Comparing children’s online opportunities and risks across Europe

European Research on Cultural, Contextual and Risk Issues in Children’s Safe Use of the Internet and New Media (2006-2009)

A project funded by the EC Safer Internet Plus Programme – http://ec.europa.eu/saferinternet

www.eukidsonline.net
Comparing children's online opportunities and risks across Europe: Cross-national comparisons for EU Kids Online
Second edition, 2009

Editors
Uwe Hasebrink, Sonia Livingstone, Leslie Haddon and Kjartan Ólafsson

Contributors
Verónica Donoso, Cédric Fluckiger, Carmelo Garitaonandia, Maialen Garmendia, Jos de Haan, Leslie Haddon, Uwe Hasebrink, Lucyna Kirwil, Yiannis Laouris, Benoît Lelong, Sonia Livingstone, Bojana Lobe, Jivka Marinova, Helen McQuillan, Kjartan Ólafsson, Pille Pruulmann-Vengerfeldt, Katia Segers, José Alberto Simões, Vaclav Stetka, Liza Tsaliki, Anna Van Cauwenberge, Thomas Wold.

This is a report from the EU Kids Online network
For a complete list of participants, see Annex B

Please cite this report as follows:

European Research on Cultural, Contextual and Risk Issues in Children’s Safe Use of the Internet and New Media
EU Kids Online is a project funded by the EC Safer Internet plus programme (http://ec.europa.eu/information_society/activities/sip/index_en.htm) from 2006-2009. It examines research carried out in 21 member states into how children and young people use the Internet and new media. This three-year collaboration aims to identify comparable research findings across Europe and to evaluate the social, cultural and regulatory influences affecting both risks and children’s and parents’ responses to them, in order to inform policy. It will chart available data, indicate gaps and identify factors that shape the research capability of European research institutions. Finally, it will examine methodological issues relating to cross-cultural analyses and the study of children’s online experience in order to develop a best practice guide to research. For more information see www.eukidsonline.net
Contents

Executive summary .. 3
1. Introduction ... 6
 1.1. European children’s online activities .. 6
 1.2. A comparative approach to research ... 6
 1.3. The EU Kids Online network ... 6
 1.4. Online risks and opportunities ... 7
 1.5. Structure of the research field ... 7
 1.6. Classifying risks and opportunities ... 8
 1.7. Varieties of cross-national comparison ... 9
 1.8. The organisation of this report ... 11
2. Children and young people’s internet use: Comparing across countries 12
 2.1. Access and usage ... 12
 2.2. Risks and opportunities .. 21
 2.3. Attitudes and skills ... 34
 2.4. Mediation by parents, teachers and peers .. 37
 2.5. Conclusions ... 45
3. Explaining differences and commonalities between countries .. 57
 3.1. Media Environment ... 57
 3.2. Internet regulation and promotion .. 61
 3.3. Public discourses .. 66
 3.4. Values and attitudes .. 70
 3.5. Educational system ... 71
 3.6. Background factors ... 77
 3.7. Applying Qualitative Comparative Analysis .. 83
 3.8. Towards a systematic model of contextual factors .. 87
4. Conclusions ... 88
 4.1. Overview ... 88
 4.2. Summary of findings from the comparative analysis .. 88
 4.3. Classification of countries in terms of children’s online risk 90
 4.4. Contextual explanations for cross-national differences ... 91
 4.5. Commentary on the comparative process .. 94
5. Bibliography .. 96
Annex A: EU Kids Online .. 99
Annex B: Network members ... 100
Annex C: Template for country reports .. 101
Annex D: Summary tables from country reports .. 106
Executive summary

Overview

With 75% of European children using the internet, some celebrate their youthful expertise while others worry that they are vulnerable to new forms of harm. Policies to balance the goals of maximising opportunities and minimising risks require an evidence-based approach.

Funded by the European Commission’s Safer Internet Programme, EU Kids Online (2006-9) is a thematic network that aimed to identify, compare and draw conclusions from existing and ongoing research on children and online technologies conducted in Europe.

This report seeks to identify and explain the pattern of cross-national similarities and differences in children’s online use, skills, opportunities, risks and safety. To do so, it draws on a sizable evidence base in Europe, collated across 21 countries.

A series of key research questions and hypotheses were examined in relation to the available findings across Europe. These permit some general conclusions (i.e. cross-national similarities) which hold, with exceptions, and notwithstanding the limitations on data quality, across the European countries examined.

The evidence also reveals a range of cross-national differences in relation to children’s online use and risk especially. For these, EU Kids Online first sought to classify countries and then to explain the observed differences through contextual information. The Safer Internet Programme’s 2005 and 2008 Eurobarometer surveys of parents have also been useful in providing cross-nationally comparable findings.

Online access and use

- Children’s use of the internet continues to grow. Striking recent rises are evident among younger children and in countries which have recently entered the EU. Long-standing gender inequalities may be disappearing, though socio-economic inequalities persist in most countries.
- Contrary to the widespread assumption that, in general, children are the digital natives and parents the digital immigrants, there are also striking increases in the percentage of parents online, reversing the previous trend for teenagers especially to outstrip adults in internet use.
- Indeed, the 2008 Eurobarometer survey shows that, although children (under 18 years) use the internet more than adults in general, they use it less than parents in particular, and this is particularly the case for those under 11 years.
- This suggests that, in general, it is reasonable to expect that their parents will understand the internet sufficiently to guide their use, though this may not hold for teenagers.
- Across Europe, children generally use the internet more at home than at school, and there is a positive correlation between use at home and school across countries. The more children use the internet at home in a country, the more they are likely to use it also at school, and vice versa.
- The evidence across Europe shows that, notwithstanding considerable cross-national differences in children’s internet use, the more parents use the internet, the more children do so also. This applies at both a national level (i.e. countries where parents are more likely to use the internet are also countries where children are more likely to use it) and at an individual level (i.e. if an individual parent uses the internet, especially at home, they are more likely to have a child who uses it). It was concluded that parents use the internet both in order to encourage their children and because they have been encouraged to do so by their children.

Online opportunities

- Across Europe, a fair body of research evidence suggests that adults and children agree that children use the internet as an educational resource, for entertainment, games and fun, for searching for global information and for social networking, sharing experiences with distant others. Other opportunities (e.g. user-generated content creation or concrete forms of civic participation), are less common.
- These opportunities were classified into 12 cells according to the motives of those providing online contents and services and the relation of the child (as recipient, participant or actor) to that provision. However, there is little cross-nationally comparable evidence regarding the incidence and take-up of these various opportunities and, consequently, little can be said regarding the possibility of cross-national differences in online opportunities.
- It was further proposed that each child climbs a ‘ladder of online opportunities’, beginning with information-seeking, progressing through games and communication, taking on more interactive forms of communication and culminating in creative and civic activities. Though many variants are possible, one implication is that communication and games playing may not be ‘time-wasting’ but, instead, a motivational step on the way to ‘approved’ activities.

Online risks

- Although risks are particularly difficult to define in culturally-consensual ways, and they are difficult to research in methodologically-rigorous and ethically-responsible ways, a classification of 12 categories of risk was proposed as likely to be relevant across Europe (and beyond). However, as only a few studies have been conducted in some countries, evidence for risk within these categories only permits tentative conclusions.
- In terms of overall incidence, findings of risk, as reviewed in the national reports, provide the basis for an equally tentative country classification according to likelihood of encountering online risks (next section). Some cross-national similarities can thus be
discerned, particularly in terms of the rank ordering of risks in terms of likelihood.

- Thus, across Europe, notwithstanding considerable cross-national variation, it appears that giving out personal information is the most common risk (approximately half of online teenagers), that seeing pornography is the second most common risk at around 4 in 10 across Europe, that seeing violent or hateful content is third most common risk (at approx one third of teens).

- Being bullied/harassed/stalked affects around 1 in 5 or 6 teens online, that receiving unwanted sexual comments is experienced by between 1 in 10 teens (Germany, Ireland, Portugal) but closer to 1 in 3 or 4 teens in Iceland, Norway, UK and Sweden, rising 1 in 2 in Poland.

- Last, as regards meeting an online contact offline, this is the least common but arguably most dangerous risk, showing considerable consistency in the figures across Europe at around 9% (1 in 11) online teens going to such meetings, rising to 1 in 5 in Poland, Sweden and the Czech Republic.

- In several countries, a degree of distress or feeling uncomfortable or threatened was reported by 15%-20% of online teens, suggesting, perhaps, the proportion for whom risk poses a degree of harm. Several risks are yet to be researched comparatively – self harm, race hate, commercial exploitation.

Online attitudes and skills

- Overall, the evidence supports the hypothesis that internet-related skills increase with age. This is likely to include their abilities to protect themselves from online risks although, perhaps surprisingly, this has been little examined. Although boys often claim higher skill levels than girls, though this remains to be tested objectively.

- Across countries, those in which a higher percentage of parents claim their children have encountered harmful content tend also to be those in which parents estimate their children to have a lower ability to cope with these potentially harmful encounters. Note that this correlation does not hold at an individual level (i.e. it cannot be said that if a parent claims their child has encountered harmful content, that parent is also more likely to think their child cannot cope).

- Although there is growing evidence of the array of coping strategies children employ when faced with online risk, these are not yet systematically studied and nor is their effectiveness evaluated.

Age, gender and socioeconomic status

- Use of the internet increases with age, at least up until the early to mid teens, when usage may peak. While this trend holds across Europe, in high use countries, children get online younger, and this has implications for risk – notable since high risk countries (see later) include low and high use countries.

- Generally, it seems that older teenagers encounter more online risks than younger children, though the question of how younger children cope with online risk remains little researched. It also appears that children from lower socio-economic status homes are more exposed to risk online.

- There are also gender differences in risk: boys appear more likely to seek out offensive or violent content, to access pornographic content or be sent links to pornographic websites, to meet somebody offline that they have met online and to give out personal information; girls appear more likely to be upset by offensive, violent and pornographic material, to chat online with strangers, to receive unwanted sexual comments and to be asked for personal information but to be wary of providing it to strangers; both boys and girls are at risk of online harassment and bullying.

Parental mediation of children’s online activities

- Parents practice a range of strategies for mediating their children’s online activities - they favour time restrictions, sitting with their children as they go online and discussing internet use, tending to prefer these social strategies to technical mediation (filtering, monitoring software).

- More consistent across Europe is the tendency for higher SES parents to mediate their children’s internet use, and for girls to be more subject to such mediation than boys. With regard to age, the consistent finding is that of a U-curve: that parental mediation increases with age until the age of around 10-11 years and then decreases again.

- It is unclear, on the present state of knowledge, that any of these strategies is particularly effective in reducing children’s exposure to risk or increasing their resilience to cope.

Cross-national differences

The differences identified across countries were used to construct a classification of countries in terms of children’s online use and risk. Although generally European children are gaining access to the internet, differences in access and use remain, enabling a country classification based on the percentage of children who use the internet.

- Also striking is the diversity of online risk figures obtained across countries, suggesting a classification of countries based on the likelihood of children’s experiencing online risk. The classification of countries as ‘high risk’ (i.e., above the European average), ‘medium risk’ (i.e., around the European average) or ‘low risk’ (i.e., below the European average) is a relative judgement based on findings in the available studies reviewed in this report and the national reports on which the present comparisons are based.

- Although generally there were fewer comparable or high quality studies available than would be desirable for strong conclusions, a tentative classification is put forward to stimulate further research and policy deliberations.

- The resulting classification of countries suggests that: (i) high use of the internet is rarely if ever associated with low risk; (ii) low use of the internet may be associated with high risk but not vice versa; (iii) high use, high risk countries are, for the most part, wealthy Northern European countries; (iv) medium use, high risk situations are characteristic of new entrants to the
EC; and (v) Southern European countries tend to be relatively lower in risk, though there are differences among them.

- We might conclude that, as a broad generality, (i) Northern European countries tend to be “high use, high risk”; (ii) Southern European countries tend to be “low use, variable risk”; and (iii) Eastern European countries can be characterised as “new use, new risk”.

- There are other country classifications possible, as discussed in this report, including one based on children’s perceived ability to cope with online risk. Also presented is a country classification based on parental mediation, which showed that, on the assumption that the degree of television mediation practiced reveals parents’ willingness to mediate domestic media, countries differed in their relative mediation of television and the internet. It seems that, in high use countries, parents mediate the internet more than they do television. In low use countries, by contrast, they are more likely to mediate television – suggesting a regulation gap in low use countries (i.e. parents are evidently willing to mediate, since they do so for television, but lack either awareness or skills to mediate the internet to a similar degree).

To the extent that we find cross-national differences rather than similarities, we must turn to the country level to explain these differences.

- It can be immediately seen that one simple explanation – country size – plays little relation, though it is equally likely that a country’s wealth (GDP) is related to internet use. Hence, in chapter 3, we reviewed the available evidence for six dimensions on which national contexts might vary in ways that shape children’s online experiences in those countries.

- Cross-national variation in the amount of children’s use of the internet, which depends in many ways on cross-national variation in internet diffusion, is a crucial dimension in influencing children’s experience of the internet in Europe. This is likely to have major consequences for their online opportunities. However, as noted above, higher use is associated with higher risk, but not exclusively so – there are also some medium use, high risk countries.

- Although there appears to be considerable variation in ISP’s activity in safeguarding online safety, this cannot be straightforwardly related to cross-national variation in children’s use or risk. Nor can one discern a straightforward relation between the development of a regulatory framework and children’s experiences online, though it is suggested that more developed frameworks are to be found in countries where internet use is relatively high. Compounding the challenges ahead, it will be observed that relatively low engagement of NGOs with internet safety issues was found in several high risk countries.

- Media coverage of online risks and opportunities varies substantially across Europe. It may be assumed that parents in the countries with a general high level of risk reporting in the media (Portugal, the UK and Denmark) have a higher perception of risks than the average country. In countries where press coverage reports considerable concerns about the risks of content online, there may be more parental concern about these issues compared to countries where that particular reporting is low; the same logic applies to contact and conduct risks.

- The association between cultural values and patterns of online use/risks indicates that online behaviour as well as perceived online risks are related to and shaped by underlying value orientations which differ across Europe. Thus awareness programmes must consider the cultural specificities of single countries in order to reach their target groups.

- The educational system is a relevant contextual factor for children’s internet use. Although the evidence available does not allow for systematically checking the hypothesis, it may be assumed that higher education will help a) children to develop online skills and b) parents to develop skills in mediating their children’s online use. The technical infrastructure of schools as well as the way how the internet is integrated in curricula and everyday teaching practices will influence children’s online use at schools. Since online use at schools is often restricted risks as well as opportunities are reduced in that setting.

- The adoption of an information society discourse, plus such socio-structural factors as degree of urbanisation, appear associated with the degree of internet access and use that children in different countries enjoy. Other factors appear to be more closely associated with the degree of online risk encountered – this is seemingly higher where the State is less interventionist in the regulatory regime, where children are more likely to understand English and, perhaps only in the future, where personalised internet access is more common.
1. Introduction

1.1. European children’s online activities

In many countries, within and outside Europe, children and young people are gaining access to the internet and online technologies at a rapid pace. As the 2008 Eurobarometer survey on Safer Internet issues showed, 75% of all children aged 6-17 years old in the EU 27 have used the internet, with even higher figures applying to teenagers. However, there are substantial differences across countries (ranging from only 45% in Italy and 50% in Greece to over 90% in Estonia and Denmark).

To understand what these changes mean for children and their families, for their education, leisure, participation and community and, more negatively, for the risk of harm to children and young people, this growing use of the internet and online technologies is being closely tracked by empirical research. Research teams across Europe are conducting empirical studies of varying range and depth, in order to advise policy-makers how best to maximise the benefits and minimise the risks associated with the changing media environment.

The collective findings of multiple research projects must now be integrated and their diverse insights brought into focus.

1.2. A comparative approach to research

The EU Kids Online network is premised on the assumption that a cross-national perspective is vital, for children’s experiences of online technologies may – or may not - differ in different countries; after all, countries vary in terms of family structures, education systems, attitudes to technology, media regulation, social values, and much more.

As each country seeks to balance the possible failure to minimise the dangers against the equally problematic failure to maximise the opportunities, cultural factors come to the fore. For example, protection of children is a universal value, yet in practice different countries – for reasons of religion, family structure, market competitiveness and media history – regard new online risks through a cultural lens, asserting their own priorities, often motivated by implicit values. To take another example, it may be that the incidence of risk is higher in countries where diffusion has come later, or where media literacy is lower.

Without a comparative perspective, national studies risk two fallacies – that of assuming one’s own country is unique when it is not, and that of assuming one’s own country is like others when it is not. Researchers and policy makers are faced with asking themselves, for example, whether research conducted in Germany are applicable in Italy or whether findings from Northern Europe suggest lessons for new accession countries?

How should one avoid these fallacies? The body of available evidence raises crucial questions regarding expectations for, and interpretation of findings. Do we expect the risks faced by children in one country to be the same as those in another? What are the costs of assuming pan-European similarities, as a matter of convenience or pragmatism, potentially underestimating the importance of local contexts of use? As part of the wider effort of researchers and policy makers who seek a shared knowledge – of risks, of contexts and of local distinctiveness – this report presents a critical analysis of the ways in which European countries resemble in other as regarding children’s online risk and safety, and where and why they may differ.

1.3. The EU Kids Online network

The EU Kids Online thematic network comprises research teams in each of 21 countries across Europe, tasked with keeping track of recent and ongoing empirical studies. In order to provide a bridge between the specialist domain of empirical research and the policy imperatives of safer internet initiatives, the EU Kids Online network is examining European research (national and multi-national) on cultural, contextual and risk issues in children's safe use of the internet and new media. It focuses on the intersection of three domains:

- Children (mainly up to 18 years old), their families, domestic users;
- Online technologies: mainly but not only the internet; focussing on use and risk;
- European empirical research and policy, prioritising the 21 countries in the network.

Working closely together since June 2006, the 21 national teams that comprise EU Kids Online have developed constructive working arrangements that capture diversity across member states and facilitate the identification of common patterns, themes and best practice.

EU Kids Online outputs are the collective effort of the EU Kids Online network. Network members meet several times per year and work in close contact electronically in between. The editors then integrate contributions and produce the final text for each report.

For further information, see Annex A and www.eukidsonline.net.

1 Partly, this is a methodological matter, as explored in Work Package 4 (`Methodological Issues`) of the EU Kids Online network, for one must determine whether survey methods developed in, say, Sweden are straightforwardly replicated in Belgium? Partly too, it is a matter of the availability of data, as examined in Work Package 1 (`Data Availability and Gaps`).
1.4. Online risks and opportunities

Table 1.1: Online risks and opportunities

<table>
<thead>
<tr>
<th>Online opportunities</th>
<th>Online risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to global information</td>
<td>Illegal content</td>
</tr>
<tr>
<td>Educational resources</td>
<td>Paedophiles, grooming, strangers</td>
</tr>
<tr>
<td>Social networking for old/new friends</td>
<td>Extreme or sexual violence</td>
</tr>
<tr>
<td>Entertainment, games, fun</td>
<td>Other harmful or offensive content</td>
</tr>
<tr>
<td>User-generated content creation</td>
<td>Racist/hate material/activities</td>
</tr>
<tr>
<td>Civic or political participation</td>
<td>Advertising/commercial persuasion</td>
</tr>
<tr>
<td>Privacy for expression of identity</td>
<td>Biased/misinformation (advice, health)</td>
</tr>
<tr>
<td>Community involvement/activism</td>
<td>Exploitation of personal information</td>
</tr>
<tr>
<td>Technological expertise and literacy</td>
<td>Cyber-bullying, stalking, harassment</td>
</tr>
<tr>
<td>Career advancement or employment</td>
<td>Gambling, financial scams</td>
</tr>
<tr>
<td>Personal/health/sexual advice</td>
<td>Self-harm (suicide, anorexia, etc)</td>
</tr>
<tr>
<td>Specialist groups and fan forums</td>
<td>Invasions/abuse of privacy</td>
</tr>
<tr>
<td>Shared experiences with distant others</td>
<td>Illegal activities (hacking, downloading)</td>
</tr>
</tbody>
</table>

The focal concern of EU Kids Online is children’s online risks and opportunities – these are, therefore, our main dependent variables. Exactly what ‘risks’ and ‘opportunities’ includes is a moving target. But it may reasonably be scoped as follows:

However, children’s and young people’s access to and use of online technologies occurs within a broader context – domestic, familial, social, cultural, political, economic, etc. Many factors may potentially influence their use in general and the risks they may encounter in particular. To organise the potentially vast array of factors, we have classified these factors as dependent, independent, mediating and contextual variables, as explained below.

1.5. Structure of the research field

The experience of online opportunities and risks is expected to vary according to children’s age and gender, as well as by the socioeconomic status (SES) of the household (or such factors as parental education or urban/rural location). These socio-demographic factors are the main independent variables to account for differences in opportunities and risks, though others may arise as the research findings are examined. These socio-demographic factors influence children’s internet access, online usage, and their related attitudes and skills. These latter may be considered mediating variables, for they are influenced by demographic factors and in turn they may influence online opportunities and risks.

Additional mediating variables are introduced by the activities of others – parents, teachers and peers. Parents mediate, or regulate, their children’s online activities, potentially influencing their experience of opportunities and risks. For teachers and peers, further influences may be expected, though these have been little researched. Such mediating processes may, in turn, be influenced by parents’ own internet use, or teachers’ online skills, or domestic practices of media regulation more broadly.

Finally, we note key contextual variables likely to affect children’s online experiences. These national or macrosocietal factors include a) the media environment, b) ICT regulation, c) the public discourse on children’s internet use and possible risks of the internet, d) general values and attitudes regarding education, childhood, and technology and e) the educational system.

A framework that includes each of these key variables is shown in figure 1.1. The figure provides a heuristic device for categorizing the key variables and specifying the hypothetical links among them. The research field is divided, first, into an individual (or child-centred) level of analysis for examining patterns of similarity and difference within countries; and second, into the country (or macrosocietal) level of analysis for examining patterns of similarity and difference across countries. Figure 1.1 represents a working hypothesis of how cross-national similarities and differences in children’s experiences of online opportunity and risk may be explained in terms of key variables identified in the research literature.

2 It is not our intention to focus on the individual child separated from their social context but rather to show how children are located in a network of social influences at all levels from the familial to the societal. Analytically, it is useful to distinguish in-country comparisons, for which the individual child is the unit of analysis, from inter-country comparisons, for which the country is the unit of analysis.
1.6. Classifying risks and opportunities

To analyse actual experiences with online risks and opportunities throughout Europe, we must bring together case studies on the national level. In these studies risks and opportunities are defined quite heterogeneously. In order to relate these studies to each other a systematic approach to the definition of internet related risks has been developed. The overall model is as follows (see figure 1.2 for risks and figure 1.3 for opportunities). Risks and opportunities refer to negative or positive experiences that might result from transactions between communicators, the content/services they provide and the user. The two necessary conditions for these transactions are:

- **Access**: This is the obligatory condition for any negative or positive experience related to the internet and so may be regarded, in itself, as either “risk” or “opportunity”. There will be differences between various places or occasions where children have access, e.g. at home, at school, with friends, which differ with respect to the degree of regulation or guidance by parents, teachers etc.

- **Usage**: Given access, the nature of children’s use of online media is also a crucial condition of risk. The longer children use online media and the more they use certain services, the more likely they are to encounter certain negative or positive experiences. However, beyond children’s preferences for more or less risky online activities, factors such as children’s online skills and media literacy may exacerbate or alleviate risks.

In what follows, the model is explained for risks (see figure 1.2). An equivalent model for opportunities is shown in figure 1.3. The table on the top right side of figure 1.2 classifies different types of risks. The starting point was to ask, “What processes lead to different risks?” The model assumes a transaction between communicative motivations and the role of the child when going online. The row headings of the table refer to the forms of communicative roles:

- **Content** – child as recipient (of mass communication)
- **Contact** – child as participant (of peer/personal communication)
- **Conduct** – child as actor (offering content or acting in personal contacts)

The column headings refer to motivations leading to risks – potentially problematic aspects of the provision of particular contents and services online. Each cell provides examples for the specific risk which arises from the transaction with the child’s behaviour. An additional area of negative consequence is linked to usage: independent of risks which arise from negative motivations, time consuming online activities (sometimes interpreted as internet addiction) may be negative consequences of internet usage.

Figure 1.2: Risks as transactional results of access, usage, the child’s role, and underlying communicative motives leading to negative consequences
We have to note the limitations of this model:

- Sometimes boundaries are blurred (e.g. aggression and sexuality can co-occur).
- Issues of privacy and personal information cut across cells.
- Some categories (e.g. sexuality) cover rather different kinds of risk.

Figure 1.3 provides an equivalent table for opportunities. The three rows of the table stay the same, and four “positive motivations” have been defined - Education and Learning; Participation and civic engagement; Creativity; Identity and social connection.

<table>
<thead>
<tr>
<th>Motives</th>
<th>Education and Learning</th>
<th>Participation and civic engagement</th>
<th>Creativity</th>
<th>Identity and social connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>Educational resources</td>
<td>Global information</td>
<td>Diversity of resources</td>
<td>Advice (personal / health / sexual etc)</td>
</tr>
<tr>
<td>(What is found on the web)</td>
<td>“Child as recipient”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td>Contact with others who share one’s interests</td>
<td>Exchange among interest groups,</td>
<td>Being invited or inspired to participate in creative processes</td>
<td>Social networking, shared experiences with distant others</td>
</tr>
<tr>
<td>(Someone else making contact)</td>
<td>“Child as participant”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduct</td>
<td>Self-initiated and collaborative forms of learning and education</td>
<td>Concrete forms of civic engagement</td>
<td>User-generated content creation</td>
<td>Expression of identity</td>
</tr>
<tr>
<td>(Child contacts someone)</td>
<td>“Child as actor”</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Access

At home or at school or with friends, controlled by whom?

Usage

Which kinds of services for which purposes? Frequency and duration of use

Conduct

(Child contacts someone) “Child as actor”

Technical skills, media literacy

Knowledge, skills, career advancement

Civic engagement

Creative skills

Identity and social connection

1.7. Varieties of cross-national comparison

The core objective of the EU Kids Online network has been to systematically collect and compare findings regarding online risks and opportunities in Europe. To realize this objective, the network built on systematic considerations on comparative research elaborated by Kohn (1989, c.f. Livingstone, 2003) - who distinguished several types of comparative analysis.3

Crucially, note that the network did not seek to compare the findings of the nearly 400 separate research studies identified in the Data Repository, taking into account their many differences in approach, sample, methodology, quality, and so forth. This would have proved an impossible task. Instead, after considerable discussion of the approaches taken and findings reported in these many studies (as read and interpreted by network members from the respective countries), a list of key research questions and specific hypotheses was constructed. The research questions addressed issues of general academic and policy concern. The hypotheses were framed where prior research provided a sufficient basis to sustain predictions.

As explained below, the body of findings from each country was then interrogated by network members from that country, to answer the straightforward question: in your judgement, is there sufficient evidence within your country to answer the research question, or support the hypothesis, or not? This proved an effective approach with which the network could be reasonably confident of the conclusions reached. The list of research questions and hypotheses is shown in Annex C.

3 Kohn also identifies a fourth level, the transnational, but this is not applied in the present case.
Type 1: Countries as objects in their own right
Treating countries as objects of analysis in their own right employs an idiographic lens. It aims to understand particular countries for their own sake, with comparison representing a useful strategy for ‘seeing better’ and so determining what is distinctive (or not) about a country (thus avoiding the above fallacies). Heuristically, this is generally achieved through the production of country reports, each of which presents empirical research findings regarding – in the present case – children, young people and online technologies.

As a first step in the analysis, EU Kids Online members produced a report for each of the 21 countries in the network according to a standardised template structured according to the above mentioned series of focused research questions and hypotheses. The country reports drew in turn on work completed for Work Package 1, in which national empirical research studies were identified, coded and entered into an online Data Repository available at the EU Kids Online website (see Staksrud et al., 2009). The country reports are also available on the website.

Type 2: Countries as context for examining general hypotheses
This type of comparative analysis treats each country as a case study with which to test general theoretical models under different cultural conditions. It focuses on the assumption of similarities across countries, with cross-national differences thus challenging or limiting pan-national claims. As for type 1, this analysis may be modest in its attempt to capture the complexity of each country compared, but it is more ambitious insofar as it seeks to test the hypothesised universality of a particular phenomenon, pooling findings from many countries in order to establish whether and how an abstract theory applies in each one of those countries.

General hypotheses relevant to EU Kids Online concern age trajectories (on the assumption that children develop into teenagers and adolescents similarly across Europe), gender differences (again, shown to be fairly similar cross-nationally by a range of research) and parental mediation of online use by children. Clearly, this type of analysis requires directly comparable data in each country, and the EU Kids Online network had to consider the extent to which such data are available in all participating countries.

As the second step of the analysis, network members examined the extent to which available findings in each country permits an answer (or not) to each research question and, further, whether the findings provide support (or not) for each of the hypotheses. If the findings were not similar across Europe, an explanation for differences was sought in the third step, below. Selected network members then produced summary reports for the main sections of the model of the research field (access and usage, risks and opportunities, attitudes and skills, mediation by parents, teachers and peers). In doing this, the authors also checked whether there is – beyond the evidence from national research – some kind of evidence provided by international studies, particularly the Special Eurobarometer on Safer Internet issues of 2005 (EC, 2006) and 2008 (EC, 2008). These summaries are documented as chapter 2 of this report.

Type 3: Countries as units in a multidimensional analysis
This type of analysis seeks to explain patterns of similarities and differences across countries. It thus prioritises the identification of measurable dimensions (for which there is available data) on which nations vary, and then examines whether these are related systematically to each other or to a particular measure of concern (e.g. incidence of online risk to children). Each participating nation thereby serves as one unit or data source, and must provide measures of both potentially explanatory variables (independent variables) and variables to be explained (dependent variables).

The strength of this approach is that it seeks to understand the diversity of different national contexts, achieving this by re-presenting the specificity of each country using a common conceptual language (i.e. in terms of the interrelations among the multiple dimensions on which each country is compared). It then develops an explanation for observed differences.

In the third and final step of the analysis, the EU Kids Online network organised the comparative research by combining two steps:

- Firstly, on the basis of the above described analysis of indicators for children’s and teenagers’ online behaviour, classifications of countries were identified, which represent differences and similarities between the countries on the level of aggregated individual behaviours, e.g. the incidence of online risk experienced by children and young people, or the incidence of online opportunities taken up by children and young people, or the nature and extent of parental activities that mediate children’s online activities.
- Secondly, the EU Kids Online network identified European similarities and differences in macro-societal factors like a) the media environment, b) ICT regulation, c) the public discourse on children’s internet use and possible risks of the internet, d) general values and attitudes regarding education, childhood, and technology and e) the educational system (see above, figure 1.1).

- For example, it was asked whether certain political conditions or whether regulatory policies (e.g. pricing policy, regulation instruments) lead to more or less risk and opportunities in a country, a greater degree of internet diffusion results in less or more risk to children when they go online.
- The procedure was similar to the comparative analysis on the individual level. Selected members of the network produced summary reports on each country reports, each of which presents empirical research findings regarding – in the present case – children, young people and online technologies.

4 ‘The Children and Their Changing Media Environment; project (Livingstone & Bovill, 2001) exemplifies this approach, for it sought to understand how systematic differences in education, wealth, parenting, etc. were associated with differences across countries in children’s media use, including adoption of new media. Thus it examined the correlations between national wealth (e.g. GDP), or degree of ICT diffusion, and the dependent variables of children’s media use: this model expects to find neither similarities nor differences, simply, but rather to find a model that applies across all nations that explains differences observed among them.”
contextual factor, comparing the evidence provided across the country reports. In doing this, the authors also checked available international comparative statistics which allow a classification of the countries. These summaries are documented in chapter 3 of this report, together with an analysis of the extent to which the contextual factors allow for an explanation of the differences and similarities of children’s online behaviours and risk experiences as described in chapter 2.

1.8. The organisation of this report

The structure of the report follows the above logic of our comparative approach. Chapter 2 contains the comparative analyses on research questions and hypotheses on the individual level. It ends with conclusions a) with regard to theoretical assumptions on online risks and opportunities, and b) with regard to meaningful classifications of the European countries concerning children’s online behaviour.

Chapter 3 describes relevant contextual factors for children’s online activities and discusses to what extent they explain the aforementioned differences and commonalities in online behaviour. Chapter 4 provides a short summary of the findings and conclusions.

The second edition of the report

After the publication of the first edition of this report, the results of a new Eurobarometer survey were published in December 2008 (EC, 2008). The present, second edition of the report enables an updating of key findings in accordance with this latest survey.

Additionally, the EU Kids Online network has included a Qualitative Comparative Analysis (QCA) in a new section 3.7 in order to pinpoint key factors that help explain differences across countries in children’s experiences of online risks.
Results are presented in four sub-chapters: **access and usage** (2.1), **risks and opportunities** (2.2), **attitudes and skills** (2.3), and **mediation** by parents, teachers and peers (2.4). Each subchapter reviews the general descriptive evidence regarding the key variables across countries. We then analyse the extent to which these criteria vary according to age, gender, SES, etc.

Subchapter 2.5 will discuss the theoretical consequences of the comparative analysis: which hypotheses have been confirmed, which hypotheses need further investigation, which ones have been falsified, and how can all this be integrated in one coherent model? Secondly this chapter will discuss the issue of classifying countries on the basis of how children use online media and which kinds of risks they experience. This classification will provide one part of the input for chapter 3.

2.1. Access and usage\(^5\)

Research question R2.1.1:

What/how much access to the internet and online technologies do children have?

Access to the internet and other online technologies is the necessary condition for any use and any risk and opportunity for children. During the diffusion process from its early stages through to market saturation, measures of access differentiate among households (and countries) in terms of digital inclusion or exclusion. As the diffusion process proceeds, concrete aspects of internet access (bandwidth, flat rates etc.) become more relevant than the simple fact of access.

Some information on how many children are able to access the internet can be inferred on the aggregate level from national statistics on the percentage of households and schools connected to the internet (see chapters 3.1 and 3.5). Beyond this indirect evidence the search for comparable data for the countries regarding children’s potential access led to an incomplete and fragmented picture composed of evidence from national surveys with different instruments, different time frames and different populations. Since this weak empirical basis does not provide substantial information regarding differences between the countries the following analysis will focus on the question how many children and young people actually use the internet and where they use it.

Research question R2.1.2:

How much use of the internet and online technologies do children make?

There is considerable variation between countries in terms of how much children use the internet. Table 2.1 shows internet use among adults, parents and children in 2005. For countries other than Iceland and Norway the

\(^5\) This chapter has been written by Uwe Hasebrink based on comparative analyses by Vaclav Stetka (R2.1.1, R2.1.2), Uwe Hasebrink (H2.1.1, H2.1.2, R2.1.4), Helen McQuillan (H2.1.3), and Cédric Fluckiger & Benoit Leelong (H2.1.4).
information comes from the Eurobarometer survey carried out in late 2005/early 2006 of parents of children under 18 years. These data are in line with empirical evidence provided from national studies. As it is important both in its own right and for further analysis of the data we use this important indicator to define three groups of countries:

- **High use countries** are those countries where (in late 2005) over 65 per cent of all children use the internet (BE, DK, EE, NL, SE, UK). On average 68 per cent of these children use the internet. Evidence from other studies shows Iceland and Norway belong here;
- **Medium use** countries are those where more than 40 and less than 57 per cent use the internet (AT, CZ, DE, FR, IE, PL, SI); on average 50 per cent internet users;
- **Low use** countries are those where less than 39 per cent use the internet (BL, CY, ES, GR, IT, PT); on average 33 per cent internet users.

Table 2.1: Internet use among adults, parents and children 2005

<table>
<thead>
<tr>
<th>Child’s use (%)</th>
<th>Adults’ use of the internet (%)</th>
<th>Who uses the internet – parents and/or child (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Only parents</td>
<td>All respondents</td>
</tr>
<tr>
<td>EU 25</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>Netherlands</td>
<td>72</td>
<td>97</td>
</tr>
<tr>
<td>Denmark</td>
<td>70</td>
<td>95</td>
</tr>
<tr>
<td>Estonia</td>
<td>68</td>
<td>83</td>
</tr>
<tr>
<td>Norway**</td>
<td>68</td>
<td>100</td>
</tr>
<tr>
<td>Iceland*</td>
<td>67</td>
<td>97</td>
</tr>
<tr>
<td>Finland</td>
<td>66</td>
<td>97</td>
</tr>
<tr>
<td>Sweden</td>
<td>66</td>
<td>98</td>
</tr>
<tr>
<td>Belgium</td>
<td>65</td>
<td>80</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>65</td>
<td>67</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>60</td>
<td>83</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>57</td>
<td>66</td>
</tr>
<tr>
<td>Malta</td>
<td>57</td>
<td>39</td>
</tr>
<tr>
<td>Slovenia</td>
<td>57</td>
<td>71</td>
</tr>
<tr>
<td>France</td>
<td>54</td>
<td>68</td>
</tr>
<tr>
<td>Latvia</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>Lithuania</td>
<td>53</td>
<td>48</td>
</tr>
<tr>
<td>Austria</td>
<td>51</td>
<td>75</td>
</tr>
<tr>
<td>Germany</td>
<td>47</td>
<td>78</td>
</tr>
<tr>
<td>Poland</td>
<td>47</td>
<td>42</td>
</tr>
<tr>
<td>Slovak Republic</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>Hungary</td>
<td>43</td>
<td>40</td>
</tr>
<tr>
<td>Ireland</td>
<td>42</td>
<td>59</td>
</tr>
<tr>
<td>Portugal</td>
<td>38</td>
<td>32</td>
</tr>
<tr>
<td>Spain</td>
<td>37</td>
<td>50</td>
</tr>
<tr>
<td>Italy</td>
<td>36</td>
<td>55</td>
</tr>
<tr>
<td>Cyprus</td>
<td>33</td>
<td>37</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>29</td>
<td>35</td>
</tr>
<tr>
<td>Romania</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>Greece</td>
<td>26</td>
<td>30</td>
</tr>
</tbody>
</table>

*Source: Eurobarometer 64.4 – Special No. 250: Safer Internet, December 2005; basis: parents/guardians with children less than 18 years.

* Estimate for Iceland 2005, based on SAFT parent surveys in 2003 and 2007

**Estimate for Norway 2005, based on SAFT parent survey in 2005

1 All children whose parents claim that their child uses the internet at any place (recoded variable based on QC4.1-6).

2 All adults who rejected the statement “I do not use the internet”(QC1.6).
The relative position of the countries regarding children’s likelihood to use the internet is confirmed by another internationally comparative data base, which has been collected in the framework of a WHO study (see figure 2.1). Deviations between the two sources can be observed particularly for Portugal and Bulgaria (the WHO study provides higher percentages than Eurobarometer), and Ireland (the WHO study provides lower percentages).

The 2008 Eurobarometer allows an estimation of whether cross-national differences still hold after another few years of internet diffusion. As the aim of the 2005 classification of countries as high, average and low in terms of children’s internet use (see above and Table 2.2, 4th column) was a relative one and internet use has increased between 2005 and 2008, it is necessary to set different cut-off points for the country groups in the 2008 survey. Given an EU27 average of 75 per cent children online in 2008, countries with internet use below 65 per cent were classified low use (below 40 per cent in 2005) and countries with internet use above 85 per cent as high use (above 65 per cent in 2005). Countries with internet use between 65 and 85 per cent were classified as medium use. The 2008 survey largely supports the three groups identified using the 2005 survey.

There are some noteworthy exceptions. Firstly, Belgium was classified as “high use” in 2005, but the figures for 2008 show a clear decrease. Secondly, Bulgaria has almost doubled the percentage of children online; Slovenia, Poland and Spain have also reached much higher figures in 2008 than in 2005. Thus, in a new country classification based on the 2008 data, EU Kids Online moved Slovenia and Poland from average to high, Belgium from high to average, and Bulgaria and Spain from low to average (see Table 2.2, 4th column). These exceptions point to the ongoing dynamics of internet diffusion, which require a continuous monitoring of developments; “high” or “low” use are temporary indicators, reflecting phases of an ongoing diffusion process, which differs in starting point and pace.

Since most of the comparative work in this report has been based on the 2005 Eurobarometer and on studies, which have been conducted around the same time, we will mainly use the 2005 classification of countries regarding children’s internet use (Table 2.2, 1st column). If for specific reasons the 2008 data are used, this will be explicitly mentioned.

For the comparison we only included the 25 member states analysed in 2005; the two new members, Bulgaria and Romania, who joined the EC in 2007, were not included for reasons of comparability.
Research question R2.1.3:
What is the relation between parents’ and children’s internet use?

The 2005 and the 2008 Eurobarometer data for children under 18 years (table 2.2 and figure 2.3) both show a correlation between parents’ and children’s internet use across Europe.

