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Abstract

This paper studies asset markets in which ambiguity averse investors face Knightian

uncertainty about expected payo�s. The same investors, however, might wish to resolve

their uncertainty, although not risk, by just purchasing information. In these markets,

uninformed and, hence, ambiguity averse, agents may coexist with informed agents, as a

result of a rational information acquisition process. Moreover, there are complementaries in

information acquisition, multiplicity of equilibria, history-dependent prices, and large price

swings occurring after small changes in the uncertainty surrounding the asset expected

payo�s. Our model suggests the importance of uncertainty, as a new channel for episodes

of extreme price volatility, media frenzies and media glooms.

�We thank Paolo Ghirardato, Emre Ozdenoren and Kathy Yuan for discussions, and seminar participants
at USI Lugano (Institute of Finance) and brown bags at our institutions for comments. The usual disclaimer
applies.
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1 Introduction

\There is a Cloud in Every Silver Lining"

One standard assumption in �nancial economics is that rational decision makers are able to

�gure out the probability distribution of the events that a�ect asset prices. \Ambiguity,"

or Knightian uncertainty, is an alternative way to describe the information context in which

agents operate. In a world of Knightian uncertainty, some events can not be assigned an

obvious probability distribution. The literature on the impact of Knightian uncertainty and

ambiguity aversion on asset prices is expanding at a fast pace (e.g., Epstein and Wang, 1994,

1995; Cao, Wang and Zhang, 2005; Leippold, Trojani and Vanini, 2007; Maenhout, 2004;

Anderson, Ghysels and Juergens, 2007; Epstein and Schneider, 2008; Caskey, 2008; Caballero

and Krishnamurthy, 2008; Gagliardini, Porchia and Trojani, 2008; Hansen and Sargent, 2008;

Ozsoylev and Werner, 2008; Easley and O'Hara, 2009; Bossaert, Ghirardato, Guarneschelli

and Zame, 2009). Two standard assumptions in this literature are that (i) investors are

symmetrically informed about the asset payo�s or that, alternatively, (ii) investors with less

information do not attempt to resolve their uncertainty by learning from the observed price or

do not consider a market for information.

In this paper, we consider a market in which investors are ex-ante uninformed about the

expected value of the asset fundamentals, and display ambiguity aversion: in formulating de-

cisions about portfolio holdings and information acquisition, agents fear extreme events and

worst-case scenarios. Our departure from the previous analyses of Knightian uncertainty in

�nancial markets and macroeconomics is the assumption that the very same agents might re-

solve their ambiguity, by purchasing information. Those who indeed do so, pay a (constant)

cost, as in Grossman and Stiglitz (1980). Those who choose to remain uninformed, instead,

attempt to learn about the fundamentals by observing the equilibrium asset price, assuming

as usual that noise trading is partly impounded on this price.

In this market, the value of information is higher than in markets without ambiguity,

such as that in Grossman and Stiglitz (1980). In spite of this property, we show that agents

who are informed and agents who remain uninformed and, hence, ambiguity averse, coexist,

in equilibrium. In fact, we show that a multiplicity of equilibria may occur, as a result of

strategic complementarities in the process of information acquisition: the larger the mass of

informed agents, the higher the incentives to become informed. Complementaries in informa-

tion acquisition are at the root of many interesting properties our model generates, such as

non-Markovian prices, market crashes and varying levels of informational e�ciency, including

media frenzies, media glooms, and episodes of extreme volatility. These properties are, of

course, in common with other models that feature strategic complementarities in information
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acquisition (e.g., Froot, Scharfstein and Stein, 1992; Veldkamp, 2006; Barlevi and Veronesi,

2000, 2008; Chamley, 2008; Garc��a and Strobl, 2008; Hellwig and Veldkamp, 2008). At the

same time, the economic rationale behind our model is quite distinct.

The economic mechanism at work in our model is the following. In a market with aversion

towards uncertainty, information acquisition is driven by two opposing forces. On the one

hand, there is a standard strategic substitutability e�ect, by which an increase in the number

of informed agents leads to more informative prices, which reduces the incentives to acquire

information. On the other hand, ambiguity aversion leads the uninformed agents to trade less

and, in some cases, even exit the market, as the mass of informed agents increases. This reduced

market participation leads asset prices to be misaligned from the fundamentals, even more so

than in markets without ambiguity, to the entire bene�t of the informed agents. Therefore, in

the presence of ambiguous fundamentals: (i) information is more valuable than in a market

without ambiguity; and (ii) as the mass of informed agents increases, investors buy information

that others have, to avoid being hurt from reduced market participation.

The asset price swings our model generates, arise as the outcome of a coordination problem.

Consider an asset market with a sizeable uncertainty about the fundamentals. In this market,

the incentives to be informed are large, and we should expect a signi�cant proportion of agents

to be informed, given a �nite cost of information. Next, suppose that uncertainty partially

resolves. For example, it might be that some of the issues leading to uncertainty become

publicly available, resulting in a shrinkage in the possible scenarios a�ecting the asset expected

payo�s. As the market is hit by a number of these scenario reductions, the number of informed

agents decreases, and in a continuous fashion, but only up to some critical point, where the

market for information suddenly dries up: information is not desiderable by any agent. The

critical point occurs precisely when information complementarities kick in: as the number of

informed agents decreases, the incentives to become informed diminish. The asset price, then,

precipitates, although it may rebound, provided the market for information recovers, which it

does when uncertainty about the expected payo�s resurfaces. The market we analyze, then,

may be cycling around media frenzies, media glooms, and discrete price changes, as a result of

changes in uncertainty.

