its

conditional mean st under the true model. The mean st is a linear function of the history

{ζt′}t′≤t−1 of past shocks, and Nk is the impact of ζt−k, i.e.,

Nk =
∂st

∂ζt−k

=
∂Et−1(st)

∂ζt−k

. (22)

The term Ñk is the counterpart of Nk under Freddy’s model, i.e.,

Ñk =
∂st(p̃)

∂ζt−k

=
∂Ẽt−1(st)

∂ζt−k

. (23)

If Ñk 6= Nk, then the shock ζt−k affects Freddy’s mean differently than the true mean. This

translates into a contribution (Ñk − Nk)
2 to the error e(p̃). Since the sequence {ζt}t∈Z is

i.i.d., the contributions add up to the sum in (18).

The reason why (22) coincides with (20) is as follows. Because of linearity, the derivative

in (22) can be computed by setting all shocks {ζt′}t′≤t−1 to zero, except for ζt−k = 1. The

shock ζt−k = 1 raises the mean of the state θt−k conditional on Period t−k by the regression
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coefficient G1. This effect decays over time according to the persistence parameter ρ because

all subsequent shocks {ζt′}t′=t−k+1,..,t−1 are zero, i.e., no surprises occur. Therefore, the

mean of θt−1 conditional on Period t− 1 is raised by ρk−1G1, and the mean of st is raised by

ρkG1 = CAk−1G = Nk.

The reason why (19) is more complicated than (20) is that after the shock ζt−k = 1, Freddy

does not expect the shocks {ζt′}t′=t−k+1,..,t−1 to be zero. This is both because the gambler’s

fallacy leads him to expect negative shocks, and because he can converge to G̃1 6= G1, thus

estimating incorrectly the increase in the state. Because, however, he observes the shocks

{ζt′}t′=t−k+1,..,t−1 to be zero, he treats them as surprises and updates accordingly. This

generates the extra terms in (19). When α is small, i.e., Freddy is close to rational, the

updating generated by {ζt′}t′=t−k+1,..,t−1 is of second order relative to that generated by ζt−k.

The term Ñk then takes a form analogous to Nk:

Ñk ≈ C̃ÃkG̃ = ρ̃kG̃1 − αρ̃(δρ̃ − αρ̃)
k−1G̃2. (24)

Intuitively, the shock ζt−k = 1 raises Freddy’s mean of the state θt−k conditional on Period

t− k by G̃1, and the effect decays over time at the rate ρ̃k. Freddy also attributes the shock

ζt−k = 1 partly to luck through G̃2. He then expects future signals to be lower because of

the gambler’s fallacy, and the effect decays at the rate (δρ̃ − αρ̃)
k ≈ δk

ρ̃ .

We conclude this section by determining Tommy’s limit posteriors. We examine, in

particular, whether Tommy converges to the true parameter values when he initially enter-

tains all values, i.e., P = P0. Since Tommy is a Bayesian, his limit posteriors solve the

fit-maximization problem for α = 0.

Proposition 3 Suppose that α = 0.

• If σ2
η > 0 and ρ > 0, then m(P0) = {(σ2

η, ρ, σ2
ω, µ)}.

• If σ2
η = 0 or ρ = 0, then

m(P0) =





(σ̃2
η, ρ̃, σ̃2

ω, µ̃) : [σ̃2
η = 0, ρ̃ ∈ [0, 1), σ̃2

ω = σ2
η + σ2

ω, µ̃ = µ]
or [σ̃2

η = 0, ρ̃ = 1, σ̃2
ω = σ2

η + σ2
ω]

or [σ̃2
η + σ̃2

ω = σ2
η + σ2

ω, ρ̃ = 0, µ̃ = µ]



 .

Proposition 3 shows that Tommy converges to the true parameter values if σ2
η > 0 and

ρ > 0. If σ2
η = 0 or ρ = 0, however, then he remains undecided between the true model and
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a set of other models. The intuition is that in both cases signals are i.i.d. in steady state:

either because the state converges to a constant value (σ2
η = 0) or because it is not persistent

(ρ = 0). Therefore, Tommy cannot identify which of σ2
η or ρ is zero. Of course, Tommy’s

failure to converge to the true model is inconsequential because all models he converges to

predict correctly that signals are i.i.d.

4 Independent Signals

In this section we consider Freddy’s inference problem when signals are i.i.d. As pointed out

in the previous section, i.i.d. signals can be generated when σ2
η = 0 or ρ = 0. We first study

Freddy’s “free-form” inference when he initially entertains all parameter values (P = P0).

We next endow Freddy with prior knowledge on the true values of some parameters.

4.1 No Prior Knowledge

Proposition 4 characterizes Freddy’s convergent beliefs.

Proposition 4 Suppose that α > 0, and σ2
η = 0 or ρ = 0. Then e(P0) = 0 and

m(P0) = {(σ̃2
η, 0, σ̃

2
ω, µ) : σ̃2

η + σ̃2
ω = σ2

η + σ2
ω}.

Since e(P0) = 0, Freddy ends up predicting the signals correctly as i.i.d., despite the

gambler’s fallacy. Intuitively, the fallacy leads him to exaggerate the extent to which a small

sample resembles the underlying population – provided that the entire sample is generated

by the same distribution. Freddy ends up believing, however, that a different distribution

generates the signal in each period. Indeed, the distribution is linked to the state, and Freddy

converges to the belief that ρ̃ = 0, i.e., the state in one period has no relation to the state in

the next. In the mutual-fund context, Freddy assumes that managers stay in the fund for

only one period. Therefore, his fallacious belief that a given manager’s performance should

average out over multiple periods has no effect. Formally, when ρ̃ = 0, the strength αρ̃ of

the gambler’s fallacy in (3) is αρ̃ = αρ̃ = 0.

The result of Proposition 4 relies on our interpretation of the gambler’s fallacy as applying

to the distribution generating the signals for a given state, but not to the distribution
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generating those distributions, i.e., generating the state. For example, Freddy expects that

a mutual-fund manager who over-performs in one period is more likely to under-perform

in the next. He does not expect, however, that if high-ability managers join the fund in

one period, low-ability managers are more likely to follow. The latter belief could lead to

incorrect predictions even under a model in which ρ̃ = 0, i.e., managers stay in the fund for

only one period.

We believe that the gambler’s fallacy for the state as not as psychologically compelling as

for the signals. One reason is that it has a “second-order” flavor, applying to distributions

of distributions rather than distributions of signals. Moreover, while the state follows a

stochastic process in our model, it could instead be evolving deterministically. Putting

these issues aside, the result of Proposition 4 that we wish to emphasize is not Freddy’s

correct predictions, since predictions are incorrect in the more general settings of Sections

4.2 and 5. A more robust result is that Freddy attempts to explain the absence of systematic

reversals by believing that the environment (distribution generating the signals) changes

overly frequently. In Proposition 4 this result takes the extreme form that Freddy converges

to ρ̃ = 0, but in Sections 4.2 and 5 convergence is to ρ̃ between zero and the true value ρ.

4.2 Prior Knowledge

In this section, we allow Freddy to rule out some parameter values based on prior knowledge.

Ironically, prior knowledge can hurt Freddy. Indeed, suppose that he knows with confidence

that ρ̃ is bounded away from zero. Then, he cannot converge to the belief that ρ̃ = 0, and

consequently cannot predict the signals correctly. Thus, prior knowledge can be harmful

because it reduces Freddy’s flexibility to come up with the incorrect model that eliminates

the gambler’s fallacy.

A straightforward example of prior knowledge is when Freddy knows with confidence

that the state is constant over time: this translates to the dogmatic belief that ρ̃ = 1 and

σ̃2
η = 0. A prototypical occurrence of such a belief is when people observe the flips of a coin

they know is fair. The state can be defined as the probability distribution of heads and tails,

and is known and constant.

If in our model Freddy has a dogmatic belief that ρ̃ = 1 and σ̃2
η = 0, then he predicts

reversals according the gambler’s fallacy. This is consistent with the experimental evidence

presented in Section 2. Of course, our model matches the evidence by construction, but we
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believe that this is a strength of our approach (in taking the gambler’s fallacy as a primitive

bias and examining whether the hot-hand fallacy can follow as an implication). Indeed,

one could argue that the hot-hand fallacy is a primitive bias, either unconnected to the

gambler’s fallacy or perhaps even generating it. But then one would have to explain why

such a primitive bias does not arise in experiments involving fair coins.

The hot-hand fallacy tends to arise in settings where people are uncertain about the

mechanism generating the data, and where a belief that an underlying state varies over time

is plausible a priori. Such settings are common when human skill is involved. For example,

it is plausible - and often true - that the performance of a basketball player can fluctuate

systematically over time because of mood, well-being, etc. Consistent with the evidence, we

show below that our approach can generate the hot-hand fallacy in such settings, provided

that people are also confident that the state exhibits some persistence.

More specifically, we assume that Freddy allows for the possibility that the state varies

over time, but is confident that ρ̃ is bounded away from zero. For example, he can be

uncertain as to whether fund managers differ in ability (σ̃2
η > 0), but know with certainty

that they stay in a fund for more than a period (e.g., a month). We take the closed support

of Freddy’s priors to be

P = Pρ ≡
{
(σ̃2

η, ρ̃, σ̃2
ω, µ̃) : σ̃2

η ∈ R+, ρ̃ ∈ [ρ, 1], σ̃2
ω ∈ R+, µ̃ ∈ R}

,

where ρ is a lower bound strictly greater than zero and smaller than the true value ρ. Note

that since ρ > 0 and signals are assumed i.i.d., the true value σ2
η has to be zero.

To determine Freddy’s convergent beliefs, we must minimize the error e(p̃) over the set

Pρ. The problem is more complicated than in Propositions 3 and 4: it cannot be solved by

finding parameter vectors p̃ such that e(p̃) = 0 because no such vectors exist in Pρ. Instead,

we need to evaluate e(p̃) for all p̃ and minimize over Pρ. Eq. (18) shows that e(p̃) depends on

the vector G̃ of regression coefficients, which in turn depends on p̃ in a complicated fashion

through the recursive-filtering formulas of Section 3.1. This makes it difficult to solve the

problem in closed form. But a closed-form solution can be derived for small α, i.e., Freddy

close to rational. We next present this solution because it provides useful intuition and has

similar properties to the numerical solution for general α.
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Proposition 5 Suppose that σ2
η = 0 and ρ ≥ ρ > 0. When α converges to zero, the set

{(
σ̃2

η

ασ̃2
ω

, ρ̃, σ̃2
ω, µ̃

)
:
(
σ̃2

η, ρ̃, σ̃2
ω, µ̃

) ∈ m(Pρ)

}

converges (in the set topology) to the point (z, ρ, σ2
ω, µ), where

z ≡ (1− ρ2)2

1− ρ2δ
. (25)

Proposition 5 implies that Freddy’s convergent beliefs for small α are p̃ ≈ (αzσ2
ω, ρ, σ2

ω, µ).

Convergence to ρ̃ = ρ is intuitive. Indeed, Proposition 4 shows that Freddy attempts to

explain the absence of systematic reversals by underestimating the state’s persistence ρ̃.

The smallest value of ρ̃ consistent with the prior knowledge that ρ̃ ∈ [ρ, 1] is ρ.

Freddy’s belief that ρ̃ = ρ leaves him unable to explain fully the absence of reversals. To

generate a fuller explanation, he develops the additional fallacious belief that σ̃2
η ≈ αzσ2

ω > 0,

i.e., the state varies over time. Thus, in a mutual-fund context, he overestimates both the

extent of managerial turnover and that of differences in ability. Overestimating turnover

helps him explain the absence of reversals in fund returns because he believes that reversals

concern only the performance of individual managers. Overestimating differences in ability

helps him further because he can attribute streaks of high or low fund returns to individual

managers being above or below average. As we show below, the belief in the changing state

can generate a hot-hand fallacy: Freddy can predict that streaks of high or low returns will

continue despite all managers being average.

The error-minimization problem has a useful graphical representation. Consider Freddy’s

expectation of st conditional on Period t−1, as a function of the past signals. Eq. (23) shows

that the effect of the signal in Period t− k, holding other signals to their mean, is Ñk. Eq.