Table 2.2: Internet use amongst parents and children (6-17 years), 2005 and 2008

<table>
<thead>
<tr>
<th>Country groups</th>
<th>Children’s use (%)</th>
<th>Parents’ use (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1</td>
<td>92</td>
</tr>
<tr>
<td>Estonia</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>Finland</td>
<td>89</td>
<td>94</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>88</td>
<td>75</td>
</tr>
<tr>
<td>Sweden</td>
<td>1</td>
<td>86</td>
</tr>
<tr>
<td>Belgium</td>
<td>1</td>
<td>84</td>
</tr>
<tr>
<td>Slovenia</td>
<td>2</td>
<td>81</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>2</td>
<td>78</td>
</tr>
<tr>
<td>France</td>
<td>2</td>
<td>78</td>
</tr>
<tr>
<td>Latvia</td>
<td>73</td>
<td>83</td>
</tr>
<tr>
<td>Lithuania</td>
<td>70</td>
<td>86</td>
</tr>
<tr>
<td>Malta</td>
<td>68</td>
<td>88</td>
</tr>
<tr>
<td>Slovak Republic</td>
<td>68</td>
<td>78</td>
</tr>
<tr>
<td>Austria</td>
<td>2</td>
<td>66</td>
</tr>
<tr>
<td>Germany</td>
<td>2</td>
<td>65</td>
</tr>
<tr>
<td>Hungary</td>
<td>65</td>
<td>88</td>
</tr>
<tr>
<td>Poland</td>
<td>2</td>
<td>62</td>
</tr>
<tr>
<td>Ireland</td>
<td>2</td>
<td>61</td>
</tr>
<tr>
<td>Portugal</td>
<td>3</td>
<td>54</td>
</tr>
<tr>
<td>Spain</td>
<td>3</td>
<td>52</td>
</tr>
<tr>
<td>Italy</td>
<td>3</td>
<td>52</td>
</tr>
<tr>
<td>Cyprus</td>
<td>3</td>
<td>44</td>
</tr>
<tr>
<td>Romania</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>3</td>
<td>41</td>
</tr>
<tr>
<td>Greece</td>
<td>3</td>
<td>39</td>
</tr>
</tbody>
</table>

1) 2005: All children between 6 and 17 years whose parents claim that their child uses the internet anywhere (recoded variable based on QC4.1-6); 2008: All children whose parents claim that their child uses the internet anywhere (Q5).

2) 2005: All parents who rejected the statement “I do not use the internet” (QC1.6); 2008: All parents who claimed to use the internet (i.e. “not never”) (Q3).

Figure 2.3: Parents and children’s internet use, by country
Source: Eurobarometer, 2008 parents of children under 18 years)
Also, in most countries, the proportion of parents online is higher than the proportion of children. The overall result seems to contradict the expectation that children are more likely to be online users than their parents’ generation. This contradiction can be solved by looking at the age of the children: The higher likelihood for parents to use the internet is only based on parents with younger children. Thus in 2005 for parents with children less than six years the values are 63% for parents and 9% for children; for parents with children between 6 and 11 years the values were 64% and 51% respectively. However, for the oldest group the opposite relation could be observed in 2005 as 87% per cent of young people between 12 and 17 years are online and only 65 per cent of their parents.

According to the more recent 2008 Eurobarometer data (see Table 2.2), the increase in parents’ internet use has been stronger than for children: for those aged between 6 and 17 years old, 84 per cent of parents were online, while the figure for their children was 75 per cent. For parents of 6-10 year olds, 81% were online in 2008 compared with only 60% for the children of that age. But for teenagers, there is little difference with 84% of 11-14 year olds and 86% of 15-17 year olds using the Internet compared to 85% of their parents.

The correlation between parents’ and children’s internet use observed in 2005 (r=.87 across 27 countries) still holds in 2008, although it is less strong (r=.64). The fact that the correlation within the children’s group (r=.70) is lower than within the parents’ group (r=.86) indicates that the diffusion process of children’s internet use became less dependent from the parents’ behaviours with other factors getting more relevance.

There is, therefore, decreasing evidence that children are the ‘digital natives’, because parents are ‘catching up’ with teenagers (and were already ‘ahead’ of younger children). Only in Estonia, Poland, Slovenia, Malta, Hungary, Lithuania, Slovakia, Portugal and Romania are (slightly) more children online than parents – all countries where the internet is a relatively recent arrival.

Hypothesis H2.1.1:

Children whose parents use the internet are more likely to use the internet themselves.

On the European level, children whose parents claim to use the internet themselves are significantly more likely to use the internet (58%) than those children whose parents do not use the internet (34%), based on the Eurobarometer survey (2005/6) of parents of children under 18 years. This finding can be confirmed for most of the countries involved in the Eurobarometer study. The only exceptions are Finland, Sweden, and Estonia. In addition the findings from the Netherlands and Denmark are only marginally significant. This group includes exactly those countries, in which almost all parents use the internet, thus there is no relevant difference anymore: all children grow up with parents who use the internet anywhere. Beyond these five countries Cyprus remains a noticeable exception, where

Figure 2.4: Likelihood of child’s internet use in 2008, by country type (high/medium/low use) parents’ internet use

The internet use of parents makes no difference at all. At the other end of the spectrum we find the following countries with substantial differences in children’s internet use depending on their parents’ internet use: Italy (difference between the groups: 32 percentage points), Portugal (30%), Czech Republic (29%), Poland (26%), Bulgaria (25%). In these countries children’s internet use depends heavily on their parents’ support. This might be interpreted as indicator of lower public support for internet access in these countries.

These differences still hold in 2008: children whose parents claim to use the internet are significantly more likely to use the internet (79%) than those whose parents are not online (54%). Countries, in which this difference is particularly high, are again Bulgaria (55%), Portugal (38%), Italy (32%), and the Czech Republic (32%), while the formerly big difference in Poland almost disappeared. The stability of these findings indicates stable differences between the countries with regard to the degree, to which children’s internet use depends on whether their parents use the internet themselves. In more general terms, figure 2.4 shows the estimated probability of a child using the internet by parents’ use and country grouping. This analysis shows that even in countries with a high level of internet use children whose parents never use the internet are less likely to use the internet themselves than children whose parents use the internet more often.

So far we have compared the general use of the internet, no matter whether parents and children use it at home or at another place. An even higher correlation can be observed between parents’ and children’s internet use at home: There are highly significant results for all countries indicating that children whose parents access the internet at home are more likely to use the internet at home than children whose parents do not use the internet. Based on the 2005 Eurobarometer, this difference is remarkable on the European level: whereas 61% of all children whose parents use the internet at home use it themselves, the figure for the other group is only 9%.

These general findings support the assumption that parents’ behaviour is important determinant of children’s
internet use. However, the correlation might also reflect the fact that parents follow their children's needs and wishes and try to provide what they regard as optimal conditions for their children's development. Following the public discourse on the relevance of the internet in today's society, many parents believe that their children should be familiar with the internet as early as possible. There is some evidence that the relationship between parents' and children's internet use can be interpreted from this perspective. As research has shown in many countries, households with children are better equipped with media devices; this is indirectly confirmed by the 2005 Eurobarometer data. Among those who have at least one child in their household, the percentage of internet users in the EU of 25 member states is almost 20 per cent higher (65%, 2nd column of Table 2.1) than for the average population (47%, 3rd column). This kind of difference can be observed in all countries.

To get another indicator, which can support the hypothesis that parents tend to get access to the internet in order to provide opportunities for their children, we analysed whether parents' internet use at home varies with the child's age. The rationale is as follows: if parents' internet use at home was completely determined by their individual needs there should be no difference between parents of younger and older children. However, if parents turned to the internet when they think their children should have access or their children ask to have access, parents of older children should be more likely to use the internet.

The latter thesis is confirmed on the European level for 2005 where on average 49 per cent of the parents claim to use the internet at home. This figure is higher for parents with children between 12 and 17 years (52%) and lower for parents with children younger than six years (44%). Bearing in mind the fact that this analysis cannot consider the age of the other children in the household, this significant finding supports the assumption that there is no unidirectional influence from the parents to their children, but also an influence of children on their parents' behaviour. However there are also alternative explanations for this finding. Firstly, family income usually increases as the parents get older and therefore internet access could be an expense postponed by younger parents. Secondly, parents often have easy access to the internet at work and therefore might feel no need to connect the home until the child is old enough to want to go online.

To sum up these analyses, the four columns on the right hand side of table 2.1 show the four logical combinations of parents' and children's internet use in 2005. On the European level the biggest group is made up by those cases where the parents as well as their children are online (38%). For more than a quarter of the cases we find the constellation of the parents being online and no internet use of the child. In another group of less than a quarter neither parents nor children are online. The remaining 12 percent refers to a situation where parents have the internet but their parents do not. Across the countries the distribution of these four groups necessarily varies with the general percentages of internet users in columns 1 and 2.

What merits further consideration regarding online risks and how children and parents cope with them is the unequal distribution of the 3rd and 4th groups in different countries: According to the 2005 data, in some countries, particularly in Sweden, the Netherlands, and Denmark (and also, as can be inferred from the SAFT survey, Iceland and Norway), almost all children who use the internet have parents who are also familiar with the online world and thus can advise or at least understand what their children are doing. At the other side of the spectrum the majority of children online in Greece, Cyprus and Portugal, i.e. three countries with only a few children online, cannot count on their parents' competences since they do not use it. For these countries, the impression is that there is dissociation between children's internet use and parental behaviour. This dimension does not simply reflect the likelihood of children and parents being online in the different countries, because there are some other countries with a low likelihood of children (and parents) being online, which do not have this high proportion of children who cannot learn from their parents (e.g. 22% in Italy).

Due to the strong increase of parents' internet activities until 2008 the number of children who use the internet, while their parents do not, has decreased in the last years. While 66 per cent of the parents claim they and their child use the internet at home, only 43 per cent of the children whose parents are not, decreased to 9 per cent (see EC 2008, p. 13). This figure is considerably higher (more than 15 per cent) in Greece, Cyprus, Spain, Poland, and Portugal. In different terms, taking the children being online as the basis, more than one fifth of these children have parents who do not use the internet in the following EU Kids Online countries: Cyprus (36%), Greece (32%), Spain (24%), and Portugal (22%). The figure for the EU27 is 12 per cent. Thus, although the major trend of the last years has been an increase of parents' internet use, in the EU27 there are still 12 per cent of the young internet users in Europe who cannot count on their parents' advice, because the parents do not use the internet at all. In some southern countries this figure is considerably higher.

Research question R2.1.4:
Where do children in Europe use the internet?

For 0-17 year olds in 2005, the most important locations of use were their home (34%) and school (33%). In addition quite a few children used the internet at a friend's home (16%). On the European level the other options were only marginally relevant: at somebody else's home (5%), in an internet café (3%), in a library or other public place (4%) or somewhere else (2%).

The figures for 2008 provide the same ranking. However, according to these figures internet use at home (from the family's computer: 65%, from the child's own computer: 34%) is clearly ahead of use at school (57%) (EC 2008, p. 14). In 2008 children in all European countries were more likely to use the internet at home than at any other place.

Based on the aforementioned locations for internet use an index was calculated for 2005, which reflected the number of locations where children use the internet. On average young internet users in the EU go online at 1.9 locations. Again, there are noticeable differences between the countries: the extremes are Sweden (2.8 locations) and Denmark (2.7) on the one side and Italy (1.3), Bulgaria, Greece and Spain (1.4 respectively) on the other side. Since this index has been calculated on the basis only of those children who use the internet, the results are not
confounded with the general likelihood of internet use. The strong positive correlation across the 27 countries listed in table 2.1 between internet use and the number of locations where children go online (r=.88) reflects the general diffusion process of the internet. In those countries where the diffusion process started earlier, the higher number of children who are online goes along with a more diverse set of locations where children use the internet.

Looking at single countries we find interesting differences where children use the internet. One striking difference can be observed (see figure 2.5) between countries where the internet is more often used at home and others where the school is the most important place for children to go online.

As children get older their access to and use of the internet and online technologies increases.

The evidence as provided by the national reports refers to different empirical levels:
- Children’s access to the internet,
- Time and frequency of use of the internet in general,
- Time and frequency of use of specific online applications,
- Time and frequency of use of the internet at different places.

In general all evidence provided for all countries (if available) supports the hypothesis that there is a steady increase of access to and use of the internet and online technologies with age. Beyond this general result, for some of the countries there are some contradicting or contextualizing findings:
- Findings from countries with higher internet penetration indicate that the increase of access to and frequency of use of online media stops around the age of 12-13 years; this is due to a ceiling effect, since from this age on almost all young people use online media.
- For those countries which report contradictory or ambivalent findings, there are specific reasons. In the Czech Republic the fact that survey respondents were 12+ years, might have resulted in the absence of no age differences (see the argument above). In Poland there is evidence that 13-15 years old young people use the internet more often than those aged 16-18. A similar finding is provided for the UK: those aged 16/17 years old use the internet more often than the older age group.
- The French report hypothesizes that the difference between 9-10 and 12-14 old children in the amount of use (and not the frequency of use) is due to parental mediation: for the younger group the parents restrict the time their children spend with the internet.
- The Greek report emphasizes that the range of services used clearly increases with age.
- According to a hypothesis from the Polish report, one reason for a decrease of online use from 13-14 onwards is specifically the decreasing interest in (online) gaming.

The comparative analysis runs into problems in so far as the respective findings refer to different age bands and different indicators of use. Thus it is difficult to analyse the development on a more detailed level. For this reason, a secondary analysis of Eurobarometer data has been run, in order to have some indicators on the basis of comparable data and a large sample, which allows for the analysis of small age bands. The limitations of these data are twofold: they are based on statements of the parents only, and they refer to the simple fact, whether children have used the internet, whereas there is no indicator for the frequency and amount of use.

Hypothesis H2.1.2:
As children get older their access to and use of the internet and online technologies increases.

Figure 2.5: Countries by location of children’s internet use
Source: Eurobarometer 64.4.

Further relevant differences are related to internet cafés on the one hand and libraries or other public places on the other hand. Internet cafés, i.e. the most commercialized option to go online, are most often used in countries with generally low percentages of internet users and particularly low figures for libraries and other public places (e.g. Bulgaria and Poland, and – according to the 2008 data (EC 2008, p. 17) – Greece). On the other side, the Nordic countries provide better online access at public places.

In all, the European countries differ quite substantially regarding the place where children use the internet. Since it is likely that the places where children are online are connected with specific risks, the countries provide quite different conditions for potential harmful experiences and for political and pedagogical means to support a safer use of the internet; this will be discussed in more details in the next chapters.

As children get older their access to and use of the internet and online technologies increases.

The evidence as provided by the national reports refers to different empirical levels:
According to these data, the proportion of children who use the internet increases significantly as they grow older (see figure 2.6). It is interesting to note that the peak of the diffusion of the internet is already reached at about 12 or 13 years, after that there is only a very small increase. The figures for boys and girls are quite similar. The small overall difference is based on children between 6 and 9 years: boys seem to start using the internet earlier, whereas there are no differences between 10 to 13 years old boys and girls. Comparing the figures from 2005 and 2008 provides evidence that the overall increase of children’s online use is mainly caused by the younger age groups. In 2008 the children between 10 and 11 years have almost reached the level of internet use of the older age groups. The most recent data also support that there are no significant differences between boys and girls: there is just a slight trend that rather more girls tend to use the internet than boys.

Since these aggregate figures might hide specific developments dependent on the general internet diffusion in the countries, the respective figures have been calculated for the three groups of countries, which have been defined above on the basis of the percentage of children who are online (see figure 2.7).

Figure 2.8 shows that in 2008 all three groups show similar figures in two respects. Firstly, the use of the internet steadily increases with age. Secondly, after the age of 12-13 years this increase is only very small – if at all. Beyond these similarities, there is a significant difference between the three country groups. In the countries with a higher internet use children are much younger when they start to use the internet. As a consequence one can say that online users in countries with a high level of internet use are younger than online users in countries with a lower level of internet use. Comparing the 2005 and 2008 data shows that only the level of online use has changed.

Figure 2.6: Children’s internet use in 2005 and 2008 by age and gender

Figure 2.7: Children who have used the internet by age and country groups 2005 (in per cent of all children aged under 18 years)
Source: Eurobarometer 64.4 – Special No. 250: Safer Internet, December 2005; basis: parents/guardians with children less than 18 years. Group 1 (“High use”): BE, DK, EE, NL, SE, UK; group 2 (“medium use”): AT, CZ, DE, FR, IE, PL, SI; group 3 (“low use”): BG, CY, EL, ES, IT, PT.

Figure 2.8: Children who have used the internet by age and country groups 2008 (in per cent of all children)
However, when looking at country groups, which differ regarding their general internet penetration, quite specific patterns of age related developments can be observed. The difference between countries with a high versus a low amount of internet use is mainly based on the younger age groups. In countries with a lower level of internet use, children start to get access to and to use the internet later. As a consequence, online users in these countries are older than online users in countries with a high level of online use. Regarding the promotion of safer internet use, the fact that the internet is already a normal tool for children at the age of ten years and increasingly becoming an attractive tool for those between 6 and 10 years emphasizes the need to develop measures supporting safer internet for all age groups — according to the respective functions, for which children go online. Until now, only few younger children have used online media in those countries with lower internet penetration; in these countries the target group is older. Dependent on further findings on how age differences affect which risks children encounter (see chapter 2.2), this difference in age must be considered when promoting safer internet in different countries.

Hypothesis H2.1.3:

There are no gender differences in children’s access to or amount of use of online technologies.

As seen in figure 2.6 above there was in 2005 a small difference in internet use between boys and girls in the younger age groups. Also, that this difference has almost disappeared in 2008 and in fact is down to only one or two percentages. These overall numbers however are only a part of the story and looking more closely at the situation in 2005 and the changes until 2008 provides an important insight into the diffusion process. The hypothesis that there are (no longer) gender differences regarding children’s access to and use of the internet is fully supported in only one country in 2005 and that was Denmark.

Evidence in 11 countries contradicted the hypothesis: Poland, Norway, Austria, Belgium, Bulgaria, Czech Republic, Sweden, France, Portugal, Slovenia, and the Netherlands. Contradictory results was to be found in 6 countries, with evidence that both supports and challenges the hypothesis: Estonia, Germany, Iceland, Ireland, Italy and the UK. For three countries, Greece, Spain and Cyprus, there is insufficient data available.

According to the country reports gender gaps in access to the internet were at the time mostly small and closing in nearly all countries, particularly for younger children. However, in almost every country, boys are more likely than girls to spend greater amounts of time online, have more places to access the internet from, have their own computer and internet access and have access to a PC and internet in their bedrooms.

Several patterns thus could be said to be emerging:

- Gender gaps in access diminish as home and school internet access becomes common.
- There is a growing bedroom culture for teenagers and solitary use of the internet is increasing, particularly for boys.
- The amount of time spent by boys and girls online has been increasing in all countries.

To fully understand the gender effects, age seems to be crucial. Further evidence on this issue can be drawn from the 2008 Eurobarometer survey. Table 2.3 shows how many girls and boys in different age groups use the internet at which location. Regarding the age groups the table shows that from the age of 14 or so the percentage of girls having used the internet at any place is slightly higher than the percentage of boys. The reason for this seems to be that girls are more likely than boys to have used the internet at home. In 2005 this was the other way around. Then boys were more likely than girls in the oldest age group to have used the internet at home. It should be stressed however that when it comes to the amount of time spent online there is a lack of comparable data to make similar analysis.

Table 2.3: Percentage of internet use among girls vs. boys at different places by age in 2008 (numbers in bold indicate significant differences, p<.05)

<table>
<thead>
<tr>
<th>% using the internet at…</th>
<th>6-7 years</th>
<th>8-9 years</th>
<th>10-11 years</th>
<th>12-13 years</th>
<th>14-15 years</th>
<th>16-17 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>any place</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boys</td>
<td>48.3</td>
<td>63.6</td>
<td>78.0</td>
<td>84.1</td>
<td>82.8</td>
<td>84.7</td>
</tr>
<tr>
<td>Girls</td>
<td>46.4</td>
<td>63.7</td>
<td>79.9</td>
<td>86.5</td>
<td>86.3</td>
<td>90.1</td>
</tr>
<tr>
<td>home</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boys</td>
<td>41.6</td>
<td>54.0</td>
<td>70.6</td>
<td>73.7</td>
<td>73.5</td>
<td>77.2</td>
</tr>
<tr>
<td>Girls</td>
<td>41.6</td>
<td>55.9</td>
<td>70.9</td>
<td>78.1</td>
<td>77.0</td>
<td>83.6</td>
</tr>
<tr>
<td>school</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boys</td>
<td>42.5</td>
<td>48.3</td>
<td>61.0</td>
<td>62.6</td>
<td>63.7</td>
<td>53.8</td>
</tr>
<tr>
<td>Girls</td>
<td>42.4</td>
<td>49.8</td>
<td>55.6</td>
<td>62.8</td>
<td>63.3</td>
<td>57.1</td>
</tr>
<tr>
<td>a friend’s place</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boys</td>
<td>9.8</td>
<td>14.4</td>
<td>23.0</td>
<td>25.6</td>
<td>30.3</td>
<td>34.7</td>
</tr>
<tr>
<td>Girls</td>
<td>14.0</td>
<td>15.0</td>
<td>18.3</td>
<td>30.4</td>
<td>33.1</td>
<td>31.5</td>
</tr>
<tr>
<td>an internet café</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boys</td>
<td>0.9</td>
<td>0.5</td>
<td>1.1</td>
<td>3.6</td>
<td>6.7</td>
<td>6.2</td>
</tr>
<tr>
<td>Girls</td>
<td>0.2</td>
<td>0.5</td>
<td>1.6</td>
<td>1.9</td>
<td>4.4</td>
<td>5.5</td>
</tr>
<tr>
<td>a library</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boys</td>
<td>4.8</td>
<td>6.7</td>
<td>5.6</td>
<td>11.3</td>
<td>8.3</td>
<td>8.6</td>
</tr>
<tr>
<td>Girls</td>
<td>4.6</td>
<td>4.2</td>
<td>9.3</td>
<td>9.9</td>
<td>9.5</td>
<td>7.4</td>
</tr>
</tbody>
</table>
Looking at the results for the single countries in 2008 leads to the conclusion that in most of the countries there is a very small difference in the percentage of boys and girls being online. The only exceptions are Spain (girls 74% and boys 67%) and the UK (girls 93% and boys 90%) but even in those two countries where the difference is statistically significant it is still very small.

Hypothesis H2.1.4:
There are inequalities in access as a consequence of inequalities in SES (socioeconomic status e.g. household income, parental education, social class).

In almost all countries, there is evidence to support the hypothesis of a correlation between access and SES. The inequalities in SES can be measured by or assumed on the basis of the household income, the parents’ educational level, or the type of school where children go. The exact figures vary between the countries, however, in most countries there is a significant difference between higher and lower class children. In countries where the internet and computers are widespread, the ownership of a computer can reach 80 to 90% for higher class children, compared to 50 to 60% for working class children.

Only two countries report evidence that contradicts the hypothesis. This is the case for Iceland, due to the fact that “the Icelandic society does not seem to follow the same patterns of differentiation as most European countries”, and Sweden, where no difference in internet access between social groups could be found, though “more research is needed”, as it is not clear who the 10% of children without a computer are.

As the country reports regarding social inequalities show, future research should more systematically differentiate the various dimensions of SES: household income, level of education and profession of parents, etc. Migrants and ethnic minorities should be included in the survey samples, in the data analysis as well as in the final reports. Each family has different resources (social capital, economic capital, cultural capital) whose specific role could thus be more easily analyzed.

As exemplified in the UK report, research could provide a more accurate view on the access issue, e.g. not only whether children access the internet or not, or the frequency of access, but also whether it is at home (vs. at school or in other places such as neighbours’ or friends’ home), in the child’s bedroom, in a room shared (or not) with other family members. Research should also distinguish broadband and dial-up access, since this difference has proven to have a great impact in terms of shaping uses and the learning process. Such an improved definition of access might explain the apparent absence of evidence in Sweden. In countries with a high diffusion rate, the role of SES may be more fruitfully searched in the quality (rather than the mere existence) of internet access.

Access to online services from a mobile phone is seldom taken into account in the data provided. More research should be done on that topic, because the diffusion of mobile access has already started. New risks and opportunities will probably appear with these individual (and easy to carry) devices. For some national reports (Italy for example), the actual use of internet is a part of the access issue. This illustrates the partial overlap between the question of inequality in access (H2.1.4) and the question of inequality in online use (H2.1.5). The issue of children living in a home with internet access but not using it should indeed be addressed.

Hypothesis H2.1.5:
There are inequalities in online use as a consequence of inequalities in SES.

Though evidence could not be found in a few countries, it seems that there is a general agreement throughout European countries that there is a correlation between SES and the frequency and amount of online use. In some countries (Estonia, France, Sweden), there is no significant difference in the frequency of use. On the other hand, Iceland, Norway and the UK report that children of parents with a higher education and/or belonging to a higher class do use the computer more often than the other children.

According to the most recent Eurobarometer 2008 data lower educated parents were less likely to claim that their child uses the internet (61%) than the average (75%) (EC, 2008, p. 12). Some of the often contradictory findings regarding the influence of SES on children’s frequency of internet use may arise from the fact that no difference is made between different places of use and between different types of use; this will discussed in more detail in chapter 2.2.

2.2. Risks and opportunities

The many hopes and fears regarding the opportunities that the internet can offer to children and young people, along with its attendant risks, have attracted considerable attention across Europe and elsewhere. The result is a series of pressing questions for policy makers, regulators, industry and the public about whether, in practice, young people are taking up these opportunities, whether some are benefiting more than others, and which factors might facilitate the beneficial uses of the internet in an equitable manner. These opportunities are widely judged to include entertainment, information, education, communication, networking, creativity, play and civic participation – a heterogeneous set of activities for which there is considerable optimism and public/private sector provision.

Equally pressing, however, are the questions regarding whether young people are encountering risks online, whether some are particularly at risk, and which factors might mitigate against the risks of internet use. These risks, also encompassing a heterogeneous set of intended and

8 This chapter has been written by Sonia Livingstone based on comparative analyses done by Pille Pruulmann-Vengerfeldt (R2.2.1), Yiannis Lasours (H2.2.1), Bojana Lobe (H2.2.2), Helen McQuillan (H2.2.3, H2.2.4), Cedric Fluckiger & Benoit Lelong (H2.2.3, H2.2.5), Uwe Hasebrink (H2.2.6), and Sonia Livingstone (R2.2.2, R2.2.4, R2.2.5).
unintended experiences, include encountering pornographic, self-harm, violent, racist or hateful contents online, inappropriate or potentially harmful contact via grooming or harassment, and, attracting recent attention, problematic conduct among peers such as bullying, ‘happy slapping’ or privacy invasions of one kind or another.

Widely understood as mutual opposites, there is nonetheless considerable scope for interpretation and contestation – both conceptually and between adults and children – regarding the classification of specific activities as either opportunities or risks.

Public policy regarding children and the internet is framed by the coincidence of three factors: first, the extraordinary rapidity of the internet’s diffusion and development, faster than any previous media and so outpacing society’s ability to adjust; second, an endemic cultural fear of the new, encouraged by media panics framing the internet as impossible to regulate as a source of threats to children’s safety; and third, the novelty of a reverse generation gap whereby parental (and teachers’) expertise is exceeded by children’s ability both to use the technology and evade adult management.

This chapter undertakes the following:

- An examination of evidence from across Europe relevant to two main research questions – what are the main opportunities, and the main risks, experienced by children online?

- To organise these findings, it puts forward a classification of varieties of online opportunities and varieties of online risks.

- Based on the risk findings, the chapter then proposes a classification of countries according to the incidence of online risk experienced by children.

- Following up on the findings for risks, these are examined by children’s age, gender and socio-demographic background, according to hypotheses generated from the published literature.

- Available research on how children respond to risk is then examined, including the effect of internet literacy or skills, and different strategies of coping with risk.

- Finally, we consider the relationship between online opportunities and risks.

Research question R2.2.1

What are the main opportunities experienced by children online?

Among the 21 countries included in EU Kids Online, evidence was available from almost all about the main opportunities experienced by children; however, little evidence was available from Slovenia, Bulgaria and Greece. In some countries only, evidence was available regarding both adults and children’s perception of online opportunities – Sweden, Poland, Ireland, Denmark, Greece, Italy, UK, Norway and Iceland.

In general, adults and children agreed that children use the internet as an educational resource, for entertainment, games and fun, for searching for global information and for social networking, sharing experiences with distant others. Other opportunities, such as user-generated content creation or concrete forms of civic participation, are less common.

- In the majority of countries (the UK, Sweden, Spain, Poland, Norway, Italy, Ireland, Germany, Estonia, Denmark, Czech Republic, Cyprus and Austria) children perceive entertainment, games and fun as major opportunities of the internet. In most countries too, children use the internet as an educational resource (UK, Portugal, Poland, Norway, Italy, Ireland, Iceland, Germany, Estonia, Denmark, Belgium, Austria).

- There is evidence that social networking and sharing experiences with distant others is common among children from the UK, the Netherlands, Sweden, Spain, Poland, Norway, Italy, Ireland, Iceland, Germany, France, Estonia, Denmark, Czech Republic, Belgium and Austria.

- The opportunity to search for global information is mentioned by the youth of the UK, Sweden, Spain, Ireland, France, Germany, Cyprus, Belgium and to a lesser extent also in Estonia. Furthermore, user-generated content creation is more common in Ireland, Iceland, France and in Belgium and less so among children in Estonia and the Czech Republic.

- Parents are more likely to stress online opportunities to access global information (Sweden, Poland, Italy, Greece) and the use of the internet as an educational resource (Denmark, Greece, Ireland, Sweden, Norway, Italy). They tend to underestimate the value to their children of the internet for social relationships and entertainment.

Little clear or cross-nationally comparable information was available regarding the incidence and take-up of these various opportunities, however. Focusing on particular activities or applications more than the opportunities these may afford, the Mediapro project (Mediapro, 2006) produced the only directly comparable data available on children’s uses. This survey of 7,393 12-18 year olds regarding their appropriation of new media in nine European countries found some, not easily interpretable, cross-national variation in online activities (see table 2.4).

Overall, these figures suggest a fairly constant and familiar picture, with children mixing educational, entertaining, informational and networking activities in substantial numbers, while tailoring internet use to suit their interests.
Generally, once they gain access (and skills), it can be concluded that children in all countries prioritise online communication, various forms of entertainment and play, and information provision, while for parents the benefits of educational resources are higher on their agenda. There is insufficient evidence, however, to justify a classification of countries in terms of online opportunities engaged in by children.

If online opportunities are to be increased across Europe, much depends on the child’s role (their motivation and resources) and on the online provision available to them (and, thus, the providers’ motives or social goals). Hence we propose a classification of online opportunities for children and young people as follows. In figure 2.9 below, the cells shaded darker are those where a fair body of empirical evidence is already available. For many other opportunities discussed in public and policy circles, too little is known regarding either provision or take-up by children as yet.

Livingstone and Helsper propose a graduated sequence of activities towards digital inclusion (Livingstone & Helsper, 2007). Based on findings for UK 9-19 year olds, differences among users fell into four orderly steps, suggesting a ladder of online opportunities as follows.

- Step 1 centres on information-seeking. This is the first step for everyone, and characterises internet use among those who just take up a few online opportunities. They may be termed basic users.
- Step 2 adds in games and email. Thus, those who take up a few more opportunities are likely to use the internet for information, entertainment and communication. These may be termed moderate users.
- Step 3 adds in instant messaging and downloading music. Those who take up a fair range of opportunities continue to seek information but they expand their peer-to-peer engagement. They may be termed broad users.
- Step 4 adds in a wide range of interactive and creative uses, while continuing the foregoing uses, making for a
The diversity of uses among those who take up the most opportunities online. These are termed all-rounders.

To some degree, children progress ‘up the ladder’ as they get older – most activities online become more common with age. However, the active promotion of further online opportunities in Europe should, one may conclude, encourage these steps in turn. For example, providing positive information resources of interest to children is the best way to encourage beginners. Contrary to the views of many adults, following this up with the provision of fun games is a good next step. Looking at these steps the other way around, one may suggest that children not yet comfortable with peer-to-peer communication are unlikely to engage in civic participation.

In terms of future research priorities, it seems that a systematic approach to data collection is needed if the take up of opportunities (as judged by children and parents) is to be encouraged in a comparable manner across Europe. While research has provided a portrait of the activities especially enjoyed by children, it is less clear about parental views, which matter – and should be further researched – because parents’ beliefs regarding the benefits of internet use for their children will motivate their provision of hardware and software resources, their social and technical infrastructural support, their efforts to overcome digital inequalities and their perception of the likely costs if safety concerns lead them to restrict children’s access.

Research question R2.2.2

What are the main risks experienced by children online?

Developing the three C’s approach, EU Kids Online has classified the array of risks to children as shown in figure 2.10.

• The vertical dimension recognises that risks to children derive from the three modes of communication afforded by the internet: one-to-many (child as recipient of mass distributed content); adult-to-child (child as participant in an interactive situation predominantly driven by adults); and peer-to-peer (child as actor in an interaction in which s/he may be initiator or perpetrator).

• The horizontal dimension acknowledges four main forms of risk to children’s development and well-being - commercial, aggressive, sexual and value threats.

• Note that while the specific risks that fall into each cell may change over time, the categories are more enduring.

Many potential online risks have been discussed in public, policy and academic circles, but not all have been researched as yet. Evidence of the incidence, distribution and possible consequences of these types of risk, on a reliable cross-national basis, is sparse. Risks are particularly difficult to define in culturally-consensual ways, and they are difficult to research in methodologically-rigorous and ethically-responsible ways. Few studies are conducted comparatively, and exact samples, methods and measures vary considerably (Livingstone & Haddon, 2008; Lobe et al., 2007).

Noting strong caveats regarding difficulties with and differences in definitions and methods, the following portrait of available evidence is offered. It is based on risks as reported by children – generally teenagers who use the internet (unless other age groups are specified). In high internet access countries, the figures therefore apply to most of the population. In low internet access countries, however, figures obtained from online teenagers apply to a smaller, often more urban and/or wealthier, segment of the population.
Table 2.5: Summary of national reports on evidence for risk types

<table>
<thead>
<tr>
<th>Risk Type</th>
<th>% Online teenagers in Europe</th>
<th>Estimated median</th>
<th>Lowest % reported</th>
<th>Highest % reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexual content (child as recipient):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seen pornographic or unwelcome sexual content</td>
<td>40%</td>
<td>25%</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>Sexual contact (child as participant):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Received unwanted sexual comments</td>
<td>25%</td>
<td>6%</td>
<td>56%</td>
<td></td>
</tr>
<tr>
<td>Met online contact offline</td>
<td>9%</td>
<td>6%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Aggressive content (child as recipient):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seen violent or hateful content</td>
<td>32%</td>
<td>15%</td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>Aggressive contact (child as participant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Been bullied/ harassed/ stalked</td>
<td>18%</td>
<td>10%</td>
<td>52%</td>
<td></td>
</tr>
<tr>
<td>Aggressive conduct (child as actor):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sent bullying/ harassing messages</td>
<td>12%</td>
<td>8%</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>Additionally, a risk associated with most contact risks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Given out personal information</td>
<td>50%</td>
<td>13%</td>
<td>90%</td>
<td></td>
</tr>
</tbody>
</table>

(A more detailed summary of the findings presented in this table is in Appendix D)

It seems that online risk attracts public concern and policy attention with justification. In most countries, significant minorities and, in some cases, a majority of teenagers are encountering a range of aggressive and sexual risks. These include content, contact and conduct risks. Yet, many pressing questions remain, with little data available in some countries and, as noted earlier, many difficulties of measurement and comparability impeding a clear picture.

Unlike for online opportunities, however, the above table does provide the basis for an approximate classification of countries in terms of incidence of online risk experienced by children and young people. Although stronger data would be greatly preferable before advancing such a classification, we attempt one here nonetheless in order to gain some benefit from the available research findings.

To construct this classification, for those countries where several quantitative estimates of risk are available, the following ‘rough and ready’ calculation was applied. A rank of 1 was given if the national percentage is below the median for the risk category, a rank of 2 is given if the percentage is close to the median, and a rank of 3 is given if the percentage is above the median.

- High risk countries include mainly countries where internet use is high (Estonia, Iceland, Netherlands, Norway, Poland, Slovenia, UK) or where internet use has increased rapidly (Bulgaria, Czech Republic).

- Medium risk countries are two high use Nordic countries (Denmark, Sweden) a number of countries with medium use (Austria, Belgium, Ireland, Portugal, Spain) and also one where internet use is relatively low (Greece).

- Lower risk countries – France, Germany, Italy – large countries (but with little data on risk) also Cyprus with relatively low internet use.

In conclusion, we suggest that this country classification is best regarded as a hypothesis – the basis for further research to test the classification and amend as appropriate. Usefully, however, it suggests that, for some countries, being new to the internet means gaining new risks while for others, having gained high internet penetration carries with it high risks. The anomalies are also interesting – Sweden has high internet penetration but only average risk, suggesting perhaps an effective level of safety awareness.

Comparing now across risks instead of across countries, the same findings reveal that some risks are more prevalent than others, though variation across European countries is considerable. Setting aside sending bullying/harassing messages (where there are data for too few countries), the order of risks is roughly:

1. Giving out personal information: the most common risk – estimates around half of online teens, with considerable cross-national variation (13% to 91%).

2. Seeing pornography: second most common risk at around 4 in 10 across Europe, but there is considerable cross-national variation (25% to 80%).

3. Seeing violent or hateful content: third most common risk at approx one third of teens and, apart from a figure of 90% in Ireland (and 51% in Poland), a fair degree of consistency across countries.

4. Being bullied/harassed/stalked – generally around 1 in 5 or 6 teens online, though there is also a group of high risk countries here (Poland, perhaps Estonia) and one low risk country – Belgium.

5. Receiving unwanted sexual comments - only around 1 in 10 teens in one group of countries (Germany, Ireland, Portugal) but closer to 1 in 3 or 4 teens in Iceland, Norway, UK and Sweden, rising 1 in 2 in Poland.

6. Meeting a online contact offline – the least common but arguably most dangerous risk, there is considerable consistency in the figures across Europe at around 9% (1 in 11) online teens going to such meetings, rising to 1 in 5 in Poland, Sweden and the Czech Republic.

Various other possible risks are still to be researched in comparative perspective – self-harm, race hate, commercial exploitation, and many more.
From this survey of findings, several conclusions may be tentatively drawn.

• First, there are considerable cross-national variations in the incidence of risk, although it is hard to discern systematic cross-national patterns across all risk types.

• There seems to be more cross-national variation in the more common risks, and more homogeneity for the less common risks.

• In several countries, some measure of distress or feeling uncomfortable or threatened was reported by 15%-20% of online teens, this suggesting, perhaps, the numbers for whom risk poses a degree of harm.

• Poland is a striking outlier – reporting high levels of risk across several categories, and being highest for seeing porn, being bullied, receiving unwanted sexual comments, second highest for stranger danger, and third highest for giving out personal information.

• Further, in some countries it is particular risks that are stand out, but they are not high risks across all risks e.g. Ireland for seeing violent and hateful content and giving out personal information, Czech Republic for giving out personal information, Estonia for being bullied.

• The only country that is somewhat (comparatively) a low risk outlier on a few items is Italy – on porn, seeing hateful content, although the actual figures are not so striking as the high risk outliers, and this is partly because the samples surveyed were younger (7-11 year olds).

The research gaps are considerable, for there is little or no research evidence across Europe regarding some forms of risk to children online. Specifically, there is little on commercial risks (either those which direct commercial/advertising content to children or those which track their online activities or collect personal data). There is also little research on risks associated with exposure to certain values. Although there are scattered studies of the incidence of exposure to racist content, though these are too few to compare cross-nationally, and thus they have been combined with hateful content. We have found few or no studies on self-harm (e.g. cutting, suicide, pro-anorexia) or on inappropriate forms of persuasion or misleading advice. Only recently have there been some studies of children not as victims but as perpetrators, focusing on bullying and sending unwanted sexual messages.

Undoubtedly, there are some difficulties in researching these topics – both practical and ethical, but nonetheless, the attempt should be made. The measures asking not about specific risks but about children’s possible distress or fear associated with these experiences provide a helpful indication of possible harm, and require further investigation to understand the duration and severity of such responses.

Some of the high reports of risk – in Estonia, Poland, Czech Republic – require urgent awareness-raising. Similarly, the advent of new forms of online activity – e.g. social networking – points to the need for urgent new advice to children and young people. As estimates for now-familiar risks continue to be substantial, these too require continued attention to keep them in children’s minds.

We now turn to the hypotheses that link the demographic factors of age, gender and socioeconomic status to findings for children’s experience of online risks.

Hypothesis H2.2.1

As children get older they are exposed to a greater amount and range of online risks.

It is commonly supposed that as children get older they are exposed to a greater amount and range of online risks (although, as is also supposed, this may matter less than for younger children as older children are also more mature and capable).

Of the 21 participating countries, only eight had evidence to support this hypothesis (Belgium, Estonia, Iceland, Norway, Poland, Portugal, Spain and the UK) and three had contradictory evidence (France, Germany and the Netherlands). The remaining countries (Austria, Bulgaria, Cyprus, Czech Republic, Denmark, Greece, Ireland, Italy, Slovenia and Sweden) had no data to present.

• As the Austrian report noted, this is because they, like many countries, lack direct evidence of risk for children younger than teenagers – in other words, lack of evidence does not mean the hypothesis can be rejected. On the other hand, as they also point out, across the age range from 11 to 18, they – again like many countries - have evidence of risks encountered across adolescence.