The paper is organized as follows. In the next section, we develop the model and the

equilibrium. Section 3 describes the process of information acquisition and Section 4 analyzes

the properties of the model, such as information complementarities, multiple equilibria and

price swings. One appendix contains technical details omitted from the main text.
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2 Model

2.1 Agents and assets

We consider a market for a risky asset, with payo� equal to f = � + �, where � � N (�0; !�)
and � � N (0; !�). Without loss of generality, we set, �0 = 0. As in Grossman and Stiglitz

(1980), the market is populated by a continuum of agents, with a fraction � of informed agents

and a fraction of 1 � � of uninformed agents. Informed agents observe � at cost c > 0. The

asset supply is z � N (�z; !z) and prevents information to be fully revealed in equilibrium. A
riskless asset is also available for trading, which is in perfectly elastic supply, and yields a rate

of return equal to zero. All agents have negative exponential utility, with constant absolute

risk aversion � .

Our point of departure from Grossman and Stiglitz (1980) is the assumption that all agents

are ex-ante uncertain about the expected value of the fundamental. Although they are unable

to assess what �0 is, they believe it belongs to some interval, �0 2 [�; ��], where for some

�� � 0, we assume that � = �1
2�� and �� =

1
2��. The length of this interval, ��, measures

the degree of ambiguity that investors face in the market. We assume that agents display

ambiguity aversion in that their preferences are in the form of the maxmin expected utility,

as in Gilboa and Schmeidler (1989) (see below). We initially take the value of � as given,

although a fundamental purpose of the paper is to determine this value endogenously, as a

result of the information acquisition process.

2.2 Informed agents

By observing the realization of �, informed agents resolve their ambiguity straight away, and

choose portfolio holdings so as to maximize,

vI (�) = E
�
�e��WI

�� �; p� ;
where WI = (f � p)xI � c, p is the observed asset price and, �nally, xI is asset demand, given
by:

xI (�; p) =
E (f j �; p)� p
�V ar (f j �; p) =

� � p
�!�

:

Naturally, while informed agents are able to dissipate the uncertainty about �, they can

not eliminate risk: conditionally upon �, the fundamentals, f , are still normally distributed

with expectation � and variance !�, as in the Grossman and Stiglitz (1980) model.
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2.3 Uninformed agents

The uncertainty surrounding the expected value of the fundamentals, �0, leads the uninformed

agents to choose portfolio holdings, so as to maximize,

vU (p) = min
�
E�
�
�e��WU

�� p� = �e�� min� E�(WU jp)+ 1
2
�2var(WU jp); (1)

where WU = (f � p)xU , and xU is asset demand. The criterion underlying Eq. (1) is the

celebrated maxmin expected utility representation of Knightian uncertainty, introduced by

Gilboa and Schmeidler (1989).

We conjecture that for every pair (�; z), the equilibrium price function is P (�; z). Then,

we look for an equilibrium in which the uninformed agents sell the asset when the price is

su�ciently high and buy the asset when the price is su�ciently low. As we shall show, this

search process leads to a simpler problem, in which the uninformed agents' concern is to

determine the expectation of the fundamentals in the states of nature in which they buy and

sell. Accordingly, let us introduce the following notation,

Ebuy (f jP (�; �) = p) � E� (f jP (�; �) = p) ; Esell (f jP (�; �) = p) � E�� (f jP (�; �) = p) :

We conjecture that the solution to the uninformed agents' problem is,

xU (p; P (�; �)) =

8>>>>>>>>>><>>>>>>>>>>:

Ebuy (f jP (�; �) = p)� p
�V ar (f jP (�; �) = p) ; for p < Ebuy (f jP (�; �) = p)

0; for p 2
�
Ebuy (f jP (�; �) = p) ; Esell (f jP (�; �) = p)

�
Esell (f jP (�; �) = p)� p
�V ar (f jP (�; �) = p) ; for p > Esell (f jP (�; �) = p)

(2)

In words, the uninformed agents do not participate in the market if the observed equilib-

rium price does not take a su�ciently favorable value. This value has to be such that the

agents believe that in the worst-case scenario, they can actually make pro�ts, on \average."

In particular, the uninformed agents enter the market as buyers (sellers) when the price real-

ization, p, is less (larger) than the agents' worst-case scenario expectation of the asset value,

conditional upon p. Hence, the decision to participate involves a �xed-point problem, in which

the expectation of the asset value, conditional on the price realization, is equal to the very

same price realization, in equilibrium,

Ebuy
�
f jP (�; �) = p

�
= p and Esell (f jP (�; �) = �p) = �p: (3)
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Then, the uninformed agents do not participate in the asset market if the equilibrium price

realization, p, is such that p 2 [p; �p]. Naturally, the cuto�s p and �p are endogenous, and we
shall verify that in equilibrium, they satisfy p < �p.

2.4 Equilibrium

We conjecture that the equilibrium price function is, P (�; z) = P (s (�; z)), where s (�; z) is

the compound signal, de�ned as,

s (�; z) =
�

�!�
� � (z � �z) : (4)

From the market clearing condition,

(1� �)xU (p; P (�)) + �xI (�; p) = z; (5)

we easily see that the compound signal is observationally equivalent to the equilibrium price.

Therefore, the equilibrium in this market is also one in which uninformed agents condition the

expectation of the asset value on the compound signal.

We have:

Proposition I. The equilibrium price is piecewise linear in the compound signal,

P (s) =

8>>>>><>>>>>:

a+ bs; for s < s

a+
�!�
�
s; for s 2 [s; �s]

�a+ bs; for s > �s

(6)

for some constants a; �a; a; b given in the Appendix. The threshold values for the compound

signal, s; �s, satisfy:

s =
�

�!�
�+

!s
!z
�z; �s� s = �

�!�
��;

where !s is the variance of s in Eq. (4). Finally, we have that p < �p, where the expressions

for p and �p are given in the Appendix.