(24) expresses Ñk as the sum of two terms. Subsequent to a high st−k, Freddy believes that

the state has increased, which raises his expectation of st (term ρ̃kG̃1). But he also believes

that luck should reverse, which lowers his expectation (term −αρ̃(δρ̃ − αρ̃)
k−1G̃2). Figure 1

plots these terms (dotted and dashed line, respectively) and their sum Ñk (solid line), as

a function of the lag k. Since signals are i.i.d. under the true model, Nk = 0. Therefore,

minimizing the infinite sum in (18) amounts to finding (
σ̃2

η

σ̃2
ω
, ρ̃) that minimize the average

squared distance between the solid line and the x-axis.
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Figure 1: Effect of a signal in Period t− k on Freddy’s expectation Ẽt−1(st),
as a function of k. The dotted line represents the belief that the state has
changed, the dashed line represents the effect of the gambler’s fallacy, and the
solid line is Ñk, the sum of the two effects.

Figure 1 shows that Ñk is not always of the same sign. Thus, a high past signal does not

lead Freddy to predict always a high or always a low signal. Suppose instead that he always

predicts a low signal because the gambler’s fallacy dominates the belief that the state has

increased (i.e., the dotted line is uniformly closer to the x-axis than the dashed line). This

means that he converges to a small value of σ̃2
η, believing that the state’s variation is small,

and treating signals as not very informative. But then, a larger value of σ̃2
η would shift the

dotted line up, reducing the average distance between the solid line and the x-axis.

The change in Ñk’s sign is from negative to positive. Thus, a high signal in the recent past

leads Freddy to predict a low signal, while a high signal in the more distant past leads him to

predict a high signal. This is because the belief that the state has increased decays at the rate

ρ̃k, while the effect of the gambler’s fallacy decays at the faster rate (δρ̃−αρ̃)
k = ρ̃k(δ−α)k.

In other words, after a high signal Freddy expects luck to reverse quickly but views the

increase in the state as more long-lived. The reason why he expects luck to reverse quickly

relative to the state is that he views luck as specific to a given state (e.g., a given fund

manager).

We next draw the implications of our results for Freddy’s predictions after streaks. We

consider a streak of identical signals between Periods t− k and t− 1.

Proposition 6 Suppose that α is small, σ2
η = 0, ρ ≥ ρ > 0, and Freddy considers parameter
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values in the set Pρ. Then, in steady state

k∑

k′=1

∂Ẽt−1(st)

∂st−k′

is negative for k = 1 and becomes positive as k increases.

Proposition 6 shows that Freddy predicts a low signal following a short streak of high

signals, but a high signal following a longer streak. Thus, the gambler’s fallacy dominates

after short streaks but the hot-hand fallacy appears after longer streaks. This is consistent

with Figure 1 because the effect of a streak is the sum of the effects Ñk of each signal in

the streak. Since Ñk is negative for small k, Freddy predicts a low signal following a short

streak. But as streak length increases, the positive values of Ñk overtake the negative values,

generating a positive cumulative effect.

Propositions 5 and 6 make use of the closed-form solutions derived for small α. For

general α, the fit-maximization problem can be solved numerically and the results confirm

the closed-form solutions: Freddy converges to σ̃2
η > 0, ρ̃ = ρ, and µ̃ = µ, and his predictions

after streaks are as in Proposition 6.14

5 Serially Correlated Signals

In this section we consider Freddy’s inference problem when the signals are serially correlated.

Serial correlation arises when the state varies over time (σ2
η > 0) and is persistent (ρ > 0).

To highlight the new effects relative to the i.i.d. case, we assume that Freddy has no prior

knowledge on parameter values.

Recall that with i.i.d. signals and no prior knowledge, Freddy predicts correctly because

he converges to the belief that ρ̃ = 0, i.e., the state in one period has no relation to the

state in the next. When signals are serially correlated, the belief ρ̃ = 0 obviously generates

incorrect predictions. But predictions are also incorrect under a belief ρ̃ > 0 because the

gambler’s fallacy then takes effect. Therefore, there is no parameter vector p̃ ∈ P0 achieving

zero error e(p̃).15

14The result that σ̃2
η > 0 can be shown analytically. The proof is available upon request.

15The proof of this result is available upon request.
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To minimize the error, we proceed as in Section 4.2, evaluating e(p̃) for all p̃ and min-

imizing over P0. We solve this problem in closed form for small α and compare with the

numerical solution for general α. In addition to α, we take the variance σ2
η of the shocks

to the state to be small, meaning that signals are close to i.i.d. We set ν ≡ σ2
η/(ασ2

ω) and

assume that α and σ2
η converge to zero holding ν constant. The case where σ2

η remains

constant while α converges to zero can be derived as a limit for ν = ∞.

Proposition 7 Suppose that ρ > 0. When α and σ2
η converge to zero, holding ν constant,

the set {(
σ̃2

η

ασ̃2
ω

, ρ̃, σ̃2
ω, µ̃

)
:
(
σ̃2

η, ρ̃, σ̃2
ω, µ̃

) ∈ m(P0)

}

converges (in the set topology) to the point (z, r, σ2
ε , µ), where

z ≡ νρ(1− r2)2

r(1− ρ2)(1− ρr)
+

(1− r2)2

1− r2δ
(26)

and r solves
νρ(ρ− r)

(1− ρ2)(1− ρr)2
H1(r) =

r2(1− δ)

(1− r2δ)2
H2(r), (27)

for

H1(r) ≡ νρ

(1− ρ2)(1− ρr)
+

r(1− δ) [2− ρr(1 + δ)− r2δ + ρ2r4δ2]

(1− r2δ)2(1− ρrδ)2
,

H2(r) ≡ νρ

(1− ρ2)(1− ρr)
+

r(1− δ) (2− r2δ2 − r4δ3)

(1− r2δ)(1− r2δ2)2
.

Because H1(r) and H2(r) are positive, (27) implies that r ∈ (0, ρ). Thus, Freddy con-

verges to a persistence parameter ρ̃ = r that is between zero and the true value ρ. As in

Section 4, Freddy underestimates ρ̃ in his attempt to explain the absence of systematic re-

versals. But he does not converge all the way to ρ̃ = 0 because he must explain the signals’

serial correlation. Consistent with intuition, ρ̃ is close to zero when the gambler’s fallacy is

strong relative to the serial correlation (ν small), and is close to ρ in the opposite case.

Consider next Freddy’s estimate σ̃2
η of the variance of the shocks to the state. Section 4.2

shows that when the true variance σ2
η is zero, Freddy can develop the fallacious belief that

σ̃2
η > 0 as a way to counteract the effect of the gambler’s fallacy. When σ2

η is positive, we find

the analogous result that Freddy overestimates σ̃2
η. Indeed, he converges to σ̃2

η ≈ αzσ2
ω =

(z/ν)σ2
η, which is larger than σ2

η because of (26) and r < ρ. Note that z in (26) is decreasing
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in r. Thus, Freddy overestimates σ̃2
η partly as a way to compensate for underestimating ρ̃.

The error minimization problem can be represented graphically. Consider Freddy’s ex-

pectation of st conditional on Period t−1, as a function of the past signals. The effect of the

signal in Period t − k, holding other signals to their mean, is Ñk. Figure 2 plots Ñk (solid

line) as a function of k. It also decomposes Ñk to the belief that the state has increased

(dotted line) and the effect of the gambler’s fallacy (dashed line). The new element relative

to Figure 1 is that an increase in st−k also affects the expectation Et−1(st) under the true

model. This effect, Nk, is represented by the solid line with diamonds. Minimizing the

infinite sum in (18) amounts to finding (
σ̃2

η

σ̃2
ω
, ρ̃) that minimize the average squared distance

between the solid line and the solid line with diamonds.
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Ñk  - Freddy

Changing state

Gambler's fallacy

Nk  - Tommy

k

Figure 2: Effect of a signal in Period t− k on Freddy’s expectation Ẽt−1(st),
as a function of k. The dotted line represents the belief that the state has
changed, the dashed line represents the effect of the gambler’s fallacy, and the
solid line is Ñk, the sum of the two effects. The solid line with diamonds is
Nk, the effect on the expectation Et−1(st) under the true model.

For large k, Ñk is below Nk, meaning that Freddy under-reacts to signals in the distant

past. This is because he underestimates the state’s persistence parameter ρ̃, thus believing

that the information learned from signals about the state becomes obsolete overly fast. Note

that under-reaction to distant signals is a novel feature of the serial-correlation case. Indeed,

with i.i.d. signals, Freddy’s underestimation of ρ̃ does not lead to under-reaction because

there is no reaction under the true model.

Freddy’s reaction to signals in the more recent past is in line with the i.i.d. case. Since

Ñk cannot be below Nk uniformly (otherwise e(p̃) could be made smaller for a larger value

of σ̃2
η), it has to exceed Nk for smaller values of k. Thus, Freddy over-reacts to signals in the
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more recent past. The intuition is as in Section 4.2: in overestimating σ̃2
η, Freddy exaggerates

the signals’ informativeness about the state. Finally, Freddy under-reacts to signals in the

very recent past because of the gambler’s fallacy. Proposition 8 examines the implications

of these results for predictions after streaks.

Proposition 8 Suppose that α and σ2
η are small, ρ > 0, and Freddy has no prior knowledge

(P = P0). Then, in steady state

k∑

k′=1

∂Ẽt−1(st)

∂st−k′
−

k∑

k′=1

∂Et−1(st)

∂st−k′

is negative for k = 1, becomes positive as k increases, and then becomes negative again.

Proposition 8 shows that Freddy under-reacts to short streaks, over-reacts to longer

streaks, and under-reacts again to very long streaks. The under-reaction to short streaks

is because of the gambler’s fallacy. Longer streaks generate over-reaction because Freddy

overestimates the signals’ informativeness about the state. But he also underestimates the

state’s persistence, thus under-reacting to very long streaks.

The numerical results for general α confirm most of the closed-form results. The only ex-

ception is that Ñk−Nk can change sign only once, from positive to negative. Under-reaction

then occurs only to very long streaks. This tends to happen when Freddy underestimates the

state’s persistence significantly (because α is large relative to σ̃2
η). As a way to compensate

for his error, he overestimates σ̃2
η significantly, viewing signals as very informative about the

state. Even very short streaks can then lead him to believe that the change in the state is

large and dominates the effect of the gambler’s fallacy.

6 Finance Applications

Sections 4 and 5 show that the gambler’s fallacy can influence Freddy’s perception of several

aspects of his environment. In particular, he can underestimate the state’s persistence and

overestimate the signals’ informativeness about the state. While these errors help to counter-

act the fallacious belief in reversals, they generally do not offset it fully, leading to incorrect

predictions. We next explore the implications of these results for economic decisions. Our
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goal is to show that the gambler’s fallacy can have a wide range of implications, and that

our normal-linear model is a useful tool for pursuing them.

One way to map Freddy’s predictions into economic decisions is to interpret signals as

financial returns and Freddy as an investor. Suppose that in Period t− 1 Freddy can invest

in a risky asset with return st and a riskless asset with return r. For simplicity, we assume

that Freddy has an one-period horizon, maximizing expected utility over Period t wealth.16

To keep with the normal-linear structure, we take utility over wealth to be exponential

with coefficient of absolute risk aversion a. Finally, we assume that we are in steady state.

Denoting wealth in Period t′ ∈ {t − 1, t} by W̃t′ , and the investment in the risky asset by

X̃t−1, the maximization problem is

max
X̃t−1

Ẽt−1

[
− exp(−aW̃t)

]
(28)

subject to the budget constraint

W̃t = (W̃t−1 − X̃t−1)(1 + r) + X̃t−1(1 + st).

Because of normality and exponential utility, the problem is mean-variance and the optimal

investment is

X̃t−1 =
Ẽt−1(st)− r

aṼ art−1(st)
, (29)

where Ṽ ar denotes the variance assessed by Freddy. Note that in steady state the variance

Ṽ art−1(st) is constant (equal to σ2
s(p̃)). We denote this constant by Ṽ ar1, setting more

generally Ṽ ark ≡ Ṽ art−k(st). Using (29), we can compute several quantities of interest.