• In support of the hypothesis, research on Estonia shows that “Cyber-bullying, stalking, harassment” has been experienced by 42% of 13 to 14 year old children, 34% of 11 to 12 year olds, 37% of 9 to 10 year olds and only 11% of 6 to 8 year olds. Also, older children communicate more with strangers on the internet: 49% of 13 to 14 year olds have communicated with strangers (8% with adult strangers) while only 7% of 6 to 8 year olds have done so (2% with adult strangers; (Turuurungute AS, 2006).

• Similarly in Iceland, as children grow older they are more likely to have met a stranger on the internet who asked for personal information about themselves (12% of 9 year olds compared to 30% of the 15 year olds). They are also more likely to have received unwanted sexually explicit messages (16% of 11 year olds compared to 26% of 15 year olds). Moreover they are more likely to have stumbled into websites with pictures of naked people or porn sites (44% of 11 year olds compared to 63% of 15 year olds). And in Spain, a range of content risks (promoting violence, war, terrorism, pornography, etc) are more commonly experienced by 15-17 year olds than by 12-14 year olds, as is the likelihood of meeting in person someone first met online - 15.1% of adolescents between 15 and 17 years of age do this, as do 8.2% of younger children, ages 12 to 14 (Tezanos, 2006).
On the other hand, some research finds contradictory results.

- In France, research shows that as children get older they are less likely to participate in chat rooms (comparing 15-17 year olds with those aged 18+), resulting in a decreased chance of facing some risks.

- In Germany, there was no evidence directly addressing the relation between age and risk exposure, but findings on problematic films on mobile phones suggest that children aged 12-17 own more of these films on their mobile phones compared with those aged 18 and above.

- Findings from the Netherlands suggest that children aged 12-14 encounter greater risks when using online technologies because they’re experimenting with their identities and are more prone to receive negative feedback of their profiles, thus endangering their well being.

On balance, however, it is concluded that older teenagers do encounter more online risks. To qualify this, it may be that for some risks, the oldest teens have learned how to avoid such risks, while younger teens are the most likely to be sensation-seeking or deliberately risk-taking. Also, the phenomenon of very young children using the internet is too recent for a strong evidence base, raising new and pressing questions.

Part of the explanation for the generally positive association found between age and risk is offered by the UK Children Go Online study (Livingstone & Bober, 2004). This conducted a path analysis showing that the positive correlation between age and risk among 12-17 year old internet users (r=0.26, p<0.01) may be because older children engage in more online opportunities and this, indirectly, leads them to experience more risks. In short, older teens do more online of a beneficial nature, and this indirectly leads them into more risky experiences.

Hypothesis H2.2.2

As younger children gain online access they are increasingly exposed to online risk.

It is possible that as ever younger children gain access to online technologies, they may be particularly vulnerable to risk – gaining access before developing the requisite skills or maturity to cope with what they encounter. The above analysis also suggests that as younger children gain online access, they will encounter more online risk precisely because they will take up more opportunities than at present.

But direct research is yet to be conducted to explore the specific risks faced by younger children. And unfortunately, even where survey findings across the age range are available, they are rarely analysed so as to address this issue. Across Europe, most countries had no findings examining the interrelations among children's age, online access and risk exposure. Some had findings to suggest that, as younger children are more closely monitored by their parents, risks are less problematic when encountered among young children (e.g. Iceland), but this point relates more to the consequences of this hypothesis, if supported, than to the merits of the hypothesis itself.

Hypothesis H2.2.3

There are gender differences in the range/types of uses/opportunities

Data from thirteen countries support the hypothesis that there are gender differences in the range and type of children’s online activities: Bulgaria, Estonia, France, Germany, Iceland, Ireland, Italy, the Netherlands, Norway, Poland, Portugal, Spain, and Sweden.

We need to build on this research base. There is limited evidence available does provide the basis for a clear classification of countries on the basis of gender differences or otherwise.

Overall, it may be concluded that:

- Boys are more likely to seek out offensive or violent content, access pornographic content or be sent links to pornographic websites, meet somebody offline that they have met online, give out personal information.
- Girls are more likely to be upset by offensive, violent and pornographic material, chat online with strangers, receive unwanted sexual comments, be asked for personal information but to be wary of providing it to strangers.
- Both boys and girls are at risk of online harassment and bullying.

When it comes to national findings for gender differences in types of risks these are summarized in appendix D but the data available does provide the basis for a clear classification of countries on the basis of gender differences or otherwise.

More investigation of exposure to and perceptions of risk is needed, particularly boys’ tendency to seek out violent and pornographic material. Links between boys’ games content and playing (which often have violent or sexual content) and exposure to offensive and sexual online content would be worth exploring. It would be important also to examine awareness of risks and coping strategies among girls and boys.

Hypothesis H2.2.5

There are inequalities in use/opportunities as a consequence of inequalities in SES

The well-established debate over the digital divide justifies the hypotheses that there are inequalities in children’s use of and opportunities gained through the internet as a consequence of differences in socioeconomic status.
(SES). Though evidence was lacking in several countries (Austria, Cyprus, Czech Republic, Denmark, Greece, Iceland, Ireland, Italy, Poland, Portugal, Slovenia), there is general agreement throughout many European countries that SES and the type of use or opportunities are correlated. Different variables are examined in several countries, here categorised in terms of measures of frequency of use or type of use.

Frequency of internet use:

- In some countries (Estonia, France, Sweden), there is little difference for children of different socioeconomic status.

- The different ways of measuring use complicates these simple conclusions, however. For example, in Estonia, among 15 to 19 year olds, a positive correlation exists between household income (per family member) and variety of computer use (the number of different activities youngsters engage in). On the other hand, there is no significant correlations between household income and the frequency of computer/internet use, or between household income and the amount of time spent on computer use at home (MMM Project, 2005).

- By contrast, a positive association is found in Norway and the UK. Children whose parents have more education or who are of a higher class use the internet more.

- Belgium and the UK also report that upper class children started to use the computer younger.

- Qualitative research in France (Fluckiger, 2007) shows that inequalities in use could result from the transmission of cultural capital, as parents with a higher education encourage their children to use the internet more and more widely.

- Surveys in both France (Pasquier, 2005) and the UK (Livingstone & Helsper, 2007) show that although there are inequalities in possession of a computer or access to internet as a consequence of inequalities in SES, among teenagers who have access to the internet, there is little significant difference in the frequency of use.

Type of use:

- Several countries report that upper class children use internet more often for school (Netherlands), to get information about important questions or to do their homework (Spain), or to contribute to message boards, vote or sign a petition online or visit civic sites (UK); children from “theoretical” schools are more likely to make use of scientific and political information on the internet (Sweden).

- On the other hand, downloading music is more frequent among children from lower class households (France, Netherlands, UK).

- Even in a country considered relatively egalitarian, like Norway, the differences are notable. Children in families where parents have higher education use the computer more than others. The difference is largest concerning homework, e-mail and gathering information, but also significant when it comes to image processing and music. Concerning chat, programming and computer games, the difference is small or insignificant. Children with parents of lower education use TV-console games more than do others. There is a positive correlation between how much time the children spend on the computer and how good grades they have, and their parents’ educational level.

- Overall, all countries agree that lower class children use internet for leisure information, downloading content, and fun. Upper class children tend also to have uses related to school, civic or political information.

- For example, in Spain, 75% of the young people interviewed from the higher social status group said they generally browsed the internet to obtain information when doing school work or homework; only 43% of the lower social status group do this (Tezanos, 2006).

- Apart from UK and France (where working class children are more likely to use chat rooms), the reports do not suggest any association between SES and the use of communication tools.

Does the frequency of use and type of use depend on SES? The answer is positive for some national reports, negative for some others. A possible explanation is that frequency of use is sometimes asked whatever the place – thus use at school is included, which may lower or even cancel the effect of SES.

Hypothesis H2.2.6

Since most children make the broadest and more flexible use of the internet at home, they will also encounter more risk from home than school use.

This hypothesis is particularly important in terms of directing safety awareness initiatives – whether to parents or to teachers – and in framing advice to children directly (whether phrased in terms of school uses or home uses, positioning either or both of parents and teachers as advisors). However, it is not straightforward to investigate, since it combines several statements that have to be investigated:

- How many children use the internet at home and at school?
- How often and for how long do they use the internet at home and at school?
- How broad is the range of internet services, which are used at home and at school?
- How likely is it to encounter risks when using the internet at home and at school?

The Eurobarometer (2005) survey (EC, 2006) allows the investigation of the questions 1 and 4, although only by relying on parents’ answers (problematic since parents cannot know about their children’s internet use at other places, including school).
For question 1, table 2.3 (see above, chapter 2.1) has shown how many children use the internet at home and at school. On the EU level this first indicator for potential risks shows no difference for internet use at home (34%) and at school (33%).

However there are countries with substantially higher figures in 2005 for use at home (Belgium, Denmark, Germany, Italy, Slovenia, Spain, Sweden, and The Netherlands) on the one hand, and countries with higher figures for use at school (Bulgaria, Czech Republic, Greece, Poland, Portugal, and the United Kingdom) on the other hand. The latter group includes Central and Eastern European countries as well as Southern countries with a generally low internet use; the only exception here is the United Kingdom. The second step of the analysis asks whether the children’s parents report that their child has encountered any harmful or illegal content when using the internet at different places. Table 2.7 shows that the parents observe more risks at home than at school; this is true for the European Union as a whole as well as for all countries involved in the EU Kids Online project. These findings clearly support Hypothesis 2.2.6 (although as noted above, parents’ knowledge of their children’s internet use at school is limited).

<table>
<thead>
<tr>
<th>Country</th>
<th>At home</th>
<th>At school</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Belgium</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Cyprus</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Denmark</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>Estonia</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>France</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Germany</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Greece</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Iceland</td>
<td>Nd</td>
<td>nd</td>
</tr>
<tr>
<td>Ireland</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Italy</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Netherlands</td>
<td>31</td>
<td>9</td>
</tr>
<tr>
<td>Norway</td>
<td>Nd</td>
<td>nd</td>
</tr>
<tr>
<td>Poland</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Portugal</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Slovenia</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Spain</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Sweden</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>The UK</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>EU 25</td>
<td>12</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2.7: Encounters with harmful or illegal content when using the internet at home and at school (in per cent of children who have used the internet)

A more specific approach to this question is based only on those children who – according to their parents – use the internet at home AND at school. On this basis, the hypothesis is clearly supported: on the European Union level, the figure for risks at home is much higher (23%) than for risks at school (7%).

For example, in Bulgaria, the Eurobarometer survey finds that more children use the internet at school (12%) than at home (8%), this explaining why the likelihood of encountering risks is 4% for use at schools and 3% for use at home. As the national report comments, risks at home arise because of parental ignorance of or inexperience with the internet, and their belief that what children are doing at home is what they have learned at school. The results of the national study performed in 2006 show that parents think their kids are safer in cyberspace than in the street and therefore they encourage children to attend. Parents usually are not aware of what their kids are doing in the internet and rarely could prevent the risks (with few exceptions).

Qualitative research in France (Fluckiger, 2007) shows that at school, computers and the internet are underused. Moreover, uses at school are very restrictive, so that pupils can not surf the Web freely, chat or visit blogs. Therefore, risks encountered at school appear very limited. Similarly in Ireland, children use the internet more frequently from home and are less likely to be supervised, whereas the Schools Broadband Programme has filters, social networking sites are banned at school, schools employ secure email systems, and less time is available for internet use as activities tend to be structured around the curriculum.

While further national data are largely lacking, those that are available further support the conclusion that, in general, online risk is greater at home than in school. Overall, it seems that, in general, both frequency of use and type of use are influenced by SES – parental resources (economic, cultural, educational, social) resulting in some children benefiting more from the internet than others. But there are several exceptions, and gaps in the available evidence. Too few studies discriminate use at school (relatively more equal) and home (more unequal).
As a final step of the analysis, all places where children use the internet can be qualified regarding the likelihood to encounter harmful or illegal content. The following analyses are based only on those children who actually use the internet at the respective place. Table 2.8 shows the figures on the European level. Because of the fact that most children use the internet at home, this place clearly seems to be the least secure: 12 per cent of the parents say that their children have encountered harmful or illegal content when using the internet at home; this is by far more than for the other places.

However, if one takes into account the number of children who actually use the internet at the different places, the picture changes: Still the highest figure can be observed for internet use at home; 18 per cent of the children who use the internet at home have encountered illegal or harmful content at this place. A similarly insecure place (17%) is the internet café. Internet use at a friend’s house is in third place (12%), whereas somebody else’s house (8%) as well as schools (7%) and particularly libraries and other public places (3%) are regarded as more secure.

These findings cannot be calculated on the country level, because for most of the countries the number of cases is too small. Looking at the figures does not provide any indication for substantial differences between the countries in this respect.

Taken together, the Eurobarometer data – as far as they include the relevant variables – clearly support Hypothesis 2.2.6. From the parents’ perspective the likelihood of encountering harmful or illegal content is substantially higher when children use the internet at home than at school. In addition, internet use at a friend’s home and at internet cafés is regarded as more dangerous than at school. This provides a reasonable basis for targeting safety awareness information to parents and to children accessing the internet at home.

Beyond this overall picture, there is little available research that maps children’s reported uses and risks online across multiple locations of use, on a country by country basis. Further work is therefore needed that surveys children’s safety awareness information to parents and to children using the internet can be qualified regarding the likelihood to encounter harmful or illegal content.

While further national data are largely lacking, those that are available further support the conclusion that, in general, online risk is greater at home than in school.

Overall, it seems that, in general, both frequency of use and type of use are influenced by SES – parental resources (economic, cultural, educational, social) resulting in some children benefiting more from the internet than others. But there are several exceptions, and gaps in the available evidence. Too few studies discriminate use at school (relatively more equal) and home (more unequal).

Research question R2.2.3

Are there SES differences in children’s exposure to risk?

The relation between the digital divide (i.e. the risk associated with not accessing the internet, of being excluded) and online risk exposure (the risk associated with accessing the internet) has been little examined but is nonetheless important, hence this research question. If it is supposed, as seems plausible, that parents are differentially resourced to manage online risk exposure, and that children are already – in their offline lives – differently at risk (or ‘vulnerable’), this lack of attention to questions of SES is a concern in the research field. It is strongly recommended that all future research examines the differential consequences of internet access and use and, indeed, safety awareness and risk responses, for households of different socioeconomic status.

In most countries where research was collated, there was little information available regarding socioeconomic status (SES) – including Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Greece, Italy, Norway, Poland, Portugal, Slovenia, Sweden, The Netherlands. Insofar as findings are available, the evidence in each country points to a correlation between SES and exposure to risks, with the exception of Iceland. Most of these findings concern content and contact risks. In the main, it seems that lower class children are more exposed to risk online.

- For example, in Spain, Germany and France, there is evidence that working class children are more likely to encounter, receive or view pornographic or violent material, either on their email, Web browser or mobile phone.
- Spanish research shows that only 2.7% of young people from the highest social group state that they have received violent contents through the internet, as opposed to the 60.3% of young people with a middle social status; similarly, 3.9% of young people from the very highest social group accidentally access pornographic pages, while 26.2% of those with a high social status and 61.2% of those with a middle social status do so. Similar data correspond to young people who receive pornographic pages through the internet or messages: 5.5% belong to the highest social status, 26.6% are from the high social status group and 5.8% have a middle status. Pornographic pages received from someone known: 8.2% from the highest status, 28.6% from the high social status and 57.1% from the middle social status. Surprisingly, when asked whether or not they know someone who visits pornographic pages...
habitually, the highest social status gave an affirmative response in 61.5% of cases, those with a high social status 24%, the middle social status group 28.7% and those of the lowest social status, in 14.3% of cases (Tezanos, 2006).

- In Germany, a study of mobile phones and risks indicates that less educated teenagers own violent video films on the mobile phone to a larger extent than better educated teenagers:

<table>
<thead>
<tr>
<th>Educational Level</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>General-education secondary school</td>
<td>11.9%</td>
</tr>
<tr>
<td>Secondary modern school</td>
<td>6.4%</td>
</tr>
<tr>
<td>Grammar school</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

Source: (Grimm & Rhein, 2007). Base: teenagers with mobile phones (12-19 years, n=752).

- In France also, the findings suggest that working class children are more likely to talk to strangers on the internet, or meet strangers they have met online. Thus Pasquier’s qualitative and quantitative research between 2001 and 2005 (Pasquier, 2005) found in France that 49% of working class high school pupils talk to people they never met before, compared to 41% of middle class and 26% of upper class teenagers. She argues that working class teenagers, more than others, say they are interested into chatting because chatting is seen as an occasion to demonstrate one’s ability to master the specific language in chat rooms, and that is particularly valued among under-privileged teenagers.

It can be concluded that those who belong to higher SES groups are generally exposed to fewest risks. Further, middle SES groups experience more risk and lower SES groups experience the most. It seems likely that several factors are at work here, with the relatively lesser access of the lowest status groups resulting in less exposure to risk, thus complicating the correlation between SES and risk. It is noteworthy too that the Irish report finds that only 41% of lower SES parents monitor their children’s internet use, compared with 81% of other groups, and that children from lower SES groups are more likely to have access to computers and the internet in their bedroom than higher SES groups (Downey, Hayes, & O’Neill, 2007). Lower parental monitoring may, it seems, be associated with – possibly result in – greater exposure to risk among children.

Some results are surprising. The UK reports only a small difference, and Iceland claims there is no SES effect. Internet is widely spread in Iceland, and, according to the report, very little socially differentiated, which could explain this result. However, UK is a highly stratified country, and the existing but small difference in the exposure to risks requires a different explanation. It should be noted that the relatively small difference in use in the UK exists only after controlling for access. In other words, access to the internet is highly stratified in the UK but, once access is achieved, SES makes little measurable difference to the frequency or nature of risks.

For future research, it will be important to systematically differentiate the various dimensions of SES: household income, level of education and profession of parents, so that the specific resources of households - social capital, economic capital, cultural capital – can be distinguished as factors exacerbating or ameliorating risk. SES differences in parenting style are yet to be well understood. Last, other forms of social inequality – e.g. the case of migrants and ethnic minorities – should be included in research designs.

In terms of safety awareness, these findings suggest the value of targeting interventions at working class children especially.

Research question R2.2.4

Is there evidence showing the consequences of online risks or evidence showing how children cope with online risks?

The Safer Internet plus programme’s public consultation (Safer Internet plus programme, 2007), summarised and discussed at the 2007 Safer Internet Forum, highlighted several key conclusions, of which the first – that risk and safety should be addressed in the context of the ‘overwhelmingly positive potential of the internet’ has been addressed in the section on online opportunities. The second was that since ‘a risk free internet for children and young people is an illusion’, the focus should be on risk avoidance, coping with risk and media literacy.

We have begun to address this above, when examining whether increased online skills reduced risk exposure. But beyond the question of exposure is the important matter of coping. Once exposed to risk, how do children respond? In psychological research, this question is being framed in terms of adolescents’ development of ‘resilience’.

Thus far, however, little is known of children’s abilities to cope with, or their resilience towards, online risk. Some findings do exist, however, and these are often promising, for they tend to suggest that such risks as children do encounter may be brushed off, or disregarded, by the majority of young people.

This leaves two crucial questions.

- First, methodologically speaking, can children be asked to self-report on harm with reliable results (in other words, might they be harmed in ways they cannot or choose not to describe when asked by a researcher)?
- Second, are some children particularly vulnerable to online risk, even though the majority appear to be relatively unaffected?

These two questions must remain for future research.

In what follows, we note the available evidence for children’s responses to online risk. The Eurobarometer survey 2005 (EC, 2006) includes two questions directly related to risks, and combining these provides some indication of coping. Firstly, parents were asked whether their child has ever encountered harmful content on the internet (see table 2.9, 1st column). Secondly, they were asked whether they think their children know what to do if a
situation in the internet makes them feel uncomfortable (see table 2.9, 2nd column). This item can be interpreted as an indicator for parents’ trust in their children’s ability to cope with online risks. On the European level, 31 per cent of the parents say that their child has encountered harmful content on the internet, and 66% of parents say their child knows what to do in such situations.

<table>
<thead>
<tr>
<th></th>
<th>1) Child has encountered harmful content (%)</th>
<th>2) Child knows what to do in situations, which make them feel uncomfortable (%)</th>
<th>Correlation between encounters with harmful content and coping (within countries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU 25</td>
<td>30.8</td>
<td>66.0</td>
<td>-0.02</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>59.3</td>
<td>46.2</td>
<td>0.11</td>
</tr>
<tr>
<td>Estonia</td>
<td>57.7</td>
<td>45.4</td>
<td>-0.19</td>
</tr>
<tr>
<td>Slovenia</td>
<td>57.5</td>
<td>61.7</td>
<td>-0.04</td>
</tr>
<tr>
<td>Sweden</td>
<td>54.9</td>
<td>63.7</td>
<td>-0.27</td>
</tr>
<tr>
<td>Poland</td>
<td>49.7</td>
<td>55.9</td>
<td>0.02</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>49.7</td>
<td>60.1</td>
<td>0.02</td>
</tr>
<tr>
<td>Austria</td>
<td>45.0</td>
<td>66.4</td>
<td>0.08</td>
</tr>
<tr>
<td>Netherlands</td>
<td>41.8</td>
<td>71.3</td>
<td>-0.24</td>
</tr>
<tr>
<td>Denmark</td>
<td>38.5</td>
<td>68.4</td>
<td>-0.14</td>
</tr>
<tr>
<td>Spain</td>
<td>36.3</td>
<td>51.0</td>
<td>0.14</td>
</tr>
<tr>
<td>Portugal</td>
<td>33.6</td>
<td>47.5</td>
<td>0.18</td>
</tr>
<tr>
<td>Ireland</td>
<td>28.3</td>
<td>63.8</td>
<td>0.10</td>
</tr>
<tr>
<td>Greece</td>
<td>27.4</td>
<td>54.8</td>
<td>0.05</td>
</tr>
<tr>
<td>Belgium</td>
<td>26.6</td>
<td>64.2</td>
<td>-0.19</td>
</tr>
<tr>
<td>Italy</td>
<td>24.7</td>
<td>68.0</td>
<td>-0.19</td>
</tr>
<tr>
<td>Germany</td>
<td>23.2</td>
<td>70.8</td>
<td>-0.01</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>21.9</td>
<td>75.4</td>
<td>-0.12</td>
</tr>
<tr>
<td>Cyprus</td>
<td>19.0</td>
<td>72.4</td>
<td>0.35</td>
</tr>
<tr>
<td>France</td>
<td>18.3</td>
<td>68.9</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 2.9: Children’s encounters with harmful content and their ability to cope with internet related risks (parents’ answers; per cent of children who use the internet). Source: Eurobarometer 64.4 – Special No. 250: Safer Internet, December 2005; basis: parents/guardians with children less than 18 years. *) Numbers in bold indicate significant (p<.05) correlations.

Figure 2.11 shows the aggregate results for the EU member states. Evidently, there is a negative correlation between the two indicators across countries: the higher the percentage of parents who claim their children have encountered harmful content, the lower the estimated ability of children to cope with these potentially harmful encounters.

Some caution is needed in interpreting this correlation. It may be that in low risk countries, children have indeed learned to cope; but it may also be that in low risk countries, parents are unaware of the need to cope and so overestimate their children’s abilities. Similarly in high risk countries, children may really be less able to cope or, possibly, in high risk countries parents are more aware of their children’s need to cope.

These figures suggest that the highest risk/lowest coping countries are Estonia and Bulgaria, followed by Poland and the Czech Republic – clearly a priority focus for future safety awareness initiatives. On the other side of the spectrum, a group of seven countries (Belgium, Cyprus, France, Germany, Ireland, Italy, and the UK) combine low risk and a high ability to cope.

Note that this classification of countries in terms of risk is somewhat at variance with that offered earlier, based on far more national research with children. The above findings are, here, interpreted less in terms of actual risk and more in terms of perceived risk by parents, especially as this reveals a gap between parental perception of risk and parental assessment of child’s coping abilities.

Further evidence of the pattern of parents’ perceptions of online risks and their children’s ability to cope with them can be derived from the within countries correlations between these two indicators as shown in the above table 2.9 (3rd column). On the European level the correlation across individuals is almost zero; however on the country level we find several countries with a significantly positive correlation (Austria and Cyprus) as well as other

Figure 2.11: Countries by encounters with harmful content and children’s ability to cope with situations which make them feel uncomfortable (based on parents’/guardians’ answers, % children who use the internet). Source: Eurobarometer 2005; parents/guardians with children under 18 years.

9 The Pearson correlation across the 19 countries is r=-.55, p<.05.
10 Correlations on the between-countries-level must not be confused with correlations on the individual level. Whereas on the between-countries-level there is a clear negative correlation (see above), this cannot be found when calculating correlations on the level of all individual respondents.
countries with significantly negative correlations (Belgium, Denmark, Estonia, Netherlands, Sweden). This means, in the first group, parents, who think their child has encountered harmful content, are more likely to believe in their child’s ability to cope with this than parents, who do not think their child has encountered harmful content. To the opposite, parents in the second group, who think their child has encountered harmful content, are less trusting regarding their children’s ability to cope with risks. This pattern is not easy to interpret; it emphasizes the relevance of thorough analyses within countries, because relevant relations between core variables seem to be substantially different.

How do children cope with online risk? Analysis of findings from national reports on children’s abilities to cope with risks does not provide sufficient information to draw strong conclusions regarding children’s ability to cope, or otherwise, with the consequences of online risks.

The latest Eurobarometer includes information on one option for children to cope with negative experiences, which is to ask their parents. On average 27 per cent of parents in the EU 27 said their child had asked them for help when a problem of any kind occurred while using the internet (EC, 2008, p. 31). This figure is particularly higher in Denmark (48%) and Slovenia (45%) and particularly lower in Ireland (18%) and the UK (15%). The children’s problems were mostly related to technical questions (e.g. viruses) or to information seeking. Only a marginal number of parents reported that their child had asked them for help because of being contacted by strangers online, having found sexually or violently explicit images online, being harassed online or being bullied online (ibid.). These findings suggest that asking parents for help might not play a significant role in children’s strategies to cope with online related risks.

Qualitative research points to a series of strategies that children are developing to cope with online risks. How these are applied, and whether they are effective, remains unknown, but the manner of reporting suggests that children feel in control and confident in using these strategies.

Some countries report fairly high awareness of risks, yet this may not reduce risky encounters; in other words risk awareness does not necessarily translate into risk avoidance. Especially perhaps in countries new to the internet (e.g. Poland), there is a disconnection between safety awareness and children’s behaviour – although the gap between safety awareness and safe practices is familiar also in all countries.

Research is sorely needed that follows children from exposure to risk online through to their coping strategies and, then, the consequences if any. This should include an account of strategies tried, outcomes and reasons for responding in particular ways, plus associated emotions - immediate or longer-lasting.

These findings suggest that awareness-raising should be continued for all types of risk encountered by children online, with more attention to how children do and should cope when they encounter such risks. Many studies report that only a small minority tells an adult, though it appears that children are developing their own strategies to respond to online risk. Whether these are effective or not remains unknown.

Research question R2.2.5
What is the relation between online opportunities and risks?

The UK Children Go Online found that there is a positive and high correlation (r=0.55**) between number of online opportunities and number of online risks for 12-17 year old internet users. This led the EU Kids Online researchers to seek similar findings in other countries. Although the Estonian report noted that daily users of chatrooms and social networking sites are more likely to meet online contacts/strangers offline, no other countries could produce similar findings. It seems that individual projects examine either opportunities or risks but rarely both. When they do include both, they tend to analyse the data for each separately, resulting in a missed opportunity to understand the relation between online benefits and risks.

Theoretically, the possibility of a positive correlation – thus far found only in the UK – is important because it contradicts the notion that as children do more online (becoming more confident or expert or even, older) they learn to take up more opportunities and avoid more risks. Instead, like learning to ride a bicycle or read a book, those who take up benefits are often also those who encounter risks, and vice versa – limited experiences are safe but limited.

Significantly, if the positive association between online opportunities and risks were found elsewhere, this would strengthen the dilemma posed to policy makers by the UK Children Goes Online project, namely that increasing opportunities tends to increase risks, while decreasing risks tends to decrease opportunities. No way has yet been found, it seems, to increase opportunities while decreasing risks.

2.3. Attitudes and skills

This chapter explores children’s internet skills and attitudes. It examines the relationship between skills and risks using three variables – age, SES and gender to test four hypotheses:

H2.3.1: As children get older they gain greater online skills, including self-protection skills
H2.3.2: Children who use the internet longer and for more activities develop more skills
H2.3.3: There are inequalities in skills and literacies as a consequence of inequalities in SES
H2.3.4: There are gender differences in the levels of skills (higher for boys)

11 This chapter has been written by Helen McQuillan based on comparative analyses by Yiannis Laouris (H2.3.1, H2.3.2), Helen McQuillan (H2.3.3), Cédric Fluckiger & Benoit Lelong (H2.3.4).
Hypothesis H2.3.1

As children get older, they gain greater online skills (or internet literacy, including skills enabling self-protection from online risk).

Are children’s online skills influenced by age? It is hypothesized that as children get older, they gain greater online skills (or internet literacy) and so gain more opportunities and also, presumably, gain the skills enabling self-protection from online risks.

Several countries had research available that examined opportunities and also, presumable, gain the skills enabling online skills (or internet literacy) and so gain more hypothesized that as children get older, they gain greater online literacy, including skills enabling self-protection from online risks.

For example, in Austria, research suggests that younger children (under 10 years) often have few skills in dealing with the internet and consequently they estimate their skills as limited. [102] Older children and adolescents are more experienced and therefore their use is far more skilled and safe. For the age group of 12-16 years it seems that safety and competence in dealing with the internet primarily depends on the frequency of use: boys are a bit more competent and confident in using the internet. [72].

In Portugal, an on-line survey (Cardoso, Espanha, & Lapa, 2007) showed a positive correlation between age and skills. When asked who the internet expert at home is, 82% of 16-18 years old name themselves, compared with 42% of 9-12 years. Self-perception of expertise is not the same as having actual skills, but gives an idea of its differentiation by age.

A French survey (N=468, aged 10-21 years) shows (Table 2.10) how skills develop with age (Martin, 2004).

<table>
<thead>
<tr>
<th>Skills (%) by age</th>
<th>11-13 yrs</th>
<th>14-15 yrs</th>
<th>16-17 yrs</th>
<th>18-20 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can use a printer</td>
<td>92</td>
<td>98</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>Can install a software</td>
<td>74</td>
<td>81</td>
<td>83</td>
<td>85</td>
</tr>
<tr>
<td>Can surf</td>
<td>73</td>
<td>88</td>
<td>99</td>
<td>97</td>
</tr>
<tr>
<td>Can use a scanner</td>
<td>56</td>
<td>64</td>
<td>75</td>
<td>79</td>
</tr>
<tr>
<td>Can delete web site history</td>
<td>26</td>
<td>49</td>
<td>57</td>
<td>47</td>
</tr>
<tr>
<td>Can maintain the computer</td>
<td>26</td>
<td>40</td>
<td>50</td>
<td>62</td>
</tr>
<tr>
<td>Manage files and directories</td>
<td>39</td>
<td>50</td>
<td>65</td>
<td>70</td>
</tr>
</tbody>
</table>

Table 2.10: French children’s internet skills by age

In the UK Children Go Online project (Livingstone & Bober, 2004), most 9-19 year olds (56%) who use the internet at least weekly consider themselves ‘average’ in terms of their online skills, though one third (32%) consider themselves ‘advanced’. Specifically, 9-11 year olds describe themselves as 18% beginners, 55% average 20% advanced and 7% expert. Among 12-15 year olds, the figures are 4%, 58%, 33% and 4% respectively. Among 16-17 year olds, they are 2%, 52%, 40% and 6%. Overall, age (for 12-17 yr old internet users) is positively correlated with online skills, r= 0.27** and self-efficacy, r=0.12** (NB the online skills measure covered a range of skills but did not specifically measure self-protection skills.

For the most part, it is unclear if increasing skills results in an increasing ability to cope with or avoid online risk. However, in Cyprus (EC, 2007), developing online skills could be seen to aid safety awareness.

- Among Cypriot boys aged 9-10 years, when respondents were asked as to whether encountering ‘virus’ problems changed the way they use the internet it was evident that boys do not realize the seriousness of such a problem. But among boys aged 12-14 years, they had become very cautious in giving away their personal information on the internet. They also mentioned that one should be very careful in the way they spell words on the internet as misspelling a word might redirect to other irrelevant sites, and that with antivirus programs installed on their computers, they feel more protected although they mentioned the downside of these antivirus systems is that they have a license that expires very often/too soon.

- In Estonia too, older children (9 to 14 year olds compared with 6 to 8 year olds) tend to be more aware of online risks (Turu-uuringute AS, 2006) and they also do “more advanced things” (e.g. using MSN, sending and reading emails, downloading music, movies, software and video games) on the internet (Mediapro, 2006).

- Similarly in Iceland (Capacent Gallup, 2007), as children grow older they seem to be more cautious towards the internet. For example, 20% of children aged 9 say they try to verify information obtained from the internet, compared to 53% of children aged 15. Although it seems to contradict this that the younger children are less likely to believe that information on the internet is accurate and trustworthy (some 13% of 9 year olds say that information obtained through the internet can be trusted, compared to 43% of 15 year olds), research is growing to suggest that increased skills brings trust (as the user gains the ability to discern valuable from misleading information) while novice users are often the most distrustful.

In conclusion, where evidence is available, it does seem that increasing skills may increase self-protection. But one should not be complacent about these growing skills. The Norwegian report observes that although many young people have good skills and knowledge about internet and chat, and what precautions they need to take when chatting, still, some adolescents “forget” to take the necessary precautions and have unpleasant experiences on the Net and when meeting new “friends” face to face. After all, the link from safety knowledge to behaviour change is one of the most uncertain. Encouragingly, the SAFT projects showed that, from 2003 to 2006, the overall tendency to reveal personal information online fell, as the population gained in safety awareness.

Although there was no evidence available for this hypothesis in Belgium, Bulgaria, Czech Republic, Denmark, Germany, Greece, Ireland, Poland, Slovenia, Spain and The Netherlands, there is no reason to suppose that gaining such evidence would contradict the hypothesis. It seems that, as children grow older their level
of skill increases, and this is likely to include their abilities to protect themselves from online risks.

Hypothesis H2.3.2

Children who use the internet longer and for more activities develop more skills.

Although it would seem obvious that children who use the internet for longer and for more activities would develop more internet-related skills and literacies, only three countries provided data for this hypothesis. In Austria, Norway and UK, findings showed a positive correlation between frequency of use and online competence and safety. However, with such few data, generalisations are unsafe.

Hypothesis H2.3.3

There are gender differences in the levels of skills (higher for boys).

In studies where children/young people self-report and self-evaluate their internet skills boys tend to rate themselves higher than girls. There is little evidence of tested or demonstrated skills levels. Comparable research in Italy and Poland (EC, 2007; Eurydice, 2004) reports higher skills levels for boys in four ICT activities: downloading files, using PowerPoint, creating web pages and sending email attachments.

Conversely, in the UK and Portugal fewer boys than girls rate their internet skills poorly. Girls are more confident than boys in their information-searching skills. In the UK girls aged 12-15 who use the internet at home are significantly more confident about using the internet than the same age boys (97% vs. 91%). Also, more boys than girls report that they cannot find what they are looking for on the internet. It is unclear whether this confidence leads to greater safety awareness or practice. Possibly too, girls’ preferences for communication and information searching are seen as lower-level skills, though technical skills have long been attributed to boys.

In Italy, two studies report higher level digital skills for boys. Accorsi and Gui’s (Accorsi & Gui, 2006) study reported that a significantly higher percentage of boys than girls (56% vs 35%) demonstrated high level digital skills. Similarly in France, more than twice as many boys (57%) than girls (26%) consider themselves as the most skilled member of their household. In the UK, more boys (35%) than girls (28%) consider themselves as ‘advanced’ internet users. They are also significantly more likely than girls to be aware that there are illegal as well as legal ways to access films, music and software on the internet (80% compared to 72% of girls).

Boys tend to describe themselves as more expert and claim to have more technical and advanced skills. Research from Norway reports that boys are more technically-focused than girls in their online activities. Research from the Netherlands also examines mastery of skills. While there are no gender differences reported in information sharing and word processing skills a lot more teenage boys than girls say they are skilled in activities such as installing anti-virus programmes, upgrading software or replacing a hard drive. Austrian research links boys’ higher technical skills with their more frequent use of the internet. In Sweden boys’ greater technical skills are considered to result from their use of a wider range of applications including downloading, Skype and web development. A similar level of skill is not apparent in their self-protection or safety skills.

Different internet activities result in different ranges of skills. Evidence suggests that boys and girls may be developing different skill sets based on their different activities, but it is inappropriate to nominate more technical/machine focused skills as higher level than communication and information literacy skills.

Research from Bulgaria reports that boys boast of being more knowledgeable, more skilled and more daring than girls. Kirwil’s Polish study shows how this can have consequences for boys’ greater exposure to potential risks. Young teenage boys (13-15) report knowing how to deal with internet filters blocking access to pornographic websites and also how to set them up again after disabling them (Kirwil, 2002).

Caution needs to be expressed in drawing conclusions for several reasons. Boys and girls are no homogeneous groups and there are many differences in skills among genders as between them. Where evidence is available it is difficult to compare, there are inconsistencies in skills measurements, and much data refers to self-perceptions of skills levels rather than tested or demonstrated skills.

The different interests of boys and girls, as well as social norms influence their choices of internet activities, resulting in different skill sets and exposure to risks. This should be considered in awareness and safety campaigns.

Hypothesis H2.3.4

There are inequalities in skills and literacies as a consequence of inequalities in SES.

This hypothesis sought to examine the relationship between inequalities in skills and literacies and inequalities in socioeconomic status (household income, parental education and social class). This has not been examined in depth in any study. Limited evidence is provided by four countries: France; Italy; the Netherlands; UK. In each case, the research had a slightly different focus. In higher SES households in France parents are more familiar with computers and therefore able to help their children. In lower SES households friends play a greater role. There is no indication of the impact of this help on either skills or safety awareness or strategies.

In Italy there is a close connection between parents’ professional status and the level of children’s digital skills. In the Netherlands the important variable is the young people’s education level. Teenagers with higher education levels have more ICT skills.

Home ownership of computers appears to be an important variable for skills development. UK research with regular internet users aged 12-17 shows a correlation between SES, online skills and self-efficacy. However, this was not the case across SES in children who have similar levels of home internet access. The Ofcom Media Literacy Audit (Ofcom, 2006) found that children aged 12-15 years from minority ethnic groups are less aware of film, music and software illegal downloads (65% compared to 76% across the UK).
Conclusion – Attitudes and skills

The relationship between online skills and risks cannot be conclusively addressed based on the comparative research examined here. Even establishing the links between age, gender, SES and online skills is tentative without considering some other variables.

Examining internet skills is problematic for a variety of reasons. Research on internet skills is sparse and data exploring links between skills and risks even more so. Skills are poorly conceptualised and measured in internet research, with little definition of task-based, technical, internet literacy or self-protection skills. Research tends to focus on skills in using internet applications, with very little examination of content creation or more creative and collaborative use of the internet.

The context of skills acquisition has a bearing on attitudes, self-confidence, risk-taking behaviours, self-protection strategies as well as skills. The Eurobarometer study (EC, 2007) notes the importance of informal learning for skills development. Learning to use the internet is described as a process that is easy and quick. Taught the basics at home by parents they develop their skills through self-learning and peer observation and support. Comments such as ‘there is nothing to learn’ when it comes to the internet suggest that attitudes to learning and skills need to be considered more carefully in future research and internet awareness and safety campaigns.

2.4. Mediation by parents, teachers and peers

This sub-chapter will summarize empirical evidence from the European countries on how parents, teachers and peers mediate children’s internet use. Unfortunately, very little is known about the actual influence of teachers and peers, although it might be assumed that they play a crucial role. Therefore, the following findings mainly refer to parents’ behaviours.

One basic condition for parents’ mediation is their awareness for online risks and their related worries. The latest Eurobarometer asked parents, when their child uses the internet or a mobile phone, how worried they are with regard to a list of eight of risks. On the EU27 level the biggest concern is that children might see sexually/violently explicit images on the internet: 65 per cent said they are very much worried or at least rather worried (EC, 2008, p. 23). The following internet related concerns are: be victim of online grooming (60%); get information about self-harm, suicide, anorexia etc. (55%); be bullied online by other children (54%); might become isolated from other people if spending too much time online (53%); may give out personal/private information online (47%) (ibid.).

In order to compare the countries regarding parents’ concerns a sum score was built on the basis of the eight items, which have been used in the Eurobarometer survey. The distribution of this index, which follows a clear u-curve, shows that there is a strong trend to rather extreme response patterns. On the EU27 level more than one quarter of all parents reaches the maximum value (8.0), thus they are worried about all the eight risks. On the other side of the distribution, one fifth of the parents have the minimum value (0.0), i.e. these parents do not seem to worry about any of the risks.

![Figure 2.12: Parents’ worries by age and gender of their children (2008)](source: Flash Eurobarometer No. 248: Towards a safer use of the internet for children in the EU – a parents’ perspective, December 2008.)

Parents’ worries depend on their children’s age and gender, an analysis of variance with these independent variables and the number of parents’ worries reveals significant effects for the two variables as well as for the interaction term. As the average values (see figure 2.12) show, parents are more concerned about girls and younger children; the gender difference is particularly high for the age groups 8-9, 10-11, and 16-17 years.