Figure 1 depicts the equilibrium price in Proposition I. The solid line is the price schedule

arising in the presence of ambiguity, �� > 0. The dashed line is the benchmark price in the

Grossman and Stiglitz (1980) model. In the top panel, the proportion of informed agents is
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� = 0:2, while in the bottom panel, � = 0:5. In equilibrium, the uninformed agents' portfolio

choice, as formalized in Eq. (2), reects the expected returns in the worst-case scenario: the

uninformed agents buy when s < s (sell when s > �s), but less aggressively than they would

do in the absence of ambiguity. Such a pessimistic behavior leads to a price lower (higher)

than the benchmark for low (high) realizations of the compound signal, s. As the proportion

of informed agents, �, increases, the price impact of uninformed (and ambiguity averse) agents

is reduced, and so is the extent of this \mispricing," as illustrated by Figure 1.

When the compound signal, s, lies within the range [s; �s], the uninformed agents do not

participate in the market. Proposition I tells us that the non-participation region, �s � s, is
proportional to the size of the ambiguity in the market, ��. The proportionality factor, �

�!�
, is

the total risk-bearing capacity of the informed agents, de�ned as the mass of informed agents,

�, times their trading aggressiveness, 1
�!�
. As the informed risk-bearing capacity increases,

prices move towards fundamentals. It now takes more extreme realizations of the compound

signal, s, for prices to be favorable enough and induce uninformed agents to trade. Therefore,

the non-participation region widens.

The non-participation region is proportional to �� for the following reasons. Consider the

comparative statics of a change in � and ��. If � increases, Ebuy
�
f jP (�; �) = p

�
increases as

well, but then the threshold equilibrium price at which the agent does not buy the asset, p,

has to increase. This requires that s increase. A similar argument leads to the conclusion that

as �� decreases, �s does necessarily have to decrease as well.

Finally, this market exhibits a feature about the information transmitted by the price.

By observing the price, the uninformed investors learn about the fundamentals, in that they

experience a reduction in their initial uncertainty about the expected payo�s:

0 < E�� (f jP (�) = p)� E� (f jP (�) = p) < E�� (f)� E� (f) � ��� �; (7)

for each price realization p (see the Appendix). However, such a shrinkage in uncertainty is

incomplete, as the �rst inequality in (7) reveals. In other words, the price does not reveal all

the information informed investors possess about ambiguity, only a portion of it.
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Figure 1. This picture depicts the equilibrium asset price in Proposition I, as a function

of the compound signal, s. Both panels compare the price function with the Grossman-

Stiglitz linear function (the dashed line), which arises in the absence of ambiguity in the

market, �� = 0. Parameters values are �� = 2, !� = !� = !z = � = 1, and �z = 0.

In the top panel, the proportion of informed agents, � = 0:2, and in the bottom panel,

� = 0:5.
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3 Information acquisition

In this section we analyze how ambiguity a�ects the incentives to acquire fundamental informa-

tion, and solve for the endogenous fraction of informed agents, �. As in Grossman and Stiglitz

(1980), all agents need to evaluate the ex-ante expected utilities, before deciding whether to

become informed or not. However, the process of information acquisition di�ers from that in

Grossman and Stiglitz, in that all agents are ex-ante ambiguity averse, which leads them to

assess future events at the worst-case scenarios.

3.1 Uninformed agents

The ex-ante expected utility for a would-be uninformed agent is:

UU (�) = min
�
E� [vU (s (�; z))] ; (8)

where vU (s) is the interim utility for the uninformed agents, de�ned as

vU (s) = �e��CU (s); CU (s) = min
�
E� (WU j s)�

1

2
�var (WU j s) :

By Eq. (4), the compound signal s is normally distributed, with mean �s (�) and variance !s,

where,

�s (�) �
�

�!�
�:

In the Appendix, we provide a closed-form expression for the unconditional expectation of the

interim utility:

E� [vU (s)] =

Z 1

�1
vU (s) d� (s;�s (�) ; !s) ;

where � (�;�; !) denotes the cumulative function of a normal variate with mean � and variance
!.

Figure 2 depicts the interim utility, vU (s), and the density function d� of the compound

signal, s. The interim utility achieves its minimum in the non-participation region, where the

interim certainty equivalent CU (s) is at at zero. Then, it is monotonically increasing, and
symmetric, as the compound signal moves away from the non-participating thresholds s and

�s. The next proposition provides the solution to the problem in Eq. (8):

Proposition II. Let �z � 0. Then, the ex-ante expected utility of the uninformed agents,
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UU (�; �), is minimized at,

�U (�) = min

�
�!�
�

!s
!z
�z; ��

�
:

5 0 5
1

0.8

0.6

0.4

0.2

0

0.2

0.4

s

Choice of the uninformed agents

Interim utility
Probability density

Figure 2. This picture depicts the identi�cation and assessment of the worst-case scenario

made by uninformed agents. The worst-case scenario occurs over the non-participation

region, [s; �s], where the interim utility attains its minimum. Accordingly, the interim

utility is given the largest probability weight at ŝ = 1
2 (s+ �s). The vertical dashed line

connects the probability density to the interim utility at the point ŝ. Parameters values are

�� = 2, !� = !� = !z = � = 1, � = 0:1, and �z = 1. The resulting value of ŝ is 1:01.