6.1 Trading Volume

The change in Freddy’s investment between Periods t− 1 and t is

∆X̃t ≡ X̃t − X̃t−1 =
Ẽt(st+1)− Ẽt−1(st)

aṼ ar1

. (30)

16A literal interpretation of this assumption is that there are overlapping generations of investors, each
of whom lives for one period but observes the entire history of past signals. Alternatively, we can view the
assumption as a simplification of the infinite-horizon problem that considers only the myopic demand and
ignores the demand for intertemporal hedging (Merton (1971)).
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Thus, Freddy changes his investment if he believes that expected return has changed. The

quantity ∆X̃t is a measure of Freddy’s trading activity in Period t, and we define trading

volume Q̃t as the absolute value |∆X̃t|.17 We also define average volume Q̃ as the uncondi-

tional expectation of Q̃t, i.e., Q̃ ≡ E(Q̃t). Proposition 9 computes Freddy’s average volume

and compares it to that of a Bayesian investor (Tommy) with the same preferences. The

comparison is made for two settings in which Freddy converges to incorrect predictions: i.i.d.

returns and prior knowledge that ρ̃ is bounded away from zero (Section 4.2), and serially

correlated returns and no prior knowledge (Section 5).

Proposition 9 Freddy’s average volume is

Q̃ =

√
2

π

σs

aṼ ar1

√√√√
∞∑

k=1

(Ñk − Ñk−1)2, (31)

where Ñ0 ≡ 0. Tommy’s average volume Q is given by (31) without the tildes and where

N0 ≡ 0.

• Suppose that σ2
η = 0 and Freddy has prior knowledge that ρ̃ ≥ ρ for ρ ∈ (0, ρ]. Then

Q̃ > Q = 0.

• Suppose that α and σ2
η are small, ρ > 0, and Freddy has no prior knowledge (P = P0).

Then Q̃ > Q if ν ≡ σ2
η/ασ2

ω is small, and Q̃ < Q if ν is large.

The result in the i.i.d. case is straightforward. Since expected returns are constant,

Tommy’s volume is zero. But if Freddy has prior knowledge that ρ̃ is bounded away from

zero, then he ends up believing that expected returns are time-varying. Thus, his volume

is positive and exceeds Tommy’s. Note that this holds independently of Freddy’s prior

knowledge on σ̃2
η, i.e., whether or not he ends up believing in the hot hand.

The result in the serial-correlation case is more subtle than in the i.i.d. case both because

Tommy’s volume is non-zero and because Freddy is assumed to have no prior knowledge.

To explain the intuition, we return to Figure 2 of Section 5, and plot it for two different

17Our definition of trading volume assumes that the return st is due only to dividends. Suppose that
st = sd

t +sc
t , where sd

t is due to dividends and sc
t to capital gains. Then, if Freddy buys shares worth X̃t−1 in

Period t−1, he receives a dividend X̃t−1s
d
t in Period t, and his shares are worth X̃t−1s

c
t . Thus, his net trade

in Period t is X̃t − X̃t−1(1 + sc
t) and coincides with X̃t − X̃t−1 only when sc

t = 0. When sc
t 6= 0, X̃t − X̃t−1

represents the component of the net trade that is due to changes in expectations about future returns.
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values of ν as Figure 3 below. In each plot, the solid line represents the effect Ñk of the

return k− 1 periods ago on Freddy’s forecast of next period’s return, and the solid line with

diamonds represents the effect Nk for Tommy. Note that Ñk is also the effect on Freddy’s

investment, because the investment is linear in the forecast. Moreover, Ñk − Ñk−1 is the

effect on Freddy’s net trade, provided that we set Ñ0 ≡ 0 to cover the case k = 1.

0 5 10 15 20

Ñk  - Freddy

Nk  - Tommy

k
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Nk  - Tommy

k

Figure 3: The solid line represents the effect Ñk of the return k − 1 periods
ago on Freddy’s forecast of next period’s return. The solid line with diamonds
represents the effect Nk for Tommy. The plot to the left is for small ν ≡
σ2

η/ασ2
ω, and the plot to the right is for large ν.

Consider now Freddy’s net trade in Period t as a function of the history of past returns.

This function is linear, and the coefficient of the return innovation ζt−k+1 is Ñk−Ñk−1. Since

innovations are i.i.d., the variance of net trade can be derived by squaring the coefficients and

adding them up. The volume is equal to the square root of the variance (times a constant)

because of normality. Thus, comparing Freddy’s volume to Tommy’s amounts to comparing

the average squared slope of the lines in Figure 3, where the average is taken over k, the

slope for k is defined as the value for k minus the value for k − 1, and the value for k = 0 is

taken to be zero.

The plot to the left in Figure 3 is for small ν, i.e., strong gambler’s fallacy relative to serial

correlation. In that case, Freddy converges to a small value of the persistence parameter ρ̃

and a large value of σ̃2
η/σ

2
η, i.e., treats signals as very informative about the state but also

believes that the information becomes fast obsolete (Proposition 7). Following a high signal,

Freddy establishes a smaller initial position that Tommy because he expects a short-term
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reversal of luck. Once the expectation of the reversal subsides, he builds the position to a

level larger than Tommy because he treats the signal as very positive news. But he also

believes that news are short-lived, and unwinds the position rapidly. Because of the large

position and the rapid unwinding, Freddy’s trades are large, and the sum of squared slopes

is larger than for Tommy. On the other hand, when ν is large, as in the plot to the right,

Freddy builds and unwinds the position slowly. The sum of squared slopes is then smaller

than for Tommy because of Tommy’s larger initial trade.

Turning to applications, suppose that st is the return on a mutual fund, in which case

our volume variable can be interpreted as the flow in or out of the fund. A puzzling fact

about fund flows is that they are strongly related to funds’ lagged returns (e.g., Chevalier

and Ellison (1997), Sirri and Tufano (1998)) even though the latter do not appear to be

strong predictors of future returns (e.g., Carhart (1997)).18 Berk and Green (2004) propose

a rational explanation for this puzzle. They assume that ability differs across managers

and can be inferred from returns. Able managers perform well and receive inflows, but

because of decreasing returns to managing a large fund, their performance drops to that of

average managers. This explanation, however, requires large ability differentials to match the

empirical flow-performance relationship: the standard deviation of the ability distribution

must correspond to an annual return of 6%, meaning that in the absence of decreasing

returns, top-quartile managers would outperform bottom-quartile ones by more than 15%.

Our results suggest that return predictability or differences in managerial ability do not

have to be overly large to match the extent of performance-driven fund flows. Indeed,

Proposition 9 shows that Freddy generates non-zero flows even in the absence of ability

differences, as long as he is confident that ability in consecutive periods is related (ρ̃ bounded

away from zero).19 Even when Freddy does not hold such a confident belief, his flows exceed

Tommy’s if differences in ability exist and are not too large. We return to this issue in the

calibrated example of Section 6.4, where we show that Freddy’s flows exceed Tommy’s for

18See also Baquero and Verbeek (2006) who regress hedge-fund flows on lagged returns and a proxy for
the lagged returns’ true predictive power about future returns. They find that lagged returns have an effect
above and beyond their ability to predict future returns.

19The i.i.d. case generates the counterfactual implication that good performance leads to short-run out-
flows, because Freddy expects luck to reverse. One way to address this issue is to focus on the case of serial
correlation (and no prior knowledge), where the flow-performance relationship is generally positive even in
the short run. But the issue could also be addressed within the i.i.d. framework if, for some reason, Freddy’s
estimate of σ̃2

η, i.e., of differences in ability, is larger than the one derived in Section 4.1. In Section 6.2 we
propose one reason: a fallacious belief in financial expertise that Freddy can develop if he overestimates the
value of fund managers’ information.
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plausible parameter values.

6.2 Value of Information

Our analysis so far assumes that signals are freely available. We next examine how much

Freddy would be willing to pay for them, and how this compares to Tommy’s valuation.

We denote by Ũ1(W̃t−1, Ẽt−1(st)) the maximum in (28), i.e., Freddy’s maximum utility when

he observes all returns up to Period t − 1. We also denote by Ũk(W̃t−1, Ẽt−k(st)) Freddy’s

maximum utility when he chooses investment in Period t−1 but observes returns up to Period

t−k only (in which case his expectation of st is Ẽt−k(st)). If Freddy pays Ĩk to observe the k

most recent returns {st′}t′=t−k,..,t−1, then he will receive the utility Ũ1(W̃t−1− Ĩt−1, Ẽt−1(st)).

The value Ĩk of the information in the k most recent returns is defined by

Ũk+1(W̃t−1, Ẽt−k−1(st)) = Ẽt−k−1Ũ1(W̃t−1 − Ĩk, Ẽt−1(st)). (32)

Because of normality and exponential utility, Ĩk takes a very simple form. In particular, it

does not depend on the realization of Ẽt−k−1(st), nor on Freddy’s wealth.

Proposition 10 Freddy’s value of observing the k most recent returns is

Ĩk =
1

2a(1 + r)
log

(
Ṽ ark+1

Ṽ ar1

)
=

1

2a(1 + r)
log

(
1 +

k∑

k′=1

(C̃Ãk′−1G̃)2

)
. (33)

Tommy’s value Ik is given by (33) without the tildes.

• Suppose that σ2
η = 0 and Freddy has prior knowledge that ρ̃ ≥ ρ for ρ ∈ (0, ρ]. Then

Ik = 0 for all k ≥ 1, and Ĩk > 0 for all k ≥ 2.

• Suppose that α and σ2
η are small, ρ > 0, and Freddy has no prior knowledge (P = P0).

Then there exists k such that Ĩk > Ik. Moreover, Ĩ∞ < I∞ if ν is small, and Ĩ∞ > I∞

if ν is large.

The result in the i.i.d. case is straightforward. Since past returns do not predict future

ones, Tommy’s value of information is zero. But if Freddy has prior knowledge that ρ̃ is

bounded away from zero, then he ends up believing that returns are non-i.i.d. and treats

past returns as valuable information.
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To explain the intuition in the serial-correlation case, we return to Figure 3 that repre-

sents the effect of past returns on Freddy’s and Tommy’s forecast of next period’s return.

Intuitively, the larger the effect is, the larger the value of observing past returns should be.

Eq. (33) confirms this intuition. For example, Tommy’s value of information is an increasing

function of
∑k

k′=1(CAk′−1G)2. This term is equal (from (20)) to
∑k

k′=1 N2
k′ , i.e., the sum of

squared effects of the k most recent returns on Tommy’s forecast. Freddy’s value of infor-

mation is the same increasing function of
∑k

k′=1(C̃Ãk′−1G̃)2, and for small α this term is

approximately equal (from (24)) to
∑k

k′=1 Ñ2
k′ .

20 Thus, for small α, comparing the value of

information for Freddy and Tommy amounts to comparing the average squared height of the

first k points of the lines in Figure 3.

Proposition 10 shows that for some values of k, the average height of the first k points on

Freddy’s line is larger than for Tommy’s line. Thus, Freddy overestimates the informational

value of recent return histories, and this is because he overestimates the information that re-

turns convey about the state.21 But because he believes information to become fast obsolete,

he underestimates the value of returns in the distant past. This can lead him to undervalue

the full return history. Such undervaluation occurs for small ν, i.e., strong gambler’s fallacy

relative to serial correlation, which is when Freddy underestimates significantly the state’s

persistence. Figure 3 provides a graphical interpretation: because Freddy’s line in the plot

to the left converges to zero quickly, its average height is smaller than for Tommy’s line.

Turning to applications, suppose that st is the i.i.d. return on a traded asset (e.g., stock,

bond). Suppose also that Freddy is confident that expected returns in consecutive periods are

related. Then, because he ends up treating returns as non-i.i.d., he can believe in technical

analysis (chartism), whereby past returns are used to predict the future. Moreover, if he

does not observe the detailed return history, he can view agents who do so (e.g., mutual-fund

managers, stockbrokers) as valuable experts. This could be one explanation why individuals

invest in actively-managed funds, even though the funds do not seem to outperform their

market benchmarks.22 Note that if Freddy develops a belief in financial expertise, he can also

believe that ability differences between managers are potentially large. This could reinforce

20The intuition why the equality for Freddy is approximate is that his value of information involves the
effects under his model (C̃Ãk−1G̃) and not under the true model (Ñk). For small α, the effects coincide
approximately.

21Freddy can underestimate the informational value of the most recent return because of his initial under-
reaction. For some parameter values, however, the under-reaction can be so severe as to make the effect of
the most recent return negative and larger in absolute value than for Tommy.

22See Fama (1991) for a survey of the evidence.
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the implications of Section 6.1 on the flow-performance relationship.23

6.3 Equilibrium Prices

We next examine how Freddy’s fallacious beliefs can affect equilibrium prices. Recall from

Lemma 2 that when Freddy predicts the signals erroneously, he overestimates their variance

because he attributes his prediction error to signal noise. His average investment is then

lower than Tommy’s, meaning that the risk premium in a market with Freddies can be higher

than with Tommies.24 This could perhaps speak to the equity-premium puzzle (Mehra and

Prescott (1985)) that stocks’ expected return is high relative to risk.