12 This chapter has been written by Thomas Wold based on comparative analyses done by Uwe Hasebrink (R2.4.1), Thomas Wold (R2.4.1, H2.4.1), Helen McQuillan (R2.4.3), Cédric Fluckiger & Benoit Lelong (R2.4.2), and Lucyna Kirwil (R2.4.4, H2.4.2).
Between the countries there are remarkable differences regarding this parameter. Parents in France, Portugal, Spain, and Greece reach an average score of more than 6.0, i.e. parents in these countries claim to be worried of at least six of the proposed eight risks. On the opposite side parents in Sweden and Denmark reach a score of less than 2.0. These differences are partly related to the stage of the internet diffusion process. The correlation between worries and the percentage of children being online is r=-.62 across the 27 EU member states, the correlation between worries and the percentage of parents’ internet use is r=-.60.

This means that as the process of internet diffusion proceeds parents’ worries significantly decrease. Another reason for these differences might be rather bound to cultural values: The case of France with a very high degree of concerns leads to the hypothesis that parents in Mediterranean/Southern countries are more likely to worry about potential online risks. The average value for the Southern countries is 5.5; compared to that, parents in the Central and Eastern European transformation countries and the Northern/Western countries are much less worried (3.8 and 3.6 respectively).

These findings can serve as a background for the following analyses of parental mediation of their children’s online behaviours.

Research question R2.4.1

To what extent do parents set rules for different media?

In the Eurobarometer survey 2005 parents were asked whether they have set rules about using television, mobile phones, games consoles and the internet. The results shown in figure 2.13 are based only on children who use the internet.

- It was expected that more rules would be set for younger children. However, the general pattern of results is an inverted U-curve. Until the age of 10 years old, there is an increase in setting rules; after that there is a strong decrease.
- The shape of the curves differs substantially across media. Until the age of 12-13 years old, television is the most regulated medium.
- Since the results in figure 2.6 are based on internet users only, this suggests that parents of children who use the internet are more likely to set rules for television than for the internet. After the age of 12/13 years more rules are set for internet than for television.
- Other media are less regulated than either television or the internet. The results reflect the strong position of games among younger children, whereas rules for mobile phones are becoming more and more important for teenagers. Parents of children aged 14 years and older are most likely to set rules for mobile phones.
- There are almost no gender differences with regard to setting rules about using television and the internet; the curves for boys and girls are very similar. The only exception is that parents set substantially more rules about playing games for boys of all age groups. In the face of boys’ particular interest in games, this finding is highly plausible.

![Figure 2.13: Parents who have set rules for using different media 2005 (in % of parents, whose children use the internet; EU 25)](image)

Source: Eurobarometer 64.4 – Special No. 250: Safer Internet, December 2005; basis: parents/guardians with children less than 18 years.

If we look at different countries, noticeable differences can be observed. Parents in the different countries differ with respect to their tendency to set rules about their children’s media use (see table 2.11, column 1).

<table>
<thead>
<tr>
<th>Media</th>
<th>EU 25</th>
<th>Ireland</th>
<th>Netherlands</th>
<th>Spain</th>
<th>France</th>
<th>Sweden</th>
<th>Austria</th>
<th>UK</th>
<th>Belgium</th>
<th>Germany</th>
<th>Poland</th>
<th>Italy</th>
<th>Estonia</th>
<th>Czech Rep.</th>
<th>Greece</th>
<th>Portugal</th>
<th>Denmark</th>
<th>Cyprus</th>
<th>Slovenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV</td>
<td>68</td>
<td>80</td>
<td>75</td>
<td>75</td>
<td>74</td>
<td>73</td>
<td>70</td>
<td>69</td>
<td>68</td>
<td>66</td>
<td>65</td>
<td>64</td>
<td>63</td>
<td>60</td>
<td>57</td>
<td>57</td>
<td>56</td>
<td>55</td>
<td>51</td>
</tr>
<tr>
<td>Mobile</td>
<td>41</td>
<td>61</td>
<td>45</td>
<td>50</td>
<td>52</td>
<td>33</td>
<td>43</td>
<td>45</td>
<td>46</td>
<td>46</td>
<td>36</td>
<td>32</td>
<td>24</td>
<td>28</td>
<td>36</td>
<td>39</td>
<td>24</td>
<td>37</td>
<td>30</td>
</tr>
<tr>
<td>Games</td>
<td>38</td>
<td>62</td>
<td>53</td>
<td>40</td>
<td>42</td>
<td>58</td>
<td>35</td>
<td>42</td>
<td>45</td>
<td>43</td>
<td>24</td>
<td>24</td>
<td>32</td>
<td>24</td>
<td>31</td>
<td>22</td>
<td>36</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>Internet</td>
<td>3</td>
<td>-1</td>
<td>-8</td>
<td>10</td>
<td>10</td>
<td>-25</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>8</td>
<td>-8</td>
<td>4</td>
<td>5</td>
<td>17</td>
<td>-12</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Difference</td>
<td>-3</td>
<td>-1</td>
<td>-8</td>
<td>-8</td>
<td>-10</td>
<td>-25</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>8</td>
<td>-8</td>
<td>4</td>
<td>5</td>
<td>17</td>
<td>-12</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2.11: Parental mediation (I): Rules set about children’s media use in 2005 (in % of parents, whose children use the internet)
Whereas almost 80 per cent of the Irish parents have set rules, this is the case for only around 50 per cent of parents in Slovenia. Although the calculations are based only on children who use the internet, parents are still more likely to set rules about television viewing (41%) than about using the internet (20%).

Again, there are clear differences between the countries with regard to the medium, which is more or less regulated: column 4 of table 2.12 shows the difference between the percentage of rules for television and rules for the internet. The emerging pattern is quite clear: parents in Sweden, Denmark, the Netherlands and Estonia are more likely to set rules for the internet, whereas Portugal and Poland pay more attention to regulating their children’s television behaviour.

The ongoing diffusion of the internet seems to raise parents internet literacy and awareness of risks; thus they increase their efforts to regulate their children’s internet use.

To what extent do parents make use of filtering or blocking tools?

One option for parents to regulate their children’s internet use is the use of filtering or blocking systems, which can help to avoid the child coming into contact with potentially harmful content. On the European level, 28 per cent of parents say that they use these filters at home (see table 2.12); even more (31%) say so for schools.

Again, there is considerable variation across countries, with UK parents and UK schools (as perceived by parents) being the most frequent users of these technical tools; particularly the result for the UK schools is notable. At the other end of the spectrum are Portugal, Estonia, Bulgaria and Slovenia, where filtering tools are rarely used.

It is also important to consider the extent to which parents are aware of filtering programs and how they can be used. Surprisingly enough, on the European level the percentage of parents who do not know about filtering tools is less then 10 per cent. Awareness is lowest in the Czech Republic and Poland – note that these countries were classified as being within the highest risk category (see chapter 2.2).

The latest Eurobarometer (see EC, 2008, p. 48) provides updated information on the use of filtering and monitoring software. Among those parents whose children use the internet at home, 49 per cent claim that they have installed filtering software; another 37 per cent say they have monitoring software, and 27 per cent use both tools. 31 per cent have none of these, and 11 per cent were not able to answer this question. The ranking of countries, in which parents are more or less likely to use software to protect their children, is quite supports the results of the above table: Parents in the UK, Ireland and Germany are most likely to use software tools, Bulgaria, the Czech Republic, Portugal, and Estonia are located at the other end of the spectrum. Compared to 2005, parents in Slovenia and Greece have considerably increased their use of technical tools.

Research question R2.4.3

What are the main strategies of parental mediation practised?

Evidence on this question is available from 17 countries, though there is variation in the evidence available. There seems to be a clear research gap here.

The different strategies of parental mediation are, in order of importance:

1. Time restriction; mentioned by 11 of 17 countries.
2. Supervise/control; mentioned by 8 countries.
3. Talk to/teach children about safe usage; mentioned by 8 countries.
4. Filtering software; mentioned by 7 countries.
5. Rules against revealing personal information; mentioned by 6 countries.
6. Not to visit certain sites; mentioned by 6 countries.
7. Monitor visited web pages/check history file; mentioned by 5 countries.
8. Rules against meeting someone they have only met online; 4 countries.
9. Not talking to strangers in chat rooms; mentioned by 4 countries.
10. Rules against downloading files; mentioned by 3 countries
11. Not allowed to buy things, mentioned by 2 countries.
12. Rules against foul language/bad behaviour; mentioned by 1 country.

Table 2.12: Parental mediation (II): Use of filtering/blocking tools

<table>
<thead>
<tr>
<th>Country</th>
<th>Filtering/blocking tools (at home) (%)</th>
<th>Filtering/blocking tools (at school) (%)</th>
<th>Filtering/blocking tools (unknown) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU 25</td>
<td>27.6</td>
<td>30.8</td>
<td>8.0</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>46.2</td>
<td>71.0</td>
<td>4.2</td>
</tr>
<tr>
<td>Ireland</td>
<td>35.2</td>
<td>43.4</td>
<td>2.8</td>
</tr>
<tr>
<td>Germany</td>
<td>29.8</td>
<td>21.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Netherlands</td>
<td>28.0</td>
<td>31.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Spain</td>
<td>25.6</td>
<td>14.4</td>
<td>4.4</td>
</tr>
<tr>
<td>France</td>
<td>25.4</td>
<td>26.6</td>
<td>10.2</td>
</tr>
<tr>
<td>Austria</td>
<td>21.8</td>
<td>17.7</td>
<td>9.5</td>
</tr>
<tr>
<td>Cyprus</td>
<td>20.7</td>
<td>20.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Belgium</td>
<td>20.6</td>
<td>9.8</td>
<td>6.7</td>
</tr>
<tr>
<td>Italy</td>
<td>20.2</td>
<td>10.6</td>
<td>6.7</td>
</tr>
<tr>
<td>Sweden</td>
<td>19.9</td>
<td>26.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Poland</td>
<td>18.8</td>
<td>30.0</td>
<td>21.3</td>
</tr>
<tr>
<td>Denmark</td>
<td>18.4</td>
<td>20.3</td>
<td>1.9</td>
</tr>
<tr>
<td>Greece</td>
<td>11.9</td>
<td>22.0</td>
<td>13.6</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>10.1</td>
<td>20.7</td>
<td>21.8</td>
</tr>
<tr>
<td>Portugal</td>
<td>8.7</td>
<td>20.7</td>
<td>10.9</td>
</tr>
<tr>
<td>Estonia</td>
<td>7.0</td>
<td>11.3</td>
<td>10.2</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>6.6</td>
<td>8.8</td>
<td>7.7</td>
</tr>
<tr>
<td>Slovenia</td>
<td>5.1</td>
<td>1.9</td>
<td>17.2</td>
</tr>
</tbody>
</table>

Table 2.12: Parental mediation (II): Use of filtering/blocking tools (in per cent of parents, whose children use the internet)
The material seems to be somewhat inconclusive; it does not give us sufficient evidence to claim that the various strategies for parental mediation do not exist in the countries that have not mentioned them, but it does point to gaps in the available research material. The most recent Eurobarometer fills a part of this research gap, since it included a question on what parents usually do when their child uses the internet at home. Among a list of six activities the most common is “to ask/talk to the child about what s/he is doing or did online”: 74 per cent of the parents in the EU27, whose children use the internet at home, claim to do this “always” or “very frequently” – the alternative options were “not very frequently” and “never” (EC, 2008, p. 35). The next important activities are “make sure I stay nearby when the child is online” (61%), “check the computer later to see which sites the child visited” (43%), “check whether the child has a profile on a social networking site/online community” (30%), “sit with the child when s/he goes online” (36%), “check the messages in the child’s e-mail account/Instant Messaging service” (24%).

Looking at the countries the following observations are predominant: Parents in some countries have a rather low level of activities (Denmark, Estonia, Czech Republic, and Sweden). On the other side of the spectrum parents in some countries describe themselves as rather active: Germany, Greece, Ireland, Italy, Spain, UK, and particularly Portugal.

In addition the Eurobarometer 2008 asked for concrete activities that are not allowed. Directly asked, whether parents allow their child to give out personal information, 92 per cent say they do not (EC, 2008, p. 41). Interestingly when asked without any proposed answer none of the parents mentioned this restriction; this might emphasize that parents are not aware that giving out personal information could be a relevant risk of their children’s internet activities. The following restrictions are: buying something online (84%), talking to people they do not know in real life (83%), spending a lot of time online (79%), creating a profile in an online community (63%), using chat rooms (61%), accessing certain websites (49%), downloading/music, films, games (38%), and using e-mail/Instant Messaging tools (37%). For the comparison of countries a sum score has been calculated, which is based on the nine items included in the survey. On the EU27 level this index shows no differences between boys and girls, but a clear correlation with age: The older the children, the less likely the parents to restrict their online activities. The differences between the countries provide a basis for the following classification: a) Countries with a high level of restrictions (average 6.0 and higher) are: Italy, Spain, Portugal, and the UK; b) countries with a medium level of restrictions (average 5.0 up to 6.0) are Austria, Belgium, Cyprus, France, Germany, Greece, Netherlands, Poland, Slovenia; c) countries with a low level of restrictions (average lower than 5.0) are Czech Republic, Denmark, Estonia, Sweden, and Bulgaria.

These and some other strategies for parental mediation shall be discussed in more details on the basis of the empirical evidence as provided by the country reports.

1. Time restrictions

Imposing time restriction is the most common strategy for parental mediation. Eleven of 17 countries have material confirming this. In nine of these countries it is also cited as the most important means of mediation. There might be different reasons why time restrictions are so widespread. To divide internet access between family members and to make sure school is given priority are two considerations that are clearly linked to time restrictions.

Economic motives might also affect this depending on how the internet use is charged; if they pay a fixed sum every month, as is usual with broadband, there is no economic motivation for time restrictions. But if they pay for every minute online and if they have access via a modem that blocks the telephone line, then there are economic and infrastructural reasons for time restrictions.

Time restriction is also an easy strategy for parental mediation. It is easy to decide fixed rules for time spent with computers or games, and to use it as a reward or punishment. Time restrictions on internet use are also in harmony with a general attitude that internet should not take up too much time and that the children need variation in their activities. For further research it would be interesting to ask parents why they have time restrictions, how they organize them and how they handle them, and to ask children what they think about the rules and if they have strategies for bending these rules.

2. Supervision/control

This form of parental mediation is mentioned by eight countries, and cited as an important strategy in seven of them. It is done either by sitting next to the children while they are online, or by watching the screen/checking up on them from time to time, preferably with the computer in a shared room. Will this strategy lessen in importance or become more difficult with the development of the bedroom culture, where more children and young people have a computer in their bedroom?

3. Talk to/teach children about safe usage

Eight countries have findings suggesting that parents talk to their children about internet usage and try to teach them about safe usage. A large majority of the parents in the eight countries do this often or from time to time. However, the numbers from the Czech Republic indicate a possible source of error: 82 % of the parents report that they talk to their children about safe internet usage, but only 39 % of the children state the same. The discrepancy is quite large. Are the parents over-reporting as part of being “the good parent”, or are the children under-reporting as part of becoming autonomous? Or do they understand the question and interpret the conversations differently? These are possible questions for further investigation.

4. Filtering software

In seven of the countries, the parents state that they have installed filtering software, although it is usually a minority of the parents: 43 % of the parents in Germany, 33 % of the parents in the UK, 32 % of the parents in France, 21 % of the parents in the Netherlands, 11 % in Poland.

The Spanish report displays strongly divergent numbers. According to one study, 44 % of the Spanish parents have installed filtering software, but a different study claims the number to be 11 %. A possible reason for the divergence can be that some parents might confuse filtering software with firewalls, anti-virus and anti-spyware software, and this might not be reflected in the study.
On the other hand, it is also possible that filtering software come as a part of a package without the parents being aware of it.

Further research on this question ought to examine whether the parents know what a filter is, how they use it and what purpose they want the filters to fulfill. Information about this is sparse, but in the Spanish report the filters are mostly related to pornography, terrorism or violence rather than the use of chat-room, instant messaging and e-mail.

5. Rules against revealing personal information

Six countries have mentioned this, and it is common in five of them (Iceland 63 %, Italy 69 %, the Netherlands 57 %, also common in Ireland and Spain). In Poland, only 4 per cent of the parents state that they have such rules. Why is this not more common? Will we see a change here as themes like identity theft are hitting the agenda, or will the urge to (and the right to) publicise oneself remain a priority?

6. Rules not to visit certain sites

This is mentioned by six countries, but only in Spain (69 %) and Italy (72 %) do we have high numbers. It also seems to be common in Ireland and Belgium, but no percentage is stated. In Poland (9 %) and Austria only a minority have such rules. The material does not say much about what kind of web sites are prohibited, but Belgium and Italy state that parents have explicit rules against sex or "dirty" content. Why do so few have such rules? Is it because they trust that their children will not visit such pages anyhow, do they trust that a filter makes such rules unnecessary, or do they feel that they cannot control this aspect of their children’s media use anyway?

7. Monitoring visited web sites/checking the history file

This is mentioned by only five countries, and only a minority of the parents state that they have checked their children’s internet history. The Netherlands (38%) and the UK (30%) have the highest numbers in this category. The other three countries are Spain, Ireland and Austria.

There is an important distinction between supervising and monitoring the children’s internet use. Supervising means open observation and discussion or being in the same room while the child is online, and is quite common, while monitoring means that the parents are secretly checking which pages the child has visited. Very few parents perform this technical equivalent of going through their children’s drawers; is it out of consideration to the children’s right to privacy, or is it simply because the parents lack the technical competence to do this?

8 and 9: Rules against meeting someone they have only met online or not talking to strangers in chat rooms

These related mediation strategies are given high priority in four countries (Iceland, Ireland, Norway and the Netherlands have rules against meeting someone, while Iceland, Ireland, Norway and Italy have rules against talking to strangers in chat rooms). Unfortunately, evidence is lacking (though rules may not be) in several countries. It is also a possibility that parents have general rules concerning who their children are allowed to talk to and socialize with, hence eliminating the need for special rules concerning chat rooms. “Don’t talk to strangers” is a quite general rule, applicable for the playground and internet.

10., 11., and 12: Downloading files, buying things, use of foul language

The existence of rules against downloading files is mentioned by three countries; Belgium (more common for girls than boys), Estonia (less than 10%) and the UK (17%). In other words this is not a very widespread rule. Rules against buying things on the internet in only mentioned by a small percentage in two countries, and only Norway has mentioned rules against foul language and bad behaviour, although in Norway it is quite common. The considerations for this might be the same as for rules against meeting strangers: It can be more relevant in some countries than others, depending on the diffusion of internet and the way it is being used, and it can be that more general rules concerning language, behaviour and money eliminate the need for special internet rules.

Wish for guidance

It is quite clear that the parents wish more guidance concerning their children’s use of online media. The parents have suggested different ways of doing this. In Austria the parents suggested arranging special web-ports for children with a child safety lock offered by internet providers that would preclude complicated filter software. French parents thought an information guide would be useful, while parents in Norway and Spain said they needed more information on safe use of electronic media. The Spanish parents particularly wanted more information about how to protect their children from illegal or harmful contents, and 38% of them did not know where to report illegal internet content. They said that the principal means of receiving this information should be from school (55%) and from the media (32%).

In future research, several kinds of country classification would be possible:

- Preference for restrictive versus flexible or active regulation (e.g. forbidding or talking)
- Preference for time restriction versus content supervision (as both are familiar to parents as regards television regulation)
- Human interaction versus delegation to technical systems (e.g. filtering and monitoring software)

At present, however, the measures are too variable across countries to permit reliable and comparable analysis or country classifications.

Research question R2.4.4

Are there SES differences in parental mediation?

Parental mediation has been very little studied throughout Europe. However, evidence could be found in several countries, that all show differences in parental mediation related to SES differences. Generally, it seems clear that there is more parental mediation in higher SES families, as reported by parents.

This parental mediation may be described differently from one country to another, but in every country, upper class or
highly educated parents claim to implement more parental mediation than other families.

However, with the exception of Ireland, results are not very accurate (c.f. National Reports). French upper class parents are more likely to set up time restrictions and inculcate self-limitation (Pasquier, 2005). Icelandic children whose parents have a higher level of education are more likely to say that their parents check which websites they visit and check on them while they are browsing the internet. Spanish parents with high social status are more likely to supervise their children than parents in the middle social status group (Tezanos, 2006), while in UK higher SES parents implement more rules and practices (Livingstone & Helsper, 2008). German working class parents are said to be less interested in the media consumption of their children. In the Irish report there is evidence that the mother is more likely than the father to supervise the children’s media use, and in Ireland children are more likely to talk to mothers than fathers about their online activities (Webwise, 2006) but apart from that we have little information on the differences between maternal and paternal mediation.

Future research should use clear, comparable measures to study parental mediation, including the use of parental control tools. Most importantly, research is needed that seeks to evaluate the effectiveness of these different forms of parental mediation on the risks and opportunities experienced by children. There are some unexpected results that are still to be explained, e.g. on higher SES in Spain and minority ethnic groups in UK.

Future research should also try to explain SES differences, rather than simply describing them. Firstly, control of the child’s relationships appears to be stronger among higher SES families than it is among the working classes. Sociological research has shown these parental behaviours depend on different ways to secure social capital and socially homogeneous relation networks for the children. This could explain why “chatting” with strangers on the internet is less accepted by higher SES families, and disappears more frequently and earlier as the child grows older compared to lower SES families. Secondly, parents with higher qualifications tend to supervise access to media content more strictly. Their educational strategies are based on hierarchies that put classical culture (books and “serious” newspapers) above the TV, entertainment-based magazines and information available on the internet. Here again, family strategies for the transmission of cultural resources depend on social and economic status: more research should be undertaken on the effects of these strategies on parental control of internet use.

Research question R2.4.5

Are there gender differences in parental mediation?

Comparative analysis of this research question is difficult. Gender differences are reported in three countries: Iceland, Ireland and Spain. Two countries reported no gender difference in parental mediation: Belgium and the UK. Limited evidence is available from seven countries: Estonia, France, Germany, Greece, Poland and Portugal. There is no evidence available in the remaining 10 countries.

Estonian findings (Metsoja, 2006) suggest that girls tend to talk more about the internet with their parents than boys do, but the difference is not very large; 12 % vs. 7 %. In Greece, slightly more girls (67%) than boys (64 %) are expected to phone home during the day, but at the same time, fewer girls (27%) than boys (29%) feel that they are under parents’ surveillance, and more boys (54%) than girls (41%) report that their mobile phone use is regulated. In Iceland there is a significant tendency that girls are more subject to parental control; they have more rules regarding internet use than do boys (94 % vs. 89 %) and 33 % of the girls and 23 % of the boys have parents sitting with them while they use the internet. In Ireland there are also different rules for girls and boys. Details are missing here, but it is clear that mothers are more protective of girls, and that the rules predominantly relate to “stranger danger”. In Spain there are also more rules for girls than for boys, although the differences are rather small except for one rule: 63 % of the girls are not allowed to give out personal information online compared to 42 % of the boys.

It is not possible to determine systematic cross-national patterns or variations from the limited data. Girls seem to be subject to more parental supervision than boys, but from the available material we cannot decide if this results in less risk taking behaviour. It seems that parents think that girls are more vulnerable and in need of protection than boys, but Norwegian findings clearly indicates that more teenage boys than girls have experienced unwanted sexual attention online (SAFT, 2006).

More attention should be given to parental perceptions of risk, exposure to risk and risk-taking behaviour among boys and girls. Parents tend to talk more to girls about internet dangers and safety than boys. Safer internet campaigns could highlight the need for better communication with boys. As solitary and bedroom use of the internet grows, and supervision and knowledge of children’s internet use diminish, it is likely that these will be used as opportunities for more risk-taking behaviour.

More research should also be done on gendered forms of parental control as a whole (i.e. not only control of internet uses, but also control of clothes, school performances, practices of going out, etc.) For example, the presence of girls in public spaces (such as streets or bars) is generally more controlled than boys? These attitudes depend on family strategies which differ from one cultural area to the other: this approach could thus be fruitful for cross-national comparisons.

Hypotheses H2.4.1

As children grow into teenagers they are subject to reduced parental mediation in their use of the internet.

We found evidence to support this hypothesis in the country reports of 11 countries: Austria, Estonia, France, Greece, Iceland, Ireland, Italy, Norway, Spain, Sweden and the UK. We found evidence to contradict in 2 countries: Poland and Portugal.

In general, the answer to the hypothesis is that it depends on the age and to some extent also on the gender. The 2008 Eurobarometer dataset provides some indicators of how parental mediation evolves while children are growing into teenagers.
The differences between the age groups.

With age, although there are often small, but significant, differences between the age groups, and 1% of 17-18 year olds. The same goes for downloading music or movies (14%, 8% and 4% respectively) and time restrictions (18%, 19% and 8%) (Turu-uuringute AS, 2006).

- Time restrictions: In Italy 45% of parents limit the total amount of time spent online by their children aged 7-11, against the 26% of parents of teenagers aged 12-19 (Eurispes/Telefono Azzurro, 2007). The Estonian report also states that time restrictions on internet use decrease with age. This goes for online games and other computer games as well, although here time restrictions are still quite common (Mediapro, 2006).

- Monitoring visited sites: Austrian findings indicate that parents stop monitoring visited websites as their children grow older, and in Iceland 78% of the 9 year olds say that their parents check which web sites they have visited compared to 22% of the 15 year olds (www.eukidsonline.net). The French report states that the proportion of teenagers saying their parents let them do what they want on the internet increases with age: 63% of 11-12 year-olds, 70% of 13-14 and 78% of 15-16 year olds (Metton, 2006).

- Filtering software: There is less use of blocking software as the children grow older. In France, 31% of 12-14 year olds say they have filters on their computer, while 25% of 15-17 years old say the same (Martin, 2008). In Iceland 33% of the 9 year olds say that their parents use devices of some kind to prevent them from looking at particular websites compared to 9% of the 15 year olds.

- Supervise internet use: In the Icelandic report, 41% of children aged 9 say that their parents sometimes sit together with them while they surf the internet compared to 13% of 15 year olds (www.eukidsonline.net). In Ireland it is common that parents of 9-10 year olds sit with their children or are nearby when they are using the internet, but they rarely sit with older children (EC, 2007).

Figure 2.14: Rules set for the use of the internet by age (% of parents whose children use the internet)

Figure 2.14 shows the percentage of parents who claim that they put any restrictions at all on their children’s internet by asking them whether or not they apply one or more of 12 specific restrictions on the internet use of their child.

As already seen above for the general rules about using different media, answers provided by parents from EU 27 are quite clear. From 6 to 12, while children are growing into pre-teenagers, European parents tend to make more rules. After 12, the use of rule decreases.

Parental rules reflect the phases of the child’s growing independence. For younger users, parental constraints are rather low. An explanation would be that younger children tend to follow parental expectations, making explicit rules unnecessary. As children grow older, they tend to experiment beyond what parents allow them to do. They want to explore the world, to learn about youth culture, to meet peers outside their familial environment. Parents feel the need for specific rules and parental control tools.

When teenagers are growing older, their growing independence is expressed through increased freedom, and parental control tends to loosen. Almost all national reports reflect this tendency. Countries with findings for younger children show that parental mediation is growing with the age, while countries dealing with teenagers agree that parental mediation is decreasing with age.

Evidence to support

Where national reports are mainly focused on teenagers (for reasons of research availability), the general picture is very clear: Parents impose fewer and less strict rules concerning media usage as their children grow into teenagers. Actually, the development starts earlier than that, and there is a time continuum where rules decrease with age, although there are often small, but significant, differences between the age groups.

- For instance, in Estonia 12% of children aged 12-13 say that their parents have forbid them to visit certain websites, while 9% of 14-16 year-olds claim the same, and 1% of 17-18 year olds. The same goes for downloading music or movies (14%, 8% and 4% respectively) and time restrictions (18%, 19% and 8%) (Turu-uuringute AS, 2006).

Evidence to contradict

Poland and Portugal gave evidence to contradict the hypothesis, although the findings are ambiguous. Part of this can be explained by the age group targeted by the studies (i.e. including younger children). In Poland, parents with teenagers more often set rules for internet use (27%) than parents having a child at lower school age (11%). The older the child, the more rules the parents set parents on the internet use. At the same time, when is comes to computer use the numbers indicate the opposite: 27% of parents with children aged 6-11 set rules for computer use, while 17% of parents with children aged 12-17 do the same (www.eukidsonline.net).

The reasons for this might be by more intensive usage of the internet by older children and the growing costs of this activity. Many households in Poland only have access to a very slow and expensive internet, while offline computer
use is free of charge and not prompting restrictions out of economical considerations.

In Portugal parents tend to have more concern with older children than with younger ones. 43% of 16-18 year olds claim to have had discussions with their parents about the amount of time spent online, against 36% of 9-12 years olds (Cardoso et al., 2007). This probably has to do with the fact that, according to the same study, older children use the internet more frequently. Parents seem to be more concerned with the period of the day that younger children use the internet than with the amount of time: 20% of 8-12 years old declare to had discussions with their parents about the period of the day they use the internet, while this figure is slightly lower (17%) in what concerns teenagers (16-18 years old).

It seems to be evident that as teenagers grow older, there are fewer rules and less parental control on all their activities. It is not surprising that this goes for media use as well. For instance, in Greece, 75% of 11-15 years olds are expected to call a parent during the day compared to 60% of the older teenagers (Tsaliki, 2008). The Greek report also states that parental economic supervision drops to lower levels as their children grow up (28% of those aged between 16-19 say that their parents check their bills, 43% for those with younger children).

Another interesting finding from the Swedish report is that when looking at the parent’s answers, parental mediation is very little reduced between the age groups 9-12 and 13-16, but when looking at the children’s answers, the differences are bigger (Medieradet, 2006). This confirms other results showing that parents seem to overestimate parental control, while teenagers seem to underestimate it (see UK Children Go Online project). Teenagers, more than children, may want to be seen as more mature and emancipated than they really are, so that the differences are bigger with teenagers than with 9-12 year olds.

Bedroom culture

In the Norwegian report there is a clear tendency that when children grow older, they get more freedom to use the internet on their own, and a growing number of children also have internet access in their bedrooms. The emergence of bedroom culture can make parental mediation more difficult, especially when it comes to supervising the children’s internet use by sitting down with them or checking up on them from time to time. The autonomy of teenagers must also be taken into consideration here. The report from Ireland states that teenagers tend to keep their use of the internet private from their parents. Virtual environments are relatively free of parental control. Teenagers’ increased use of the internet in their social lives results in a reluctance to alert parents to its negative aspects for fear of having access blocked by protective parents (Webwise, 2006).

Does increased skill make the internet safer or more dangerous?

As children grow older, they usually become more competent in their use of the internet. On the one hand, this competence can be seen as making internet use safer. On the other hand, competence opens up new opportunities and new risks. Do the parents perceive their children’s competence as opening new risks or new opportunities?

In the French report, a survey shows that children’s skills grow (logically) with age, and that children with higher technical skills are subject to a reduced parental mediation (Martin, 2004). Fluckiger’s qualitative study between 2004-2006 (Fluckiger, 2007) points out how greater skills are needed throughout the independence and emancipation process, in order for the children (12-16) to build a personal digital territory, i.e. protecting their instant messaging account with passwords, deleting information about visited web pages, etc. Greater skills may also allow children to hide some of their uses from their parents (such as deleting visited websites in the browser’s history). On the other hand, the IFOP study (IFOP, 2006) shows that parents of older teenagers think their child is exposed to a greater amount of online unsuitable content: 41% of high school pupils parents think their child has already been exposed to sexual material on the internet (only 12% in primary school), and 37% think the child has been exposed to violent content (only 8% in primary school).

Hypothesis H2.4.2

More parental mediation results in reduced exposure of children to online risks.

There is a very little evidence to support or contradict Hypothesis H2.4.1 because 17 countries out of 21 reported that there is no pertinent evidence available. The remaining countries reported conflicting findings. Ireland found evidence to support the hypothesis that more parental mediation results in reduced exposure of children to online risks, while Poland found evidence to contradict it. The United Kingdom found evidence both to support and contradict the hypothesis. Two countries commented on a general basis: Cyprus’ comment supports the hypothesis while Spain’s comments contradict it.

Research question R2.4.6

Is there evidence that particular parental strategies or styles of mediation effectively reduce the risk that their children experience online?

Four countries replied to this research question. Three countries cited empirical findings suggesting that some techniques mediating the internet for children might be efficient in reducing child’s online risks.

- Belgium: Parental control. Instructive mediation better than restrictive mediation
- Ireland: Parental supervision. Talking. Rules setting
- Poland: Blocking/filtering websites in public sphere, not at home
- UK: Restrictive mediation indirectly through decreasing child’s activities online

Two findings seem to be interesting and demand further studies. The UK’s findings (Livingstone & Bober, 2004) on restrictive mediation shows that this kind of mediation may reduce the child’s risks online indirectly through a reduction in child’s online activities, which should result in a decrease in the probability of being exposed to a risky situation. A question arises here, as to whether restrictive mediation might block access to informative and useful information,
and might even be in conflict with children’s right to seek information. In Poland blocking/filtering the websites appeared efficient with regard to computers located in public areas (internet or cyber cafés and schools).

Conclusions – Mediation by parents, teachers, peers

Some kinds of mediation are effective and some are not. Findings from Poland that mediation through blocking/filtering the websites is not efficient at home but efficient in public sphere (i.e. in the internet café and school) suggest that social factors may moderate efficiency of at least some kinds of parental mediation.

The selection of specific kinds of parental mediation of the internet could result from parents’ aspirations for the child. Do they want mainly protect a child against frustration, “socially bad things”, social conflicts or do they want their child to develop self-directness, need for freedom and skills useful for his/her future career? Parents’ aspirations could determine the type of parental mediation. And parents’ aspirations are themselves determined by individualistic-collectivistic values orientation to a great extent.

For instance, on the basis of theory of individualism-collectivism (Basabe, 2005; Lee, 2005; Inglehart & Baker, 2000) people’s attitudes to the internet vary significantly. In individualistic cultures people behave self-centrally and engage in open interpersonal emotional expression in order to attain their personal well-being. They have a need for autonomy, independence and individuality. On the other hand, in collective cultures, group membership occupies a central place and the importance of oneself is only peripheral. People in collectivist cultures restrain their personal emotions, maintaining their positive relationships through obedience and unselfishness. This distinction allows one to predict that parents from collectivistic countries will mediate the internet to their children in more interactive ways than parents in individualistic countries (Kirwil, 2008). Thus it might be assumed that:

- Hypothesis 1: Parents from individualistic countries as compared to parents from collectivistic countries prefer to use mediation allowing a child more autonomy and self-directness online, for instance, setting instructive rules, and not banning some activities.

- Hypothesis 2: Parents from collectivistic countries as compared to parents from individualistic countries prefer to use mediation assuming obedience and respect for parents’ values and rules, for instance, using restrictive mediation, blocking, imposing time restrictions and banning activities, not using instructive rules.

These hypotheses will be analysed later (see chapter 3.5).

Future research

There is need for research on the types of parental mediation of children’s use of the internet. It can be instructive or assisting, it can be a kind of flexible monitoring or rigid control, it can be fun or a duty for the parent. Monitoring children’s activity online is psychologically different from co-viewing TV. New specific research on the mediation of the internet is needed to investigate the efficiency of various types of parental mediation and the factors that make specific kinds of parental mediation efficient or inefficient, for instance: gender, age, parental literacy (on the computer and the internet), parental attitudes to new technologies or parental values.

This kind of research should include not only survey studies. Qualitative in-depth studies are also needed to investigate how parents and children understand and evaluate the different types of mediation.

Promotion of a safer internet

Parental techniques for socializing children vary across Europe. Parental techniques of mediation will also vary across European countries, and it is also possible that the efficiency of the different mediation strategies will differ from country to country. Parents may be more efficient in assisting children in how to avoid online risk and use online opportunities using a certain kind of mediation of the internet that is consistent with the values of the culture to which their country belongs.

The European Values Survey13 showed that in 2000 there were four groups of countries in Europe as described in terms of the values orientation characteristic of their culture: Protestant Europe, Catholic Europe, English speaking Europe and Ex-communist Europe.

It might be assumed that the way that parents (or the state, or the school, or the child himself/herself) take responsibility for the children’s safer internet and parental techniques mediating the internet may vary across the countries belonging to different groups defined by individualistic-collectivistic value orientations. In addition, finding the cases of efficient parental mediation of the internet at the country level may allow us to describe the conditions under which the technique is efficient and to disseminate knowledge concerning how it should be put into practice in other countries.

A suggestion is that research on a country level is needed to establish the conditions under which some kinds of parental mediation are more efficient than others. And then at the level of groups of countries we need research on the efficiency of different ways of implementing the recommended techniques.

2.5. Conclusions

Conclusions regarding the general theoretical model

Researchers have worked hard in recent years to keep pace with developments in online technologies and with children and young people’s online activities - activities which have earned them the title of ‘digital natives’ by contrast with their ‘digital immigrant’ parents and teachers (Prensky, 2001). A few years ago, there was little published research on children and the internet (Livingstone, 2003). Today, a dramatic expansion in research is generating a growing consensus regarding key conceptual claims.

- First, researchers concur that access is a prerequisite for, but underdetermines, use. A child-centred account

13 Project website and access to EVS data from http://www.europeanvalues.nl.
locates new technologies in the context of children's everyday life to understand what they complement, displace or remediate (Bolter & Grusin, 1999), how they fit meaningfully in established social, spatial and temporal routines (Bakardjieva, 2005), and how far they afford new opportunities or risks (Hutchby, 2001).

- Second, research should avoid a technologically determinist, impact-centred approach, and instead seek to understand how the internet is socially shaped, in terms of institution, design and political economy, and also meaningfully appropriated in diverse contexts by its users (Berker, Hartmann, Punie, & Ward, 2006). This is not necessarily to assert a social determinism, but rather to ask careful questions about the dynamic and contingent relations between users and technologies, and between practices of social shaping and technology use.

- Third, research should sidestep the simple polarisation of 'real' and 'virtual' or 'offline' and 'online' so as to pinpoint their intersections and mutual influences. Similarly, it should avoid the moral panics that characterise media coverage and, to some degree, public understanding (Oswell, 1999).

- Fourth, it is vital to recognise that it is part of childhood and adolescence to experiment, take risks, push adult-imposed boundaries, and so forth. Thus it is important that online risks are addressed not by restricting access (for this may produce evasion of adult regulation) but by enhancing critical literacy skills, and by understanding what makes children resilient or able to cope with risk (Coleman & Hagell, 2007; Frydenberg, 2003)

- Fifth, the solid tradition of research on parental strategies for regulating their children's television use is being extended to the internet, but here the task is more complex (Valkenburg, 2004). Given the notable gap in parental and child accounts of both risk and regulation (Staksrud, 2005), and given the growing challenge posed by not only fixed but mobile and convergent online technologies, it is crucial to seek the means of improving the effectiveness of parental regulation strategies.

Within this broad framework, this report has examined in detail the body of European evidence on children and young people's online opportunities and risks. To do so, and to respect the above theoretical principles, a general model was proposed at the outset in order to clarify the hypothesised relationships among key variables (see chapter 1).

As shown in figure 2.15, at the heart of the model are the intersecting variables: access, usage, attitudes and skills and, central to our focus, risks and opportunities. This nexus of factors is social in character, shaped by a range of contextual factors (such as use of the internet at home or school) and mediated by the actions and beliefs of parents, teachers and peers.

Each of these variables may, in turn, be influenced by or dependent on the child's age, gender and socioeconomic background. Based on both academic literature and policy assumptions, a series of research questions and hypotheses were specified at the outset of this report, in order to examine the findings in a systematic way.

Focusing here on the individual (rather than the country) level of analysis, this report has examined the extent to which this general model holds across Europe, and the results are here summarised and discussed.

The same analysis has also revealed ways in which the findings vary by country. These are summarised in the section in order to propose country classifications according to key variables and these, in turn, are explained at the country level of analysis in chapter 3.

Reiterating once more that although a considerable body of empirical findings has been identified across Europe, this remains patchy, inconsistent and often not strictly comparable, a series of cross-national commonalities have been cautiously identified. These are summarised and discussed below in terms of the numbered research questions and hypotheses that structure this overall report.

We begin with the central portion of figure 2.15, examining the relationships between access and use, attitudes and skills, opportunities and risks.

Overall conclusions regarding children’s online access and use

Research question R2.1.1

What/how much access to the internet and online technologies do children have?

- Most reliable figures on internet access in Europe concern the adult rather than child population. These reveal, nonetheless, both a general rise in access across all countries and persistent differences in access (cf. the digital divide) across and within countries (for more details see chapter 3).

- However, access under-determines use (Livingstone, 2002), for a child may have access to the internet without using it, both at home and at school. Hence this report has focused on usage figures for children.

![Figure 2.15: The general model of the research field (individual level)](image-url)
Research question R2.1.2
How much use of the internet and online technologies do children make?

- In terms of frequency of use, the evidence is consistent with Rogers’ diffusion curve for technological innovations (Rogers, 1995), namely that as access diffuses across countries, usage follows, with first the early adopters taking up the internet, then the mass market and finally the laggards catching up. Countries vary in the stage of this process reached, marking a continuing digital divide across Europe.