The economic mechanism underlying Proposition II is the following. The uninformed agents

attach the largest probability to the occurrence of the worst events, and choose � in such a

way that the expected value of the signal, �s (�), is as close as possible to the midpoint in the

non-participation region, ŝ = 1
2 (�s+ s). Naturally, �U (�) is increasing in the average supply,

�z: following an increase in �z, for markets to clear, the probability the uninformed agents

enter as buyers (sellers) must increase (decrease) and as a result, the non-participation region

shifts to the right.
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3.2 Informed agents

The ex-ante expected utility for a would-be informed agent is,

UI (c; �) = min
�
E� [vI (�; s (�; z))] ; (9)

where vI (�; s) is the interim utility for any informed agent, de�ned as

vI (�; s) = �e��(CI(�;s)�c); CI (�; s) =
1

2

(� � P (s))2

�!�
;

and the equilibrium price, P (s), is as in Eqs. (6) of Proposition I.

The Appendix provides a closed-form expression for the unconditional expectation of the

interim utility,

E� [vI (�; s (�; z))] = e
�c
r

!�
! f js

� E� [�vI (s;�)] ; (10)

where �vI (s;�) is some negative function.

3.3 Information acquisition

An equilibrium with endogenous information acquisition is de�ned in the usual way, as the

fraction of informed agents, �� 2 [0; 1], that makes any agent ex-ante indi�erent whether to be
informed or not, UI (c; ��) = UU (��), or,1

UI (c; ��)
UU (��)

= e�c
r

!�
! f js| {z }

Grossman-Stiglitz e�ect

�
E�I [�vI (s;�)]

E�U [vU (s)]| {z }
Ambiguity aversion e�ect

= 1; (11)

where ! f js denotes the variance of the fundamentals, f , conditional on the compound signal

s, and �I and �U solve the two problems in Eqs. (8) and (9).

The left hand side of Eq. (11) is the value of information, evaluated at ��. It is the product

of two terms. The �rst term is the usual value of information in the Grossman and Stiglitz

(1980) model, the benchmark without ambiguity, �� = 0. It summarizes the usual trade-

o� between the cost of acquiring information and its bene�ts, in terms of the informational

advantage over the uninformed fringe. The e�ect of ambiguity on the incentives to acquire

fundamental information is captured by the additional term in Eq. (11), which leads to what

we label as the \ambiguity aversion e�ect." The next proposition explains how the value of

1Non-interior equilibria are also de�ned in the usual way, as �� = 0 such that UI (c; 0) < UU (0) and �� = 1
such that UI (c; 1) > UU (1).
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information is a�ected by this ambiguity e�ect:

Proposition III. Information is more valuable in a market with ambiguous fundamentals

(�� > 0) than in a market without ambiguity (�� = 0).

The additional bene�ts of collecting fundamental information, due to the presence of am-

biguous fundamentals, can be better understood by comparing the welfare of both types of

agents to a benchmark without ambiguity. First, for any realization of the fundamentals, unin-

formed agents trade lower quantities than if there was no ambiguity (or if they were ambiguity

neutral), as explained in Section 2. Therefore, by giving up investment opportunities, unin-

formed agents experience lower expected utility. Such a welfare reduction is actually reinforced

from an ex-ante perspective: while assessing the outcomes arising from being uninformed at

the trading stage, agents attach the largest probability weight to those future states in which

participation is the lowest, as formalized in Proposition II and illustrated in Figure 2.

Second, informed investors bene�t from the mispricing induced by the price impact of

uninformed ambiguity-averse investors, as illustrated in Figure 1: they can buy at lower prices

and sell at higher prices, thus making higher pro�ts.

Since the value of information increases, in the presence of ambiguity, we immediately

obtain the following result on the amount of resources spent on collecting information:

Corollary 1. Information is purchased by more agents in the presence of ambiguity than in

the benchmark case without ambiguity.

4 Information complementarities, multiple equilibria and price

swings

Complementarities in information acquisition arise when the incentives to acquire information

become stronger with the size of informed agents. This section analyzes conditions under which

this situation occurs, and their asset pricing implications.

4.1 Complementarities in information acquisition

The following proposition identi�es su�cient conditions under which ambiguity leads to com-

plementarities in the process of information acquisition:
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Proposition IV. Let �� > 0. Then, there exists a level of the average supply ��z > 0, such

that there are complementarities in information acquisition for all �z > ��z.

As the fraction of informed agents � increases, there are two opposing forces that a�ect

the incentives to acquire information. The �rst relates to the standard strategic substitutabil-

ity e�ect, which is well-known since Grossman and Stiglitz (1980): more informed trading

increases price e�ciency, which reduces the informational advantage of the informed agents

above the uninformed. This e�ect is still present in our model, as the �rst term in Eq. (11)

is monotonically increasing in �. Our analysis uncovers a second e�ect, speci�c to ambiguity,

and captured by the second term in Eq. (11): the volume of uninformed trading decreases with

the mass of informed agents, which makes uninformed agents worse o�, ex-ante. Proposition

IV shows that the ambiguity aversion e�ect may dominate the strategic substitutability e�ect,

thereby generating strategic complementarities in the process of information acquisition.

The role the asset average supply, �z, plays in generating such information complementar-

ities is subtle. A key observation is that the informed agents' ex-ante utility is also decreasing

in �, because a reduction in the mass of uninformed agents reduces the extent of the mispricing

informed agents bene�t from (see Figure 1). This e�ect might counter-balance the net e�ect

of an increase in � on relative welfare, but it becomes less relevant for larger values of the

asset average supply. As �z increases, the expected gains arising out of mispricings are lower.

Consider, for example, the case in which the market is only populated by uninformed investors,

in which case the mispricing is the highest. If the asset supply is su�ciently high, on average,

agents will be buyers most of the time. With uninformed investors holding the positive supply

and being price setters, prices reect low expected payo�s, �, and therefore are particularly

low. The worst-case scenario for an agent considering, ex-ante, to become informed, then, is

that the expected payo�s are indeed low (i.e. �I = �), so that the perceived mispricing (and

the bene�ts from it) vanish. If the ex-ante perceived mispricing is low to start with, then, as

� increases, the shrinkage in the ex-ante utility of the informed investors is weak, compared to

the loss in the ex-ante utility of the uninformed. As a result, the ambiguity aversion e�ect in

Eq. (11) decreases with � for �z large enough, inducing strategic complementarities.