A second implication provides a link between our work and Barberis, Shleifer and Vishny

(BSV 1998). In BSV, investors do not realize that innovations to a company’s earnings

are i.i.d., but believe them to be drawn either from a regime with excess reversals or from

one with excess streaks. If the reversal regime is the more common, the stock price under-

reacts to short streaks because investors expect a reversal. The price over-reacts, however,

to longer streaks because investors take them as sign of a switch to the streak regime. This

can generate short-run momentum and long-run reversals in stock returns, consistent with

the empirical evidence (surveyed in BSV). Section 4.2 has similar implications because it

shows that in i.i.d. environments Freddy can under-react to short streaks and over-react to

longer ones. But while the implications are similar, our approach is different. In particular,

BSV provide a psychological foundation for their assumptions by appealing to a combination

of biases: the conservatism bias for the reversal regime and the representativeness bias for

the streak regime. Our model, by contrast, not only derives such biases from the single

underlying bias of the gambler’s fallacy, but in doing so provides predictions as to which

biases are the most relevant in different informational settings.

23The implications on financial expertise rely on Freddy’s confident belief that ρ̃ is bounded away from
zero. Without such a belief, Freddy predicts correctly in an i.i.d. environment, and can underestimate the
informational value of the return history under serial correlation. A result that does not rely on beliefs about
ρ̃ is the overestimation of the value of recent returns. Thus, investors could be overpaying for newsletters
that analyze the recent performance of stocks or mutual funds, while underpaying for long-horizon studies.

24Formally, (29) implies that Freddy’s average investment in the risky asset is E(X̃t) = (µ− r)/(aṼ ar1).
Since Lemma 2 implies that Ṽ ar1 = V ar1 + e(p̃), Freddy’s average investment is lower than Tommy’s as
long as e(p̃) > 0 and µ > r. Note a surprising implication of our results in the case of i.i.d. returns and
prior knowledge about ρ̃: Freddy views returns as predictable and yet after conditioning on the predictive
information views returns as more uncertain than they truly are.
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6.4 Calibration

We conclude with a calibration exercise that serves both to compute the effects that our

model generates for plausible parameter values and confirm the robustness of the closed-

form results derived for small α. We take periods to be months, meaning that investors

check the performance of their fund managers once a month. We set ρ = 0.98, meaning

that shocks to managerial ability have a half-life of approximately three years (ρ36 = 0.48).

Such a half-life seems reasonable: for example, Jagannathan, Malakhov and Novikov (JMN

2006) estimate that approximately half of the abnormal performance of a hedge fund over a

three-year period spills over to the next three years. We calibrate σ2
η/σ

2
ω through the ratio

of unconditional variances of θt and st, which is
σ2

η/(1−ρ2)

σ2
η/(1−ρ2)+σ2

ω
. The variable θt corresponds to

abnormal expected returns (“Jensen alpha”), and its standard deviation in the cross-section

of hedge funds examined in JMN is about 2.4% per year. JMN also report a cross-sectional

standard deviation of fund returns (st) ranging from 10% to 25% per year, depending on the

year. Assuming that cross-sectional variances translate to unconditional ones in our model,

the implied values of σ2
η/σ

2
ω range from 0.0004 to 0.0025. We also consider larger values,

in line with Berk and Green’s (2004) argument that the standard deviation of managerial

ability can exceed that of fund returns. Finally, we use the calibration of Section 2 for the

parameters of the gambler’s fallacy, setting α = 0.2 and δ = 0.7. Table 2 reports Freddy’s

persistence estimate ρ̃, his trading volume relative to Tommy, and his relative value of

information.

σ2
η/σ

2
ω 0.0004 0.001 0.0025 0.005 0.01

Persistence Estimate (ρ̃) 0.399 0.621 0.824 0.905 0.940

Rel. Volume (Q̃/Q) 1.728 1.834 1.635 1.254 0.916

Rel. Value Full Inf. (Ĩ∞/I∞) 0.238 0.450 0.774 0.921 0.966

Rel. Value 12-Month Inf. (Ĩ12/I12) 0.619 1.170 1.954 2.014 1.715

Rel. Value 6-Month Inf. (Ĩ6/I6) 1.104 2.049 2.754 2.197 1.648

Table 2: Freddy’s persistence estimate, relative volume, and relative value of information.

Consistent with Proposition 7, Freddy’s persistence estimate ρ̃ increases with the extent

of serial correlation, as measured by σ2
η/σ

2
ω. Freddy’s trading volume exceeds Tommy’s by

more than 60% for the values of σ2
η/σ

2
ω inferred by the data. For σ2

η/σ
2
ω = 0.01 and larger

values, Freddy’s volume is below Tommy’s but never by more than 11%. The value of
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information that Freddy attributes to the full return history is below Tommy’s for all values

of σ2
η/σ

2
ω in the table. This is especially so for smaller values because Freddy underestimates

significantly the information content of distant returns. But consistent with Proposition 10,

Freddy overestimates the content of recent returns. For all values of σ2
η/σ

2
ω in the table, he

would overpay to learn the six-month history, and for all but the smallest value he would

overpay for the twelve-month history.

Imposing a prior belief that ρ̃ ≥ ρ > 0 would increase the ratios in the table. Suppose,

for example, that ρ = 0.6, i.e., Freddy is confident that at least 60% of managerial ability

in one month spills over to the next month. This would affect the column corresponding to

σ2
η/σ

2
ω = 0.0004 since in that case Freddy converges to ρ̃ = 0.398 < 0.6. The new persistence

estimate becomes ρ̃ = 0.6, the relative volume jumps to 4.049, and the relative values of

information jump to 1.039, 2.703, and 4.749, respectively.

36



A Proofs

Proof of Proposition 1: Our formulation of the recursive-filtering problem is as in standard

textbooks. For example, (9) and (10) follow from (4.1.1) and (4.1.4) in Balakrishnan (1987)

if xn+1 is replaced by xt, xn by xt−1, An by Ã, Un by 0, N s
n by wt, vn by st − µ̃, Cn by C̃,

and N0
n by vt. Eq. (11) follows from (4.6.14), if the latter is written for n + 1 instead of n,

and xn+1 is replaced by xt, xn by xt−1, and AKn + Qn by G̃t. That G̃t so defined is given

by (13), follows from (4.1.29) and (4.6.12) if Hn−1 is replaced by Σ̃t−1, GnG
′
n by Ṽ , and Jn

by Ũ . Eq. (12) follows from (4.6.18) if the latter is written for n + 1 instead of n, Pn is

substituted from (4.1.30), and FnF
′
n is replaced by W̃ .

Proof of Proposition 2: It suffices to show (Balakrishnan, p.182-184) that the eigenvalues

of Ã− Ũ Ṽ −1C̃ have modulus smaller than one. This matrix is




σ̃2
ω

σ̃2
η+σ̃2

ω
ρ̃

σ̃2
η

σ̃2
η+σ̃2

ω
αρ̃

− σ̃2
ω

σ̃2
η+σ̃2

ω
ρ̃ δρ̃ − σ̃2

η

σ̃2
η+σ̃2

ω
αρ̃


 .

The characteristic polynomial is

λ2 − λ

[
σ̃2

ω

σ̃2
η + σ̃2

ω

ρ̃ + δρ̃ −
σ̃2

η

σ̃2
η + σ̃2

η

αρ̃

]
+

σ̃2
ω

σ̃2
η + σ̃2

ω

ρ̃δρ̃

≡ λ2 − λb + c

Suppose that the roots λ1, λ2 of this polynomial are real, in which case λ1 + λ2 = b and

λ1λ2 = c. Since c > 0, λ1 and λ2 have the same sign. If λ1 and λ2 are negative, they are

both greater than -1, since b > −1 from αρ̃ < 1 and ρ̃, δρ̃ ≥ 0. If λ1 and λ2 are positive,

then at least one is smaller than 1, since b < 2 from ρ̃, δρ̃ < 1 and αρ̃ ≥ 0. But since the

characteristic polynomial for λ = 1 takes the value

(1− δρ̃)

(
1− σ̃2

ω

σ̃2
η + σ̃2

ω

ρ̃

)
+

σ̃2
η

σ̃2
η + σ̃2

ω

αρ̃ > 0,

both λ1 and λ2 are smaller than 1. Suppose instead that λ1, λ2 are complex. In that case,

they are conjugates and the modulus of each is
√

c < 1.

Lemma A.1 determines st, the true mean of st conditional on Ht−1, and st(p̃), the mean

that Freddy computes under the parameter vector p̃. To state the lemma, we define the
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matrices D̃t ≡ Ã− G̃tC̃, D̃ ≡ Ã− G̃C̃, and

J̃t,t′ ≡
{∏t

k=t′ D̃k for t′ = 1, .., t,

I for t′ > t.

For simplicity, we set the initial condition x0 = 0.

Lemma A.1 The true mean st is given by

st = µ +
t−1∑

t′=1

CAt−t′−1Gt′ζt′ (A.1)

and Freddy’s mean st(p̃) by

st(p̃) = µ̃ +
t−1∑

t′=1

C̃M̃t,t′ζt′ + C̃M̃µ
t (µ− µ̃), (A.2)

where

M̃t,t′ ≡ J̃t−1,t′+1G̃t′ +
t−1∑

k=t′+1

J̃t−1,k+1G̃kCAk−t′−1Gt′ ,

M̃µ
t ≡

t−1∑

t′=1

J̃t−1,t′+1G̃t′ .

Proof: Consider the recursive-filtering problem under the true model, and denote by xt the

true mean of xt. Eq. (10) implies that

st = µ + Cxt−1. (A.3)

Eq. (11) then implies that

xt = Axt−1 + Gt(st − st) = Axt−1 + Gtζt.

Iterating between t− 1 and zero, we find

xt−1 =
t−1∑

t′=1

At−t′−1Gt′ζt′ . (A.4)

Plugging into (A.3), we find (A.1).
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Consider next Freddy’s recursive-filtering problem under p̃. Eq. (11) implies that

xt(p̃) = (Ã− G̃tC̃)xt−1(p̃) + G̃t(st − µ̃).

Iterating between t− 1 and zero, we find

xt−1(p̃) =
t−1∑

t′=1

J̃t−1,t′+1G̃t′(st′ − µ̃) (A.5)

=
t−1∑

t′=1

J̃t−1,t′+1G̃t′(ζt′ + µ− µ̃ + Cxt′−1),

where the second step follows from st′ = ζt′ + st′ and (A.3). Substituting xt′−1 from (A.4),

and grouping terms, we find

xt−1(p̃) =
t−1∑

t′=1

M̃t,t′ζt′ + M̃µ
t (µ− µ̃). (A.6)

Combining this with

st(p̃) = µ̃ + C̃xt−1(p̃) (A.7)

(which follows from (10)), we find (A.2).

We next prove Lemma 3. While this Lemma is stated after Theorem 1 and Lemmas 1

and 2, its proof does not rely on these results.

Proof of Lemma 3: Lemma A.1 implies that

st(p̃)− st =
t−1∑

t′=1

et,t′ζt′ + Nµ
t (µ̃− µ), (A.8)

where

et,t′ ≡ C̃M̃t,t′ − CAt−t′−1Gt′ ,

Nµ
t ≡ 1− C̃M̃µ

t .

Therefore,

[st(p)− st]
2 =

t−1∑

t′,t′′=1

et,t′et,t′′ζt′ζt′′ + (Nµ
t )2(µ̃− µ)2 + 2

t−1∑

t′=1

et,t′N
µ
t ζt′(µ̃− µ). (A.9)
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Since the sequence {ζt′}t′=1,..,t−1 is independent under the true measure and mean-zero, we

have

E [st(p)− st]
2 =

t−1∑

t′=1

e2
t,t′σ

2
s,t′ + (Nµ

t )2(µ̃− µ)2. (A.10)

We first determine the limit of
∑t−1

t′=1 e2
t,t′σ

2
s,t′ when t goes to ∞. Defining the double

sequence {φk,t}k,t≥1 by

φk,t ≡
{

e2
t,t−kσ

2
s,t−k for k = 1, .., t− 1,

0 for k > t− 1,

we have
t−1∑

t′=1

e2
t,t′σ

2
s,t′ =

t−1∑

k=1

e2
t,t−kσ

2
s,t−k =

∞∑

k=1

φk,t.