- As research on the domestic appropriation of technologies shows (Silverstone et al., 1992; Haddon, 2004), underlying this process is a considerable effort by parents and children. They must make sense of the technology and its various hardware and software components, they must rearrange their homes and daily timetables to fit internet use into busy lives, and they must work out in symbolic terms the benefits or risks for their lives and their social relationships within and beyond the home. In these ways, they render the internet meaningful and therefore ‘useful’ in social and cultural terms.

- Across Europe, the differences in amount of use remain more striking than the similarities (inviting a classification of countries by children’s use of the internet). However, in all countries, certain common features are also evident, reflecting this general process of diffusion and appropriation.

- Most notably, the evidence across Europe shows that the more parents use the internet, the more children do so also. Given the widespread assumption that children are the digital natives and parents the digital immigrants, this is a counter-intuitive and important finding.

- To be specific, across Europe, children (under 18 years old) are, according to the Eurobarometer survey of 2005 (EC, 2006), marginally more likely (50%) than adults in general (47%) to use the internet. But they are less likely to use the internet than are parents/carers in particular (65%). This finding has been supported by the latest Eurobarometer of 2008 (EC, 2008).

- The findings qualify this general conclusion in two ways, permitting a more refined picture than previously been possible. First, across most countries, the child’s age matters. For younger children (up to 11 years old), parents are the greater users and, presumably, more skilled therefore, than children – challenging simple assumptions regarding ‘children’ as ‘digital natives’.

- For teenagers, however, the picture reverses: teenagers across Europe are more likely (87% of 12-17 year olds) to use the internet than are parents of teenagers (65%). Teenagers are, indeed, the digital natives, therefore. The role of parental responsibility for children’s internet safety should be approached differently for children and for teenagers, for this reason.

Second, there are some significant cross-national differences here, with children overall more likely to use the internet than their parents in certain countries (e.g. Poland and Portugal).

- In these countries, therefore, policy expectations that parents can, in practice, take responsibility for their children’s internet safety, should be especially carefully qualified.

Hypothesis H2.1.1
Children whose parents use the internet are more likely to use the internet themselves.

- The above discussion applies on a generational level: child users in Europe vs. parent users in Europe.

- Further analysis of the Eurobarometer findings showed that a child is more likely to use the internet if their own parent(s) are users (58% of their children use the internet) compared with if their parents are not users (34% of children use the internet). This holds across all countries, though the comparison between parent users and parent non-users necessarily cannot be made in those countries where nearly all parents are users (Estonia, Finland, and Sweden). In some countries, the difference between children, whose parents are online, and those, whose parents are not, is particularly high: for example in Italy the difference between these groups is more than 30 per cent.

- Across Europe, the findings also show that if parents use the internet at home, the influence on their children is even stronger: 61% of children whose parents use the internet at home also use the internet; only 9% of children whose parents do not use the internet at home do themselves use it.

- Since parents are more likely to use the internet at home than adults in general, and that parents of teenagers are more likely to use the internet at home than parents of younger children, it may be concluded both that parents use the internet in order to encourage their children and that parents use the internet because they have been encouraged to do so by their children.

- Whichever the direction of causality, it appears that parental use has a positive association with children’s use. Assuming the causal direction is, at least partly, from parent to child, to encourage internet use among children it would be worth encouraging parents also to use the internet themselves.

Research question R2.1.4
Where do children in Europe use the internet?

- Across Europe, in 2005 children under 18 years old were equally likely to use the internet at home (34%) and at school (33%), with other places of much lesser importance (friend’s house – 16%, someone else’s house – 5%, library – 4%, internet café – 3%, or elsewhere – 2%).

- In 2008 children’s internet use at home clearly exceeds use at school, demonstrating that the diffusion process of the last years has been mainly
driven by private households connecting to the internet.

- There is a positive correlation between use at home and school – the more children use the internet at home in a country, the more they are likely to use it also at school. The reverse is also the case, meaning that children in some countries are doubly disadvantaged.

- Further analysis of the evidence regarding home and school use provides the basis for a country classification based on location of use.

- Also cross-nationally, there is some evidence that in countries with low public or domestic access, children are relatively more likely to go to internet cafés (e.g. Bulgaria, Poland). As these tend to be unsupervised, from a child protection point of view, this may raise concerns.

Overall conclusions regarding children’s online opportunities and risks

Research question R2.2.1

What are the main opportunities experienced by children online?

- Across Europe, a fair body of research evidence suggests that adults and children agree that children use the internet as an educational resource, for entertainment, games and fun, for searching for global information and for social networking, sharing experiences with distant others. Other opportunities, such as user-generated content creation or concrete forms of civic participation, are less common.

- There is little cross-nationally comparable evidence regarding the incidence and take-up of these various opportunities. Thus it seems that, once they gain access (and skills), children in all countries prioritise online communication, various forms of entertainment and play, and information provision; meanwhile for parents, the benefits of educational resources come higher on their agenda.

- If online opportunities are to be increased across Europe, much depends on the child’s role (their motivation and resources) and the online provision available to them (and, thus, the providers’ motives or social goals). Thus conceptually, EU Kids Online offers a framework by which to classify online opportunities in figure 2.9, according to providers’ motives (education and learning, participation and civic engagement, creativity, identity and social connection) and the child’s role (as recipient, as participant, as initiator or perpetrator); a second dimension acknowledges four main forms of risk to children’s development and well-being - commercial, aggressive, sexual and value threats – in terms of provider’s motives. It is noted that while the specific risks that fall into each cell may change over time, the categories are more enduring (see figure 2.10).

Looking across European countries, there are grounds for proposing a rank order of risks in terms of overall incidence, as follows.

1. Giving out personal information: the most common risk – estimates around half of online teens, with considerable cross-national variation (13% to 91%).
2. Seeing pornography: second most common risk at around 4 in 10 across Europe, but there is considerable cross-national variation (25% - 80%).
3. Seeing violent or hateful content: third most common risk at approx one third of teens and a fair degree of consistency across countries.
4. Being bullied/harassed/stalked – generally around 1 in 5 or 6 teens online, though there this is higher in some countries.

Research question R2.2.2

What are the main risks experienced by children online?

- In a parallel framework for online risks, EU Kids Online classifies these according to the three modes of communication afforded by the internet: one-to-many (child as recipient of mass distributed content); adult-to-child (child as participant in an interactive situation predominantly driven by adults); and peer-to-peer (child as actor in an interaction in which s/he may be initiator or perpetrator); a second dimension acknowledges four main forms of risk to children’s development and well-being - commercial, aggressive, sexual and value threats – in terms of provider’s motives. It is noted that while the specific risks that fall into each cell may change over time, the categories are more enduring (see figure 2.10).

- A portrait of online risks across countries can be derived from the available evidence, but it is important to note, first, that not all risks discussed in public and policy have yet been researched; also, evidence of their incidence, distribution and possible consequences on a reliable cross-national basis, is sparse; last, risks are particularly difficult to define in culturally-consensual ways, and they are difficult to research in methodologically-rigorous and ethically-responsible ways.

- Overall, the findings suggest that online risk attracts public concern and policy attention with justification. In most countries, significant minorities and, in some cases, a majority of children, especially teenagers, are encountering a range of aggressive and sexual risks. These include content, contact and conduct risks.

- These findings do provide the basis for a tentative classification of countries according to likelihood of encountering online risks.

- Looking across European countries, there are grounds for proposing a rank order of risks in terms of overall incidence, as follows.

1. Giving out personal information: the most common risk – estimates around half of online teens, with considerable cross-national variation (13% to 91%).
2. Seeing pornography: second most common risk at around 4 in 10 across Europe, but there is considerable cross-national variation (25% - 80%).
3. Seeing violent or hateful content: third most common risk at approx one third of teens and a fair degree of consistency across countries.
4. Being bullied/harassed/stalked – generally around 1 in 5 or 6 teens online, though there this is higher in some countries.
5. Receiving unwanted sexual comments - only around 1 in 10 teens in one group of countries (Germany, Ireland, Portugal) but closer to 1 in 3 or 4 teens in Iceland, Norway, UK and Sweden, rising 1 in 2 in Poland.

6. Meeting an online contact offline – the least common but arguably most dangerous risk, there is considerable consistency in the figures across Europe at around 9% (1 in 11) online teens going to such meetings, rising to 1 in 5 in Poland, Sweden and the Czech Republic.

• Several risks are still to be researched in comparative perspective – self-harm, race hate, commercial exploitation, and so forth.

• In several countries, some measure of distress or feeling uncomfortable or threatened was reported by 15%-20% of online teens, this suggesting the numbers for whom risk poses a degree of harm.

• Some of the high reports of risk – in Estonia, Poland, and the Czech Republic – require urgent awareness-raising. Similarly, the advent of new forms of online activity – e.g. social networking – points to the need for urgent new advice to children and young people. As estimates for now-familiar risks continue to be substantial, these too require continued attention to keep them in children’s minds.

Hypothesis H2.2.6

Since most children make the broadest, more flexible use of the internet at home, they will also encounter more risk from home than school (this raising the relation between access, use and risk).

• This hypothesis is particularly important in terms of directing safety awareness initiatives, whether targeted towards parents or teachers, or whether framed in terms of home or school use.

• Findings from the pan-European Eurobarometer survey suggest that, according to their parents, children encounter more online risk through home than school use (though this may be because parents know little of their children’s use at school).

• However, among those children who use the internet in an internet café or at a friend’s house, these are also risky locations, according to parents (especially compared with school use).

Research question R2.2.5

What is the relation between online opportunities and risks?

• UK evidence showed a high positive correlation between number of online opportunities and number of online risks for 12-17 year old internet users. This led the EU Kids Online researchers to seek similar findings in other countries.

• However, little further European research was found that examined the association between online opportunities and risks. We can only suggest that European policy makers face the dilemma that increasing opportunities tends to increase risks, while decreasing risks tends to decrease opportunities.

• Future research must identify ways of increasing online opportunities for children while decreasing risks.

Overall conclusions regarding children’s online attitudes and skills

This report has examined four hypotheses regarding children’s online skills and attitudes. However, as each examines the relations with age, gender and SES, these are addressed below, where findings for the following hypotheses are presented.

- **H2.3.1**: As children get older they gain greater online skills, including self-protection skills
- **H2.3.2**: Children who use the internet longer and for more activities develop more skills
- **H2.3.3**: There are inequalities in skills and literacies as a consequence of inequalities in SES
- **H2.3.4**: There are gender differences in the levels of skills (higher for boys)

Also relevant here is one of our main research questions.

Research question R2.2.4

Is there evidence showing the consequences of online risks or evidence showing how children cope with online risks?

• Once exposed to risk, how do children respond? In psychological research, this question is being framed in terms of adolescents’ development of ‘resilience’. Thus far, however, little is known of children’s abilities to cope with, or their resilience towards, online risk. Here more research is needed.

- On a pan-European level, 31% of parents in the Eurobarometer survey say their child has encountered harmful content on the internet, and 66% of parents say their child knows what to do in such situations.

- But, comparing across countries, there is a negative correlation between these indicators: the higher the percentage of parents in a country who claim their child has encountered harmful content, the lower the estimated ability of children in that country to cope with potentially harmful encounters, and vice versa.

- Some caution is needed in interpreting this correlation. It may that in low risk countries, children have learned to cope; but it may be that in low risk countries, parents are unaware of their need to cope and so overestimate children’s abilities. Similarly in high risk countries, children may really be less able to cope or, possibly, these parents are more aware of children’s need to cope. Research is needed that follows children from risk exposure through to their coping strategies and to any consequences.

- Qualitative research points to a series of strategies that children are developing to cope with online risks. How these are applied, and whether they are effective, remains unknown, but the manner of reporting suggests that children feel in control and confident in using these strategies. Since this research is mainly qualitative, there is also a need for quantitative research here, to establish the relative uses of different strategies across the population and among
specific subpopulations (especially those deemed ‘at risk’).

However, as noted above, knowing good strategies may not affect children’s actual practice in risky situations, however, so interviews in which children evince good sense should not be treated complacently. This is especially the case since, although there is evidence that children are developing their own strategies to respond to online risk, many studies continue to report that only a small minority tells an adult and so can receive adult guidance.

In the following section, we address the palest section of figure 2.15, to examine in turn the influence of the child’s age, gender and socioeconomic background on the above findings for access and use, risks and opportunities, attitudes and skills.

Hypothesis H2.1.2

As children get older their access to and use of the internet and online technologies increases.

- The hypothesis was framed in this manner as it is widely assumed, and shown in some published literature (Livingstone & Helsper, 2007; Livingstone, 2002; Staksrud, 2005) that older children use the internet more. Sometimes, the conclusion is drawn that, as they are also more mature, they are less at risk (see below). However, the available findings permit a more refined account.

- Specifically, findings from the national reports identify a mixed array of age-related factors that influence children’s online access and use. These suggest that, for one reason or another, a simple linear increase in internet use as children get older may not apply. Particularly, in several countries, there may be a peak in use in the mid teens.

- Younger children use the internet less, it seems, because their parents are more restrictive and because there is less content provided for them. Older teens (17+) may use the internet less than younger teens because they have more alternatives available to them.

- According to pan-European Eurobarometer data (based on parental reports), children’s use increases until 12-13 years and then plateaus.

- Comparisons by countries grouped according to overall amount of internet use suggest that in high use countries, children get online younger than in low use countries.

- The safety awareness implications of the finding that younger children who are online are likely to live in high use countries have yet to be pursued – and this may change as younger children begin to go online in low use countries. Similarly, in low use countries, online teens may be less experienced users than their counterparts in high use countries.

Hypothesis H2.2.1

As children get older they are exposed to a greater amount and range of online risks.

- Eleven of the 21 countries had evidence relevant to this hypothesis, and in eight the evidence was supportive, in three it was contradictory.

- On balance, it is concluded that older teenagers do encounter more online risks than do younger teens.

- In France, Germany and The Netherlands, there was evidence that younger teens are more risk taking than over teens, however.

- Further, the phenomenon of young children using the internet is too recent for a strong evidence base, although this raises new and pressing questions which should now be researched.

Hypothesis H2.2.2

As younger children gain online access they are increasingly exposed to online risk.

- Public concern is sometimes expressed regarding younger children, now going online and so encountering risks that they are insufficiently mature to cope with. Although this concern is countered by the greater parental mediation received by younger children, there is too little evidence to conclude on this point.

Hypothesis H2.3.1

As children get older they gain greater online skills, including self-protection skills.

- It is hypothesized that as children get older, they gain greater online skills (or internet literacy) and so gain more opportunities and also, presumable, gain the skills enabling self-protection from online risks.

- Findings were available in eleven countries. Overall, the evidence supports the hypothesis that skills increase with age.

- Measuring children’s online skills, whether through qualitative or quantitative methods, is particularly difficult and so, for the most part, it is unclear if increasing skills results in an increasing ability to cope with or avoid online risk. The research community is actively addressing this methodological challenge now, but no consensus or clear measures have yet been produced.

- Where evidence is available, it does seem that increasing skill may increase self-protection. But one should not be complacent about these growing skills, as there is also some evidence that children ‘know’ how to act safely online but in practice they take risks nonetheless. In this area as in others, the link from safety knowledge to behaviour change is often uncertain.

- Given these qualifications, it may still be concluded that as children grow older their level of skill increases, and this is likely to include their abilities to protect themselves from online risks.

- The development of skills is part of a more complex picture, however. Frequency of internet use, amount of time spent online and the range of activities all increase with age, as does confidence, all of which impact on young people’s skills levels, perceptions of
skill and expertise and their adoption of safety strategies.

Hypothesis H2.3.2

Children who use the internet longer and for more activities develop more skills.

- Although it would seem obvious that children who use the internet for longer and for more activities would develop more internet-related skills and literacies, only three countries provided data for this hypothesis. In Austria, Norway and UK, findings showed a positive correlation between frequency of use and online competence and safety. However, with such few data, generalisations are unsafe.

The role of gender in influencing children’s online activities

Hypothesis 2.1.3

There are no gender differences in children’s access to or amount of use of online technologies.

- The published literature on gender differences is very mixed. Some research suggests that early gender differences for the home computer no longer exist. Other research suggests that gender differences are becoming less a matter of strong inequalities and more a matter of subtle differences in preference or style (Livingstone & Helsper, 2007; Livingstone, 2002; Staksrud, 2005; Bird & Jorgenson, 2003). Hence no directional hypothesis was framed a priori.

- Overall, contradicting the hypothesis, most findings from the national reports point to a fairly consistent pattern of gender differences across Europe. On balance, we can go beyond specific country results to suggest that boys use the internet for more time and in more places, than do girls.

- Yet there are indications that these inequalities are becoming less and more and younger children go online. And in a few countries (Ireland, Netherlands, Portugal and the UK), the Eurobarometer survey finds internet use to be greater among girls than boys.

Hypothesis H2.2.3

There are gender differences in the range/types of uses/opportunities.

- Over half the countries had evidence that there are gender differences in children’s online activities, and only a little evidence contradicted the hypothesis.

- It is concluded that, across Europe, while both boys and girls enjoy a range of online opportunities, there is clear evidence of gender differences in online activities and preferences. Girls prefer activities that involve communication, content creation and collaboration. Boys prefer competition, consumption and action.

- As yet, too little is known regarding the relatively new phenomena of social networking, online and multi-user gaming and other web 2.0 activities. There may also be an interaction between age and gender (with gender differences increasing through the teens) but more research evidence is needed here.

Hypothesis H2.2.4

There are gender differences in the range/types of risks.

- Fourteen countries provided research results supporting the hypothesis and there was little evidence to contradict it.

- Overall, it was concluded that boys are more likely to seek out offensive or violent content, to access pornographic content or be sent links to pornographic websites, to meet somebody offline that they have met online and to give out personal information.

- Girls are more likely to be upset by offensive, violent and pornographic material, to chat online with strangers, to receive unwanted sexual comments and to be asked for personal information but to be wary of providing it to strangers.

- Both boys and girls are at risk of online harassment and bullying.

Hypothesis H2.3.3

There are gender differences in the levels of skills (higher for boys).

- In studies where children/young people self-report and self-evaluate their internet skills, boys tend to rate themselves higher than girls.

- There is little evidence based on tests or objective examination of children’s skill levels. There is some evidence in some countries that boys’ greater online confidence (or self-efficacy) may lead them to take more, not fewer, online risks. It may also enable them to evade adult regulation.

The role of socioeconomic status in influencing children’s online activities

Hypothesis H2.1.4

There are inequalities in access as a consequence of inequalities in SES (socioeconomic status e.g. household income, parental education, social class)

- In almost all countries, there is evidence to support this hypothesis, for higher SES households are more likely to provide their children with access to the internet, while lower SES households are less able to do this. Only Iceland and Sweden show little evidence of such inequalities.

- Different studies operationalise different aspects of SES – typically parental income and/or parental education – requiring more research if we are to understand how such inequalities can be reduced in future. Such factors as minority status, social capital, school type and so forth may also play a role, yet to be clarified. This is partly a problem of sample size (minorities measured in a sample survey may be represented by few people) and partly one of measures (indicators of inequality vary across countries).
Hypothesis H2.1.5
There are inequalities in online use as a consequence of inequalities in SES.

- In most countries, there is evidence to support the hypothesis that children from higher SES homes make greater or more frequent use of the internet.
- It is not always clear, in these studies, whether the comparison is for all children, or just for those with internet access. However, in some countries, there are few differences in amount of use, especially if comparing high and low SES children who do have internet access.

Hypothesis H2.2.5
There are inequalities in use/opportunities as a consequence of inequalities in SES.

- The well-established debate over the digital divide justifies the hypothesis of inequalities in children’s use of and opportunities gained through the internet as a consequence of differences in SES.
- Though evidence was lacking in several countries, there is general agreement throughout many European countries that SES and the type of use or opportunities are correlated.
- Generally, it appears that children from higher SES backgrounds make more use of the internet (in terms of frequency/amount of use) and use it more for education/information/civic purposes. Lower SES children may use the internet more for downloading music, leisure and entertainment.

Research question R2.2.3
Are there SES differences in children’s exposure to risk?

- Across Europe, there was little evidence to be found on this question in most countries – hence it is treated as an open question rather than by framing a hypothesis.
- Insofar as findings are available, the evidence in each country points to a correlation between SES and exposure to risks, with the exception of Iceland. Most of these findings concern content and contact risks. In the main, it seems that lower class children are more exposed to risk online.
- Since lower SES children already experience disproportionate disadvantages and, so, may disproportionately lack the resources to cope with online risk, further research to confirm this conclusion is a priority.
- In terms of safety awareness, these findings suggest the value of targeting interventions at lower class children especially.

Hypothesis H2.3.4
There are inequalities in skills and literacies as a consequence of inequalities in SES.

- Since few studies examine either SES or skills, this hypothesis cannot be examined reliably.

The mediating role of parents in influencing children’s online activities

Finally we consider the intermediate (darker pink) section of figure 2.15, addressing the question of mediation.

Unfortunately, there is too little evidence across Europe to comment on the mediating role of either teachers or peers although, for good theoretical reasons, these are included in the overall model. In other words, it is very likely that teachers and, especially, peers influence children’s online activities, just as they influence many other aspects of children’s lives (Irvine & Williams, 2002; Lawson & Comber, 2000). Nonetheless, we have no basis for pursuing these here. What follows, therefore, examines evidence for parental mediation (or domestic regulation). For clarity, we also consider below how parental mediation is in turn influenced by the child’s age, gender and socioeconomic status.

Research question R2.4.3
What are the main strategies of parental mediation practised?

- Evidence on this question is available from 17 countries, though there is great variation in the evidence available from the different countries, indicating continuing theoretical and methodological issues for the research agenda.
- Across Europe, it appears that time restriction is the most common strategy for parental mediation of children’s online activities. Possibly there are financial reasons for this, but also it is relatively easy for parents to implement in practice.
- Parental supervision – by sitting with children or checking on them ‘over their shoulder’ – is important in many countries also.
- Parents claim that they also discuss online activities with their children but children are less likely to report that their parents do this – there is often a gap between child and parental reports of mediating strategies (SAFT, 2006; UK Children Go Online).
- Although substantial minorities of parents in several countries appear to use filtering software, its effectiveness remains unclear from the available evidence.
- There is sporadic evidence of further parental strategies, albeit inconsistently studied across Europe.
- It is generally evident that parents wish for more guidance regarding the management of their children’s internet use.

Research question R2.4.3
Are there gender differences in parental mediation?

- This question too has been relatively little examined. Where evidence is available, it appears that girls are subject to more parental mediation than are boys. Since the findings reported above suggest that boys are no less exposed to online risk, this finding suggests that safety guidance could usefully be targeted to parents of boys.
Research question R2.4.4

Are there SES differences in parental mediation?

- In countries where this question has been asked, it appears that there is more parental mediation in higher SES families. Little is known that compares mothers and fathers. It is also possible that this finding reflects a social desirability bias on the part of parents.

Hypotheses H2.4.1

As children grow into teenagers they are subject to reduced parental mediation in their use of the internet.

- The general picture is very clear, holding across Europe: parents impose fewer and less strict rules concerning media, including internet, usage as their children grow into teenagers.
- One interpretation is that this is a fair reflection of teenagers’ growing maturity and rights to privacy and independence. On the other hand, there is more evidence regarding online risks encountered by teenagers than younger children – and it may be that parents have simply given up on the attempt to regulate children by the time they become teenagers.

Hypothesis H2.4.2

More parental mediation results in reduced exposure of children to online risks.

- This is a crucial hypothesis – widely assumed by policy makers but rarely examined empirically by researchers.
- Unfortunately, there is a very little evidence to support or contradict this hypothesis because 17 countries out of 21 reported that there is no pertinent evidence available.
- The remaining countries reported conflicting findings. Ireland found evidence to support the hypothesis that more parental mediation results in reduced exposure of children to online risks, while Poland found evidence to contradict. United Kingdom found evidence both to support and contradict. Two countries commented on a general basis; Cyprus’ comment supports the hypothesis while Spain’s comment contradicts it.
- Here more than anywhere, we can only conclude that more research is needed.

Research question R2.4.6

Is there evidence that particular parental strategies or styles of mediation effectively reduce the risk that their children experience online? Again, this is a crucial question where findings are sporadic and inconsistent.

- Some of the research literature, including from EU Kids Online (Livingstone & Helsper, 2008), suggests that more restrictive strategies are more effective. But these restrict use generally and so reduce online opportunities as well as risks.
- Ideally, parental strategies of discussion, shared use and increasing media/critical literacy would prove optimal, but there is little or no evidence that this is the case as yet.

Conclusions regarding the classification of countries

The findings of the research as presented in the previous chapters indicate commonalities and differences between the European countries with regard to children’s online use. As a last step of this chapter these commonalities and differences are discussed regarding their suitability as indicators for an overall classification of the countries.

Internet use

The likelihood of children and teenagers accessing and using the internet provides a major way of classifying countries, since internet use is related to most of the other indicators. In some countries, the diffusion of the internet has almost reached the entire population, whereas in other countries online services are still “new”.

Since the indicators developed in this chapter reflect children’s and young people’s use of the internet, the Special Eurobarometer “Safer Internet” (EC, 2006) is taken as the empirical basis for this classification. Based on the percentage of children online, three groups were defined indicating “high” (> 65%), “medium” (> 40%) and “low” (< 40%) internet use (see table 2.13, column 1). This classification has been widely confirmed by the new Eurobarometer 2008; the only exceptions were that Belgium moved from high to medium, Slovenia and Poland from medium to high, and Bulgaria and Spain from low to medium. For the following considerations the classification based on the 2005 data will be used.

The second classification (column 2) is based on whether the parents of children who are online also use the internet themselves. Three groups are distinguished – countries where most children who use the internet have parents who are online themselves, and countries in which almost one half of the parents of young online users do not use the internet; plus countries in a mid-way position. The relevance of this classification concerns parents’ competence to assist or support their children when they use the internet.

The third classification (column 3) is based on the observation that, in some countries, children use the internet most often at home, whereas in others the school is more important for internet access. The fourth classification (column 4) is based on the percentage of children who use the internet at home (and other places) versus the percentage of children who are online at school (and other places) but not at home.

Several observations may be made at this point.

- Country classifications based on columns 1 and 2 are almost but not entirely the same14: there are some differences, with Austria, Germany, and Italy having more online parents than might be expected (given children’s use), and Poland and the UK showing the reverse feature.
- High use among both children and particularly parents is generally associated with a relatively greater reliance on home use, while lower use is also associated with a greater reliance on school use, in general. However there are some exceptions, with the

14 The Pearson correlation between the two indicators across 19 countries is r = 0.90.
Czech Republic and the UK combining high or medium use with a relatively greater reliance on school use, and Italy and Spain where low use is combined with greater reliance on home use.

<table>
<thead>
<tr>
<th>Country</th>
<th>Children’s internet use</th>
<th>Parents’ internet use</th>
<th>Use at home or at school</th>
<th>Relevance of use at home</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netherlands</td>
<td>High</td>
<td>High</td>
<td>Home</td>
<td>High</td>
</tr>
<tr>
<td>Denmark</td>
<td>High</td>
<td>High</td>
<td>Home</td>
<td>High</td>
</tr>
<tr>
<td>Estonia</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Norway**</td>
<td>High</td>
<td>High</td>
<td>Home</td>
<td>High</td>
</tr>
<tr>
<td>Iceland*</td>
<td>High</td>
<td>High</td>
<td>Home</td>
<td>High</td>
</tr>
<tr>
<td>Sweden</td>
<td>High</td>
<td>High</td>
<td>Home</td>
<td>High</td>
</tr>
<tr>
<td>Belgium</td>
<td>High</td>
<td>High</td>
<td>Home</td>
<td>High</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>High</td>
<td>Medium</td>
<td>School</td>
<td>Medium</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Medium</td>
<td>Medium</td>
<td>School</td>
<td>Medium</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Medium</td>
<td>Medium</td>
<td>Home</td>
<td>High</td>
</tr>
<tr>
<td>France</td>
<td>Medium</td>
<td>Medium</td>
<td>=</td>
<td>Medium</td>
</tr>
<tr>
<td>Austria</td>
<td>Medium</td>
<td>High</td>
<td>=</td>
<td>Medium</td>
</tr>
<tr>
<td>Germany</td>
<td>Medium</td>
<td>High</td>
<td>Home</td>
<td>High</td>
</tr>
<tr>
<td>Poland</td>
<td>Medium</td>
<td>Low</td>
<td>School</td>
<td>Low</td>
</tr>
<tr>
<td>Ireland</td>
<td>Medium</td>
<td>Medium</td>
<td>=</td>
<td>Medium</td>
</tr>
<tr>
<td>Portugal</td>
<td>Low</td>
<td>Low</td>
<td>School</td>
<td>Low</td>
</tr>
<tr>
<td>Spain</td>
<td>Low</td>
<td>Low</td>
<td>Home</td>
<td>Medium</td>
</tr>
<tr>
<td>Italy</td>
<td>Low</td>
<td>Medium</td>
<td>Home</td>
<td>Medium</td>
</tr>
<tr>
<td>Cyprus</td>
<td>Low</td>
<td>Low</td>
<td>=</td>
<td>Medium</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Low</td>
<td>Low</td>
<td>School</td>
<td>Low</td>
</tr>
<tr>
<td>Greece</td>
<td>Low</td>
<td>Low</td>
<td>School</td>
<td>Low</td>
</tr>
</tbody>
</table>

Table 2.13: Indicators for country classifications regarding children’s internet use

Source: Eurobarometer 64.4 – Special No. 250: Safer Internet, December 2005; basis: parents/guardians with children less than 18 years. Definitions:
1) Basis: % children (0-17 years) who use the internet at any place; high: >64%, medium: >40% and <58%, low: <39%.
2) Basis: % internet users whose parents also use the internet; high: >80%, medium: >65% and <80%, low: <65%.
3) Basis: % children who use the internet at home and at school; ‘home’: use at home is more often (at least 3%) than at school; ‘school’: use at school is more often (at least 3%) than at home; ‘=’ if use at home and at school are almost equally distributed.
4) Basis: % child internet users who use the internet at home (and elsewhere); high: >80%, medium: >58% and <70%, low: <50%.

Online risks

A further group of classifications has been derived from risk related issues. A classification of the countries according to the general likelihood was proposed in chapter 2.2 (see table 2.14, 1st column). The classification of countries as ‘high risk’ (i.e. above the European average), ‘medium risk’ (i.e. around the European average) or ‘low risk’ (i.e. below the European average) is a relative judgement based on findings in the available country studies reviewed. Some caution is needed as in several countries there are few empirical investigations of risk.

This classification can partly be validated by the Eurobarometer survey. The parents’ perceptions, whether their child has encountered harmful content (Table 2.14, 2nd column) lead to a similar classification15: the majority of countries for which both data are available belong to the same group. Thus, the two sources confirm that Poland and the Czech Republic are high risk countries, and that France, Germany and Italy are low risk countries. There are also some deviations (e.g. for the UK there is contradictory evidence).

The third indicator focuses on children’s ability to cope with risks – as perceived by their parents (see table 2.14, 3rd column). There is a negative correlation16 between risk and the ability to cope with it across countries indicating that the higher the percentage of parents who claim their children have encountered harmful content, the lower the estimated ability of children to cope with these potentially harmful encounters.

According to these indicators, Estonia and Bulgaria are the highest risk/lowest coping countries followed by Poland and the Czech Republic – clearly a priority focus for future safety awareness initiatives. On the other side of the spectrum, a group of seven countries (Belgium, Cyprus, France, Germany, Ireland, Italy, and the UK) combine low risk and a high ability to cope.

Some caution is needed in interpreting these findings. It may be that in low risk countries, children have indeed learned to cope; but it may also be that in low risk countries, parents are unaware of the need to cope and so overestimate their children’s abilities. Similarly in high risk countries, children may really be less able to cope or, possibly, in high risk countries parents are more aware of their children’s need to cope.

15 The Spearman correlation between the ranking derived from the national reports (column 1, high=1, fairly high=2, medium=3, low=4) and the percentage of parents who say their child has encountered harmful content (basis for column 2) is rho = -0.63.
16 The Spearman correlation across 19 countries is r = -0.52.
Table 2.14: Indicators for country classifications regarding risks

<table>
<thead>
<tr>
<th></th>
<th>1) General likelihood of risk experiences</th>
<th>2) Parents’ perceptions of likelihood of harmful experiences</th>
<th>3) Parents’ perception of ability to cope with risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Belgium</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Nd</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Cyprus</td>
<td>Nd</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Czech Rep.</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Denmark</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Estonia</td>
<td>Fairly high</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>France</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Germany</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Greece</td>
<td>Nd</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Iceland*</td>
<td>Nd</td>
<td>Nd</td>
<td>Nd</td>
</tr>
<tr>
<td>Ireland*</td>
<td>Medium</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Italy</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Netherlands</td>
<td>High</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Norway**</td>
<td>Fairly high</td>
<td>Nd</td>
<td>Nd</td>
</tr>
<tr>
<td>Poland</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Portugal</td>
<td>Nd</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Nd</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Spain</td>
<td>Nd</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Sweden</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>UK</td>
<td>Fairly high</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>

1) Basis: country reports on national studies about children’s risk experiences (see above, chapter 2.2).
2) Basis: Eurobarometer 64.4, parents’ answers for whether they think their child has encountered harmful content when using the internet; basis: parents of children who use the internet. “High”: >45%, “Medium”: <45% and >30%; “Low”: <30%.
3) Basis: Eurobarometer 64.4 (2005), parents’ answers for whether they think their child has encountered harmful content when using the internet; basis: Eurobarometer “Safer Internet” survey.

Parental mediation

The third classification refers to different patterns of parental mediation. Table 2.15 proposes three classifications based on the findings with regard to the parents’ rules about their children’s media use as provided by the Eurobarometer “Safer Internet” survey.

The first classification (see 1st column of table 2.15) has been defined on the basis of the percentage of parents who claim they have set rules about their child’s use of any media. This classification reflects differences between the countries regarding parents’ tendency to regulate their children’s media behaviour. The second classification indicates the percentage of parents who have set particular rules for the internet and thus reflects the extent to which the internet is regarded as a medium, which needs regulation. To provide a simple indicator regarding the relative importance of TV and internet regulation, the 3rd column shows, for which of the two media parents are more likely to set rules.

These classifications lead to the following observations:

- Although there is a slight trend that the likelihood of parental rules is higher in Northern and Western countries, Denmark with a low percentage of parents who have set rules, and Spain with a high percentage for parental regulation are significant exceptions.
- Being one of the parts of the first indicator, it is plausible that the second indicator leads to a very similar classification. However it is interesting to note that some countries deviate from this pattern: in France, Spain and particularly in Austria, the likelihood of internet regulation is lower than might be expected from the regulation of use of other media.
- The third classification, which indicates whether parents think the internet needs more regulation than TV (or the reverse), is independent of the general tendency to set rules. Some of the rule-oriented countries put more emphasis on TV (Austria, France and Spain), some of them (the Netherlands, Sweden) are more likely to regulate the internet. It is obvious that the relevance of internet regulation is highest in high use countries and lowest in low use countries.

An overall classification of countries

Based on the above three kinds of classifications an overall classification is hypothesised. Given the correlations between the different indicators, which have been mentioned so far, it seems advisable to take the general likelihood of children’s online use as the first dimension (see table 2.16). The classification of risks derived from the national reports is the second dimension (see table 2.14), taking as first choice the general likelihood of risks and as second choice where those data are not available the parents’ perceptions of risks. Almost all the cells of the table have at least one country; the exception is that there is no country with high internet use and low risks.

- This classification suggests a positive correlation between use and risk. High use, high risk countries are, it seems, either wealthy Northern European countries or new entrants to the European Union. Southern European countries tend to be relatively lower in risk, partly because they provide fewer opportunities for use.

17 The Pearson correlation between these underlying indicators across 18 countries is r=.75.
18 The Pearson correlation between the difference of rules for TV and internet and the percentage of internet users is r=.63 for children’s online use and r=.74 for the parents’ online use. These figures are based on parents whose children use the internet, so there is no direct influence of the likelihood that children are online on the parents’ tendency to set rules. Rather, parents in high use countries appear more aware of online risks, setting more rules.
Further, high use of the internet is rarely if ever associated with low risk, this setting a challenge for public policy ambition of maximising opportunities while minimising risks. Average use may, it seems, be associated with high risk, suggesting particular problems in new entrant (e.g. Eastern European) countries where regulatory infrastructure and safety awareness is relatively underdeveloped.

Stating this differently, we might conclude, as a broad generality, that (i) Northern European countries tend to be “high use, high risk”; (ii) Southern European countries tend to be “low use, low risk”, and (iii) Eastern European countries tend to be “new use, new risk”.

More promisingly for public policy, high use may also be associated with only average risk, notably in Nordic countries where regulation and awareness are most developed, these countries having ‘led’ in internet adoption and, presumably, cultural adjustment.

The proposed classifications of countries reflect different conditions for children and teenagers with regard to online risks and opportunities. In order to explain and to better understand these differences, the following chapter will now turn to the country level of analysis and collect information on relevant contextual factors.

Table 2.15: Indicators for country classifications regarding parental mediation

<table>
<thead>
<tr>
<th>Country</th>
<th>1) Rules set for any medium (%)</th>
<th>2) Rules set for the internet (%)</th>
<th>3) Comparison between rules set for TV and the internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netherlands</td>
<td>High</td>
<td>High</td>
<td>Internet</td>
</tr>
<tr>
<td>Sweden</td>
<td>High</td>
<td>High</td>
<td>Internet</td>
</tr>
<tr>
<td>Ireland</td>
<td>High</td>
<td>High</td>
<td>=</td>
</tr>
<tr>
<td>France</td>
<td>High</td>
<td>Medium</td>
<td>TV</td>
</tr>
<tr>
<td>Spain</td>
<td>High</td>
<td>Medium</td>
<td>TV</td>
</tr>
<tr>
<td>Austria</td>
<td>High</td>
<td>Low</td>
<td>TV</td>
</tr>
<tr>
<td>Belgium</td>
<td>Medium</td>
<td>Medium</td>
<td>=</td>
</tr>
<tr>
<td>Germany</td>
<td>Medium</td>
<td>Medium</td>
<td>=</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Medium</td>
<td>Medium</td>
<td>=</td>
</tr>
<tr>
<td>Estonia</td>
<td>Medium</td>
<td>Low</td>
<td>Internet</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Medium</td>
<td>Low</td>
<td>=</td>
</tr>
<tr>
<td>Italy</td>
<td>Medium</td>
<td>Low</td>
<td>TV</td>
</tr>
<tr>
<td>Poland</td>
<td>Medium</td>
<td>Low</td>
<td>TV</td>
</tr>
<tr>
<td>Denmark</td>
<td>Low</td>
<td>Low</td>
<td>Internet</td>
</tr>
<tr>
<td>Cyprus</td>
<td>Low</td>
<td>Low</td>
<td>=</td>
</tr>
<tr>
<td>Greece</td>
<td>Low</td>
<td>Low</td>
<td>=</td>
</tr>
<tr>
<td>Portugal</td>
<td>Low</td>
<td>Low</td>
<td>TV</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Low</td>
<td>Low</td>
<td>TV</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Nd</td>
<td>Nd</td>
<td>Nd</td>
</tr>
<tr>
<td>Iceland*</td>
<td>Nd</td>
<td>Nd</td>
<td>Nd</td>
</tr>
<tr>
<td>Norway**</td>
<td>Nd</td>
<td>Nd</td>
<td>Nd</td>
</tr>
</tbody>
</table>

1) Basis: Eurobarometer 64.4, parents’ answers on whether they have set rules about their child’s use of any medium (TV, mobile phone, games console, internet, computer; see Table 2.13; based on parents whose child uses the internet). “High”: >70%, “Medium”: <70% and >60%; “Low”: <60%.

2) Basis: Eurobarometer 64.4, parents’ answers on whether they have set rules about their child’s internet use; see Table 2.13); based on parents whose child uses the internet. “High”: >50%, “Medium”: <50% and >40%; “Low”: <40%.

3) Basis: Eurobarometer 64.4, comparison of parents’ answers on whether they have set rules for TV and for the internet (in per cent) think their child is able to cope with situations, which make them feel uncomfortable (see Table 2.13). “TV”: percentage for TV at least 5% higher than for the internet; “internet”: percentage of internet at least 5% higher than for TV; = difference between TV and internet smaller than 5%.

Table 2.16: Classification of countries by children’s internet use and online risk

<table>
<thead>
<tr>
<th>Country</th>
<th>Online risk (Low, < 65%)</th>
<th>Medium (65%-85%)</th>
<th>High (> 85%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyprus</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway**</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland*</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway**</td>
<td>High</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.16: Classification of countries by children’s internet use and online risk
3. Explaining differences and commonalities between countries

Chapter 2 of this report has described the results of the collection and comparative analysis of existing research on children’s and teenagers’ use of the internet and online-related opportunities and risks in Europe. Following the general model of the research field (see figure 1.1, chapter 1), the following part of the report sets out to define and collect relevant contextual factors or background variables, which help to explain the similarities and differences between countries outlined previously. As a result of theoretical considerations we have identified six areas, which build the relevant contextual framework for children’s and teenagers’ online behaviour:

- **Media Environment**: This area includes the aspects of internet and broadband diffusion, internet safety tools, and media content for children.
- **Internet regulation and promotion**: this section will the extent to which the governments of the European countries try to regulate the internet or ICTs in general; a particular focus will be put on the role of the government and the regulator(s) on the one hand and the influence of NGOs on the other hand.
- **Public discourses**: It is assumed that perceived risks and opportunities will partly depend on the public discourse. This will be examined with respect to media coverage of children and internet, the role of NGOs and related stakeholders in shaping public discourses, and specific key events, which might frame the public discourse in some countries.
- **Values and attitudes**: The hypothesis here is that cultural values and attitudes will shape parents’ as well as the whole society’s perspective on the opportunities and risks of online media.
- **Educational system**: This area includes aspects like the general literacy of the population, the education of the parents’ generation, the kind of education for today’s children, the technical infrastructure of schools, and existing approaches to internet related media education.
- **General background factors**: Finally we will deal with some single aspects, which are relevant for children’s and teenagers’ lifeworlds, such as the perceived levels of social change; the enthusiasm of the government and/or the public about changes associated with the Information Society and the general situation of free speech and censorship; societal structures as marked by inequalities, urbanisation, work and social class, and migration and cultural homogeneity; the supposed role of the state regarding questions of safer internet; the language situation; and finally the current status of what has been analysed as bedroom culture.