4.2 Multiple equilibria

Information complementarities may lead to multiple equilibria, as illustrated in Figure 3. In-

tuitively, when the asset supply is su�ciently large, on average, there may occur strategic

complementarities, when the proportion of informed agents, �, is low, as we explained in the

13



extreme case in which � = 0. However, when � is high, the market may be so e�cient that

strategic substitutability dominate over the ambiguity e�ect in Eq. (11), as in Figure 3.

Figure 3 displays the value of information, as a function of �, obtained for two di�erent

degrees of ambiguity, ��.2 The solid line, which corresponds to �� = 1, leads to three

equilibria. Two of these, �� = �U and �
� = �S , are interior equilibria: the leftmost equilibrium

(�U ) is unstable, and the rightmost (�S) is stable. The third, and stable, equilibrium is that

with �� = 0. As �� increases, the value of information increases, for each �, and shifts the

leftmost (unstable) equilibria to the left, and the rightmost (stable) equilibria to the right.

When �� is su�ciently high, there remains one equilibrium only, and stable. The dashed line

in Figure 3, which corresponds to �� = 1:30, depicts an example of such a situation.

U S
0.2 0.4 0.6 0.8

0.95

1.00

1.05

1.10

Value of information

Complementarities in information acquisition and multiple equilibria

Figure 3. This picture depicts the value of information, UI(c;�)
UU (�) , as a function of the

fraction of informed agents, �, for a given cost of information, c. Parameters values are

!� = !� = !z = � = �z = 1, and c = 0:5. The solid line is the value of information for

�� = 1, and the dashed line is the value of information for �� = 1:30.

Figure 4 depicts the proportion of agents who acquire information, as a function of the size

of ambiguity, ��. We can interpret changes in �� as those that result in a repetition of a one-

2Note that due to negative exponential utility, lower values of the ratio in Eq. (11) mean higher values of
information.
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period economies. When ambiguity is low, say �� = 0:5, the market is in its \media gloom"

regime. If ambiguity increases, say to 1.30, the proportion of agents who become informed

increases by a discrete change: from zero, to nearly 75%, a \media frenzy" regime. As ��

decreases back to, say, 0:8, the market for information precipitates again. The model, then,

generates path-dependence: for any size of ambiguity �� between the two vertical dashed lines,

the number of informed agents can be either zero or positive, according to the previous values

of ��. Accordingly, given that the value of information increases with ��, the jump size in

the proportion of informed agents is larger when we head towards times of higher uncertainty

than when we move back to times of decreased uncertainty.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ :
 p

ro
po

rt
io

n 
o

f i
n

fo
rm

e
d 

ag
en

ts
 in

 th
e

 s
ta

bl
e 

eq
ui

lib
riu

m

∆µ: size of ambiguity

Stable equilibria

Figure 4. Media frenzies and glooms. Parameters values are !� = !� = !z = � = �z = 1,

and c = 0:5.

4.3 Crashes and rebounds

Figure 5 depicts the equilibrium price as a function of the size of ambiguity, when the proportion

of agents who acquire information is determined endogenously as in Figure 4.

The left hand side panel depicts the unconditional expectation of the price, assuming

the asset is in positive supply. A negative price, i.e. a price discount, reects the positive

expected return that is required by the agents to hold the asset. The �gure shows how, for

15



low values of ambiguity, when the economy is in its \media gloom" regime, an increase in

�� leads to a larger price discount, as the price reects an increasingly severe worst-case

scenario. As the size of ambiguity gets su�ciently large, and the economy shifts to its \media

frenzy" regime, more investors purchase information. This jump in the size of informed agents

implies a discrete reduction both in the mispricing related to ambiguity aversion and in the

conditional risk perceived in the market, reducing the price discount. As a consequence, the

average price jumps up. Moreover, within this regime, the equilibrium fraction of informed

agents increases with the size of ambiguity, such that higher values of �� lead to a lower

price discount. Therefore, our model predicts a non-monotonic relation between the degree of

Knightian uncertainty and risk premia. Furthermore, the price inherits the same properties as

those featured by the proportion of informed agents: it exhibits path-dependence and di�erent

jump sizes, according to whether the size of ambiguity is increasing or decreasing.

0 0.5 1 1.5 2
2.5

2

1.5

1

E
q

u
ilib

riu
m

 p
ric

e

∆µ: size of ambiguity

Market crashes and booms (unconditional)

0 0.5 1 1.5 2
9

8

7

6

5

4

E
q

u
ilib

riu
m

 p
ric

e

∆µ: size of ambiguity

Price swings (negative liquidity shocks)

0 0.5 1 1.5 2
2

2.5

3

3.5

4

4.5

5

E
q

u
ilib

riu
m

 p
ric

e

∆µ: size of ambiguity

Price swings (positive liquidity shocks)

Figure 5. Market crashes and booms. Parameters values are !� = !� = !z = � = �z = 1,

and c = 0:5. Negative liquidity shocks, s = �3. Positive liquidity shocks, s = 3.
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The two panels on the right hand side of Figure 5 depict the equilibrium price, when � = 0,

and s = � (z � �z) = �3 (right, top) and s = � (z � �z) = 3 (right, bottom). Therefore, the
right top panel corresponds to a negative liquidity shock, and the right bottom to a situation

of a positive liquidity shock. In the presence of a negative liquidity shock, agents step in as

buyers to clear the market, so that a price rebound (crash) obtains when the size of ambiguity

gets su�ciently large (small), just as in the unconditional case. In the presence of a positive

liquidity shock, the pattern is reversed: agents step in as sellers to clear the market, and the

required positive expected return is reected in a price premium. Therefore, the size of this

premium increases with �� in the \media gloom" regime, until the degree of ambiguity is

su�ciently high that the economy shifts to the \media frenzy" regime. As the shift occurs,

the required return, and therefore the price premium, jumps down, generating a crash.
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Appendix