The definitions of et,t′ and M̃t,t′ imply that

et,t−k = C̃J̃t−1,t−k+1G̃t−k +
k−1∑

k′=1

C̃J̃t−1,t−k+k′+1G̃t−k+k′CAk′−1Gt−k − CAk−1Gt−k. (A.11)

Eq. (10) applied to the recursive-filtering problem under the true model implies that

σ2
s,t = CΣt−1C

′ + V.

When t goes to ∞, Gt goes to G, G̃t to G̃, Σt to Σ, and J̃t,t−k to D̃k+1. Therefore,

lim
t→∞

et,t−k = C̃D̃k−1G̃ +
k−1∑

k′=1

C̃D̃k−1−k′G̃CAk′−1G− CAk−1G = Ñk −Nk ≡ ek,

lim
t→∞

σ2
s,t−k = CΣC ′ + V = CΣC ′ + σ2

η + σ2
ω = σ2

s , (A.12)

implying that

lim
t→∞

φk,t = e2
kσ

2
s .

The dominated convergence theorem will imply that

lim
t→∞

∞∑

k=1

φk,t =
∞∑

k=1

lim
t→∞

φk,t = σ2
s

∞∑

k=1

e2
k, (A.13)

if there exists a sequence {φk}k≥1 such that
∑∞

k=1 φk < ∞ and |φk,t| ≤ φk for all k, t ≥ 1. To
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construct such a sequence, we note that the eigenvalues of A have modulus smaller than one,

and so do the eigenvalues of D̃ ≡ Ã− G̃C̃ (Balakrishnan, Theorem 4.2.3, p.111). Denoting

by a < 1 a number exceeding the maximum of the moduli, we can construct a dominating

sequence {φk}k≥1 decaying geometrically at the rate a2k.

We next determine the limit of Nµ
t . Defining the double sequence {χk,t}k,t≥1 by

χk,t ≡
{

J̃t−1,t−k+1G̃t−k for k = 1, .., t− 1,

0 for k > t− 1,

we have

Nµ
t = 1− C̃

t−1∑

k=1

J̃t−1,t−k+1G̃t−k = 1− C̃

∞∑

k=1

χk,t.

It is easy to check that the dominated convergence theorem applies to {χk,t}k,t≥1, and thus

lim
t→∞

Nµ
t = 1− C̃ lim

t→∞

[ ∞∑

k=1

χk,t

]
= 1− C̃

∞∑

k=1

lim
t→∞

χk,t = 1− C̃

∞∑

k=1

D̃k−1G̃ = Nµ. (A.14)

The lemma follows by combining (A.10), (A.13), and (A.14).

Proof of Theorem 1: Eq. (16) implies that

2 log Lt(Ht|p̃)

t
= −

∑t
t′=1 log

[
2πσ2

s,t′(p̃)
]

t
− 1

t

t∑

t′=1

[st′ − st′(p̃)]2

σ2
s,t′(p̃)

. (A.15)

To determine the limit of the first term, we note that (10) applied to Freddy’s recursive-

filtering problem under p̃ implies that

σ2
s,t(p̃) = C̃Σ̃t−1C̃

′ + Ṽ .

Therefore,

lim
t→∞

σ2
s,t(p̃) = C̃Σ̃C̃ ′ + Ṽ = σ2

s(p̃), (A.16)

lim
t→∞

∑t
t′=1 log σ2

s,t′(p̃)

t
= lim

t→∞
log σ2

s,t(p̃) = log σ2
s(p̃). (A.17)
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We next fix k ≥ 0 and determine the limit of the sequence

Sk,t ≡ 1

t

t∑

t′=1

ζt′ζt′+k

when t goes to ∞. This sequence involves averages of random variables that are non-

independent and non-identically distributed. An appropriate law of large numbers (LLN)

for such sequences is that of McLeish (1975). Consider a probability space (Ω,F , P ), a

sequence {Ft}t∈Z of σ-algebras, and a sequence {Ut}t≥1 of random variables. The pair

({Ft}t∈Z, {Ut}t≥1) is a mixingale (McLeish, Definition 1.2, p.830) if and only if there exist

sequences {ct}t≥1 and {ψm}m≥0 of nonnegative constants, with limm→∞ ψm = 0, such that

for all t ≥ 1 and m ≥ 0:

‖Et−mUt‖2 ≤ ψmct, (A.18)

‖Ut − Et+mUt‖2 ≤ ψm+1ct, (A.19)

where ‖.‖2 denotes the L2 norm, and Et′Ut the expectation of Ut conditional on Ft′ . McLeish’s

LLN (Corollary 1.9, p.832) states that if ({Ft}t∈Z, {Ut}t≥1) is a mixingale, then

lim
t→∞

1

t

t∑

t′=1

Ut′ = 0

almost surely, provided that
∑∞

t=1 c2
t /t

2 < ∞ and
∑∞

m=1 ψm < ∞. In our model, we take

the probability measure to be the true measure, and define the sequence {Ft}t∈Z as follows:

Ft = {Ω, ∅} for t ≤ 0, and Ft is the σ-algebra generated by {ζt′}t′=1,..,t for t ≥ 1. Moreover,

we set Ut ≡ ζ2
t − σ2

s,t when k = 0, and Ut ≡ ζtζt+k when k ≥ 1. Since the sequence {ζt}t≥1

is independent, we have Et−mUt = 0 for m ≥ 1. We also trivially have Et+mUt = Ut for

m ≥ k. Therefore, when k = 0, (A.18) and (A.19) hold with ψ0 = 1, ψm = 0 for m ≥ 1, and

ct = supt≥1 ‖ζ2
t − σ2

s,t‖2 for t ≥ 1. McLeish’s LLN implies that

lim
t→∞

S0,t = lim
t→∞

1

t

t∑

t′=1

(
Ut′ + σ2

s,t′
)

= lim
t→∞

∑t
t′=1 σ2

s,t′

t
= lim

t→∞
σ2

s,t = σ2
s (A.20)

almost surely. When k ≥ 1, (A.18) and (A.19) hold with ψm = 1 for m = 0, .., k− 1, ψm = 0
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for m ≥ k, and ct = supt≥1 ‖ζt‖2
2 for t ≥ 1. McLeish’s LLN implies that

lim
t→∞

Sk,t = lim
t→∞

1

t

t∑

t′=1

Ut′ = 0 (A.21)

almost surely. Finally, a straightforward application of McLeish’s LLN to the sequence

Ut ≡ ζt implies that

lim
t→∞

1

t

t∑

t′=1

ζt′ = 0 (A.22)

almost surely. Since N is countable, we can assume that (A.20), (A.21) for all k ≥ 1, and

(A.22), hold in the same measure-one set. In what follows, we consider histories in that set.

To determine the limit of the second term in (A.15), we write it as

1

t

t∑

t′=1

ζ2
t′

σ2
s,t′(p̃)

︸ ︷︷ ︸
Xt

− 2

t

t∑

t′=1

ζt′ [st′(p̃)− st′ ]

σ2
s,t′(p̃)

︸ ︷︷ ︸
Yt

+
1

t

t∑

t′=1

[st′(p̃)− st′ ]
2

σ2
s,t′(p̃)

︸ ︷︷ ︸
Zt

.

Since limt→∞ σ2
s,t(p̃) = σ2

s(p̃), we have

lim
t→∞

Xt =
1

σ2
s(p̃)

lim
t→∞

1

t

t∑

t′=1

ζ2
t′ =

1

σ2
s(p̃)

lim
t→∞

S0,t =
σ2

s

σ2
s(p̃)

. (A.23)

Using (A.8), we can write Yt as

Yt = 2
∞∑

k=1

ψk,t +
2

t

t∑

t′=1

Nµ
t′

σ2
s,t′(p̃)

ζt′(µ̃− µ),

where the double sequence {ψk,t}k,t≥1 is defined by

ψk,t ≡
{

1
t

∑t
t′=k+1

et′,t′−k

σ2
s,t′ (p̃)

ζt′ζt′−k for k = 1, .., t− 1,

0 for k > t− 1.

Since limt→∞ et,t−k = ek and limt→∞ Nµ
t = Nµ, we have

lim
t→∞

ψk,t =
ek

σ2
s(p̃)

lim
t→∞

1

t

t∑

t′=k+1

ζt′ζt′−k =
ek

σ2
s(p̃)

lim
t→∞

Sk,t = 0,
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lim
t→∞

1

t

t∑

t′=1

Nµ
t′

σ2
s,t′(p̃)

ζt′(µ̃− µ) =
Nµ

σ2
s(p̃)

(µ̃− µ) lim
t→∞

1

t

t∑

t′=1

ζt′ = 0.

The dominated convergence theorem will imply that

lim
t→∞

Yt = 2 lim
t→∞

∞∑

k=1

ψk,t = 2
∞∑

k=1

lim
t→∞

ψk,t = 0 (A.24)

if there exists a sequence {ψk}k≥1 such that
∑∞

k=1 ψk < ∞ and |ψk,t| ≤ ψk for all k, t ≥ 1.

Such a sequence can be constructed by the same argument as for φk,t (Lemma 3) since

∣∣∣∣∣
1

t

t∑

t′=k+1

ζt′ζt′−k

∣∣∣∣∣ ≤
1

t

t∑

t′=k+1

|ζt′| |ζt′−k| ≤
√√√√1

t

t∑

t′=k+1

ζ2
t′

√√√√1

t

t∑

t′=k+1

ζ2
t′−k ≤ sup

t≥1
S0,t < ∞,

where the last inequality holds because the sequence S0,t is convergent.

Using similar arguments as for Yt, we find

lim
t→∞

Zt =
σ2

s

σ2
s(p̃)

∞∑

k=1

e2
k +

(Nµ)2

σ2
s(p̃)

(µ̃− µ)2 =
e(p̃)

σ2
s(p̃)

. (A.25)

The theorem follows from (A.15), (A.17), (A.23), (A.24), and (A.25).

Proof of Lemma 1: We first show that the set m(P ) is non-empty. Denoting by µ̃0 the

value that minimizes (µ̃− µ)2 over the closed set Pµ, we have

F (p̃) ≤ F (σ̃2
η, ρ̃, σ̃2

ω, µ̃0) ≡ G(σ̃2
η, ρ̃, σ̃2

ω).

When (σ̃2
η, σ̃

2
ω) go to zero, the covariance matrix Σ̃ goes to zero. (Σ̃ is smaller than the

covariance matrix when signals are not observable, and the latter matrix goes to zero.) Eq.

(A.16) then implies that σ2
s(p̃) goes to zero. Eq. (A.16) also implies that when σ̃2

η or σ̃2
ω go

to ∞, σ2
s(p̃) goes to ∞. In both cases, (17) implies that G(σ̃2

η, ρ̃, σ̃2
ω) goes to −∞. Therefore,

in maximizing G(σ̃2
η, ρ̃, σ̃2

ω) over the closed set Pσ,ρ, we can restrict ourselves to a compact

subset in which (σ̃2
η, σ̃

2
ω) are not both zero. Since the function G(σ̃2

η, ρ̃, σ̃2
ω) is continuous in

such a subset, the set of its maximands is non-empty. The same is true for the set m(P ) of

maximands of F (p̃).

To show that the measure πt converges weakly to a measure giving weight only to m(P ),

it suffices to show that for all closed sets S that have zero intersection with m(P ), πt(S) goes
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to zero. (Billingsley, Theorem 29.1, p.390) Consider first the case where S is bounded. Since

S is compact, the maximum FS of F (p̃) over S is smaller than the value of F (p̃) in m(P ).

Consider a compact neighborhood B of a point in m(P ) such that the minimum FB of F (p̃)

over B exceeds FS. Consider also two constants (F1, F2) such that FB > F2 > F1 > FS. For

large enough t,

min
p̃∈B

log Lt(Ht|p̃)

t
> F2. (A.26)

Indeed, if (A.26) does not hold, there exists a convergent sequence {p̃t}t≥1 in B such that

log Lt(Ht|p̃t)

t
≤ F2.

Denoting the limit of this sequence by p̃ ∈ B, Theorem 1 implies that F (p̃) ≤ F2, a contra-

diction. (Theorem 1 concerns the convergence of the likelihood for a given p̃, but extending

the argument to a convergent sequence {p̃t}t≥1 is straightforward.) Likewise, we can show

that for large enough t,

max
p̃∈S

log Lt(Ht|p̃)

t
< F1. (A.27)

Bayes’ law, (A.26), and (A.27) imply that for large enough t,

πt(S) =
Eπ0

[
Lt(Ht|p̃)1{p̃∈S}

]

Eπ0 [Lt(Ht|p̃)]
<

Eπ0

[
Lt(Ht|p̃)1{p̃∈S}

]

Eπ0

[
Lt(Ht|p̃)1{p̃∈B}

] <
exp(tF1)π0(S)

exp(tF2)π0(B)
.