Looking at the fields mentioned here it is obvious that the EU Kids Online network cannot do its own research on each of these aspects. Although there have been strong efforts to encourage comparative research on the European level on many fields, it is still extremely difficult to get a systematic comparative overview on any of these aspects. Thus, given the fact that within the research design of EU Kids Online these contextual factors shall serve as indicators for an exploratory analysis of contextual influences on online opportunities and risks, we followed a highly pragmatic approach including two kinds of sources: a) Whenever available we used internationally comparative statistics or classifications for the respective field; b) in addition we built on national reports from the members of the EU Kids Online network, in which they summarized the national evidence on the respective issue.

The following sub-chapters for each of the areas mentioned above are structured according to the following questions: 1) What kind of information is available? 2) What are the key commonalities and differences to be observed in Europe? 3) Is there evidence, which supports a classification of the European countries? 4) Which hypotheses can be developed with regard to the explanation of differences and commonalities in children’s and teenagers’ online experiences, which have been elaborated in chapter 2.

3.1. Media Environment

Internet and broadband diffusion

Sources of information

EUROSTAT provides comparative data on internet and broadband diffusion. The Digital Access index is better in combining a variety of measures, but it is severely outdated, as it was last published in 2005/06 (ITU, 2006). For a more complex index the Network Readiness Index (NRI) from the Global Information Technology report from the World Economic Forum (Network Readiness Index (NRI), 2008) is helpful. However, in general the number of internet users is fairly well correlated with the results of the index.

Commonalities and differences between the countries

Internet diffusion varies across Europe ranging from 91% of population using the internet in Iceland to 34% in Bulgaria (see table 3.1). In general, EU Kids Online members can be divided in three groups – those with high internet diffusion, middle internet diffusion and low internet diffusion. High internet diffusion is most common among Nordic countries and also Benelux countries and UK. The internet is used less among Southern European countries and the former Eastern block – Greece and Bulgaria having the lowest proportion of households connected to the internet and also the highest cost of internet access. According to the cost of broadband use, there are two abnormalities in an otherwise fairly linear relation: Italy has very low prices for internet broadband connections, but also low usage, whereas Estonia has one of the highest costs of internet usage among EU Kids partners, but at the same time, usage is very high.

19 Author: Pille Pruulmann-Vengerfeldt.
Indicators for classifications of the European countries

The statistics shown above provide a meaningful and easily measurable and comparable basis for country classifications. For the percentage of internet users (2007) the respective classification of the EU Kids Online countries is shown in table 3.1, 3rd column.

Hypotheses regarding the influence of this contextual factor on safer internet issues

It is highly plausible to assume that the general diffusion of the internet in the European countries explains the substantial differences in the percentage of children being online, which have been described in chapter 2.1. Actually, the percentage of (adult) internet users as provided by EUROSTAT for 2007 is very highly correlated (r=.88) with the percentage of children who are online, which has been based on the Special Eurobarometer 250 from December 2005.

The above classification of the countries involved in the EU Kids Online network is highly similar to the classification based on children’s internet use; 13 out of 19 countries fall in the same group, the remaining six countries fall into the neighbouring group.

Thus, the general diffusion of the internet is a strong factor influencing children’s use of the internet. With respect to this factor, differences between the European countries are still massive. As a consequence, for children in countries, in which the internet diffusion has reached an advanced stage, online services are a normal part of their media environment and everyday life, whereas for children in other countries it is something that needs a specific effort and makes a difference to other children.

One would assume that the more common the internet is in a country, the more awareness there is of internet safety issues. One would also assume that the cheaper the cost of the broadband connection, the more common is internet use, especially among households with more deprived children such as those living in a single parent household.

<table>
<thead>
<tr>
<th></th>
<th>1) % of internet users EUROSTAT 2007</th>
<th>Ranking among EU Kids online countries according to column 1</th>
<th>Position among EUKIDS project according to column 1</th>
<th>2) % of household connected to internet EUROSTAT 2007</th>
<th>3) % of households connected to broadband internet EUROSTAT 2007</th>
<th>4) Position in NRI 07/08</th>
<th>5) Lowest cost of broadband as % of monthly income (2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>69</td>
<td>9 Middle</td>
<td>60</td>
<td>46</td>
<td>15</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>69</td>
<td>8 Middle</td>
<td>60</td>
<td>56</td>
<td>25</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>34</td>
<td>21 Low</td>
<td>19</td>
<td>15</td>
<td>68</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td>41</td>
<td>19 Low</td>
<td>39</td>
<td>20</td>
<td>41</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Czech Rep.</td>
<td>52</td>
<td>15 Low</td>
<td>35</td>
<td>28</td>
<td>36</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>85</td>
<td>4 High</td>
<td>78</td>
<td>70</td>
<td>1</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>66</td>
<td>11 Middle</td>
<td>53</td>
<td>48</td>
<td>20</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>66</td>
<td>10 Middle</td>
<td>49</td>
<td>43</td>
<td>21</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>75</td>
<td>7 High</td>
<td>71</td>
<td>50</td>
<td>16</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>36</td>
<td>20 Low</td>
<td>25</td>
<td>7</td>
<td>56</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>91</td>
<td>1 High</td>
<td>84</td>
<td>76</td>
<td>8</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>61</td>
<td>12 Middle</td>
<td>57</td>
<td>31</td>
<td>23</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>41</td>
<td>18 Low</td>
<td>43</td>
<td>25</td>
<td>42</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>86</td>
<td>3 High</td>
<td>83</td>
<td>74</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>87</td>
<td>2 High</td>
<td>78</td>
<td>67</td>
<td>10</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>49</td>
<td>16 Low</td>
<td>41</td>
<td>30</td>
<td>62</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>42</td>
<td>17 Low</td>
<td>40</td>
<td>30</td>
<td>28</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>57</td>
<td>13 Middle</td>
<td>58</td>
<td>44</td>
<td>30</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>55</td>
<td>14 Low</td>
<td>45</td>
<td>39</td>
<td>21</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>82</td>
<td>5 High</td>
<td>79</td>
<td>67</td>
<td>3</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>75</td>
<td>6 High</td>
<td>67</td>
<td>57</td>
<td>12</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1: Indicators for internet and broadband diffusion
Internet safety tools

The most important question to be answered in this section is the extent, to which Internet Service Providers (ISP) offer internet safety tools (e.g. filters) or provide warnings/advice.

Sources of information

No reliable data are available for comparative purposes. Most of the data available here are based on personal impressions after carrying out some non-exhaustive search about the state of art regarding internet safety tools in each of the countries. Moreover, almost none of the countries involved seem to possess statistical data on internet safety tools.

Commonalities and differences between the countries

On the basis of the national reports, the main findings can be summarised as follows:

In the majority of countries studied only the major ISPs provide (or at least advertise that they provide) safety packages that include a wide range of services such as antivirus and anti-spyware protection, defence against phishing attacks with URL filtering and anti-spam functions, detection of Wi-Fi intrusion, improved personal firewall preventing intrusions by hackers and blocking networks viruses targeting loopholes in the network, among other things. Most of these services work by performing regular scans on computers, warning about security weaknesses in the operating system/browser, controlling the local network, and by providing spam filtering. One disadvantage of these packages is that they are not free and therefore users interested in these services must pay for them.

Of all the countries studied, only in Bulgaria was filtering software not popular, probably because these services are not widely advertised in this country while ISPs do not provide many warnings or advice about them. Therefore, there is an evident lack of awareness in the mainstream population about using these filters. Finally, the acquisition of these packages or even of (legal) antivirus software is hindered by their high costs.

Apart from offering the typical “safety” packages, many ISPs also offer advanced parental control functions that enable users to manage children’s use of the web, blocking unsuitable sites and content. Many of these packages also include the possibility of creating different settings for different family members. Some ISPs even advertise that parents can disable the following: gambling, hate speech sites, sites about drugs, adult sex sites, weapons or web-mail. In some countries such as in the case of France, the installation of the parental control tool is the default option.

Only some ISPs throughout Europe provide additional information about children and the internet and on how to protect children against online risks – although never on their home page (it requires some searching to find this information). Indeed, most of the information provided by the ISPs relates to their own products, whereas a very limited number provide some detailed information about children’s safety on the internet and parental regulation – information that goes beyond the company's products.

In some countries such as in Belgium, Ireland, Iceland and Slovenia internet service providers (mainly through ISP national associations) participate in projects to safeguard online safety for minors. In Belgium, for example, the Internet Service Providers Association (ISPA) is involved in several projects such as: StopChildPorno (an informative site that is the national and civil hotline to report child abusive images found on the internet), Delete Cyberhate (a website that serves as a national hotline for reporting illegal hate speech on the internet), Safer Internet Belgium (a project targeted to raise awareness about the risks of internet for children, parents and teachers) and Spamsquad (a site where internet safety tools are offered and where also warnings/advice are provided).

In other countries such as in Ireland, the Internet Service Providers Association (ISPAI) operates the www.hotline.ie service. This hotline combats illegal child pornography on the internet and provides a secure and confidential environment where children as well as adults may anonymously report pornographic content encountered on the internet. Whilst the primary focus of the Hotline remains Child Pornography, other forms of illegal material do exist on the internet and may be reported using this service. Also in Iceland and in Slovenia most ISPs are very active in internet safety issues, besides offering filters and safety tools they also cooperate extensively with national internet awareness node Safe-si (Insafe). They also collaborate in projects to raise public awareness of online risks. Most Icelandic ISPs cooperate with the Icelandic node of the EC Safer Internet Action Plan, SAFT (www.saft.is) helping to produce awareness material and funding media campaigns among other initiatives. In Denmark the ISPs cooperate through the Danish IT Industry Association also regarding promoting safety for children online and on various digital platforms such as mobile phones. They consider all kinds of risks such as pornography and commercial exploitation. The ISP members in the EU Kids Online advisory panel claim to be more restrictive in their own administration of children’s access to services and content than the legally decided restrictions.

In some European countries industry also plays a key role in raising awareness. As a matter of fact, in countries such as Greece, Italy, Ireland, Belgium, Estonia, Slovenia and the UK, companies such as Microsoft, Norton Utilities, Yahoo, Vodaphone and Bebo offer some guidance and/or products regarding how to improve safety and security online. In particular, in Italy, Belgium, Estonia and UK Microsoft local websites offer safety advices for parents and/or educators signalling its own filters and teaching them how to apply them. In the UK, Microsoft provides safety awareness training materials to every secondary school in the country while in Estonia, Microsoft, in cooperation with local organisations (the Family Centre), has promoted projects and research to identify risks related to children, to help distribute information about safety on the internet, etc. Other examples of industry support to online safety are found in Ireland, where the largest ISP, Eircom, has recently introduced an e-Security package in conjunction with Norton Utilities, providing anti-virus and firewall protection, identity theft support, email anti-virus and spam blocker, anti-spyware protection and anti-phishing protection. Finally, Yahoo’s new online safety

22 Authors: Verónica Donoso (Belgium), Anna Van Cauwenberge (Belgium).
information and Bebo’s recently launched safety site in the UK also illustrate how the industry can support online safety awareness among the population.

Finally, it seems that only in a few countries, the government (through entities such as the Ministry of Communication in Italy, the Belgian Privacy Commission or the Commission for the Protection of Minors in Electronic Media and the State Media Authority in Germany) plays an important role in protecting minors and in raising awareness of online risks by means of supporting initiatives, passing laws and developing projects that promote minors’ safety online.

Indicators for classifications of the European countries

Based on the country reports, one can meaningfully distinguish between three groups of countries when it comes to the influence of ISPs on safeguarding safety online for children. However, although this classification seems useful, the information provided in the national reports may not be enough to provide an accurate classification of the countries involved in our project.

The three categories can be described as follows:

- **ISPs play an active role in safeguarding safety online** for children by offering the typical “safety packages” but also by participating in local projects to raise public awareness, by collaborating with safety nodes, by producing and distributing online safety awareness-raising material for schools, etc.

- **ISPs offer the typical paid internet “safety packages”, i.e. but are not actively involved in safeguarding safety online for children. “Safety packages” typically include a wide range of services such as antivirus and anti-spyware protection, defence against phishing attacks with URL filtering and anti-spam functions, detection of Wi-Fi intrusion, improved personal firewall preventing intrusions by pirates and blocking networks viruses targeting loopholes in the network, among others. Most of these services work by means of performing regular scans on computers, warning about security weaknesses in the operating system/browser, controlling the local network, and by providing spam filtering. One disadvantage of these packages is that they are not free and therefore, users interested in these services must pay for them.

- **ISPs (almost) do not provide warning, advice or information on safety issues for children.**

Hypotheses regarding the influence of this contextual factor on safer internet issues

The presence of information and guidelines on online safety in ISPs’ websites raises public awareness regarding online safety issues.

The presence of information and guidelines on online safety in ISPs’ websites has a positive effect on children’s behaviours and attitudes regarding on-line safety issues.

The presence of information and guidelines on online safety in ISPs’ websites reduces children’s exposure to risk.

Due to the lack of comparable data on safety awareness in the different countries these hypotheses cannot be examined directly; comparing the above classification with the differences between the countries in terms of risk perception does not result in a clear pattern. Although it is highly plausible that safety information provided by ISPs can raise awareness and reduce risks, there is no concrete empirical evaluation available so far.

Media content for children

Sources of information

There are no international statistics on this topic and the country reports within this study provided rather diverse kinds of information. Only Germany, Italy and The UK provided some quantitative data. This points to an urgent need to develop efficient procedures that would help to assess the range and quality of media content for children.

Commonalities and differences between the countries

In most of the countries studied, the Public Service Broadcasters appear the main media content provider for children. However, when narrowing the scope to online content for children, some commercial broadcasters are also important content providers. The latter usually offer a mix that includes a limited range of national formats and a broad range of international formats. Within these international formats, some popular TV channels that also provide online content include Nickelodeon and Disney.

<table>
<thead>
<tr>
<th>ISPs play an active role in safeguarding safety online</th>
<th>ISPs offer the typical paid “safety packages”</th>
<th>ISPs provide (almost) no warning, advice or information on safety issues for children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>Austria</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>Greece</td>
<td>Cyprus</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Estonia</td>
<td></td>
<td>France</td>
</tr>
<tr>
<td>Germany</td>
<td>France</td>
<td>Iceland</td>
</tr>
<tr>
<td>Ireland</td>
<td>Iceland</td>
<td>Norway</td>
</tr>
<tr>
<td>Italy</td>
<td>Norway</td>
<td>Spain</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Spain</td>
<td>Sweden</td>
</tr>
<tr>
<td>The UK</td>
<td>Sweden</td>
<td>Portugal</td>
</tr>
<tr>
<td>Denmark</td>
<td>Portugal</td>
<td>The Netherlands</td>
</tr>
</tbody>
</table>

Table 3.2: Country variation in ISPs’ activity in safeguarding online safety

Incomplete information to perform classification for: Poland

One has to be careful when making general claims about the quality and variety of media content aimed at children. However, in countries such as Austria, Denmark, Germany and the UK, the media content for children does seem to be rich and broad. To illustrate this, Austria’s public service broadcaster offers several online sections for all children’s programmes with different thematic priorities: news, action, stars, technology and science, animals and nature.

Authors: Verónica Donoso and Anna Van Cauwenberge.
quizzes, shows and television, etc. In Denmark the National Danish Broadcasting company have a strong focus on children and adolescents and provide a good deal of services and content for all platforms: TV, radio, online, mobile and crossovers. Commercial channels and institutions also provide substantial content. In Germany, several programmes as well as websites for children (kika.de, kindernetz.de, tivi.de) are provided by the public service broadcasters, as is the case in Sweden. As for the UK, the BBC is a strong offline (CBeebies, CBBC) as well as online (BBC Children, BBC Learning, BBC Teens) content provider for children.

Indicators for classifications of the European countries

Because there was not enough information about the provision of online content for children in the national reports, we decided to carry out a small “survey” in situ among the participants of the WP3 workshop in Salzburg so as to determine the degree of significant online content provision for children. The results of our survey are shown in the following table (Table 3.3 and 3.4).

A classification according to the type and amount of significant positive online provision per country seems meaningful. Even though this information is not explicitly available from the country reports, it would still be important to explore not only the types and amount of online content available for children online, but also its quality. From the point of view of 9-19 year old children, quality internet provision comprises, among other things, good quality content addressing their interests and sites should be truly interactive including providing responses to their inquiries or contributions. Moreover, quality online content should also offer more guidance not only in terms of content creation, but also in terms of safety issues such as improved protection from unwanted content and attention to children’s privacy needs (UK Children Go Online). Following this, we propose the following classification:

- **High significant positive online content provision for children**: The amount and the types of online websites that children can access is not only adequate in terms of its content and safety aspects, but it is also abundant.
- **Medium significant positive online content provision for children**: This means that even though there are several high quality websites aimed at children, there are still many websites which do not provide appropriate or sufficiently safe content.
- **Low significant positive online content provision for children**: most of the available on-line content for children is of poor quality and not safe enough.

Both classifications mentioned in the above tables (3.3 and 3.4) are meaningful regarding the EU Kids Online project. The presence of a strong Public Service Broadcaster that is a (major) content provider for children, offline as well as online, can play an important role in guiding and teaching children how to use the internet in a safe and constructive way. In contrast to commercial media, Public Service Broadcasters have a particular responsibility to fulfil regarding the provision of quality content for children. As the internet becomes more and more central in the world of children, Public Service Broadcasters have a crucial role to play.

Hypotheses regarding the influence of this contextual factor on safer internet issues

The provision of positive good online content for children has a positive effect on children’s behaviour and attitudes regarding on-line safety issues.

The provision of good online content for children reduces children’s exposure to risk.

Although these hypotheses are highly plausible, it must surprise that there is almost no empirical evidence – even on the national level – evaluating the effects of dedicated online content, which sets out to support children in using the opportunities and avoiding the risks of the internet. In this respect there is a particular need for additional research.

<table>
<thead>
<tr>
<th>High</th>
<th>The Netherlands, the UK, Denmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between high and medium</td>
<td>Austria (because children there can also access German websites); Germany, Ireland (because children can have access to English language websites); Belgium (because they can also use Dutch websites)</td>
</tr>
<tr>
<td>Medium</td>
<td>Italy, Estonia, Norway, France, Norway, Iceland, Sweden</td>
</tr>
<tr>
<td>Low</td>
<td>Spain, Greece, Cyprus, Portugal, Poland</td>
</tr>
</tbody>
</table>

Table 3.3: Country variation in provision of significant positive online content for children

<table>
<thead>
<tr>
<th>Public Service Broadcaster</th>
<th>Austria, Ireland, Italy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial media</td>
<td>Bulgaria, Cyprus, Estonia</td>
</tr>
<tr>
<td>Public and Commercial</td>
<td>Belgium, Denmark, Germany, The Netherlands, Norway, Portugal, Slovenia, Spain, Sweden, The UK</td>
</tr>
<tr>
<td>Underdeveloped</td>
<td>Greece, Iceland</td>
</tr>
<tr>
<td>Not mentioned</td>
<td>France</td>
</tr>
</tbody>
</table>

Table 3.4: Country variation in who provides online content for children

3.2. Internet regulation and promotion

Legislation and Policing (Regulation)

Sources of information

Comparative information on internet regulation can be drawn from the World Economic Forum.

24 Author: Carmelo Garitaonandia, Maialen Garmendia.
Commonalities and differences between the countries

The European framework, set on the level of the European Union, is an important starting point. The EU has built a regulatory framework for electronic communications based on five Directives.

- The "Framework" Directive (EC, 2002a), which aims to promote competition, consolidate the internet market for telecommunications and serve the interests of consumers and users.
- Directive on the authorisation of electronic communications networks and services (the "Authorisation" Directive) (EC, 2002b),
- Directive on access to electronic communications networks and services (the "Access" Directive) (EC, 2002d),
- Directive on universal service (the "Universal Service" Directive) (EC, 2002c),
- Directive concerning the processing of personal data (the "Directive on Privacy and Electronic Communications") (EC, 2002e).

These directives have been incorporated or are going to be incorporated in the regulatory legislation of each country. So we could assume that every country has or will have a basic common regulatory framework for electronic communications, without prejudicing measures taken at national level. Within this these can pursue general interest objectives, in particular those relating to content regulation and audiovisual and telecommunication policy. We could say that this framework is oriented towards guaranteeing a more competitive free market, but pays little attention to consumer and user interests, and no attention to the specific protection of minors, except through the European Parliament “Recommendation on protection of minors’ human dignity in audiovisual and information services” adopted on 20th December 2006.

On the other hand, the European Union passed a new directive about Audiovisual Media Services in 2007 (EC, 2007), which replaces the “Television Without Frontiers” directive (EC, 1989), amended in 1997 (EC, 1997). The latter directives (1989 and 1997) have been incorporated into the regulatory legislation of each country, and the 2007 Act will soon be implemented. This legislation assures the adoption of rules to protect the physical, mental and moral development of minors as well as human dignity in all audiovisual media, including audiovisual commercial communications. It has been a very important step because this Directive of 2007 covers all audiovisual media services (analogue and digital television, live streaming, web casting, NVO, and video-on-demand), independently of the technology or distribution platform used (broadcasting television – linear services – and on demand services – non-linear –). But this directive has still not been incorporated into the national legislations.

Following the national reports it seems that there are for the most part few specific “computer crimes”, that is crimes which are judicially considered to have as their object or instrument computer data and systems. “Everything that is illegal in the real world is also illegal on the internet (such as child pornography, Nazi content, fraud, etc) and will therefore be prosecuted” (Austrian Report), or “In Ireland, as well as in most jurisdictions, what is illegal off-line is considered illegal on-line” (Irish Report), or “in general, if something is forbidden in society it is forbidden on the internet, but overall there are few special laws relating to the internet” (Swedish Report).

However, there is a wide range of crimes in the National Criminal Codes which could be regarded as “computer crimes”, as they are committed through the internet: phishing, credit card frauds, bank robbery, illegal downloading, industrial espionage, child pornography, harassment, bullying, scans, cyber-terrorism, creation and/or distribution of viruses, spam and so on. All such crimes are related to and facilitated by computers. Nevertheless, some countries have specifically referred to “computer crimes” in their legislation over the last years. For instance, in 2007, France introduced the article 227-22-1 in its Criminal Code in order to be able to prosecute any “sexual proposal to a minor under 15” using any electronic communication means, and also the article 222-33-3 of the penal code condemns the recording or diffusion of images related to “happy slapping”. In Ireland, a new offence of meeting a child following sexual grooming, on the internet or otherwise, was included in the recently passed Criminal Law (Sexual Offences) (Amendment) Act 2007. In the UK, the 2003 Sexual Offences Act made grooming a child online for sexual purposes (in chat rooms, email, instant messenger etc) illegal, and the grooming laws gained a high profile in the press; other countries in the EC are now considering passing similar regulations.

In 2001, in Budapest, the European Council passed the “Agreement of Cyber-Delinquency” signed by all the participating countries. This agreement classified computer crimes in four different categories, which can also be seen in almost every National Criminal Code:

- Crimes against confidentiality, integrity and the availability of data and computer systems,
- Crimes of falsification and computer fraud,
- Crimes related to contents, such as child pornography,
- Crimes related to copyright.

The number of crimes committed on the internet has increased considerably over the last years and every national police has a brigade, group or department which deals with online crimes. Fourteen European countries are part of the European Working Party on Information Technology Crime25, and they work very closely with international organisms like Interpol and Europol. According to INTERPOL data, 50% of crimes committed on the internet are related to distribution, diffusion and the selling of child pornography, and some European police forces works with the Child Exploitation Tracking System (CETS), a software system developed by Microsoft which permits investigators to easily organise, analyse, share and investigate information from its point of detection right through the investigation phase, and the arrest and management of the offenders. This software is offered free by Microsoft, and the countries which have installed it are Italy, the UK and Spain.

25 Austria, Belgium, Denmark, Finland, France, Germany, Italy, Netherlands, Norway, Portugal, Sweden, Switzerland, Spain, and the United Kingdom.
Probably, in every European country the laws which have the biggest influence on the regulation of contents on the internet are contained in the Criminal Code, and some countries have reformed their Criminal Codes and have incorporated the possession of child pornography (pornographic material such as photos, videos, digitalised images, electronic files, etc., in which someone with the age of a minor has been involved) as a crime and included other crimes related to children\(^2\). The lower age limit at which pornography is considered “child pornography” and, therefore, a crime, varies from country to country within the European Union. Whilst Holland, Spain and Italy have the age limit as eighteen, some other countries such as Germany and Austria set the limit at fourteen years of age. It is necessary to consider the fact that, very often, when a child pornography crime is committed, some other crimes such as sexual abuse or rape can also be involved.

People who wish to set up websites which include child pornographic content, try to get on servers in countries where the legislation dealing with this matter is not as clear as in European countries. In fact, servers in Brazil, some Latin American countries and former members of the USSR are often chosen.

Although half of the crimes committed on the internet are related to child pornography, there are many more crimes in the National Criminal Codes for which computer systems are either the means or the object of crime. For instance: exhibitionism and sexual provocation, prostitution and corruption of minors, threats, libel, fraud, crimes related to the intellectual and industrial copyright, crimes related to the market and consumers, etc. However, it is necessary to highlight that there are certain, very frequent behaviours on the internet that are very difficult to prosecute because they have not been formalised in almost any of the national Criminal Codes. Two very important examples of this are SPAM and port scan (a way of using other people’s IP address and PC).

Indicators for classifications of the European countries

The World Economic Forum (2007) uses the Executive Opinion Survey\(^2\) (World Economic Forum, 2007) to evaluate the laws relating to the use of information and communication technologies (e.g. electronic commerce digital signatures consumer protection). The scale used in the survey is 1 = nonexistent to 7 = well developed and enforced. Based on these scores, we can classify EU Kids Online countries in three groups – Laws well developed and enforced, Laws averagely developed and enforced and Laws not that well developed. Table 3.6 gives an overview of these classifications and scores are in the brackets behind the country name.

<table>
<thead>
<tr>
<th>Countries</th>
<th>Denmark</th>
<th>Portugal</th>
<th>Cyprus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>6.01</td>
<td>4.94</td>
<td>3.88</td>
</tr>
<tr>
<td>Austria</td>
<td>5.90</td>
<td>4.91</td>
<td>3.69</td>
</tr>
<tr>
<td>Finland</td>
<td>5.76</td>
<td>4.85</td>
<td>3.63</td>
</tr>
<tr>
<td>Belgium</td>
<td>5.74</td>
<td>4.82</td>
<td>3.56</td>
</tr>
<tr>
<td>Greece</td>
<td>5.70</td>
<td>4.77</td>
<td>3.40</td>
</tr>
<tr>
<td>Holland</td>
<td>5.63</td>
<td>4.27</td>
<td>3.78</td>
</tr>
<tr>
<td>Iceland</td>
<td>5.54</td>
<td>4.27</td>
<td>3.78</td>
</tr>
<tr>
<td>UK</td>
<td>5.40</td>
<td>4.21</td>
<td>3.09</td>
</tr>
<tr>
<td>Netherlands</td>
<td>5.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>5.34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.5: Country variation in the age limit at which pornography is considered “child pornography”

Table 3.6: Country variation in the laws related to information and communication technologies. Source: World Economic Forum 2007

\(^2\) For instance: the reform of the Spanish Criminal Code in 2003 (art. 187 and art. 189. The Organic Act, 25th November 2003), the amendments to the Bulgarian Criminal Code in 2002 were introduced incriminating child pornography as a criminal offence with heavier sanctions than ordinary cases of pornography. Sanctions envisage imprisonment of up to 8 years, fines of up to 5,000 EUR and (in some cases) confiscation of property, and the reform of the new Portuguese Criminal Code and Criminal Code Process in 2007. Regarding child protection new crimes were created as minor pornography, the use of minor prostitution and genital mutilation is now expressly covered. Also, in case of crimes practiced against persons under 16 years old, if the legal guardian of this person does not want to present charges, the person can present charges themselves from the moment they are 16 years old until they are 18 and a half. Regarding sexual crimes against minors, it is established that the crime does not prescribe before the minor is 23 years of age.

Beyond that, based on the qualitative national reports, we can indicate that there are some countries where in addition to the criminal code specific institutions regulate the internet. These countries and their regulatory mechanisms are summarized in the following table (Table 3.7).

Hypotheses regarding the influence of this contextual factor on safer internet issues

In most European countries which have inherited a tradition of freedom, there is no special control of internet content. The criminal code is the law which determines if contents or a particular service is against the law. Nevertheless, there are countries like Germany, the UK and Ireland in which the development of the internet has been even faster than the average, and these countries have perceived and taken more seriously the risks related to the internet and have created their own institutions of control. The case of Italy is probably different, because while the development of the internet in this country has not exceeded the average, Italy has a tradition of controlling TV contents in order to protect children, so it has applied the same system of control to the internet content.

On the other hand, Anglo-Saxon, Northern and Central European countries have a greater tradition of self-regulation than Latin and Southern European countries, in which legislation plays a more important role than self-regulation. The former countries have created self-regulation institutions to help to control contents aimed at children on the internet. Due to this, over the last years, countries such as Belgium, France, Portugal, Spain and Bulgaria had to modify their Criminal Codes to include crimes related to the internet.

When we speak about institutions of State control, we are basically referring to institutions controlling online contents for children, as probably every European country already has an institution with which to guarantee market freedom on the telecommunications market (Office of Communications, Comisión del Mercado de las Telecomunicaciones, Autorité de Regulation des Communications Electroniques et des Postes, etc) and also an agency to protect data.

The classification from the World Economic Forum indicates that while about half of the countries perceive themselves to have relatively adequate regulation on internet issues in general, there are still exceptions like Cyprus, Poland and Greece where more regulatory mechanisms are needed. This seems to correlate with other classifications fairly well, indicating that where there are more internet users, there is also more legislation regulating activities on the internet. However, it must be kept in mind that this is not an absolute scale, but rather perceptions of the adequacy of regulation. For example, although internet content is not highly regulated in Estonia, any kind of censorship is generally not well received by the public at large. Thus laws can be regarded as being adequate in terms of public perception even if no actual content regulation and child protection mechanisms are in place.

Sources of information

The Networked Readiness Index (NRI, 2008) contains the component “Government success in ICT promotion”. Government programmes promoting the use of ICT are compared on a scale (1 = not very successful 7 = highly successful (World Economic Forum, 2007). This does not cover awareness raising programmes and literacy related initiatives.

In addition to that, this comparison also uses expert estimations of the success of their governments in the promotion of ICTs. Even if the scale is very subjective and based on qualitative overviews, it still gives some estimation of the relative prominence of government activities.

Commonalities and differences between the countries

Classification is on the scale where:

- 0 = none – there are no activities or activities are not related to concrete issues
- 1 = one, a little – there is one activity or a small-scale set of activities
- 2 = several, large scale – there are several initiatives or one complex measure addressing several aspects of an issue.

The classification below is subjective based on reading of the materials provided by the EU Kids Online partners. The scale and impact of the initiatives are difficult to estimate based on the short descriptions available and thus these were also subsequently reviewed by each partner. However, the estimations match relatively well with the NRI index. The differences may also arise from the fact that in many cases the promotion of internet use has been more active in the past rather than currently.

<table>
<thead>
<tr>
<th>Country</th>
<th>Institution of state control</th>
<th>Institution of self-regulation</th>
<th>Basic criminal code</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Austria</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ireland</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.7: Country variation in the institutional regulation of the internet

28 Author: Pille Pruulmann-Vengerfeld.
In general, one can say that it seems that where the internet is less common, more efforts are made in promotion of internet use, while once the internet becomes more common, risk awareness and then literacy initiatives become more visible.

These countries do not differ very much in terms of how much effort is spent on popularising ICTs – with some exceptions (Bulgaria, Italy and Cyprus), where attention is mostly on ICT usage in schools and less on use by private individuals. This seems also to correlate with level of internet usage in general.

In terms of internet safety, France and Bulgaria stand out as there are no significant internet safety initiatives, Estonia and Cyprus seem to have few safety related initiatives. In terms of media literacy initiatives, most of EU Kids countries seem to have just few initiatives. UK, Slovenia, Netherlands, Norway and Austria stand out as being more active in terms of media literacy.

Indicators for classifications of the European countries

In terms of activities related to promoting internet use, the NRI sub-index provides good and comparable data. Although being based on subjective opinions of experts, it seems to provide a good overview. At the same time awareness raising programmes and literacy programmes could be easily rated by partner organisations in terms of the number of initiatives.

However, some estimate should be made as regards their reach. At the moment, the table composed above gives only a limited comparative overview and the styles of those writing the national reports differed, making the summaries less comparable.

Hypotheses regarding the influence of this contextual factor on safer internet issues

One hypothesis would be that where governments are more active in promoting safety issues, there will be more awareness of them. Here again the lack of empirical data on awareness of safety issues does not allow to evaluate this hypothesis and to learn about efficient ways to promote safer internet. As far as the most recent Eurobarometer (see chapter 2.4) shows country differences regarding parents’ worries do not seem to be related to the above classification: Parents in France, Greece, Portugal, and Spain were most worried, however there is no common pattern of ICT promotion in these countries. It becomes obvious that the complex interrelation between internet diffusion, awareness and promotion activities, and parents’ and children’s risk perception has to be analysed on a more substantial empirical basis.

<table>
<thead>
<tr>
<th>Country</th>
<th>NRI result on scale of 1-7</th>
<th>Use of the internet?</th>
<th>Raise awareness of potential social impacts and risks?</th>
<th>Promote media literacy?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>4.91</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Belgium</td>
<td>4.26</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>3.61</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cyprus</td>
<td>4.06</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>3.58</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>5.36</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Estonia</td>
<td>5.57</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>France</td>
<td>4.86</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Germany</td>
<td>4.64</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Greece</td>
<td>3.65</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Iceland</td>
<td>5.21</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ireland</td>
<td>4.50</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Italy</td>
<td>3.67</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Netherlands</td>
<td>4.58</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Norway</td>
<td>4.95</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Poland</td>
<td>3.04</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Portugal</td>
<td>5.14</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Slovenia</td>
<td>4.25</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Spain</td>
<td>3.80</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sweden</td>
<td>5.41</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>UK</td>
<td>4.44</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.8: Country variation in the ICT promotion and awareness raising

<table>
<thead>
<tr>
<th>Group one: NGOs active and influential</th>
<th>Group two: NGOs active but not influential</th>
<th>Group three: NGOs not active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Cyprus</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>Denmark</td>
<td>Portugal</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Germany</td>
<td>Spain</td>
<td>Estonia</td>
</tr>
<tr>
<td>Iceland</td>
<td>France</td>
<td>Greece</td>
</tr>
<tr>
<td>Italy</td>
<td>Slovenia</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Sweden</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.9: Country variation in the influence of NGOs on legislation and regulation

There was incomplete information to perform classification for Belgium, Netherlands, Norway and Poland.
The influence of NGOs29

Sources of information

There are no comparable data, which could provide an informed overview of European NGO’s influence on safer internet issues.

Commonalities and differences between the countries

When thinking about the influence of NGOs in the area of internet safety it is first worthwhile noting the long tradition of NGOs working on general welfare issues related to children. For organizations which have worked in areas of child protection and welfare, internet safety is to some extent a natural issue to take onboard alongside other issues such as child poverty and violence against children. Out of 14 EU Kids network countries nine report that their NGOs are active in lobbying both government and ISPs to impose more regulation and stricter control on the internet in order to improve children’s safety online. These countries are Austria, Cyprus, Denmark, Iceland, Ireland, Italy, Portugal, Spain and the United Kingdom. Where NGOs are reported to be active in terms of lobbying they invariably seem to target both the government and the ISPs. In five of these countries Austria, Iceland, Ireland, Italy and the United Kingdom the NGOs are also reported to have been successful in influencing legislation or regulation. Moreover, in three of these countries – Austria, Iceland and Italy – the national safety awareness node is run by an NGO.

Hence, it is clear that there are different levels of involvement in EU Kids Online countries ranging from very limited to substantial. At one end of the continuum there are countries like Bulgaria where there are very few examples of NGOs trying to attract the public attention and where the atmosphere in general is not favourable towards regulation. At the other end of the continuum there are countries like the five countries mentioned above where there has been substantial pressure from NGOs towards increased regulation.

Indicators for classifications of the European countries

Based on the country reports it seems meaningful to distinguish between three groups of countries when it comes to the influence of NGOs on legislation and regulation.

Information about how the national awareness nodes are organised combined with the above might provide some further insight into the different cultures at play in the countries. For example, as already noted, in three of the countries where NGOs have actively lobbied for stricter controls and regulation they are also running the national awareness node. Another model is where NGOs are influential but the government runs the awareness node either under the umbrella of the media regulating authorities (as in Denmark, Norway, Sweden, Ireland and Germany) or even connected to the police (as in the UK). A third model is where the government takes the initiative to create some kind of partnership to run the awareness node (as in Cyprus and Portugal). A fourth model is to place the awareness node in the hands of a private company (as in the Czech Republic and in Greece). Then there are interesting exceptions such as Bulgaria and Estonia where there are no official awareness nodes and Slovenia where the awareness node seems to be an academic initiative.

Hypotheses regarding the influence of this contextual factor on safer internet issues

There may be more safety awareness in countries where NGOs are active, and more still in ones where they are active and influential. Due to the lack of proper awareness data for all European countries this hypothesis cannot be checked. Again, the results of the latest Eurobarometer data regarding parents’ worries about online risks (see chapter 2.4) are hardly related to the above classification.

3.3. Public discourses

Media coverage

Sources of information

Since there were no data available to compare media coverage of children and the internet, some EU Kids Online national teams30 conducted a 2 month analysis of selected national newspapers. This project asked a range of questions about the overall tone of the articles (positive or negative), the parts of the internet discussed, the source of the article, whose voice was heard, etc, but the main results discussed here relate to risk. The figures reported are at best broadly indicative since there are some methodological challenges in comparing the very different types of press in these different countries. Risk was analysed using the EU Kids Online grid classifying concern about content, contact and conduct, and also commercial interests, aggression, sexuality or values/ideology.

Commonalities and differences between the countries

One thing that is clear is how varied the media coverage can be in the different countries, both in the statistics and in studies of press coverage of single incidents, reported below. However, grouping countries remains a problem. One clear observation is that common ways to cluster countries do not account for the particular media coverage. In the tables and observations below, we have countries from north and south Europe that are high or low by some criterion. The same is true for internet penetration e.g. the UK and Denmark are in the same group as Portugal and Greece at one point. Media coverage must be driven by other factors. One possibility, beyond what could be achieved in this simple content analysis, is whether there are common patterns of conceptions of childhood that lie behind and are embedded in particular national media coverage. For example, in Norway there is a notion of a ‘natural childhood’, where sexuality is less of a risk while at the same time discussions of children’s rights is strong. Such underlying conceptions may well help to shape the nature of how media engage in the topic of children and the internet.

In all the countries in the table below what was common was the newsworthiness of risks compared to opportunities

29 Author: Kjartan Olafsson.

30 See table 3.10. Bulgaria was also involved but the very low numbers of articles in the sample, reflecting little coverage in that country, mean that its results are not included here.
– in all countries over half of all articles report ed solely risks, the average of all these countries being 64%, i.e. nearly two-thirds. In contrast, at most only a quarter of the media articles covered solely opportunities (i.e. they were all 25% or less) and the average was 18%. Looking in more detail, the most important reason why risks predominate is that the chief source of news in most countries is reporting on crime, mainly related to court cases and police actions.

Within the pattern outlined above there were some outliers:

The countries with a general high level of risk reporting in the media were Portugal (85% of all articles), the UK (77%) and (at face value32) Denmark (76%).

The countries with low levels of opportunity reports were Greece (5%), Portugal, (8%) and the UK (7%)33.

If we then look at the types of risk reported according to the EU Kids Online typology was see the following in table 3.10. Based on table 3.10, we can see the country classification in table 3.11. Arguably the most striking point is that – at face value - different national media have very varied levels of coverage of the three types of risk. Countries low on content risks like Italy can be high on conduct risks, and vice versa if we look at Denmark vs. contact. Or some countries can be high or low for some risks, but be medium for others (in which case, they do not appear in the columns of this table). Hence, media coverage in different countries is sensitising people to different kinds of risk, which may have a bearing on how the degree to which people in different countries think the various risks are prevalent.