Proof of Proposition I. By the market clearing condition, Eq. (5), the equilibrium price arising when
the uninformed agents do not participate is:

P (s) = ��!�
�
�z +

�!�
�
s;

which is the second line in Eqs. (6). Next, we compute the uninformed agents' expectation of the asset

payo�, in the states of nature in which these agents participate. Using !s =
�

�
!��

�2
!� + !z, straight

forward computations leave:

Ebuy (f jS = s) =
�2!2�!z

�2!� + �2!2�!z
�+

��!�!�

�2!� + �2!2�!z
s (A1)

Esell (f jS = s) =
�2!2�!z

�2!� + �2!2�!z
��+

��!�!�

�2!� + �2!2�!z
s (A2)

Next, we plug Eqs. (A1)-(A2) into the demand schedule, Eq. (2), replace the result into the market
clearing condition, Eq. (5), conjecture the piece-wise linear price function in Eqs. (6), and solve for
undetermined coe�cients, obtaining,

a =
��2�z�!�!� +

�
� (1� �)!� � �z�!� (!� + !�)

�
�2!z!�

�2!� + ��2!�!z!� + �2!z!2�

�a = a+
�� (1� �) �2!z!2�

�2!� + ��2!�!z!� + �2!z!2�

a = ��!�
�
�z

b =

�
�!� + !z�

2!� (!� + !�)
�
�!�

�2!� + ��2!�!z!� + �2!z!2�

Finally, we determine the threshold for the compound signal, s and �s. We use the cuto� conditions
in Eq. (3). As for s, consider the �rst equation, Ebuy

�
f jP (�; �) = p

�
= p. For s � s, the conjectured

price function is linear in s. Therefore, we solve for p by equivalently solving for s in the following
condition,

Ebuy (f jS = s) = p = a+ bs;

where Ebuy (f jS = s) is given by Eq. (A1), and the third equality holds by the �rst line of the
conjectured price function in Eqs. (6). We do the same to determine �s, by solving,

Esell (f jS = �s) = �p = �a+ b�s;

where Esell (f jS = �s) is given by Eq. (A2). The expressions for s and �s given in Proposition I then
follow by simple computations. Finally, we need to compute the threshold prices �p and p. We plug Eqs.
(A1)-(A2) into Eq. (3), use the price function in Eqs. (6), and obtain,

p = �+
�!�
�!�!z

�z; �p = ��+
�!�
�!�!z

�z:

The previous expressions con�rm that p < �p. �
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Proof of Eq. (7). Follows by Eqs. (A1)-(A2). �

Remark on the notation. To alleviate the notation, we �x � (�) � � (�; 0; 1).

Derivation of the utilities for the would-be uninformed and informed agents.

Would-be uninformed agents. By Eqs. (A1)-(A2), we have,

xU (s) =

8>>>>>>>>>><>>>>>>>>>>:

Ebuy (f j s)� P (s)
�! f js

=
�

�! f js
(s� s) ; for s < s

0; for s 2 [s; �s]

Esell (f j s)� P (s)
�! f js

=
�

�! f js
(�s� s) ; for s > �s

where ! f js is the variance of f conditional on s, P (s) is the equilibrium price in Eqs. (6) of Proposition
I, and:

! f js = !� +
!z!�
!s

; � =
�3!z!

3
�

�
�2!� + �

2!z!
2
� + �

2!z!�!�
��

�2!� + ��2!z!�!� + �2!z!2�
� �
�2!� + �2!z!2�

� : (A3)

Accordingly, the interim utility is,

vU (s) = �e��CU (s) =

8>>>>>>>>>><>>>>>>>>>>:

� exp
�
�1
2

�2

! f js
(s� s)2

�
; for s < s

�1; for s 2 [s; �s]

� exp
�
�1
2

�2

! f js
(s� �s)2

�
; for s > �s

(A4)

Integrating over the distribution of the compound signal, s, leaves

E� [vU (s)] = �
Z 1

�1
e��CU (s)d� (s;�s (�) ; !s) �

X
`2fbuy;np;sellg

J`�;

where

Jbuy� = �
Z s

�1
e��CU (s)d� (s;�s (�) ; !s)

Jnp� = �
Z �s

s

d� (s;�s (�) ; !s)

J sell� = �
Z 1

�s

e��CU (s)d� (s;�s (�) ; !s)
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A direct computation of these integrals yields,

Jbuy� = �� exp
 
� �

2 (s� �s (�))
2

2
�
! f js + �

2!s
�!�� �

p
!s
(s� �s (�))

�
Jnp� = �

�
�

�
�s� �s (�)p

!s

�
� �

�
s� �s (�)p

!s

��
J sell� = �� exp

 
� �

2 (�s� �s (�))
2

2
�
! f js + �

2!s
�!�1� �� �

p
!s
(�s� �s (�))

��
;

where,

� =

s
! f js

! f js + �
2!s

:

�

Would-be informed agents. Let � �js (�) and ! �js denote the conditional expectation and variance of �
given s, which are easily shown to be:

� �js (s;�) =
�2!2�!z

�2!� + �2!2�!z
�+

��!�!�

�2!� + �2!2�!z
s; ! �js =

!z!�
!s

: (A5)