Since F2 > F1, πt(S) goes to zero when t goes to ∞. When S is unbounded, we can consider

an increasing sequence of bounded subsets.

Proof of Lemma 2: Consider p̃ ∈ P such that e(p̃) = e(P ) and σ2
s(p̃) = σ2

s + e(p̃). We will

show that F (p̃) ≥ F (p̂) for any p̂ = (σ̂2
η, ρ̂, σ̂2

ω, µ̂) ∈ P . Denote by Σ̂ and Ĝ the steady-state

variance and regression coefficient for the recursive-filtering problem under p̂, and by Σ̂λ and

Ĝλ those under p̂λ ≡ (λσ̂2
η, ρ̂, λσ̂2

ω, µ̂) for λ > 0. It is easy to check that λΣ̂ solves Equation

(14) for p̂λ. Since this equation has a unique solution, Σ̂λ = λΣ̂. Equation (13) then implies

that Ĝλ = Ĝ, and Equations (18) and (A.16) imply that e(p̂λ) = e(p̂) and σ2
s(p̂λ) = λσ2

s(p̂).

Therefore,

F (p̂λ) = −1

2

[
log

[
2πλσ2

s(p̂)
]
+

σ2
s + e(p̂)

λσ2
s(p̂)

]
. (A.28)
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Since this function is maximized for

λ∗ =
σ2

s + e(p̂)

σ2
s(p̂)

,

we have

F (p̂) ≤ F (p̂λ∗) = −1

2

[
log

[
2π

[
σ2

s + e(p̂)
]]

+ 1
] ≤ −1

2

[
log

[
2π

[
σ2

s + e(p̃)
]]

+ 1
]

= F (p̃).

The proof of the converse is along the same lines.

Lemma A.2 determines when a model can predict the signals equally well as the true

model.

Lemma A.2 The error e(p̃) is zero if and only if

• C̃Ãk−1G̃ = CAk−1G for all k ≥ 1

• (1− ρ̃)(µ̃− µ) = 0.

Proof: From Lemma 3 it suffices to show that {ek}k≥1 = 0 is equivalent to C̃Ãk−1G̃ =

CAk−1G for all k ≥ 1, and Nµ(µ̃ − µ) = 0 is equivalent to (1 − ρ̃)(µ̃ − µ) = 0. Setting

ak ≡ C̃Ãk−1G̃− CAk−1G and

bk ≡ D̃k−1G̃ +
k−1∑

k′=1

D̃k−1−k′G̃CAk′−1G− Ãk−1G̃,

we have ek = C̃bk + ak for k ≥ 1. Simple algebra shows that

bk = D̃bk−1 − G̃ak−1.

Iterating between k and one, and using the initial condition b1 = 0, we find

bk = −
k−1∑

k′=1

D̃k−1−k′G̃ak′ .

Therefore,

ek = −
k−1∑

k′=1

C̃D̃k−1−k′G̃ak′ + ak. (A.29)

46



Eq. (A.29) implies that {ek}k≥1 = 0 if and only if {ak}k≥1 = 0.

Eq. (21) implies that

Nµ = 1− C̃(I − D̃)−1G̃ = 1− C̃(I − Ã + G̃C̃)−1G̃.

Replacing Ã and C̃ by their values, and denoting the components of G̃ by G̃1 and G̃2, we

find

Nµ = 1− C̃(I − Ã + G̃C̃)−1G̃ =
(1− ρ̃)(1− δρ̃ + αρ̃)

[1− ρ̃(1− G̃1)](1− δρ̃ + αρ̃)− αρ̃(1− ρ̃)G̃2

. (A.30)

Since αρ̃, δρ̃ ∈ [0, 1), Nµ(µ̃− µ) = 0 is equivalent to (1− ρ̃)(µ̃− µ) = 0.

Proof of Proposition 3: Tommy can achieve minimum error e(P0) = 0 by using the vector

of true parameters p. Since e(P0) = 0, Lemmas 2 and A.2 imply that p̃ ∈ m(P0) if and only

if (i) C̃Ãk−1G̃ = CAk−1G for all k ≥ 1, (ii) (1 − ρ̃)(µ̃ − µ) = 0, and (iii) σ2
s(p̃) = σ2

s . Since

α = 0 for Tommy, we can write Condition (i) as

ρ̃kG̃1 = ρkG1. (A.31)

We can also write element (1,1) of (14) as

Σ̃11 =
(ρ̃2Σ̃11 + σ̃2

η)σ̃
2
ω

ρ̃2Σ̃11 + σ̃2
η + σ̃2

ω

, (A.32)

Σ11 =
(ρ2Σ11 + σ2

η)σ
2
ω

ρ2Σ11 + σ2
η + σ2

ω

, (A.33)

and the first element of (15) as

G̃1 =
ρ̃2Σ̃11 + σ̃2

η

ρ̃2Σ̃11 + σ̃2
η + σ̃2

ω

, (A.34)

G1 =
ρ2Σ11 + σ2

η

ρ2Σ11 + σ2
η + σ2

ω

, (A.35)

where the first equation in each case is for p̃ and the second for p. Using (A.12) and (A.16),

we can write Condition (iii) as

ρ̃2Σ̃11 + σ̃2
η + σ̃2

ω = ρ2Σ11 + σ2
η + σ2

ω. (A.36)
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Suppose that ρσ2
η > 0, and consider p̃ that satisfies Conditions (i)-(iii). Eq. (A.35) implies

that G1 > 0. Since (A.31) must hold for all k ≥ 1, we have ρ̃ = ρ and G̃1 = G1. We next write

(A.32)-(A.35) in terms of the normalized variables s̃2
η ≡ σ̃2

η/σ̃
2
ω, S̃11 ≡ Σ̃11/σ̃

2
ω, s2

η ≡ σ2
η/σ

2
ω,

and S11 ≡ Σ11/σ
2
ω. Eqs. (A.32) and (A.33) imply that S̃11 = g(s̃2

η) and S11 = g(s2
η) for the

same function g. Eqs. (A.34), (A.35), and G̃1 = G1 then imply that s̃2
η = s2

η, and (A.36)

implies that σ̃2
ω = σ2

ω. Since ρ̃ < 1, Condition (ii) implies that µ̃ = µ. Thus, p̃ = p.

Suppose next that ρσ2
η = 0, and consider p̃ that satisfies Conditions (i)-(iii). If ρ = 0,

(A.31) implies that ρ̃kG̃1 = 0, and (A.36) that ρ̃2Σ̃11 + σ̃2
η + σ̃2

ω = σ2
η + σ2

ω. If σ2
η = 0, the

same implications follow because Σ = 0 and G = [0, 1]′ from (14) and (15). Eq. ρ̃kG̃1 = 0

implies that either ρ̃ = 0, or G̃1 = 0 in which case σ̃2
η = 0. If ρ̃ = 0, then σ̃2

η + σ̃2
ω = σ2

η + σ2
ω

and µ̃ = µ. If σ̃2
η = 0, then σ̃2

ω = σ2
η + σ2

ω, and if in addition ρ̃ < 1, then µ̃ = µ. Therefore, p̃

is as in the proposition. Showing that all p̃ in the proposition satisfy Conditions (i)-(iii) is

obvious.

Proof of Proposition 4: We determine the parameter vectors p̃ that belong to m(P0) and

satisfy e(p̃) = 0. From Lemmas 2 and A.2, these must satisfy (i) C̃Ãk−1G̃ = CAk−1G for all

k ≥ 1, (ii) (1 − ρ̃)(µ̃ − µ) = 0, and (iii) σ2
s(p̃) = σ2

s . Since ρσ2
η = 0, we can write Condition

(i) as

ρ̃kG̃1 − αρ̃(δρ̃ − αρ̃)
k−1G̃2 = 0, (A.37)

and Condition (iii) as

C̃Σ̃C̃ ′ + Ṽ = σ2
η + σ2

ω. (A.38)

Using the definitions of (αρ̃, δρ̃), we can write (A.37) as

ρ̃k
[
G̃1 − α(δ − α)k−1G̃2

]
= 0. (A.39)

If ρ̃ 6= 0, (A.39) implies that G̃1 − α(δ − α)k−1G̃2 = 0 for all k ≥ 1, which in turn implies

that G̃ = 0. For G̃ = 0, (14) becomes Σ̃ = ÃΣ̃Ã′ + W̃ . Solving for Σ̃, we find

Σ̃11 =
σ̃2

η

1− ρ̃2
,

Σ̃12 = 0,

Σ̃22 =
σ̃2

ω

1− (δρ̃ − αρ̃)2
.
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Substituting Σ̃ into (15), we find (σ̃2
η, σ̃

2
ω) = 0. But then, Σ̃ = 0, which contradicts (A.38)

since σ2
ω = σ2

ε > 0. Therefore, ρ̃ = 0. Eq. (A.38) then implies that σ̃2
η + σ̃2

ω = σ2
η + σ2

ω, and

Condition (ii) implies that µ̃ = µ. Showing that all p̃ in the proposition satisfy Conditions

(i)-(iii) is obvious.

Proof of Proposition 5: Consider a sequence {αn}n∈N converging to zero, and an element

p̃n ≡ ((σ̃2
η)n, ρ̃n, (σ̃2

ω)n, µ̃n) from the set m(Pρ) corresponding to αn. The proposition will fol-

low if we show that (
(s̃2

η)n

αn
, ρ̃n, (σ̃

2
ω)n, µ̃n) converges to (z, ρ, σ2

ω, µ), where (s̃2
η)n ≡ (σ̃2

η)n/(σ̃
2
ω)n.

Denoting the limits of (
(s̃2

η)n

αn
, (σ̃2

η)n, ρ̃n, (σ̃2
ω)n, µ̃n) by (`s, `η, `ρ, `ω, `µ), the point (`η, `ρ, `ω, `µ)

belongs to the set m(Pρ) derived for α = σ2
η = 0. (If the sequences do not converge, we ex-

tract converging subsequences.) Since all elements in that set satisfy ρ̃ ≥ ρ > 0, Proposition

3 implies that they also satisfy σ̃2
η = 0 and σ̃2

ω = σ2
ω. Therefore, `η = 0 and `ω = σ2

ω.

We next determine (`s, `ρ, `µ) under the assumption `ρ < 1. When v ≡ (α,
s̃2
η

α
, σ̃2

η, ρ̃, σ̃2
ω)

converges to `v ≡ (0, `s, 0, `ρ, σ
2
ω), C̃D̃kG̃ converges to zero, G̃1

s̃2
η

to 1
1−`2ρ

, and G̃2 to 1. These

limits follow by continuity if we show that when α = σ̃2
η = 0, C̃D̃kG̃ = 0 and G̃2 = 1, and

when α = 0, limσ̃2
η→0

G̃1

s̃2
η

= 1
1−ρ̃2 . When σ̃2

η = 0, the unique solution of (14) is Σ̃ = 0, and

(15) implies that G̃ = [0, 1]′. Therefore, when α = σ̃2
η = 0, we have C̃G̃ = 0,

C̃D̃ = C̃(Ã− G̃C̃) = C̃Ã = ρ̃C̃,

and C̃D̃kG̃ = ρ̃kC̃G̃ = 0. Moreover, if we divide both sides of (A.32) and (A.34) (derived

from (14) and (15) when α = 0) by σ̃2
ω, we find

S̃11 =
(ρ̃2S̃11 + s̃2

η)

ρ̃2S̃11 + s̃2
η + 1

, (A.40)

G̃1 =
ρ̃2S̃11 + s̃2

η

ρ̃2S̃11 + s̃2
η + 1

. (A.41)

When σ̃2
η converges to zero, s̃2

η and S̃11 converge to zero. Eqs. (A.40) and (A.41) then imply

that S̃11

s̃2
η

and G̃1

s̃2
η

converge to 1
1−ρ̃2 .
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Using the above limits, we find

lim
v→`v

C̃Ãk−1G̃

α
= lim

v→`v

ρ̃kG̃1 − αρ̃(δρ̃ − αρ̃)
k−1G̃2

α

= lim
v→`v

ρ̃k

[
s̃2

η

α

G̃1

s̃2
η

− (δ − α)k−1G̃2

]
= `k

ρ

(
`s

1− `2
ρ

− δk−1

)
.