Let us look a little deeper at one type of content: that relating to sexuality, which is mainly coverage of pornography on the net. The table is not reproduced here but there was a high interest in sexuality in content in Belgium (42% of all items in the 12 cells of the grid), Greece (39%), Spain (37%), and the UK (36%). In contrast,

32 The problem is that Denmark, after Bulgaria, had the least number of articles reporting children and the internet at all – only 21 articles in the two months. This means that its percentages could be more easily influenced by just a few articles. In addition, the Danish member of EU Kids Online pointed out that at least in some of the articles, when risk was discussed it was not so much as a concern but there was a more reflective discussion of whether it should be a concern, more neutral in tone. This qualitative consideration has to make us cautious in interpreting some of the quantitative data.

33 The reason this is not the same list as the high risk list above is the same as footnote 39 – a few other percent are taken up by these other categories.
interest in this issue is shown to be very low in Norway (6%), Estonia (12%) and Denmark (12%). Apart from the influence of particular national histories (e.g. the paedophile cases in Belgium), this probably reflects different national concerns (at least in the media) about what images of sexuality children should be exposed to. This in turn relates to national conceptions of childhood, as illustrated above in relation to Norway.

Finally it is worthwhile looking behind the figures. During the data collection period there were two international stories which may have helped to shape the above figures, and we can take one of these cases to illustrate this process. A Finnish schoolboy killed his peers and teachers at a school and reported his intentions on the internet. There were also some subsequent related and copycat attempts in different countries. All countries covered this but they did so to different extents.

The Norwegian, Austrian and Italian figures for ‘conduct risks’ are high because they had far more coverage of this one story and subsequent events. This not only influences that particular column but all the other ones – since such a high percentage were about conduct, a lower percentage in those countries were concerned the other risks. So on the one hand the figures are ‘accurate’ in the sense that this was the coverage in the time period. But are they ‘normal’ in the sense that would they have been different if this event had not occurred? In the case of Norway, part of the reason for reporting was that it happened in a neighbouring country and in recent years there had been public discourses about ‘looking to Finnish schools’ because the Finns were performing better than the Norwegians in league tables. In addition one of the copycat attempts was in Norway. All this would make the Norwegian coverage more understandable, and we might speculate that coverage would have been less had the original incident occurred in a different country. But this would not explain the degree of Austrian and Italian reporting. Moreover Estonia also reported the case extensively, but still did not appear high on the conduct criterion.

If we now look at content risks in the media, Portugal and Greece come out high. But both countries (along with Austria) were amongst those with a high proportion of international news stories in general, (including the second international story of a paedophile’s images on children on the internet – this one story boosted the ‘contents’ statistics). So the national press may cover risk stories, but that does not necessarily mean ‘risk in my country’. So the implications might be different from countries were national stories of risk predominated.

In sum, we have a result, but it is almost a starting point for asking how one could take the interpretation of media analysis further. For example, future research might look to see if media analysis of one particular event can reveal culturally/nationally specific characteristics about media coverage/media attention and public discourses.

Hypotheses regarding the influence of this contextual factor on safer internet issues

Parents in the countries with a general high level of risk reporting in the media (Portugal, the UK and Denmark – although see footnotes about the latter), will have a higher perception of risks than the average of all these countries. In countries where press coverage reports considerable concerns about the risks of content online, there will be more parental concern about this issues compared to countries where that particular reporting is low.

The same logic applies to contact and conduct risks.

In countries where the media coverage reports considerable concerns about the risks of content online, children will be more aware of the issues compared to countries where that particular reporting is low.

The same logic applies to contact and conduct risks.

In addition, and not directly derived from the above observations, it may be assumed that the number, strength and vocalness of agents that address the issue of children and online risks (and opportunities) in a country will have an influence on national media coverage as well as parental concerns.

Role of NGOs and related stakeholders in shaping public discourses

In addition (and partly overlapping) to the above section on NGO’s influence on ICT regulation and related politics this section examines to what extent NGOs influence the public discourses on online related risks and opportunities.

Sources of information

There is material in the EU Kids national reports about the role of NGOs in this respect, with data missing only for the Czech Republic and Poland. There are very few data about the activities of French NGOs in the field. However, different national teams have different approaches to the topic and one problem is that in some of the reports the responses strictly follow the questions, in others there is a more narrative response.

Commonalities and differences between the countries

In most of the countries participating in the EU Kids project NGOs have been playing an important role in shaping both the policy and the public opinion. For example, the NGOs in Austria, Belgium, Denmark and Estonia were particularly influential. In Germany NGOs have had many joint initiatives with companies providing internet access and with universities. In Iceland, NGOs speaking with one voice were able to shape the state policy. In Ireland the government already recognizes the child protection practitioners as key stakeholders in the regulation of the internet. In Italy, NGOs have shaped the legislative tools and framework and the public discourse. In the Netherlands, thanks to the NGOs legislation on grooming was adopted. In Norway also, very strong lobbyists promote parental awareness and legislation against grooming.

In Slovenia the Youth council has been influential in shaping the policy of the Office of the Republic of Slovenia for Youth. In Spain the large NGOs working in the field have been instrumental in co-operating with companies providing internet access. In the UK NGOs have been working with media and have been supplying them

34 Author: Jivka Marinova.
regularly with results of different studies. There are some countries where NGOs are not very influential. These are Bulgaria, Cyprus, France, Greece, Portugal and Sweden. However in both Bulgaria and Cyprus as well as in Greece there are awareness nodes and hotlines which are trying to compensate and also NGOs working in the field are getting stronger. In Portugal, although NGOs have a weak influence they managed to attract public attention to the risks of the internet for children. Sweden is out of both categories of countries. Although NGOs do not have big influence there is a strong governmental policy and reliance of the public on State regulation for protection.

The main commonalities consist in target groups: in almost all countries NGOs are focusing on raising the awareness of parents and children and to a lesser extent they target the service providers. Another commonality is that very few NGOs deal only with safer internet issues. Most of those working on this topic are NGOs working closely with national child protection agencies and more generally consist of child protection organisations and to some extent parents’ organisations as well. Mainly NGOs are running the awareness nodes and the help lines.

Indicators for classifications of the European countries

Since the accounts provided in the reports are very uneven – some being detailed, some providing an overview –, it is difficult to define criteria for classifying countries. Potential meaningful classifications would be countries with and countries without awareness nodes and helplines/hotlines.

Hypotheses regarding the influence of this contextual factor on safer internet issues

One hypothesis would be that in countries without awareness nodes, safety awareness would be lower. Due to the lack of proper awareness data for Europe, this hypothesis cannot be analysed empirically.

Key Events

Sources of information

There are no comparable data on major key events, which shaped the public discourse on safer internet issues in Europe.

Commonalities and differences between the countries

In some respects this section provided a chance to discuss media coverage more generally, given that there was no place to volunteer comments under the media heading because this is being handled by a separate project. Hence the Czech, Greek and Irish contributions reflected critically on the national media in general, while the Estonian reported details of the different types of media stories covered there.

In terms of events, it is easiest to look at what is common. In many countries there seems to be ongoing media coverage of crime relating to children and the internet, especially those concerning paedophiles. Some nation teams reported this generally (Austria, Cyprus, Estonia, France, Norway, Portugal and the UK), while others gave several particular examples (Greece and Ireland and Poland). It is clear from the media analysis project that even if the national teams did not mention crimes under ‘key events’, reporting of such crimes nevertheless takes place in their media (e.g. Spain and Bulgaria). In other words, the type of ‘event’ that helps to maintain awareness in this area is the ongoing reporting of crimes. Sometimes it is the police operations themselves (e.g. Austria and Poland) that gain visibility for this field.

In some case we have examples where particular high profile ‘crimes’ or ‘anti-social behaviour’ have generated public discussions, as in the school killings in Germany and Finland – the latter generating a major set of debates in Estonia (as was also clear from the media analysis). In Slovenia a particular positing of youth misbehaving in school was the key event, while in France and Italy it was (separate) cases of happy-slapping. So in addition to more general reporting of crimes, these specific ‘crimes’ or ‘anti-social behaviour’ can also be very salient. The Portuguese case of the disappearance of the McCann girl shows how a crime that in itself did not involve the internet can nevertheless raise wider debates about children online. A more general discussion of the internet also emerged in Estonia after the Finnish school massacre, which once again shows the power of crimes to frame and evoke discussions.

In a few countries it was events such as conferences (Bulgaria, Greece), projects (Estonia, Norway), campaigns (Iceland) and even the Safer Internet Day itself (Bulgaria, the Netherlands, Spain) that were reported. In the majority of countries, such events clearly did not immediately come to mind as ‘key events’.

Indicators for classifications of the European countries

The differences across countries lie in relation to the influence of ‘positive’ events, and certainly there is no clear pattern as regards geography (e.g. North-South/East-West, GDP or the length of time that the internet has been established). At best you could say that teams from the larger countries (in terms of population) did not mention such positive events.

Hypotheses regarding the influence of this contextual factor on safer internet issues

From a more general knowledge of the national reports and past comments about Safer Internet Day in particular, it looks as if it is more common for positive initiatives such as conferences, projects, campaigns and Safer Internet Day to be influential in those countries and at that point in time when there was previously little awareness of risks. For example, nowadays Safer Internet Day gets little media coverage in the UK, and the Norwegians have pointed out that the same is true there given that the issues have by now been in the public eye for a few years.

35 Author: Leslie Haddon.
3.4. Values and attitudes

Sources of information
The European Values Survey (EVS) provides a reliable pan-European source of data on adults’ values, informed by Inglehart’s analysis of value orientations (Inglehart and Baker, 2000). This analysis has been used to characterise countries according to their relative endorsement of individualistic and collectivist values. Thus, people in individualistic cultures engage in open interpersonal emotional expression in order to attain their personal well-being, and have a need for autonomy, independence and individuality. Collectivism has been conceptualized as a worldview in which group membership occupies a central place and the importance of self is only peripheral. Hence people in collectivist cultures restrain their personal emotional expressions and emphasise obedience and unselfishness in relationships.

Commonalities and differences between the countries
The classification of countries is based on adults’ answers to eleven values measured in the EVS: the importance of good manners, independence, hard work, responsibility, imagination, tolerance and respect, thrift and saving money, determination and perseverance, religious faith, unselfishness, and obedience.

While the differences are a matter of degree, a classification of countries is possible on this basis.

Indicators for classifications of the European countries
Using the EVS data from 2000, Kirwil (2008) conducted a factor analysis in order to classify the EU Kids Online countries according to their value orientations. Two independent factors were identified, which can be interpreted as individualistic and collectivistic orientation. As table 3.12 shows, the countries differ quite substantially with regard to these two dimensions.

On the basis of the countries’ values on these two factors four clusters were identified:

- High/Moderate Individualism and Moderate Collectivism: UK, Ireland, Belgium
- Low individualism and Moderate Collectivism: Poland, Bulgaria, Estonia, Portugal, and Czech Republic
- Moderate Individualism and Low Collectivism: Austria, Germany, Slovenia, Spain, Iceland, Italy, France and Greece
- High Individualism and Low Collectivism: Denmark, Sweden, Netherlands.

To a great extent, the groups obtained follow the structure proposed by Inglehart and Baker (ibid) for:

- Group 1: English speaking countries plus Belgium
- Group 2: Ex-communist countries, though Portugal is also included here
- Group 3: Catholic Europe
- Group 4: Protestant Europe

The group values on the two dimensions are shown in the table below (Table 3.13).

<table>
<thead>
<tr>
<th>Values Dimension</th>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
<th>Cluster 4</th>
<th>Total Sample of 17 European Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individualism</td>
<td>0.67</td>
<td>-1.06</td>
<td>0.33</td>
<td>1.38</td>
<td>0.15</td>
</tr>
<tr>
<td>Collectivism</td>
<td>0.36</td>
<td>0.23</td>
<td>-0.52</td>
<td>-1.03</td>
<td>-0.29</td>
</tr>
</tbody>
</table>

Table 3.13: Country clusters according to value orientation

<table>
<thead>
<tr>
<th>Countries</th>
<th>Individualistic Values Orientation</th>
<th>Collectivistic Values Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>0.669</td>
<td>-1.035</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.344</td>
<td>0.183</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>-1.195</td>
<td>0.227</td>
</tr>
<tr>
<td>Cyprus</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>-0.609</td>
<td>-0.087</td>
</tr>
<tr>
<td>Denmark</td>
<td>1.757</td>
<td>-1.030</td>
</tr>
<tr>
<td>Estonia</td>
<td>-1.208</td>
<td>0.191</td>
</tr>
<tr>
<td>France</td>
<td>-0.091</td>
<td>-0.040</td>
</tr>
<tr>
<td>Germany</td>
<td>0.456</td>
<td>-0.983</td>
</tr>
<tr>
<td>Greece</td>
<td>-0.130</td>
<td>-0.070</td>
</tr>
<tr>
<td>Iceland</td>
<td>0.364</td>
<td>-0.580</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.538</td>
<td>0.274</td>
</tr>
<tr>
<td>Italy</td>
<td>0.171</td>
<td>-0.140</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.987</td>
<td>-0.899</td>
</tr>
<tr>
<td>Norway</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Poland</td>
<td>-1.429</td>
<td>0.470</td>
</tr>
<tr>
<td>Portugal</td>
<td>-0.840</td>
<td>0.339</td>
</tr>
<tr>
<td>Slovenia</td>
<td>0.629</td>
<td>-0.264</td>
</tr>
<tr>
<td>Spain</td>
<td>0.416</td>
<td>-0.672</td>
</tr>
<tr>
<td>Sweden</td>
<td>1.403</td>
<td>-1.162</td>
</tr>
<tr>
<td>UK</td>
<td>0.998</td>
<td>0.534</td>
</tr>
</tbody>
</table>

Table 3.12: Country variation in value orientation

36 Author: Lucyna Kirwil
Hypotheses regarding the influence of this contextual factor on safer internet issues

It seems plausible that the value orientation typical of a country might influence parental strategies in mediating their children’s internet use. For example, monitoring the child is one of the most accepted parental techniques in socialisation of a child, and assumes that the child is not directly controlled by the parent. Hence it may be hypothesised that this approach would be preferred by parents with an individualistic values orientation. Parents from collectivistic countries may be expected to mediate the internet in a more direct, interactive way than parents in individualistic countries, who may prefer more efficient but indirect parenting (e.g. abstract rule setting). At the same time, children from collectivistic cultures should maintain harmonious relationships by not contradicting parents when compared to children from individualistic cultures. Therefore direct interpersonal parental mediating of the internet should be more efficient in collectivistic countries than in individualistic countries.

Other hypotheses could be formulated. Given the widely acknowledged importance of cultural values, including as a potential influence on parenting and socialisation practices, these country classifications are surely worth pursuing in further research.

3.5. Educational system

General literacy of the population

Sources of information

OECD data is available showing the educational attainment of the adult population.

Commonalities and differences between the countries

General literacy rates in most of the 21 European countries are generally high. From northern to southern Europe, from Eastern to Western Europe, all countries show a literacy rate of at least 90%.

Nevertheless, in some countries this optimistic scenario is contested. On one hand, official statistics are not without inaccuracies, thus being disputed by alternative data (e.g. in the UK). On the other hand, functional illiteracy is usually unnoticed in most reports based on official data. Some countries (e.g. Ireland, UK and Belgium) have clearly pointed out this problem.

Although the basic level of literacy and primary education is found in most countries, secondary education, and even more so higher education, is less frequent (HE is 10% to 20%, depending on country). This is why for some education may still be considered more “elitist” than “mass”. Nevertheless, most countries reported considerable growth participation in higher education. If we look closer at the educational level achieved by the adult population for each country (Table 3.14) the above scenario becomes less bright. There are clear differences between countries, just as there are some similarities.

<table>
<thead>
<tr>
<th>Country</th>
<th>Pre-primary and primary education</th>
<th>Secondary education</th>
<th>Post-secondary non-tertiary education</th>
<th>Tertiary education</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>Austria</td>
<td>-</td>
<td>19</td>
<td>54</td>
<td>9</td>
</tr>
<tr>
<td>Belgium</td>
<td>15</td>
<td>18</td>
<td>33</td>
<td>2</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Cyprus</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>-</td>
<td>10</td>
<td>77</td>
<td>-</td>
</tr>
<tr>
<td>Denmark</td>
<td>1</td>
<td>16</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Estonia</td>
<td>1</td>
<td>10</td>
<td>49</td>
<td>7</td>
</tr>
<tr>
<td>France</td>
<td>14</td>
<td>19</td>
<td>42</td>
<td>-</td>
</tr>
<tr>
<td>Germany</td>
<td>3</td>
<td>14</td>
<td>52</td>
<td>6</td>
</tr>
<tr>
<td>Greece</td>
<td>29</td>
<td>11</td>
<td>32</td>
<td>7</td>
</tr>
<tr>
<td>Iceland</td>
<td>3</td>
<td>28</td>
<td>36</td>
<td>3</td>
</tr>
<tr>
<td>Ireland</td>
<td>17</td>
<td>18</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>Italy</td>
<td>17</td>
<td>32</td>
<td>37</td>
<td>1</td>
</tr>
<tr>
<td>Netherlands</td>
<td>8</td>
<td>21</td>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td>Norway</td>
<td>-</td>
<td>22</td>
<td>41</td>
<td>4</td>
</tr>
<tr>
<td>Poland</td>
<td>-</td>
<td>15</td>
<td>65</td>
<td>4</td>
</tr>
<tr>
<td>Portugal</td>
<td>59</td>
<td>15</td>
<td>63</td>
<td>1</td>
</tr>
<tr>
<td>Slovenia</td>
<td>2</td>
<td>17</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>Spain</td>
<td>24</td>
<td>27</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Sweden</td>
<td>7</td>
<td>10</td>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>-</td>
<td>14</td>
<td>56</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3.14: Country variation in educational attainment: adult population (2005)

25-64 year old by highest level of education attained (%)

Source: adapted from OECD, Education at a glance (OECD, 2007).

n.a. = Not available.

37 Author: José Alberto Simoes.
• In contrast, in Northern European countries (Norway, Denmark, and the UK), Eastern European countries (Czech Republic, Poland, and Estonia), and central European countries (Germany and Slovenia), only a small proportion (less than 3%) of their adult population has never achieved more than primary education.

• Ireland, Italy, Belgium, France, and the Netherlands, scattered from north to south of Europe, remain in an in-between position.

Participation in tertiary education generally reaffirms the previous interpretation. The countries that show lower rates of only pre-primary and primary education are the ones that, conversely, show higher rates of participation in tertiary education.

• Apart from Belgium (central Europe) and Estonia (north-eastern Europe), we should note that all the countries that stand out as being above average (25.4%) are located in northern Europe: Denmark, Norway, Iceland, Netherlands, Sweden, and UK (all with 30% or more). Ireland remains slightly below that figure (29%).

The above rule comes, however, with some exceptions:

• Despite the fact that Portugal presents the highest rate of people with only the basic level of education, as regards tertiary education the country is not at the bottom of the scale (21%). We might say the same (with a smaller discrepancy) of Spain’s tertiary achievement rate (28%).

• Other countries remain exceptions but for the opposite reason: their tertiary rate is far lower than would be expected given their attainment beyond primary education. This applies to the Czech Republic, Italy (both 13%), Poland (17%) and Austria (18%). Secondary education, however, seems to have great importance in those countries.

The above tendencies are noticed but not really explained. Thus we have to take into consideration other social indicators and especially elaborate on contextual factors that might clarify the pattern described. In the following sections we will try to introduce some comments as well as other figures that might help us accomplish this task.

Hypotheses regarding the influence of this contextual factor on safer internet issues

One hypothesis would be that there would be lower safety awareness in countries where the educational level was lower – especially where a higher proportion experience only primary education. Beyond that a low level of education might result in many parents not being able to help their children when using the internet. For the specific case of Portugal it has been shown in chapter 2.1 that Portuguese adults are very unlikely to use the internet and that one fifth of the young internet users in Portugal uses online media while their parents do not (see Table 2.1).

The education of the parents’ generation

Sources of information

OECD data is available showing the educational attainment of the adult population.

Commonalities and differences between the countries

All social activities are a product of particular historical circumstances. Education is no exception. Generational differences in educational patterns indicate more general social transformations that have occurred in each country. That is particularly the case of countries that have experienced a considerable expansion of their educational systems in the last decades.

In the section on literacy and general education we examined educational attainment by level of education. This gave us some idea of general levels of education at a given point in time. In this section we would like to consider generational differences in order to compare the parents’ generation with their children’s present experience.

It should be noted here however that our chronological references are somewhat vague on this point. Each country reported their generational changes with specific data sources and criteria, thus making comparisons difficult. In fact, to answer truthfully the above question we would have to consider the following problem: since children from the same generation (i.e. born approximately in the same period of time) might have parents with different ages (and therefore from different generations), how do we establish which generations to compare? To be more exact, how do we measure “parent’s generation”? At what date/period of time do we start? This is the first decision to make. Another option would be to consider the education level of the parents of children/young people surveyed at a given moment in time.

Since we do not really have longitudinal data referring to exactly the same children that have built our interpretation of change on the basis of age differences examined at a given moment (which might tell us something retrospectively about each generation).

In order to simplify this analysis, we will focus on tertiary education. More specifically we will be considering tertiary level of education attainment by age group in each country (Table 3.15) as a specific indicator of the educational achievement of diverse generations.

Except for Germany, in all countries the older one gets the less one is expected to attain a tertiary education. This tendency is important not because it reveals age differences but because it gives you an idea about generational differentiation. Younger people are more likely to proceed to tertiary education than their parents did. In fact, almost all percentages decrease linearly from younger age groups to older ones. This is quite obvious in some countries, since the distance in educational achievement between younger and older age groups is rather accentuated. Even though virtually all countries show the same tendency, there are considerable divergences among them in what concerns the degree to which this is discernable.
Indicators for classifications of the European countries

- Spain, Belgium, Portugal, France and Ireland are amongst the countries with the highest variation between age groups. Spain and Belgium have almost twice the proportion of people in the youngest age group in tertiary education compared to the older group. As for the other countries, they all have at least one and half times the proportion of 25-35 years old as compared to 55-64 years old.

- In the case of Greece, Italy and Poland the proportion 25-34 years old is at least once more than the proportion found on the oldest group.

- Estonia, Czech Republic, Austria, the UK, Sweden, Denmark, the Netherlands and Slovenia, they all show smaller differences between the oldest and youngest age groups, in some cases practically unnoticeable (e.g. Estonia).

Table 3.15: Country variation in the proportion of the population that has attained tertiary education by age group (2005) (%)

<table>
<thead>
<tr>
<th>Country</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55-64</th>
<th>25-64</th>
<th>Ratio of the variation between the youngest and the oldest age group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>20</td>
<td>19</td>
<td>17</td>
<td>14</td>
<td>18</td>
<td>0.4</td>
</tr>
<tr>
<td>Belgium</td>
<td>41</td>
<td>33</td>
<td>27</td>
<td>14</td>
<td>31</td>
<td>1.9</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Cyprus</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>14</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>13</td>
<td>0.3</td>
</tr>
<tr>
<td>Denmark</td>
<td>40</td>
<td>35</td>
<td>32</td>
<td>27</td>
<td>34</td>
<td>0.5</td>
</tr>
<tr>
<td>Estonia</td>
<td>33</td>
<td>36</td>
<td>35</td>
<td>29</td>
<td>33</td>
<td>0.1</td>
</tr>
<tr>
<td>France</td>
<td>39</td>
<td>25</td>
<td>18</td>
<td>16</td>
<td>25</td>
<td>1.4</td>
</tr>
<tr>
<td>Germany</td>
<td>22</td>
<td>26</td>
<td>26</td>
<td>23</td>
<td>25</td>
<td>0.0</td>
</tr>
<tr>
<td>Greece</td>
<td>25</td>
<td>26</td>
<td>19</td>
<td>12</td>
<td>21</td>
<td>1.1</td>
</tr>
<tr>
<td>Iceland</td>
<td>36</td>
<td>34</td>
<td>29</td>
<td>21</td>
<td>31</td>
<td>0.7</td>
</tr>
<tr>
<td>Ireland</td>
<td>41</td>
<td>30</td>
<td>22</td>
<td>17</td>
<td>29</td>
<td>1.4</td>
</tr>
<tr>
<td>Italy</td>
<td>16</td>
<td>13</td>
<td>11</td>
<td>8</td>
<td>12</td>
<td>1.0</td>
</tr>
<tr>
<td>Netherlands</td>
<td>35</td>
<td>30</td>
<td>30</td>
<td>24</td>
<td>30</td>
<td>0.5</td>
</tr>
<tr>
<td>Norway</td>
<td>41</td>
<td>35</td>
<td>30</td>
<td>24</td>
<td>33</td>
<td>0.7</td>
</tr>
<tr>
<td>Poland</td>
<td>26</td>
<td>16</td>
<td>12</td>
<td>13</td>
<td>17</td>
<td>1.0</td>
</tr>
<tr>
<td>Portugal</td>
<td>19</td>
<td>13</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>1.7</td>
</tr>
<tr>
<td>Slovenia</td>
<td>25</td>
<td>21</td>
<td>17</td>
<td>16</td>
<td>20</td>
<td>0.6</td>
</tr>
<tr>
<td>Spain</td>
<td>40</td>
<td>30</td>
<td>22</td>
<td>14</td>
<td>30</td>
<td>1.9</td>
</tr>
<tr>
<td>Sweden</td>
<td>37</td>
<td>28</td>
<td>28</td>
<td>25</td>
<td>30</td>
<td>0.5</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>35</td>
<td>30</td>
<td>28</td>
<td>24</td>
<td>30</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Source: adapted from OECD, Education at a glance (OECD, 2007).

n.a. Not available. (1) Difference between the age group 25-35 and the age group 55-64 divided by 55-64. Not available on the original table.

By taking tertiary education as an indicator of the transformations undergone by the educational system of each country and most of all as an indicator of generational differentiation in learning opportunities, it has become apparent that there are dissimilar speeds and degrees of change. Some countries started their shift toward the generalisation of schooling and of higher education in particular at an earlier stage, while in others this is a relatively recent process.

However, the expansion of the educational system and in particular of higher education between generations is not synonymous with “democratisation”. For instance, the expansion of higher education does not mean that everyone has the same chance of entering the system.\(^{38}\) So, social inequalities tend to reproduce themselves not only with regard to accessing higher levels of education, but also in the internal differentiation within the system itself. This has been noted by teams in countries such as Greece and Portugal in their country reports.

The Eurostudent report (2005) provides some indicators that are helpful for understanding socio-economic differences, even though only a small group of European countries (10) is considered. These indicators examine differences in the socio-economic status of higher education students by their fathers’ educational background. “In many countries, students are substantially more likely to be in higher education if their fathers completed higher education. Students from such a
background are more than twice as likely to be in higher education in Austria, France, Germany, Portugal and the United Kingdom than are students whose fathers did not complete higher education. In Ireland and Spain this ratio drops to 1.1 and 1.5, respectively."

According to the same report, “inequalities in previous schooling are reflected in the intake of students from less advantaged backgrounds. Countries providing more equitable access to higher education – such as Finland, Ireland and Spain – were also the countries with the most equal between-school performances in PISA39 2000” (Eurostudent Report, 2005).

Consequently, if on the one hand the educational system contributes to engender expectations regarding equal opportunities and social mobility, on the other hand it appears that the system is functioning as a ground for cultural reproduction and the perpetuation of social inequalities40. So the question is how accessing the school system, in all its stages, might reflect and reinforce social inequalities.

Hypotheses regarding the influence of the contextual factors on safer internet issues

One hypothesis is that there would be greater safety awareness in countries where the older/parents’ generation had a higher level of education.

The differences with regard to the role of parents’ education and social background for the education of their children might explain some of the (unsystematic) observations concerning the role of socio-economic status on children’s online opportunities and risks.

Education for today’s children

Sources of information

The following overview is based on EU Kids Online national reports.

Commonalities and differences between the countries

One way or another, all countries seem to have experienced changes in their educational systems in the past decades, both quantitatively and qualitatively. Some structural transformations took place, first of all through the longer participation in schooling for bigger parts of the population, but also through changes in curricula and educational methods. More subjects, both diversified and updated, are now offered to students, consequently presenting more choices. Several innovations have been introduced, such as new pedagogies, new learning tools and methods. New technological tools have been adopted (including the internet and other ICTs), which ultimately lead to a sense that the educational system seem to have become more open and dynamic. If these tendencies are to some extent general their adoption, they have occurred at different paces in different countries. For instance,

Nordic countries have experienced an earlier expansion of their educational system, while in southern Europe this happened latter. Meanwhile, Eastern countries were relatively “closed” until recently, while most of western countries have “opened up” long before.

From a subjective point of view, the level of expectations seems to be higher now than before. This is explained in part because the investment in education has grown considerably at all levels, but also because the role assigned to education seems to be more important than ever.

One of the most obvious transformations that educational systems have undergone is their growth. Not only has the number of students taking part in compulsory education increased but also this has occurred at all other levels of education41. However, there is a more general problem regarding not only the development of all levels of education but their actual configuration and meaning. This has been formulated in discussions of the degree to which may we talk about the “democratisation” of the educational system. Is today’s education less “elitist” than it was before? Taking several of the indicators that have been examined as evidence the answer should be affirmative. But even so this does not mean that, as discussed in the previous section, social differentiation has disappeared completely. This is particularly the case of countries in which socio-economical inequalities are evident, since this is one of the mechanisms that explain access to the system.

The discussion of whether a particular educational system is “elitist” or “mass” is more complex than appears at first and may be considered at different levels of education. In the compulsory system, social inequalities regarding access have mainly been discussed in terms of the right to attain a basic education (which has been recognized legally in a minimum years of schooling). On the other hand, as regards tertiary education, access itself is selective, not only because certain schools have a better reputation than others but also because the system itself leaves a number of potential candidates behind. In this case we may say that the system (or at least part of it) is intrinsically discriminatory. Nevertheless, even in countries where the educational system is (or has been for quite some time) apparently more selective than in others social differentiation is becoming somehow mitigated by the lengthening of schooling. This is true in all levels of education but most of all in higher education.

In countries that have experienced in the past decades a shift from what might be called “closed” societies to “open” others, through more or less profound political, cultural and economical transformations, perceptions of change in the educational system is somehow obvious. This is the case of former communist countries (e.g. Bulgaria, Czech Republic, Estonia), but also in southern European countries deprived of democracy until the mid 70’s, like Portugal and Spain. Besides these structural transformations there are other changes more specific to

39 Programme for International Student Assessment.

40 This is the classical thesis, among other authors, of the French sociologist Pierre Bourdieu (Bourdieu and Jean-Claude, 1964; Bourdieu and Jean-Claude, 1970).

41 The number of students at each level of education, the minimum (compulsory) years of schooling and extended hours spent in school are some of the indicators that might be considered to illustrate this point.
the educational system which occurred in the last two to three decades that should be mentioned.

In spite of the particular configuration that all these transformations assume in each country there are commonalities worth mentioning. We may sum up these changes in just a few key dimensions:

School programs and resources

- The general transformation of curricula (from primary to tertiary education), including diversification of choices, new subjects, etc.
- Media and ICTs used for learning and as taught subject (both specific and common).
- New pedagogies (new teaching methods, learning objectives, etc.)

Organisation of schools and institutional change

- General modification in students and teachers roles
- Weakening of authority of schools as regards students’ behaviour
- Decrease of school control over students (both as source of discipline and in terms of having a monopoly on knowledge).

Number and type of schools offered

- Specialisation and diversification of schools (more or less at all levels of education)
- Emergence of private schools at all levels of education (thus introducing further differentiation in to the system).

Expectations about the role of education

- More investment in children’s and young people’s education (perceptible, for instance, through parents’ concern and engagement in their children’s education)
- Importance assigned to education as a way to insure one’s future (particularly evident if we compare the children’s generation with their parents)

In spite of these modifications some countries have reported evident continuities, in some cases in a positive way (e.g. Iceland), in other cases in a negative way (e.g. Greece). In the first case this is because some countries start off from a more favourable position, differences between generations are less strong, since some of the goals of greater participation have already been attained. In the second case this is precisely because some of the above innovations are far from being fully accomplished. Pedagogical methods have not been altered in a revolutionary way. The same may be said about the way objectives are defined and evaluation methods are applied. In some of these countries diversification of curricular choices is not seen as an entirely good thing, since it may lead to fragmentation and dispersion. On the other hand, as noted previously, class based differentiation (grounded on socio-economic differences) has not been completely eradicated (and there is no reason to believe that will be in the near future), so education is far from fulfilling the utopian society, based on knowledge and information, aspired to by some.

In sum, economical, political, cultural and social contexts still matter and may explain a lot. An adequate explanation of the implications from the above observations is beyond our ambition in this overview. It is only possible to point out some dimensions that might be important in order to understand these variations.

Indicators for classifications of the European countries

Although there are similarities (and differences) outlined above, it was not possible to construct a classification system that would differentiate among the EU Kids Online countries.

Hypotheses regarding the influence of this contextual factor on safer internet issues

Without a classification system, it was not possible to develop hypotheses.

The technical infrastructure of schools

Sources of information

Commonalities and differences between the countries

As noted earlier, one of the areas where educational systems have changed considerably in the past years is in terms of investment in the technological infrastructure of schools. Government investment in ICTs has grown considerably in all countries over the last few years. In some cases specific organisation were created to implement the use of the internet and other technologies in schools (e.g. Becta in the UK).

In addition, several attempts have been made to promote computer literacy among children (see next section). In fact, almost all countries mentioned the importance of ICTs, not only as tools for learning but also as an area of concern regarding younger generations.

Even though almost every school is connected to the internet in most countries, the number of computers per student is not as high as we would have thought, even if we may note a clear variation according to the level of education (generally in higher levels of education there are more computers per student).

According to available data (Eurydice, 2005), there are slightly differences if a child attends the public sector or a private school. Computer facilities in private schools are better in countries were schools are largely founded by tuition fees.

Considerable changes have been noted as regards the computerisation of schools in European Union countries (e.g. Greece, Poland and Portugal) over the past few years. All these countries have achieved a level of at least one computer for every 20 students. In the majority of EU countries, however, the current level is one computer for

42 Besides differences by country it would be necessary to note specific consequences at each level of education.
every ten pupils – or even for every five pupils (Eurydice, 2005)\(^43\).

The number of schools with internet access has also increased significantly (see table 3.16) Data from the Pisa survey 2003 (ibid) reveal that on average at least 60% of schools have computers connected to the internet.

Indicators for classifications of the European countries

Looking at table 3.16, we may confirm a previous observation. All countries have experienced clear growth.

<table>
<thead>
<tr>
<th>Country</th>
<th>2000</th>
<th>2003</th>
<th>Variation rate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>69.3</td>
<td>87.3</td>
<td>26.0</td>
</tr>
<tr>
<td>Belgium</td>
<td>47.2/-/42.6**</td>
<td>65.2/71.6/79.8**</td>
<td>38.1/-/87.3</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>28.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cyprus</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>39.8</td>
<td>79.8</td>
<td>100.5</td>
</tr>
<tr>
<td>Denmark</td>
<td>65</td>
<td>87.8</td>
<td>35.1</td>
</tr>
<tr>
<td>Estonia</td>
<td>40.7</td>
<td>79.3</td>
<td>94.8</td>
</tr>
<tr>
<td>France</td>
<td>26.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Germany</td>
<td>37.7</td>
<td>70.7</td>
<td>87.5</td>
</tr>
<tr>
<td>Greece</td>
<td>26.4</td>
<td>69.2</td>
<td>162.1</td>
</tr>
<tr>
<td>Iceland</td>
<td>82.6</td>
<td>95.7</td>
<td>15.9</td>
</tr>
<tr>
<td>Ireland</td>
<td>46.6</td>
<td>67.4</td>
<td>44.6</td>
</tr>
<tr>
<td>Italy</td>
<td>24.1</td>
<td>70.8</td>
<td>193.8</td>
</tr>
<tr>
<td>Netherlands</td>
<td>49.8</td>
<td>81.2</td>
<td>63.1</td>
</tr>
<tr>
<td>Norway</td>
<td>35.3</td>
<td>82.7</td>
<td>134.3</td>
</tr>
<tr>
<td>Portugal</td>
<td>35.3</td>
<td>60.4</td>
<td>71.1</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Not available</td>
<td>-</td>
<td>Not available</td>
</tr>
<tr>
<td>Spain</td>
<td>40.7</td>
<td>79.3</td>
<td>94.8</td>
</tr>
<tr>
<td>Sweden</td>
<td>74.3</td>
<td>91.9</td>
<td>23.7</td>
</tr>
<tr>
<td>UK</td>
<td>53.8/-/30.9/37.8***</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3.16: Country variation in the average proportion of computers with internet connection in schools attended by students aged 15, public and private sectors combined

* Not available on the original table.
** Respectively: French Community/ German-speaking Community/ Flemish Community.
*** Respectively: England/ Wales/ Northern Ireland/ Scotland.

In some cases rate of change is quite astonishing: Italy has almost twice as much schools connected to the internet in 2003 than in 2000; Greece has one and half times more schools connected to the internet; Poland almost one and half times; the Czech Republic doubled its proportion. The only countries that do not show significant growth are the ones that already had high proportions of internet connection (e.g. Iceland and Sweden).

On the other hand, as several countries reports have pointed out, internet penetration is not the same as actual use. Most students cannot use internet at schools without some kind of control by adults. Even in tertiary education access is not completely without restrictions. The importance of some kind of mediation from the school system is particularly evident when it comes to internet use by children.

Hypotheses regarding the influence of this contextual factor on safer internet issues

There are so many factors at work here (level of internet access in school, level of growth, restrictions on use) that ‘simple’ hypotheses might be inappropriate.

Internet and media education

Sources of information

There are no comparable data.

Commonalities and differences between the countries

Logically, internet and media education should be complementary to the technological infrastructure of schools. However, regardless of how obvious this may seem investment in the technological infrastructure of schools is not always followed by corresponding investment in ICT education.

We should differentiate, however, general use of ICTs and other media as tools for learning from ICTs and media as subjects on the official curriculum. The first case includes informal ICT and other media learning, while the second case is related to formal learning about these technologies, whether as specific subjects or as cross-curricular subject (common to several courses).

Except for Bulgaria, Cyprus and Sweden, all other countries reported that ICT learning is part of the curricula (both in primary and secondary levels of education). In most countries ICT learning constitutes an autonomous subject. Only in a few countries it is just a cross-curricular subject.

Media and internet education in schools is connected mainly with government’s engagement in promoting technological literacy. Nonetheless, ICTs’ presence in the curricula does not cover all official initiatives concerning this matter. Other institutional programmes regarding ICT education are also mentioned by some country teams (e.g. Belgium, Cyprus\(^44\), Greece, Denmark and Estonia).

It is difficult to assess if media education is part of national curricula or even a real educational concern since most country teams did not answer this question specifically. In fact, only six countries reported any specific concern for media education in the curriculum (Austria, Czech Republic, Estonia and Iceland), which is not conclusive.

Being able to know which countries have (or do not have) internet and media education in their schools’ curricula is one thing. Knowing what type of education we are talking about is another. Learning how to use a computer is not

\(^{43}\) Based on OECD data from Pisa 2000 and 2003 projects. For more information, go to http://www.oecd.org/pages/0,3417,en_32252351_32236130_1_1_1_1_00.html. See Annex Table 3.a with data based on each country report.

\(^{44}\) In this case this is particularly important since ICT learning is not part of the curriculum.
only a matter of expertise. It is also a matter of knowing the implications of different kinds of usage. Some countries’ reports have shown concern about ICT education being too technical (e.g. Ireland and Iceland) and not really concerned about risks and opportunities of the internet and other ICTs.

Indicators for classifications of the European countries

Although we have some indications of similarities and differences (see table 3.17), there is incomplete information on which to classify countries into groups.

Hypotheses regarding the influence of this contextual factor on safer internet issues

In principle, in countries with more internet and media education one might expect more safety awareness, but as noted above, that depends on what is taught under these headings.

<table>
<thead>
<tr>
<th>Country</th>
<th>ICT learning in schools curricula</th>
<th>Other initiatives regarding ICT use</th>
<th>Media education in curricula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Yes</td>
<td>Not mentioned</td>
<td>Yes, in all subjects</td>
</tr>
<tr>
<td>Belgium</td>
<td>Yes, in both primary and secondary levels</td>
<td>ICT Knowledge centres (for students, teachers, unemployed)</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Cyprus</td>
<td>No</td>
<td>Cyber Ethics events</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Yes, in secondary level</td>
<td>IT training of teachers, IT as optional subjects for secondary grade</td>
<td>Yes</td>
</tr>
<tr>
<td>Denmark</td>
<td>Yes, in both primary and secondary levels</td>
<td>ICT educational programmes</td>
<td>Yes, courses in media education and upper secondary</td>
</tr>
<tr>
<td>Estonia</td>
<td>Yes, cross-curricular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>Yes, in primary and secondary levels (B2i - Brevet Informatique et internet, since 2000)</td>
<td>Not mentioned</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Germany</td>
<td>Yes (but technical)</td>
<td>Not mentioned</td>
<td>No</td>
</tr>
<tr>
<td>Greece</td>
<td>Yes, in primary (since 2001)</td>
<td>Yes, Greek School Network Learning material from the portal of MoE</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Iceland</td>
<td>Yes</td>
<td>Not mentioned</td>
<td>Yes, with ICT</td>
</tr>
<tr>
<td>Ireland</td>
<td>Yes, cross-curricular in primary level and specific subject in secondary level</td>
<td>Not mentioned</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Italy</td>
<td>Yes, in primary and secondary levels</td>
<td>Not mentioned</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Netherlands</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Norway</td>
<td>Yes, cross-curricular in primary level and specific subject in secondary level</td>
<td>Not mentioned</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Poland</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Portugal</td>
<td>Yes</td>
<td>Not mentioned</td>
<td>No</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Yes, cross-curricular in secondary levels</td>
<td>Not mentioned</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Spain</td>
<td>Yes</td>
<td>Not mentioned</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Sweden</td>
<td>No</td>
<td>Not mentioned</td>
<td>Not specifically</td>
</tr>
<tr>
<td>UK</td>
<td>Yes</td>
<td>Not mentioned</td>
<td>Not mentioned</td>
</tr>
</tbody>
</table>

Table 3.17: Country variation in ICT and Media Education in schools

Source: Based on national reports.