We have,

E� [vI (�; s (�; z))] = e
�c

Z 1

�1
E� [vI (�; s)j s] d� (s;�s (�) ; !s) (A6)

where,

E� [vI (�; s)j s] = e�c
Z 1

�1
vI (�; s) d�(�;� �js (s;�) ; ! �js):

Computing the integrals yields,

E� [vI (�; s)j s] = �e�c
r

!�
! f js

exp

0B@�1
2

�
� �js (s;�)� P (s)

�2
! f js

1CA ; (A7)

where P (s) is the equilibrium price in Eqs. (6) of Proposition I. Replacing P (s) and the expression for
� �js (s;�) in Eq. (A5) into Eq. (A7), leaves:

E� [vI (�; s)j s] = e�c
r

!�
! f js

�vI (s;�) (A8)
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where, for ŝ = 1
2 (s+ �s) and � de�ned as in Eq. (A3),

�vI (s;�) =

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

� exp

0@�1
2

�2

! f js

 
s� s� �̂

�

�

�!�

�
�� �

�!21A ; for s < s

� exp
 
�1
2

�̂
2

! f js

�
s� ŝ� �

�!�
�

�2!
; for s 2 [s; �s]

� exp

0@�1
2

�2

! f js

 
s� �s+ �̂

�

�

�!�
(��� �)

!21A ; for s > �s

(A9)

and
�̂ =

�!�!z
�!s

:

Finally, substituting Eq. (A8) into Eq. (A6), and integrating, leaves Eq. (10) in the main text, with

E� [�vI (s;�)] =
X

`2fbuy;np;sellg

I`�;

where,

Ibuy� = �� exp

0B@��2
�
!s
!z
�z + 0

�
�� �

��2
2
�
! f js + �

2!s
�

1CA�� �
p
!s

�
!s
!z
�z � 1

�
�� �

���

Inp� = ��̂ exp

0@� �̂
2
(!s!z �z)

2

2(! f js + �̂
2
!s)

1A��� �̂
p
!s

�
!s
!z
�z + 2 (��� �)

��
� �

�
�̂
p
!s

�
!s
!z
�z � 2

�
�� �

����

Isell� = �� exp

0B@��2
�
!s
!z
�z � 0 (��� �)

�2
2
�
! f js + �

2!s
�

1CA�1� �� �
p
!s

�
!s
!z
�z + 1 (��� �)

���

and:

�̂ =

s
! f js

! f js + �̂
2
!s
; 0 =

 
�̂

�
� 1
!

�

�!�
; 1 =

 
1 + �

�̂!s
! f js

!
�

�!�
; 2 =

 
1 + �̂

�̂!s
! f js

!
�

�!�
:

�

Proof of Proposition II. We claim that �s = ŝ � 1
2 (s+ �s), or equivalently, that for all � > 0,

���UU � �
Z 1

�1
vU (s)��' (s) ds > 0; (A10)

where ��' (s) � ' (s; ŝ; !s)�' (s; ŝ+ �; !s), and '
�
�; �; �2

�
denotes the Normal density function, with

mean � and variance �2. Note that the function vU (s) is symmetric about ŝ, so that Proposition II
follows once, we show that the inequality in (A10) holds true for each � > 0.
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We have:

��' (s) =

(
f
�
s� ŝ� 1

2�
�
� 0 for all s 2

�
�1; ŝ+ 1

2�
�

�f
�
ŝ+ 1

2�� s
�
� 0 for all s 2

�
ŝ+ 1

2�;1
�

where we have de�ned:

f (x) � 1p
2�!s

h
e�

1
2!s
(x+ 1

2 �)
2

� e�
1

2!s
(x� 1

2 �)
2i
:

Next, de�ne the two functions,

h1 (s) �

8<: e
� 1
2

�2

! fjs
(s�s)2

for all s 2 (�1; s]

1 for all s 2
�
s; ŝ+ 1

2�
�

and

h2 (s) �
(
1 for all s 2

�
ŝ+ 1

2�; �s
�

e
� 1
2

�2

! fjs
(s��s)2

for all s 2 (�s;1]

In terms of h1 and h2, we have, �vU (s) = h1 (s) Ifs�ŝ+ 1
2 �g + h2 (s) Ifs�ŝ+ 1

2 �g, where If�g denotes
the indicator function, and the expression for ��UU in (A10) is,

���UU =

Z ŝ+ 1
2 �

�1
h1 (s) f

�
s� ŝ� 1

2
�

�
ds�

Z 1

ŝ+ 1
2 �

h2 (s) f

�
ŝ+

1

2
�� s

�
ds

=

Z ŝ+ 1
2 �

�1
h1 (s) f

�
s� ŝ� 1

2
�

�
ds�

Z ŝ� 1
2 �

�1
h1 (s) f

�
s� ŝ� 1

2
�

�
ds

> 0;

where the second equality follows by the symmetry of vU (s) about ŝ. �

Proof of Proposition III. Consider the indi�erence condition in Eq. (11). We wish to show that for
�� > 0,

UI (c; �)
UU (�)

< e�c
r

!�
! f js

:

Because E�I [�vI (s;�)] and E�U [vU (s)] are both strictly negative, the previous inequality holds true if:

E�I [�vI (s;�)] > E�U [vU (s)] ; (A11)

where we de�ne, as in the main text:

�I 2 argmin
�
E� [�vI (s;�)] ; �U 2 argmin

�
E� [vU (s)] :

To show that (A11) is true, suppose the contrary, i.e. that:

E�I [�vI (s;�)] � E�U [vU (s)] : (A12)

By direct comparison of Eq. (A4) and Eq. (A9), we have that 0 > �vI (s; �) � vU (s) for all � 2
�
�; ��

�
,

and s 2 R, the second inequality being strict on some open set in R. As a consequence, we must have
the inequality, E�I [�vI (s;�)] > E�I [vU (s)] which, combined with (A12), yields,

E�I [vU (s)] < E�I [�vI (s;�)] � E�U [vU (s)] ;

24



contradicting that �U minimizes E� [vU (s)]. �

Proof of Corollary 1. Let ��(��) solve the indi�erence condition:

UI (c; �)
UU (�)

= 1:

Assume now that ��(0) � ��(��), for some �� > 0. By Proposition III, this can not be the case as
we would have

UI (c; ��(��))
UU (��(��))

< 1:

�

Proof of Proposition IV. We wish to show that

UI (c; 0)
UU (0)

>
UI (c; 1)
UU (1)

;

or
I0
J0
J1
I1
>

s
! f js;�=0

! f js;�=1
; (A13)

where ! f js;�=0 = lim�!0 ! f js, ! f js;�=1 = lim�!1 ! f js, and,

I�� = lim
�!��

X
`2fbuy;np;sellg

I`�I ; J�� = lim
�!��

X
`2fbuy;np;sellg

J`�U ; �� 2 f0; 1g :

We now proceed with determining I�� and J�� for �� 2 f0; 1g, and for �z su�ciently large. Then, we
shall prove that (A13) holds true for �z su�ciently large. We shall need the results recorded in the
next two lemmas.

Lemma 1. There exists a �̂z > 0 such that for all �z � �̂z, we have that argmin�
�
Ibuy� + Isell�

�
= �:

Proof. We have,

Ibuy� = �c0 exp

0@���!f�z + ��� ���2
2
�
!f + �2!2f!s

�
1A�� c0p

!z

�
�z � �!z

�
�� �

���

Isell� = �c0 exp

0@� (�!f�z � (��� �))2
2
�
!f + �2!2f!s

�
1A�1� �� c0p

!z
(�z + �!z (��� �))

��

where c0 =
�
1 + �2!f!s

�� 1
2 . It is easy to show that � 7! Ibuy� is increasing. We are left to show that
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with �z su�ciently large, we have that � 7! Isell� is increasing as well. We have,

c�10
@

@�
Isell� = � @

@�
exp

0@� (�!f�z � (��� �))2
2
�
!f + �2!2f!s

�
1A�1� �� c0p

!z
(�z + �!z (��� �))

��

+ exp

0@� (�!f�z � (��� �))2
2
�
!f + �2!2f!s

�
1A @

@�

�
1� �

�
c0p
!z
(�z + �!z (��� �))

��

= exp

0@� (�!f�z � (��� �))2
2
�
!f + �2!2f!s

�
1A

�
 
�!f�z � (��� �)
!f + �2!2f!s

+
1p
2�
exp

 
�1
2

�
c0p
!z
(�z + �!z (��� �))

�2!
c0p
!z
�!z

!
:

This expression is positive for all �z : �!f�z � (��� �) � 0, which it does when �z � ��
�!f

. �

Lemma 2. There exists a ��z > 0 such that for all �z � ��z we have that argmin�
�
Jbuy� + Jnp� + J sell�

�
=

��:

Proof. Follows directly by Proposition II, once we set ��z =
�!z
�!�!s

��. �

We are now ready to compute I0, J0, I1 and J1.

� As for I0, note that, clearly, I0 = min�(I
buy
� + Isell� ). Therefore, by Lemma 1, and a simple

computation, we have that for all �z � �̂z, and with �̂z as in the proof of Lemma 1,

I0 = Ibuy� + Isell�

= �c0

"
exp

�
��

2
z�
2!fc

2
0

2

�
�

�
�zp
!z
c0

�
+ exp

 
� (��� �z�!f )

2
c20

2!f

!
�

�
��z +���!zp

!z
c0

�#
;

where the second equality follows by a simple computation.

� As for J0 and I1, it is easily seen that J0 and I1 are independent of �. They are,

J0 = �c0 exp
�
��

2
z�
2!fc

2
0

2

�
; I1 = �c1

s
!� + �2!z!�!f

c2
exp

�
�1
2
�2!�c

2
1�

2
z

�
;

where c1 =
�
1 + �2!z!�

�� 1
2 and c2 = �

2!z!
2
� + !�.

� As for J1 we have, by Lemma 2 and a direct computation, that for all �z � ��z, where ��z is as in
Lemma 2,

J1 = �c1

s
!� + �2!z!�!f

c2

�
"
exp

 
��

2!�c
2
1

2

(���!z!� � �zc2)
2

c22

!
� (�0�z + �1) + exp

�
��

2!�c
2
1

2
�2z

�
� (��0�z)

#
� [� (�2�z + �3)� � (�2�z + �4)] ; (A14)
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for some constants �0 > 0, �2 > 0, �1, �3, �4 independent of �z.

We are now ready to show that the inequality in (A13) holds true. Consider the following ratios:

I0
J0

= �

�
�zp
!z
c0

�
+ exp

�
c20
2!f

(2�z�!f ���)��
�
�

�
�c0

�z +���!zp
!z

�
I1
J1

= �c1

s
!� + �

2!z!�!f
�2!z!2� + !�

�
exp

�
�2!�c

2
1

2
�2z

�
J1
��1

where J1 is as in Eq. (A14). We claim that,

lim
�z!1

I0
J0

= 1; lim
�z!1

I1
J1

= 0:

The �rst limit holds by the property of the cumulative distribution function, and by the L'Hôpital's
rule. To show that the second limit holds, note that by the expression for J1 in Eq. (A14), we only
need to show that

lim
�z!1

exp

�
�2!�c

2
1

2c22

�
c22�

2
z � (���!z!� � c2�z)

2
��

=1;

which is easily seen to be true. �
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