Eqs. (19), (A.29), limv→`v C̃D̃kG̃ = 0, and Nk = CAkG = 0, imply that

lim
v→`v

ek

α
= lim

v→`v

Ñk

α
= lim

v→`v

C̃D̃k−1G̃

α
= lim

v→`v

ak

α
= lim

v→`v

C̃Ãk−1G̃

α
= `k

ρ

(
`s

1− `2
ρ

− δk−1

)
.

(A.42)

Since p̃n minimizes e(p̃n), (18) implies that ((σ2
η)n, ρ̃n, (σ2

ω)n) minimizes σ2
s(p̃)

∑∞
k=0 e2

k. Since

from (A.42),

lim
v→`v

σ2
s(p̃)

∑∞
k=1 e2

k

α2
= σ2

ω

∞∑

k=1

`2k
ρ

(
`s

1− `2
ρ

− δk−1

)2

≡ σ2
ωF (`s, `ρ),

(`s, `ρ) must minimize F . Treating F as a function of (`s/(1− `2
ρ), `ρ), the minimizing value

of the second argument is clearly `ρ = ρ. The first-order condition w.r.t. the first argument

is ∞∑

k=1

`2k
ρ

(
`s

1− `2
ρ

− δk−1

)
= 0,

and implies `s = z. Finally, `µ = µ since (`η, `ρ, `ω, `µ) belongs to the set m(Pρ) derived for

α = σ2
η = 0, and `ρ < 1.

To show that `ρ cannot equal one, we proceed by contradiction. Denoting the limit of

(G̃1)n/αn by `G, and setting v̂ ≡ (α, G̃1

α
, σ̃2

η, ρ̃, σ̃2
ω) and `v̂ ≡ (0, `G, 0, 1, σ2

ω), we have

lim
v̂→`v̂

σ2
s(p̃)

∑∞
k=1 e2

k

α2
= σ2

ω

∞∑

k=1

(
`G − δk−1

)2
= σ2

ω lim
`ρ→1

F
(
`G(1− `2

ρ), `ρ

)
> σ2

ωF (z, r),

a contradiction because p̃n minimizes e(p̃n).

Proof of Proposition 6: Eqs. (A.5) and (A.7) imply that in steady state

Ẽt−1(st) ≡ st(p̃) = µ̃ +
∞∑

k=1

C̃D̃k−1G̃(st−k − µ̃).
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Therefore,
k∑

k′=1

∂Ẽt−1(st)

∂st−k′
=

k∑

k′=1

C̃D̃k′−1G̃.

Eq. (A.42) implies that
k∑

k′=1

∂Ẽt−1(st)

∂st−k′
= αgk + o(α),

where

gk ≡
k∑

k′=1

fk′ ,

fk ≡ ρk

(
z

1− ρ2
− δk−1

)
.

Using (25) to substitute z, we find

f1 = g1 =
ρ3(δ − 1)

1− ρ2δ
< 0,

g∞ = ρ

[
z

(1− ρ2)(1− ρ)
− 1

1− ρδ

]
=

ρ2(1− δ)

(1− ρ2δ)(1− ρδ)
> 0.

The function fk is negative for k = 1 and positive for large k. Since it can change sign only

once, it is negative and then positive. The function gk is negative for k = 1, then decreases

(fk < 0), then increases (fk > 0), and is eventually positive (g∞ > 0). Therefore, gk is

negative and then positive.

Proof of Proposition 7: Consider a sequence {αn}n∈N converging to zero, an element

p̃n ≡ ((σ̃2
η)n, ρ̃n, (σ̃2

ω)n, µ̃n) from the set m(P0) corresponding to αn, and set (σ2
η)n ≡ ναn.

The proposition will follow if we show that (
(s̃2

η)n

αn
, ρ̃n, (σ̃2

ω)n, µ̃n) converges to (z, r, σ2
ω, µ).

Denoting the limits of (
(s̃2

η)n

αn
, (σ̃2

η)n, ρ̃n, (σ̃2
ω)n, µ̃n) by (`s, `η, `ρ, `ω, `µ), the point (`η, `ρ, `ω, `µ)

belongs to the set m(P0) derived for α = σ2
η = 0.

Suppose that `ρ ∈ (0, 1). Proposition 3 implies that `η = 0, `ω = σ2
ω, and `µ = µ.

The same argument as in the proof of Proposition 5 implies that (`s, `ρ) must minimize the

function

H(`s, `ρ) ≡
∞∑

k=1

[
`k
ρ

(
`s

1− `2
ρ

− δk−1

)
− ρk ν

1− ρ2

]2

.

Treating H as a function of (`ρ, `s/(1−`2
ρ)), the first-order condition w.r.t. the first argument
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is ∞∑

k=1

`k
ρ

[
`k
ρ

(
`s

1− `2
ρ

− δk−1

)
− ρk ν

1− ρ2

]
= 0 (A.43)

and w.r.t. the second is

∞∑

k=1

k`k−1
ρ

(
`s

1− `2
ρ

− δk−1

)[
`k
ρ

(
`s

1− `2
ρ

− δk−1

)
− ρk ν

1− ρ2

]
= 0. (A.44)

Computing the infinite sums, we can write (A.43) as

`s`ρ

(1− `2
ρ)

2
− `ρ

1− `2
ρδ
− νρ

(1− ρ2)(1− ρ`ρ)
= 0 (A.45)

and (A.44) as

`s

1− `2
ρ

[
`s`ρ

(1− `2
ρ)

3
− `ρ

(1− `2
ρδ)

2
− νρ

(1− ρ2)(1− ρ`ρ)2

]

−
[

`s`ρ

(1− `2
ρ)(1− `2

ρδ)
2
− `ρ

(1− `2
ρδ

2)2
− νρ

(1− ρ2)(1− ρ`ρδ)2

]
= 0. (A.46)

Substituting `s from (A.45), we can write the first square bracket in (A.46) as

− νρ`ρ(ρ− `ρ)

(1− ρ2)(1− ρ`ρ)2(1− `2
ρ)

+
`3
ρ(1− δ)

(1− `2
ρ)(1− `2

ρδ)

and the second as

νρ`ρ(ρ− `ρ)
[
1− 2δ + (ρ + `ρ)`ρδ

2 − ρ`3
ρδ

2
]

(1− ρ2)(1− ρ`ρ)(1− `2
ρδ)

2(1− ρ`ρδ)2
− `3

ρ(1− δ)
[
1− 2δ + `2

ρ(1 + δ)δ2 − `4
ρδ

3
]

(1− `2
ρδ)

3(1− `2
ρδ

2)2
.

We next substitute `s from (A.45) into the term `s

1−`2ρ
that multiplies the first square bracket

in (A.46). Grouping terms, we can write (A.46) as

− νρ(ρ− `ρ)

(1− ρ2)(1− ρ`ρ)2
H1(`ρ) +

`2
ρ(1− δ)

(1− `2
ρδ)

2
H2(`ρ) = 0. (A.47)

Eq. (A.47) coincides with (27) when `ρ = r. To show that (A.47) has a solution, we note
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that H1(`ρ), H2(`ρ) > 0 for `ρ ∈ [0, 1] because

2− ρ`ρ(1 + δ)− `2
ρδ + ρ2`4

ρδ
2 > 0, (A.48)

2− `2
ρδ

2 − `4
ρδ

3 > 0. (A.49)

(To show (A.48) and (A.49), we use ρ, δ < 1. For (A.48) we also note that the left-hand

side (LHS) is decreasing in δ and positive for δ = 1.) Since H1(`ρ), H2(`ρ) > 0, the LHS of

(A.47) is negative for `ρ = 0 and positive for `ρ = ρ. Therefore, there exists a solution `ρ = r

in (0, ρ). Moreover, there does not exist a solution in (ρ, 1] because the LHS is positive.

Substituting `ρ = r into (A.45), we find `s = z. The argument that `ρ 6= {0, 1} is along the

same lines as in the proof of Proposition 5.

Proof of Proposition 8: Proceeding as in the proof of Proposition 6, we find

k∑

k′=1

∂Ẽt−1(st)

∂st−k′
−

k∑

k′=1

∂Et−1(st)

∂st−k′
= αgk + o(α),

where

gk ≡
k∑

k′=1

fk′ ,

fk ≡ rk

(
z

1− r2
− δk−1

)
− ρk ν

1− ρ2
. (A.50)

The proposition will follow if we show that f1 = g1 < 0 and g∞ < 0. Indeed, suppose

that f1 = g1 < 0. Since r < ρ, fk is negative for large k. Moreover, (A.43) can be written

for (`s, `ρ) = (z, r) as
∞∑

k=1

rkfk = 0, (A.51)

implying that fk has to be positive for some k. Since fk can change sign at most twice

(because the derivative of fk/ρ
k can change sign at most once, implying that fk/ρ

k can

change sign at most twice), it is negative, then positive, and then negative again.

The function gk is negative for k = 1, then decreases (fk < 0), then increases (fk > 0),

and then decreases again (fk < 0). If g∞ < 0, then gk can either be (i) always negative or
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(ii) negative, then positive, and then negative again. To rule out (i), we write (A.51) as

g1r +
∞∑

k=2

(gk − gk−1) rk = 0 ⇔
∞∑

k=1

gk

(
rk − rk+1

)
= 0.

We next show that f1 = g1 < 0 and g∞ < 0. Substituting z from (26), we find

f1 = g1 =
zr

1− r2
− r − νρ

1− ρ2
=

ρr(ρ− r)(ν − ν1)

(1− ρ2)(1− ρr)
,

g∞ =
zr

(1− r2)(1− r)
− r

1− rδ
− νρ

(1− ρ2)(1− ρ)
=

ρ(ρ− r)(ν∞ − ν)

(1− ρ2)(1− ρr)(1− ρ)
,

where

ν1 ≡ (1− ρ2)(1− ρr)r2(1− δ)

ρ(ρ− r)(1− r2δ)

ν∞ ≡ (1− ρ2)(1− ρr)(1− ρ)r2(1− δ)

ρ(ρ− r)(1− r2δ)(1− rδ)
.

We thus need to show that ν1 > ν > ν∞. These inequalities will follow if we show that when

ν is replaced by ν1 (resp. ν∞) in (27), the LHS becomes larger (resp. smaller) than the RHS.

To show these inequalities, we make use of 0 < r < ρ < 1 and 0 ≤ δ < 1. The inequality for

ν1 is

(ρ− rδ)r2

(ρ− r)(1− ρr)(1− r2δ)
+

Y1

(1− ρr)(1− ρrδ)2(1− r2δ2)2(1− r2δ)
> 0, (A.52)

where

Y1 = (1− r2δ2)2
[
2− ρr(1 + δ)− r2δ + ρ2r4δ2

]− (1− ρr)(1− ρrδ)2(2− r2δ2 − r4δ3).

Since ρ > r > rδ, (A.52) holds if Y1 > 0. Algebraic manipulations show that Y1 = (ρ−rδ)rZ1,

where

Z1 ≡ (2− r2δ2 − r4δ3)
[
δ(1− r2δ)(2− r2δ2 − ρrδ) + (1− ρrδ)2

]

−(1− r2δ2)2
[
1 + δ − (ρ + rδ)r3δ2

]
.
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Since 2− r2δ2 − r4δ3 > 2(1− r2δ2), inequality Z1 > 0 follows from

2
[
δ(1− r2δ)(2− r2δ2 − ρrδ) + (1− ρrδ)2

]− (1− r2δ2)
[
1 + δ − (ρ + rδ)r3δ2

]
> 0. (A.53)

To show (A.53), we break the LHS into

2δ(1− r2δ)(1− r2δ2)− (1− r2δ2)(δ − r4δ3) = δ(1− r2δ2)(1− r2δ)2 > 0

and

2
[
δ(1− r2δ)(1− ρrδ) + (1− ρrδ)2

]− (1− r2δ2)(1− ρr3δ2). (A.54)

Eq. (A.54) is positive because of the inequalities

2(1− ρrδ) > 1− r2δ2,

δ(1− r2δ) + 1− ρrδ > 1− ρr3δ2.

The inequality for ν∞ is

− (ρ− rδ)(1− ρ)(1− r)r

(ρ− r)(1− ρr)(1− r2δ)(1− rδ)2
+

Y∞
(1− ρr)(1− ρrδ)2(1− r2δ)(1− r2δ2)2(1− rδ)

< 0,

(A.55)

where

Y∞ = (1−ρ)(1−r2δ2)
[
2− ρr(1 + δ)− r2δ + ρ2r4δ2

]−(1−ρr)(1−ρrδ)2(1−rδ)(2−r2δ2−r4δ3).

Algebraic manipulations show that Y∞ = −(ρ− rδ)Z∞, where

Z∞ ≡ (2− r2δ2 − r4δ3)
[
(1− ρrδ)2(1− r)− (1− ρ)rδ(1− r2δ)(2− r2δ2 − ρrδ)

]

+(1− ρ)r(1− r2δ2)2
[
1 + δ − (ρ + rδ)r3δ2

]
.

To show that Z∞ > 0, we break it into

(2− r2δ2 − r4δ3)
[
(1− ρrδ)2(1− r)− (1− ρ)rδ(1− r2δ)(1− ρrδ)

]

> (2− r2δ2 − r4δ3)(1− ρrδ)
[
(1− ρrδ)(1− r)− (1− ρ)(1− r2δ)

]

= (2− r2δ2 − r4δ3)(1− ρrδ)(ρ− r)(1− rδ) > 0
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and

(1− ρ)r(1− r2δ2)2
[
1 + δ − (ρ + rδ)r3δ2

]− (2− r2δ2 − r4δ3)(1− ρ)rδ(1− r2δ)(1− r2δ2)

= (1− ρ)r(1− r2δ2)
[
(1− r2δ2)

[
1 + δ − (ρ + rδ)r3δ2

]− (2− r2δ2 − r4δ3)δ(1− r2δ)
]
.

Since 2 − r2δ2 − r4δ3 < 2 − r2δ2 − r4δ4 = (1 − r2δ2)(2 + r2δ2), the last square bracket is

greater than

(1− r2δ2)
[
1 + δ − (ρ + rδ)r3δ2 − δ(1− r2δ)(2 + r2δ2)

]

= (1− r2δ2)
[
(1− δ)(1− r4δ3) + r2δ2(2− δ − ρr)

]
> 0.

Proof of Proposition 9: Eqs. (A.6) and (A.7) imply that in steady state

Ẽt−1(st) ≡ st(p̃) =
∞∑

k=1

Ñkζt−k + µ̃ +
∞∑

k=1

C̃D̃k−1G̃(µ− µ̃).

Therefore,

Ẽt(st+1)− Ẽt−1(st) =
∞∑

k=1

(Ñk − Ñk−1)ζt−k,

where Ñ0 ≡ 0. Since the sequence {ζt}t∈Z is i.i.d. and normal with mean zero and variance σ2
s ,

the variable Ẽt(st+1)−Ẽt−1(st) is normal with mean zero and variance σ2
s

∑∞
k=1(Ñk−Ñk−1)

2.

Eq. (31) then follows from (30) and the fact that for a normal variable γ with mean zero

and variance σ2, E(|γ|) =
√

2
π
σ .

Suppose that σ2
η = 0 and Freddy has prior knowledge that ρ̃ ≥ ρ for ρ ∈ (0, ρ]. Since

Nk = 0 for all k ≥ 1, (31) implies that Q = 0. To show that Q̃ > 0, suppose instead that

Q̃ = 0. Eq. (31) then implies that Ñk = 0 for all k ≥ 1, Lemma A.2 implies that C̃Ãk−1G̃ = 0

for all k ≥ 1, and Proposition 4 implies that ρ̃ = 0, a contradiction.

Suppose next that ρ > 0 and Freddy has no prior knowledge. Eq. (A.42) implies that

Ñk − Ñk−1 = αhk + o(α),
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where

h̃k ≡ rk

(
z

1− r2
− δk−1

)
− rk−1

(
z

1− r2
− δk−2

)
= −rk−1

[
z(1− r)

1− r2
− δk−2(1− rδ)

]

for k ≥ 2, and

h̃1 ≡ r

(
z

1− r2
− 1

)
.

Substituting into (31), we find

Q̃ =

√
2

π

α

aσs

√√√√
∞∑

k=1

h̃2
k + o(α).

The same equation holds for Tommy by omitting the tildes and setting

hk ≡ ρk ν

1− ρ2
− ρk−1 ν

1− ρ2
= −ρk−1 ν

1 + ρ

for k ≥ 2, and

h1 ≡ ρ
ν

1− ρ2
.

Therefore, for small α and σ2
η, inequality Q̃ > Q is equivalent to

∞∑

k=1

h̃2
k >

∞∑

k=1

h2
k

⇔ z2r2

(1− r2)2(1 + r)
+

r2

1 + rδ
− zr2(2− r − rδ)

(1− r2)(1− r2δ)
>

ν2ρ2

(1− ρ2)2(1 + ρ)
. (A.56)

Substituting z from (26) and grouping terms in ν2, ν, and 1, we can write (A.56) as RQ > 0

where

RQ ≡ ν2ρ2(ρ− r)(1 + r − r2 − ρr2)

(1− ρ2)2(1− ρr)2(1 + ρ)
− νρr2(1− r2)(1− δ)

(1− ρ2)(1− ρr)(1− r2δ)
+

r4(1− δ)2

(1− r2δ)2(1 + rδ)
.

(A.57)

When ν is small, (27) implies that

r ≈
√

νρ2

(1− ρ2)(1− δ)
. (A.58)
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Substituting into (A.57), we find

RQ ≈ ν2ρ5

(1− ρ2)2(1 + ρ)
> 0.

When ν is large, (27) implies that r ≈ ρ and

ρ− r ≈ ρ(1− ρ2)3(1− δ)

ν(1− ρ2δ)2
. (A.59)

Substituting into (A.57), we find

RQ ≈ − νρ5(1− δ)2

(1− ρ2)(1− ρ2δ)2
< 0.

Therefore, Q̃ > Q for small ν, and Q̃ < Q for large ν.

Proof of Proposition 10: The maximum in (28) is

Ũ1(W̃t−1, Ẽt−1(st)) = − exp

[
−a(1 + r)W̃t−1 − (Ẽt−1(st)− r)2

2Ṽ ar1

]
(A.60)

and the maximum when Freddy observes signals up to Period t− k only is

Ũk(W̃t−1, Ẽt−k(st)) = − exp

[
−a(1 + r)W̃t−1 − (Ẽt−k(st)− r)2

2Ṽ ark

]
. (A.61)

Eqs. (32), (A.60), and (A.61) imply that

exp
[
a(1 + r)Ĩk

]
Ẽt−k−1

{
exp

[
−(Ẽt−1(st)− r)2

2Ṽ ar1

]}
= exp

[
−(Ẽt−k−1(st)− r)2

2Ṽ ark+1

]
. (A.62)

To compute the expectation in (A.62), we write the term inside the square bracket as −γ2

2
,

where

γ ≡ Ẽt−1(st)− r√
Ṽ ar1

.

When Freddy observes signals up to Period t− k − 1, he takes γ to be normal with mean

µγ ≡ Ẽt−k−1(st)− r√
Ṽ ar1
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and variance

σ2 ≡ Ṽ art−k−1(Ẽt−1(st))

Ṽ ar1

=
Ṽ art−k−1(st)− Ẽt−k−1(Ṽ art−1(st))

Ṽ ar1

=
Ṽ ark+1 − Ṽ ar1

Ṽ ar1

. (A.63)

Since for a normal variable γ with mean µγ and variance σ2,

E exp

(
−γ2

2

)
=

1√
1 + σ2

exp

(
− µ2

γ

2(1 + σ2)

)
,

we have

Ẽt−k−1

{
exp

[
−(Ẽt−1(st)− r)2

2Ṽ ar1

]}
=

√
Ṽ ar1

Ṽ ark+1

exp

[
−(Ẽt−k−1(st)− r)2

2Ṽ ark+1

]
.

Substituting into (A.62), we find the first equality in (33). To derive the second equality, we

note from (A.63) that

Ṽ ark+1 = Ṽ ar1 + Ṽ art−k−1(Ẽt−1(st)). (A.64)

We next define the sequence {ζ̃t}t∈Z of surprises according to Freddy by ζ̃t ≡ st − Ẽt−1(st).

Same calculations as for Tommy in Lemma A.1 imply that in steady state

Ẽt−1(st) =
∞∑

k=1

C̃Ãk−1G̃ζ̃t−k.

Therefore,

Ṽ art−k−1(Ẽt−1(st)) = Ṽ art−k−1

(
k∑

k′=1

C̃Ãk′−1G̃ζ̃t−k′

)
=

k∑

k′=1

(C̃Ãk−1G̃)2Ṽ ar1, (A.65)

where the last step is because Freddy views the sequence {ζ̃t}t∈Z as i.i.d. with variance

Ṽ ar1 = σ2
s(p̃). Combining (A.64) and (A.65) establishes the second inequality in (33).

Suppose that σ2
η = 0 and Freddy has prior knowledge that ρ̃ ≥ ρ for ρ ∈ (0, ρ]. Since

Nk = 0 for all k ≥ 1, (33) implies that Ik = 0 for all k ≥ 1. To show that Ĩk > 0 for all

k ≥ 2, it suffices to show that Ĩ2 > 0. If Ĩ2 = 0, then C̃G̃ = 0 and C̃ÃG̃ = 0. Proceeding as

in the proof of Proposition 4, we can show that ρ̃ = 0, a contradiction.

Suppose next that ρ > 0 and Freddy has no prior knowledge. Eqs. (33) and (A.42) imply
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that

Ĩk =
α2

2a(1 + r)

k∑

k′=1

r2k′
(

z

1− r2
− δk′−1

)2

+ o(α2). (A.66)

Likewise,

Ik =
α2

2a(1 + r)

k∑

k′=1

ρ2k′ ν2

(1− ρ2)2
+ o(α2). (A.67)

Therefore, for small α and σ2
η,

Ĩk > Ik ⇔
k∑

k′=1

[
rk′

(
z

1− r2
− δk′−1

)
+ ρk′ ν

1− ρ2

]
fk′ > 0, (A.68)

for fk defined in (A.50). Recall from Proposition 8 that fk is negative in an interval k ∈
{1, .., k0−1}, becomes positive in an interval k ∈ {k0, .., k1}, and becomes negative again for

k ∈ {k1 + 1, ..}. Since fk < 0 in {k1 + 1, ..}, (A.51) implies that

k1∑

k=1

rkfk = −
∞∑

k=k1+1

rkfk > 0. (A.69)

Since fk < 0 in {1, .., k0}, fk > 0 in k ∈ {k0 + 1, .., k1}, and 0 < r < ρ,

k1∑

k=1

ρkfk = ρk0

k1∑

k=1

ρk−k0fk > ρk0

k1∑

k=1

rk−k0fk =
ρk0

rk0

k1∑

k=1

rkfk. (A.70)

Likewise, since 0 ≤ δ < 1,

k1∑

k=1

rkδk−1fk = δk0−1

k1∑

k=1

rkδk−k0fk < δk0−1

k1∑

k=1

rkfk. (A.71)

Eqs (A.68), (A.70), and (A.71) imply that Ĩk1 > Ik1 if

1

rk0

[
rk0

(
z

1− r2
− δk0−1

)
+ ρk0

ν

1− ρ2

] (
k1∑

k=1

rkfk

)
> 0.

This inequality holds because of (A.68) and

rk0

(
z

1− r2
− δk0−1

)
+ ρk0

ν

1− ρ2
= fk0 + 2ρk0

ν

1− ρ2
> 0.
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Computing the sums in (A.66) and (A.67), we find that Ĩ∞ > I∞ is equivalent to

z2r2

(1− r2)3
+

r2

1− r2δ2
− 2zr2

(1− r2)(1− r2δ)
>

ν2ρ2

(1− ρ2)3
. (A.72)

Substituting z from (26) and grouping terms in ν2, ν, and 1, we can write (A.72) as RI > 0

where

RI ≡ − ν2ρ2(ρ− r)2

(1− ρ2)3(1− ρr)2
+

r4(1− δ)2

(1− r2δ2)(1− r2δ)2
. (A.73)

To evaluate RI for small ν, we substitute (A.58) into (A.73) and find

RI ≈ − ν2ρ6

(1− ρ2)3
< 0.

To evaluate RI for large ν, we substitute (A.59) into (A.73) and find

RI ≈ ρ6(1− δ)4

(1− ρ2δ)4(1− ρ2δ2)
> 0.

Therefore, Ĩ∞ < I∞ for small ν, and Ĩ∞ > I∞ for large ν.
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