3.6. Background factors

Levels of social change

Sources of information

There are no comparable data.

Commonalities and differences between the countries

It is of course difficult to identify the most important or most substantial social change both nationally and internationally. Certain themes are, however, recurrent in many national reports. The state of the economy is one and many of the countries represented in the EU Kids network have experienced rapid economic growth over the past decade or so. This applies for most of the eastern European countries but also for others - for example, the UK, Spain, Portugal, Ireland and Iceland. Demographics is another area where many countries have experienced change, with a substantial inflow of migrants. This is the case, for example, for Greece, Iceland, Ireland and the UK.

45 Authors: Kjartan Olafsson, Katja Segers, Liza Tsaliki.
Another significant demographic change is the diminishing fertility rate, as for example in Austria and Bulgaria. Culture is mentioned in some national reports but not as the most substantial change. Cultural change is an important theme in many former eastern European countries that have experienced the change from communism to capitalism. This change is of course not merely an economic change. Linked to that is the change in Portugal and in Spain from dictatorships to democracies.

Indicators for classifications of the European countries

Enthusiasm and support for anything related to the information society and the internet seems to be the general rule for the EU Kids countries. Many governments have actively worked to strengthen infrastructure and otherwise increase the use of information technologies. Discourses on the importance of information technologies do not, however, always materialise in concrete actions. In fact, it is also noteworthy that there are countries where this discourse is simply not very visible.

It is therefore possible to classify the countries into three different groups. In the first group are countries where discussions associated with the information society are high profile and where there are also concrete actions aimed at strengthening the country’s position, mostly through investment in infrastructure. In the second group there are countries where there is a public discourse on the importance of information technologies but where limited action is taken, for example, to improve access or facilitate development. In the third group are the countries where there is limited or no discussion of the issue.

Based on the information given in the national reports the countries can be classified as in table 3.18:

<table>
<thead>
<tr>
<th>Group one: discourse and action</th>
<th>Group two: just discourse</th>
<th>Group three: limited or no discourse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Czech Republic</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>Belgium</td>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td>Greece</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.18: Country clusters according to discourses about ICTs

Source: Based on national reports

There is a close relation between the discourse on the information society and the general feeling of how the country is doing in comparison to other countries. Thus, where there is an open debate on the importance of the information society there are mainly two kinds of countries. There are on the one hand those who think that they are on the leading edge and on the other hand those who think they are not (table 3.19).

<table>
<thead>
<tr>
<th>Group one: Think they are on the leading edge</th>
<th>Group two: Think they are not on the leading edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Belgium</td>
</tr>
<tr>
<td>Denmark</td>
<td>Cyprus</td>
</tr>
<tr>
<td>Estonia</td>
<td>France</td>
</tr>
<tr>
<td>Iceland</td>
<td>Ireland</td>
</tr>
<tr>
<td>Sweden</td>
<td>Portugal</td>
</tr>
<tr>
<td>UK</td>
<td>Slovenia</td>
</tr>
<tr>
<td></td>
<td>Spain</td>
</tr>
</tbody>
</table>

Table 3.19: Clusters of countries by self-evaluation of whether they are on the leading edge in relation to the information society. Source: Based on national reports.

If we take the table above to be justifiable then taking the analysis one step further would yield the following classifications:

Hypotheses regarding the influence of this contextual factor on safer internet issues

One hypothesis is that there would be more safety awareness in countries where there is discourse and activity. Another is that there would be more in leading edge countries. In all it is highly plausible to assume that a societal context, that is shaped by a high motivation to support new technologies and the opinion to be among the leading countries will further children’s and parents’ interest in the internet. The above classifications partly correspond to the classification according to the percentage of young internet users.

Inequalities

Sources of information

Regular data on inequalities in today’s societies are provided by the OECD.

Commonalities and differences between the countries

Despite strong economic growth in most European countries for more than a decade, all European countries experience strong inequalities. Poverty is experienced by 10% or more of the European population. Throughout Europe, key divides are similar: vulnerability to poverty and experience of social exclusion is especially found for women, lone parents/mothers, elderly and disabled people, people living in rural areas, people with a weaker social...
background, immigrants and European ethnic minorities (e.g. the Roma in Czech Republic and Bulgaria). Being part of those social groups reduces the chance of achieving a higher education and equality, despite the post-war expansion of educational participation throughout Europe.

Indicators for classifications of the European countries

Strong regional differences are evident in politically regionalised countries such as Spain (e.g. Andalusia is a poorer region than Catalonia), Belgium (where Flanders is more prosperous than Wallonia) and Germany, a federal state only reunited in 1990. In general, countries in northern Europe have a lower Gini index which points to less inequality in income. The pace of change may be reflected in the change in GDP over a certain period.

Table 3.20: Country variation in relation to changes in income and inequalities

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ireland</td>
<td>100</td>
<td>123</td>
<td>131</td>
<td>138</td>
<td>145</td>
<td>34.3</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>100</td>
<td>113</td>
<td>120</td>
<td>128</td>
<td>136</td>
<td>25.4</td>
</tr>
<tr>
<td>Greece</td>
<td>100</td>
<td>119</td>
<td>124</td>
<td>129</td>
<td>134</td>
<td>34.3</td>
</tr>
<tr>
<td>Poland</td>
<td>100</td>
<td>112</td>
<td>116</td>
<td>124</td>
<td>132</td>
<td>34.5</td>
</tr>
<tr>
<td>Iceland</td>
<td>100</td>
<td>115</td>
<td>123</td>
<td>126</td>
<td>128</td>
<td>n.d.</td>
</tr>
<tr>
<td>Spain</td>
<td>100</td>
<td>113</td>
<td>117</td>
<td>122</td>
<td>127</td>
<td>34.7</td>
</tr>
<tr>
<td>Sweden</td>
<td>100</td>
<td>110</td>
<td>113</td>
<td>118</td>
<td>122</td>
<td>25.0</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>100</td>
<td>111</td>
<td>113</td>
<td>116</td>
<td>120</td>
<td>36.0</td>
</tr>
<tr>
<td>Norway</td>
<td>100</td>
<td>109</td>
<td>112</td>
<td>114</td>
<td>118</td>
<td>25.8</td>
</tr>
<tr>
<td>Austria</td>
<td>100</td>
<td>105</td>
<td>107</td>
<td>111</td>
<td>115</td>
<td>29.1</td>
</tr>
<tr>
<td>Belgium</td>
<td>100</td>
<td>106</td>
<td>108</td>
<td>111</td>
<td>114</td>
<td>33.0</td>
</tr>
<tr>
<td>Denmark</td>
<td>100</td>
<td>104</td>
<td>107</td>
<td>111</td>
<td>113</td>
<td>24.7</td>
</tr>
<tr>
<td>Netherlands</td>
<td>100</td>
<td>105</td>
<td>106</td>
<td>109</td>
<td>113</td>
<td>30.9</td>
</tr>
<tr>
<td>France</td>
<td>100</td>
<td>107</td>
<td>108</td>
<td>111</td>
<td>113</td>
<td>32.7</td>
</tr>
<tr>
<td>Germany</td>
<td>100</td>
<td>102</td>
<td>103</td>
<td>106</td>
<td>108</td>
<td>28.3</td>
</tr>
<tr>
<td>Portugal</td>
<td>100</td>
<td>104</td>
<td>104</td>
<td>106</td>
<td>107</td>
<td>38.5</td>
</tr>
<tr>
<td>Italy</td>
<td>100</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td>107</td>
<td>36.0</td>
</tr>
<tr>
<td>Bulgaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.2</td>
</tr>
<tr>
<td>Cyprus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n.d.</td>
</tr>
<tr>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.8</td>
</tr>
<tr>
<td>Slovenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.4</td>
</tr>
</tbody>
</table>

Table 3.20 shows the estimated Gini index for EU Kids Online countries and the change in GDP from 2000 to 2007 (with the year 2000 set to 100). What is of interest here are countries where the Gini index is relatively high (above the average score of 31) and where GDP has grown fast (those above the average of 20% from 2000 to 2007 are shown in bold): this applies to Ireland, Greece, Poland, Spain, UK.

Hypotheses regarding the influence of this contextual factor on safer internet issues

Societal inequalities are the background for any phenomenon which could be interpreted as digital divide. Since there is evidence that the degree of inequality varies across countries, it can be inferred that there are also differences with regard to the digital gaps between wealthy and well educated parts of the population on the one hand, and socially disadvantaged, less educated parts of the population on the other hand.

Urbanisation

Sources of information

There are no comparable data. The information below is based on EU Kids Online National reports (see table 3.21).

Commonalities and differences between the countries

Most European countries have over the last decade(s) firstly experienced a sustained movement of population from rural areas to urban centres, leading to rapid fringe developments in most cities. In a second phase, due to the rapid increase of housing costs in the cities, there was a migration movement from these inner cities to suburban areas, namely the rise of ‘suburbanisation’. Rather sparsely populated countries such as Iceland, but also the UK, are predominantly urban and suburban. Some – rather small and dense - countries such as Estonia or Belgium can be regarded as being suburban on the whole.

Parallel with the migration to cities and later on to suburban regions, employment in the agricultural sector has decreased substantially in most European countries. Most European countries only have about 5% or less employment in agricultural sectors (Austria, Belgium, the Czech Republic, Denmark, Estonia, France, Iceland, Ireland, Italy, Spain, Sweden, the UK). By contrast, Eastern European countries still count more substantially on agriculture, such as Bulgaria (50% of the population are working in agriculture) and Greece (11%).

The degree of urbanisation turns out to be an indicator of internet penetration. Firstly, urban populations in all European countries tend to be more online than rural populations. Secondly, particularly dense countries with large urban and/or suburban regions have a high rate of internet penetration. This is especially true for France (96%), the UK (80%), the Nordic countries and the Netherlands. Regionalised countries with large autonomous regions/states such as Germany, Spain or Belgium show large differences in internet access between the different states/regions.
Indicators for classifications of the European countries

Countries with important rural regions and an important agricultural activity (such as Greece and Bulgaria), tend to have on the whole smaller percentages of internet penetration. Some of these countries, and others, show at the same time strong regional differences (e.g. Ireland, Greece, Italy). Yet, in countries such as Iceland and Estonia where governments have developed incentive schemes, internet availability has risen in most rural areas during recent years.

Hypotheses regarding the influence of this contextual factor on safer internet issues

If it is potentially more difficult to diffuse information in rural areas, one hypothesis would be that countries with larger rural populations would have less safety awareness.

Work and social class

Sources of information

Collecting figures some aspects of work and social class seems to be quite difficult in most countries. Making European comparisons proves to be even harder. Figures are not systematically collected nor classified. Classifications do not match. Most countries do not offer precise statistics on the percentages of the population involved in manual versus non-manual work.

Commonalities and differences between the countries

Figures on sectors of employment or in terms of occupation show rather important similarities. Economies in most European countries are driven today predominantly by the services sectors (60-70% for Ireland, Austria, Spain) whereas industry still represents around 30% of employment. Agriculture only counts for about 5% in most European countries. All of these figures tend to show declining class oppositions and the growth of a middle-class.

Indicators for classifications of the European countries

It was not possible to build a classification system for EU Kids Online countries given the problematic nature of the data.

Hypotheses regarding the influence of this contextual factor on safer internet issues

In principle, one hypothesis might have been that there would be more safety awareness in countries where the middle-class is larger.

Free speech and censorship

Sources of information

There are no comparable data.

Commonalities and differences between the countries

Freedom of speech and freedom of opinion seems to be a common thread across all EU Kids Online members, protected by the very Constitution in Belgium, Denmark, Greece, and Spain. In fact, freedom of speech is guaranteed everywhere across the project partners - within the confines of the law. Among the ex-communist countries, Estonia and the Czech Republic are explicitly mentioned as ranking quite high by the Reporters without Borders on the Press Freedom Index.

National reports form the EU Kids team mentioned certain aspects of regulation in a number of countries. In Austria there is provision in slander laws, nevertheless; there is no government restrictions on the internet. In Bulgaria children have unrestricted access to the internet, similar to adults. In Denmark, administrative law may demand confidentiality from civil servants in a number of cases. In Germany there is public pressure towards the regulation of certain kinds of media content, and self-regulation is practiced. In Greece freedom of expression on the internet is regulated in the same way as other print and electronic media and is curbed in cases of pornographic and obscene material, violation of personal information, misleading advertising and breach of national security. In Greece, freedom of information and expression on the internet is also under the protection of the European Convention of Human Rights. In Estonia there is no control over what is available online; only the big national dailies exercise some form of moderation. In Italy cross-media ownership under the Berlusconi regime has opened up a debate on free speech and freedom of information. In Norway commercial content directed to children is regulated and blasphemous and racist expression is restrained. In Portugal the newly acquired ‘openness’ of the Portuguese media results in a lack of regulation of internet content. In Spain restrictions to the freedom of expression apply in cases of privacy protection, protection of minors, respect for the rights of others, libel and reporting of Basque nationalist terrorism. In Sweden self-censorship applies. In the United Kingdom following 9/11, restrictions on speech that incites religious...
hatred have been imposed, giving cause for concern. Censorship is stricter than elsewhere, particularly when it comes to sexual issues (e.g. the Netherlands the law is more tolerant).

Indicators for classifications of the European countries

We can see similarities and differences in this detail, but it was not possible to classify EU Kids Online countries based on this.

Hypotheses regarding the influence of this contextual factors on safer internet issues

In principle, one might have anticipated that it would be harder to regulate certain online content in countries where freedom of speech was valued.

Migration and cultural homogeneity

Sources of information

Eurostat/OECD provide statistics on the proportion of inhabitants with migration background etc.

Commonalities and differences between the countries

There are clear differences between the countries on the issue of migration and cultural homogeneity. On the one hand there are countries with a high level of cultural diversity and a mixture of different nations. An example of this is Belgium where there are effectively at least two nations. On the other hand there are countries like Iceland where until the 1980s about 99% of the population was of Icelandic origin. A common theme for many countries is an increased number of nonnationals during the 1980s and 1990s that for many countries has meant an enhanced sense of multiculturalism. In addition, many countries have seen stricter immigration policies with prospective citizens being required to take language exams and exams on basic knowledge (for example, in Germany). But it is not only the number of immigrants or foreign nationals which matters. It is also important to look at where the immigrants are coming from and to what extent the dominant population in each country experiences a shared set of values and ideas with members of minority groups or with immigrants. Two examples are Estonia where there have been tensions between the Estonian speaking (67%) and the Russian speaking (33%) populations and also Greece where 58% of the nonnationals come from Albania and are treated with some degree of suspicion.

It is interesting to note that most national reports from EU Kids Online teams do not mention anything about the possible impact of cultural homogeneity on tolerance towards content on the internet. In most cases those who do come to the conclusion that there is no such effect or at least it is very limited. Most countries probably have some regulation against hateful material even though this is mentioned by very few reports.

One possibility to take this theme further would be to distinguish between countries where there have been direct confrontations (not necessarily violent) between different groups. Examples would be Estonia (tension between Estonian and Russian speaking) and Slovenia (tensions with Croatia and Serbia) and look at if this has any impact on the on-line culture.

Indicators for classifications of the European countries

We can see similarities and differences in this detail, but it was not possible to classify EU Kids Online countries based on this.

Hypotheses regarding the influence of this contextual factor on safer internet issues

In principle, there could be two opposing hypotheses: where migration creates tensions, there is less tolerance of certain online content vs. where migration leads to multiculturalism, there is more tolerance of certain online content.

Role of the state

Sources of information

There are no comparable data.

Commonalities and differences between the countries

When dealing with the issue of the extent to which the state can be considered to be interventionist or laissez-faire, most national reports have a similar story to tell – namely that the past years have seen a development away from heavy state regulation following the new liberalist wave of the 80s and 90s. Looking at the text in the national reports, eight countries classify themselves as rather or somewhat interventionist. These are the Czech Republic, France, Germany, Greece, Italy, Iceland and the UK. Only three, Bulgaria, Cyprus and Estonia, mention a very liberal attitude. However 10 out of 21 countries either do not mention this issue or do not deal with it directly. It is also worth considering to what extent difference should be expected between the EU Kids countries in this respect.
If the participating countries are marked out on the Inglehart-Welzel values map (see figure 3.1) we can see that 15 out of 20 countries (Cyprus is not reported on the map) end up in the upper right corner of the Inglehart-Welzel map. Indicating that in these countries ideas are bent towards self expression rather than survival and towards secular/rational values rather than traditional values.

Indicators for classifications of the European countries

When it comes to how the state acts towards the internet it is firstly important to distinguish between countries with high internet diffusion and those with low internet diffusion. In countries with low diffusion the question of the responsibility of the state is at least partially focused on the issue of connectivity. Leaving the question of connectivity aside, however, there seems to be a distinction between the countries on at least two issues. Firstly, there is the issue of regulation. On this issue there is a difference between countries where the emphasis is on centralised regulation and countries where the emphasis is on diffused regulation or self-regulation. But centralised regulation is not always pursued through government. It can also be pursued through the dominant service provider such as the former public telecommunications company. Bulgaria, Czech Republic, Estonia, Iceland, Ireland, Italy, Portugal and Sweden all mention an emphasis on self regulation whereas Cyprus, France, Germany, Greece, Spain and the UK talk about an emphasis on state regulation.

Another important issue is education where Sweden and Iceland, for example, talk about an emphasis on teaching children safe use of the internet. Based on this it seems possible to suggest a two dimensional classification of the countries into countries where there are different regulatory approaches and countries where there is a different level of emphasis put on educating children in “proper use” of the internet.

Hypotheses regarding the influence of this contextual factor on safer internet issues

A number of hypotheses are possible. One is that the nature of regulation makes a difference: for example, is there more safety awareness in countries with more centralised regulation? Another hypothesis would be that there is more safety awareness in countries where an educational approach is stressed.

Language

Sources of information

For a systematic comparison the Eurobarometer 2006 “Europeans and their languages” can be used. And Eurydice provides data on English lessons at school.

Commonalities and differences between the countries

Overall, English appears to be the common language of communicative used over the internet, apart from the mother tongue, that is, in which there is online content in all project member countries. English is also almost everyone’s first foreign language taught at school as part of the curriculum from quite early on. In some countries, such as Greece and Slovenia, English is also taught in special language schools. In most cases where English is a foreign language, younger generations are more proficient and skilful in it in comparison to older ones, and can subsequently browse the global internet (in English) more aptly. Some countries are renowned for their inadequacy in English language skills, i.e. Austria, Germany (there is considerable internet content available in German catering for audiences in Austria, Germany and Switzerland), the Czech Republic, France, Italy, and Spain, while in others, the majority of the population is English-literate and proficient, i.e. Belgium, Denmark, Greece, Iceland, Norway, Sweden and the Netherlands. Arguably, the following countries can be seen to be somewhere in the middle regarding their English language skills: Bulgaria, Estonia, and Slovenia.

In a few countries, there is online content in languages other than the national idiom and English, such as in Belgium (officially trilingual); in Iceland (Danish and other Scandinavian languages) and in Estonia (Russian).

Indicators for classifications of the European countries

Hypotheses regarding the influence of this contextual factor on safer internet issues

In countries with more English literacy there would be more concern about what can be accessed online because the English-speaking World Wide Web is larger.

‘Bedroom culture’

Sources of information

There are no comparable data; hence what follows is based on national reports (see figure 3.23).

Commonalities and differences between the countries

In Bulgaria, families who can afford to have a home computer and a home internet connection are the minority; hence it is safe to say that there is no substantial bedroom culture in Bulgaria. In Estonia, due to shortage of private space, the computer is usually in a common area and presumably under parental supervision. Parents, however, are not aware of internet-related risks. When being outdoors, children are supervised until the age of 11-13, though restrictions are more lax in the countryside, which is considered safer in comparison to the urban milieu. Interestingly, bedroom culture was felt to be not so prevalent in France. Austria demonstrates media rich bedrooms, with 37% of 6-10 year-olds and 53% of 11-14 year-olds owning a TV set; 30% of children have a computer in their bedrooms.

Denmark has a high level of media access in children’s bedrooms. Based on the National Study of Danish cultural and leisure time habits, in 2004 69% of children between 7 and 15 had television in their bedroom, 80% had radio, 91% had stereos, 45% had videos/DVD players, 39% had a computer and 42 % had a play station, X-box or other.

46 The map is available from: http://margaux.grandvinum.se/SebTest/wvs/articles/folder_publish ed/article_base_54.
game computers, 20% had internet access in their bedroom and 59% have their own mobile. Most children however are very active offline (and outside bedrooms) as well as online, participating in sports activities, music, etc.

In Germany, the majority of children aged 8-11 have their own room, however, 73% of them spend their leisure in facilities such as sports clubs. Children from an ethnic background and from a lower social class are half as likely to be in clubs compared to those from higher social classes.

In Greece, emergent concerns about playing outdoors lead to increased parental supervision of children’s activities and a bedroom culture- especially in urban areas. When it comes to risks, Greece ranks rather low in most of the UNICEF child well-being index (youngsters having been drunk twice or more, having smoked cannabis and cigarettes), though about one fourth of Greek teenagers have been bullied.

In Iceland and Norway the weather calls for an indoor culture, but most children live in a media rich environment. In Sweden, domestic space has increased since the 70s which led to more children having their own bedrooms. Children live in media rich homes, inheriting the older versions of their parents’ technologies. Owning a PC is thought to be a good thing for a child.

In Italy a bedroom culture is slowly emerging where gaming occupies a significant place. At the same time, Italian teenagers take part in various activities outside the home, such as sports and cinema. Overall, there is no parental control of children’s internet access.

In Ireland, the lack of appropriate leisure facilities for children has led to the National Play Policy and a discussion towards safe public play spaces for children. Children’s first preference is outdoor play but as they get older they tend to opt for their bedrooms.

In Spain, almost half of PCs owned by children are in children’s bedrooms- which are often shared however with other siblings. Almost 60% of children owned a mobile in 2006, while 31% of TV sets can be found in children’s bedrooms- otherwise in a common area.

In the Netherlands the danger of traffic has driven a lot of bedrooms- otherwise in a common area. In 2006, while 31% of TV sets can be found in children’s rooms. One caveat is that in countries where it is not widespread, if children access the internet in spaces outside the home it can also be difficult for parents to monitor what they are doing.

3.7. Applying Qualitative Comparative Analysis

As we have shown the empirical evidence for many of the indicators discussed above is rather weak and does not allow for a truly comparative analysis. The EU Kids Online network has invested quite a lot of efforts in a first approach to the definition of indicators for contextual factors, which might explain similarities and differences between countries with regard to children’s online use and online related opportunities and risks. Given this weak empirical basis the logical last step of these efforts, to run a comprehensive analysis across all the factors in order to explain the differences as observed in chapter 2, is not possible. However, in order to go one step further and to stimulate future efforts in comparative research, a possible approach shall be demonstrated which could help to come close to the aim of a true comparative study. This approach is a Qualitative Comparative Analysis (QCA).

Qualitative Comparative Analysis is a technique, which aims at gathering “in-depth insight in the different cases and capture the complexity of the cases” whilst still pursuing some level of generalisation (Rihoux, 2006). When we are dealing with dichotomised variables used in the QCA analysis, we are referring to csQCA (crisp sets in QCA, see Rihoux and Ragin, 2008). This method is especially valuable in our case as we are dealing with a huge amount of qualitative and quantitative data, gathered across diverse samples and time points in different countries.

The technique in its core is a formal way of analysis with a slightly different conceptualisation of the cases as opposed to what we are used to in quantitative analyses. In csQCA, cases are not seen merely as the unit of analysis but as “thick” in sense of data collected from different sources. By this approach, we can view these countries as cases. In such a way, we are able to perform a cross national comparison on available secondary data using csQCA approach.

The csQCA procedure is usually done in five steps. To begin with, we have to identify positive and negative cases associated with the outcome, which is the variable we would like to explain. Following, we also have to identify factors (conditions) we believe influence the outcome variable. The next step involves dichotomization of the factors and the outcome variable (in form of presence-absence, high-low). Having done this, we continue with constructing a so-called truth table which displays the list of all possible combinations of conditions (with 0 or 1 values)

Indicators for classifications of the European countries

Hypotheses regarding the influence of this contextual factors on safer internet issues

One hypothesis would be that in countries where bedroom culture was more widespread it would more difficult for...
and a particular outcome (with 0 or 1 as values) for each observed case. In the fifth step, these combinations are systematically compared with each other (long formulas) and logically simplified (minimal formulas). This process is called Boolean minimisation and it allows one to identify (causal) regularities that are parsimonious, i.e. that can be expressed with the fewest possible conditions within the whole set of conditions that are considered in the analysis (Rihoux & Lobe, 2009).

We find the simplest patterns in the configuration of conditions that lead to a positive or negative result in the outcome variable. Once an optimal minimal formula (without contradictions with the most parsimonious solution) is obtained, the interpretations are made. Hence, csQCA allows identifying the core conditions that shape the particular phenomenon under study. At the same time, in this last stage, similarities and differences between the cases are understood by returning to the specificities of the cases themselves. More information and technical details can be found in Rihoux and Ragin (2009).

For our demonstration, how the procedure can enrich the presented analysis we will refer to the QCA application done by Bauwens et al (2009). The authors used the csQCA in order to explain the high risks countries as identified at the end of the Chapter 2.

Twenty European countries for which data sources and findings were available were included (see Bauwens et al 2009). Taking the degree of online risk as an outcome variable, countries were divided into non-high degree of online risk countries (Cyprus, Italy, France, Germany, Greece, Portugal, Spain, Austria, Ireland, Belgium, Denmark, Sweden) and countries with high degree of online risk (Bulgaria, Czech Republic, Poland, Slovenia, Estonia, Netherlands, Norway and the UK). The aim was to explain which combinations of factors (Children’s use of the internet, Legal Framework, the Network Readiness Index, Educational policy, Role of ISPs, Online content provision, Awareness raising⁴¹) contribute to a higher degree of online risk in high risk countries.

The csQCA analysis has shown that different factors contributed differently across the countries in explaining a high degree of online risk. Some patterns were to be disclosed: ‘high internet use’ seemed to be a factor which was combined with many other factors resulting in a high degree of online risk; the absence of positive provision of online media content for children seemed to contribute to a high degree of online risk regardless of an absence or presence of other factors; in countries where high internet use was accompanied by low provision of online content for children, risk aroused surely. In countries where children were eager to go online, but were unable to find content tailored to their competences and interests, risks were on the increase. For a detailed examination of each country, see Bauwens et al (2009).

Following, we will demonstrate another use of csQCA. In this case, we will rely on the conceptualisation of the outcome variable and some factors (conditions) from the above model and some from the newest Eurobarometer parental survey (EC, 2008).

In this analysis we will go a step further in explaining the outcome variable (the degree of online risk) from the previous model (see Bauwens et al, 2009). We will include some factors (conditions) on parental mediation to determine its contribution to a high degree of online risk. In this exploration of a degree of online risk we combine three key factors from the previous study with two additional factors from the abovementioned Eurobarometer parental survey and one from a special Eurobarometer study on risk issues (EC, 2006). In doing this, we treated the average parents’ behaviour for each country, as discussed in chapter 2, as another contextual variable for children’s online risk. The factors (conditions) are as follows:

11/ Children’s use of the internet (child’s use): The condition displays the percentage of children’s use of the internet across countries; the basis has been the 2008 Eurobarometer (EC, 2008). The lowest use value is 45% in Italy and the highest is 93% in the Netherlands. Based on the distribution of countries within these two values, countries with children’s internet use above 77% were assigned value 1 (higher use) whilst those with lower percentages were assigned value 0 (lower use).

2/ Educational policy (edu_pol): this accounts for media education in schools (1/ ICT learning, 2/ other initiatives regarding ICT, 3/ media education): if at least one of these three is affirmative according to chapter 3.5 of this report, the condition value is 1, otherwise (negative, or no data) is 0. This information was collected by national reports.

3/ Online content provision (provision): this condition aims to capture a significant provision of positive online content for children according to chapter 3.1.3 of this report. Value 1 means that the provision is ‘high and between high and medium’, whilst value 0 means the provision is ‘medium and low’.

4/ Restrictions set by parents (less_restrictions): based on the 2005 Eurobarometer (EC, 2006) this conditions measures whether parents set any conditions/restrictions for when their children used the internet about which online activities are or are not allowed (such as giving out personal information, buying online, talking to strangers, spending a lot of time online, using chat rooms, crating a profile, accessing certain websites etc.). The lowest percentage of no restrictions set is 15% in Germany, whilst the highest is 52% in Cyprus and Czech Republic. Based on the distribution of countries within these two values, countries with the percentage of no restrictions higher than 33% were assigned value 1 (less restrictions) whilst those with lower percentages were assigned value 0 (more restrictions).

5/ Less frequent talking to a child about the Internet use (less_talking): this conditions measures whether parents talk to their children about what he or she is doing online; the data basis for this is the Eurobarometer 2008 (EC, 2008). The parents that the least frequently talk to their children are mainly in Czech Republic (53%), whilst the country with the smallest amount of parents not frequently talking to their children are from the UK (only 13%). Based on the distribution of countries within these two values, countries with the percentage of no restrictions higher than 33% were assigned value 1 (less frequent talking) whilst those with lower percentages were assigned value 0 (more frequent restrictions).

⁴¹ For a more detailed explanation of each factor, see Bauwens et al (2009).
6/ General risk sensitivity score (GRS): This score has been computed as a maximum likelihood score based on perceive likelihood of becoming a victim of crime, a victim of terrorism, getting a serious illness, health damage from the food you eat, getting seriously injured in a car accident, health damage from consumer goods other than food, and finally, health damage from environmental pollution. High values indicate high risk sensitivity. The scores above 0.00 are assigned value 1 (higher risk sensitivity) and those below are assigned values 0 (lower risk sensitivity).

The analysis was performed by TOSMANA (version 1.3.0.0) – an analysis software programme designed for small-number analyses. Looking at the table displaying a combination of conditions leading to an outcome for a specific country, there are no same combinations of conditions for a different outcome and therefore all conditions can be included in the analysis (Lobe et al. 2009).

In order to achieve the shortest core combination of conditions out of the complex set of data, the non-observed cases (logical cases) need to be included to produce one main minimal formula which itself contains four different combinations of conditions (Bauwens et al. 2009).

The analysis below illuminates the conditions which are playing a crucial role in explaining a high degree of online risk amongst countries. The following alternative combinations of conditions are possible in explaining a high degree of online risks experiences among children:

```
edu_pol * PROVISION + (Netherlands)
CHILDREN_USE * GRS + (Poland+Slovenia+UK)
LESS_TALKING * LESS_RESTRICTIONS \rightarrow HIGH DEGREE OF ONLINE RISK (Czech Republic+Estonia)
```

Table 3.24: Raw data for csQCA

<table>
<thead>
<tr>
<th>Country</th>
<th>Educational policy</th>
<th>Online content provision</th>
<th>Child’s use of internet (%)</th>
<th>GRS</th>
<th>Less frequently talking to a child (%)</th>
<th>Restrictions set by parents (%)</th>
<th>Degree of online risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>1</td>
<td>1</td>
<td>77</td>
<td>-0.44</td>
<td>26</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>Belgium</td>
<td>1</td>
<td>1</td>
<td>71</td>
<td>0.13</td>
<td>34</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Cyprus</td>
<td>1</td>
<td>0</td>
<td>50</td>
<td>-0.03</td>
<td>21</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1</td>
<td>0</td>
<td>84</td>
<td>0.02</td>
<td>53</td>
<td>52</td>
<td>1</td>
</tr>
<tr>
<td>Denmark</td>
<td>1</td>
<td>1</td>
<td>93</td>
<td>-0.08</td>
<td>38</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Estonia</td>
<td>1</td>
<td>0</td>
<td>93</td>
<td>-0.12</td>
<td>50</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>France</td>
<td>1</td>
<td>0</td>
<td>76</td>
<td>0.27</td>
<td>38</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Germany</td>
<td>1</td>
<td>0</td>
<td>75</td>
<td>-0.30</td>
<td>15</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Greece</td>
<td>1</td>
<td>0</td>
<td>50</td>
<td>0.30</td>
<td>20</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>Ireland</td>
<td>1</td>
<td>1</td>
<td>81</td>
<td>-0.17</td>
<td>16</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Italy</td>
<td>1</td>
<td>0</td>
<td>45</td>
<td>0.32</td>
<td>23</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0</td>
<td>1</td>
<td>93</td>
<td>-0.12</td>
<td>37</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>Poland</td>
<td>0</td>
<td>0</td>
<td>89</td>
<td>0.14</td>
<td>28</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>Portugal</td>
<td>1</td>
<td>0</td>
<td>68</td>
<td>-0.03</td>
<td>20</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>Slovenia</td>
<td>1</td>
<td>0</td>
<td>88</td>
<td>0.03</td>
<td>25</td>
<td>47</td>
<td>1</td>
</tr>
<tr>
<td>Spain</td>
<td>1</td>
<td>0</td>
<td>70</td>
<td>-0.18</td>
<td>15</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Sweden</td>
<td>0</td>
<td>0</td>
<td>91</td>
<td>-0.19</td>
<td>39</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>UK</td>
<td>1</td>
<td>1</td>
<td>91</td>
<td>0.02</td>
<td>13</td>
<td>21</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: this table displays percentages and dichotomised values (with 0 or 1 values)

The analysis performed by TOSMANA (version 1.3.0.0) – an analysis software programme designed for small-number analyses. Looking at the table displaying a combination of conditions leading to an outcome for a specific country, there are no same combinations of conditions for a different outcome and therefore all conditions can be included in the analysis (Lobe et al. 2009).

In order to achieve the shortest core combination of conditions out of the complex set of data, the non-observed cases (logical cases) need to be included to produce one main minimal formula which itself contains four different combinations of conditions (Bauwens et al. 2009).

The analysis below illuminates the conditions which are playing a crucial role in explaining a high degree of online risk amongst countries. The following alternative combinations of conditions are possible in explaining a high degree of online risks experiences among children:

```
edu_pol * PROVISION + (Netherlands)
CHILDREN_USE * GRS + (Poland+Slovenia+UK)
LESS_TALKING * LESS_RESTRICTIONS \rightarrow HIGH DEGREE OF ONLINE RISK (Czech Republic+Estonia)
```

51 In this and subsequent logical statements, the upper-case letters indicate the presence of the condition and the lower case indicates the absence of the condition. Multiplication (‘*’) indicates a specific combination of conditions (logical operator ‘AND’) whilst a plus sign (+) indicates the alternative combinations of conditions (logical operator ‘OR’).

50 Two minimal formulas were obtained for the explanation of a high degree of online risk but after a close dialogue with each case, we chose the displayed one.

51 For detailed methodological explanation of csQCA and comprehensive technical discussion see Bauwens et al. (2009).
The first configuration, significant for the **Netherlands**, yields lower educating efforts about proper ICT use amongst children combined with high positive online content provision. Hence, weak educational policy is the factor that explains the high degree of online risk in this country. In our first model (see Bauwens et al. 2009), the weak educational policy was hidden behind other factors.

Poland, Slovenia and the UK are countries with higher general risk sensitivity and a relatively high children's internet use ranging between 89% and 91%. So many children online and possible more informed use of the internet also brings along more challenges and even more so in combination with high risk sensitivity.

The last configuration is significant for **Czech Republic and Estonia**. It shows that in these two countries a major contribution to a high degree of online risk is done on the parents' side as they do not set enough conditions about how their children are allowed to use the internet and are not discussing frequently enough with their children about what he or she is doing online.

After explaining what led to a high degree of online risk across countries, let us now have a look at the countries with medium and low levels (non high) of online risk. Again, we see countries as configurations of conditions which lead them to a low degree of online risk. To make our interpretation easier and more parsimonious, consider the following solution52:

\[
\text{child's use} + \text{provision} \star \text{grs} + \text{线下 treatment} \rightarrow \text{NO HIGH DEGREE OF ONLINE RISK (Germany, Spain + Sweden)}
\]

Belgium, Cyprus, Portugal, France, Greece and Italy

The low level of online risk is the result of lower children’s internet use in comparison with high degree countries.

In **Austria, Denmark and Ireland** a developed educational policy and available positive online content provision combined with lower general risk sensitivity played a crucial role to secure low degree of online risk.

In **Germany, Spain and Sweden** lower general risk sensitivity and more restrictions set by parents on how children can use the Internet at home contributed to a low degree of online risk.

These examples for detailed comparative analyses, which treat countries as cases, which are characterized by a set of indicators for contextual factors which might shape children’s online risk experience show the direction for further comparative analyses. As we have pointed out several times, the crucial condition for any kind of a more comprehensive comparative analysis is the existence of valid indicators.

For most of the contextual factors presented in chapter 3 as well as for most aspects of children’s experiences of online risks and opportunities the validity and reliability of the indicators drawn from the existing empirical evidence is rather weak. Therefore it does not make sense to invest too much effort into a comprehensive qualitative comparative analysis of all the factors we have investigated above. What we have tried to do is to develop a systematic model of the contextual factors which shall help to discuss the relative importance of the factors and the likelihood that they explain differences and similarities between countries.

<table>
<thead>
<tr>
<th>Country</th>
<th>Edu pok</th>
<th>provis</th>
<th>Childre use</th>
<th>GRS</th>
<th>Less talking</th>
<th>Less restrictions</th>
<th>Online risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Belgium</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cyprus, Portugal</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Denmark</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Estonia</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>France</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Germany, Spain</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Greece</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ireland</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Italy</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Poland</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Slovenia</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sweden</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UK</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.25: Truth table for WCA

52 Again, the software produced three different solutions of possible combinations of conditions and we decided to explain each case based on our knowledge of the countries.
3.8. Towards a systematic model of contextual factors

Having in mind the exemplary QCA results and the discussions of potential hypotheses in the sub-sections of chapter 3 we summarize the role of the different contextual factors as shown in figure 3.2.

The grey area in the centre shows the core aspects of children’s online use: access as the necessary condition for any online use, concrete patterns of usage and literacy as mediating variables, and experienced risks and opportunities as a consequence of online use. These aspects have been discussed in detail in chapter 2, ending up in some classifications of countries regarding children’s online use and online related risks.

Insofar as we have identified differences between the countries or groups of countries the question in chapter 3 has been whether these differences can be explained by contextual factors. We found some evidence for different factors, e.g. that the general internet diffusion is a strong predictor of children’s online use and that the cultural values as measured by the individualism/collectivism scales allows for explaining some variance regarding perceived risk. At the same time we often found country classifications, which reminded of Europe’s geographical areas, e.g. Central and Eastern European or Southern European or Nordic countries. These observations led us to develop a heuristic model that provides a systematic overview of relevant contextual factors.

The outer (pink) area of figure 3.2 is structured according to two dimensions:

Firstly, we distinguish between four subsystems which shape children’s environments: a) culture, which is mainly experienced through direct contacts with parents and peers; b) institutionalized education, i.e. the school system; c) political and legal structures; d) media environments. These are the factors, which have been discussed earlier in chapter 3.

Secondly, within each of these areas we distinguish between three levels: a) general values, visions, and principles (the darker pink layer in figure 3.2); b) discourses, and attitudes (second layer); and c) concrete patterns of actions (inner layer). It is assumed that the most general level of values and visions is mainly shaped by historical experiences of the European cultures; due to the fact that historical experiences of neighbouring countries are more similar – e.g. due to early migration, social and cultural contacts, languages, spheres of political influence and power, and to trade relations – this means that country classifications on this level are rather likely to reflect the geographical relations of the European countries. The Inglehart-Welzel map of political attitudes as well as the above classification according to individualistic and collectivist values are examples for this.

The second level of discourses and attitudes is partly independent from the historical traditions. Here institutionalized or aggregated actors come into play who participate in political debates, who produce media coverage, who develop certain attitudes towards, e.g., technologies, and certain risk perceptions, and who develop educational curricula and objectives to be achieved by the educational system. In doing this they have certain degrees of freedom, thus there is room for neighbouring countries to follow different paths of development. On this level it is more likely to find classifications, which are not compatible with geographical patterns, as e.g. the results of the analysis of media discourses have shown.

On the third level, concrete actions and individual actors influence children’s experience: They mediate their online behaviour, teach them (or fail to teach them) online competencies, they initiate concrete political laws or public campaigns, and they offer concrete (positive or negative) content and (more or less elaborated) safety tools. On this level it is least likely that country classifications follow geographical patterns.

This model could serve as a heuristic for future research, which sets out to explain patterns of commonalities and differences between countries regarding children’s risk experiences.
4. Conclusions

4.1. Overview

This report has sought to identify and explain the pattern of cross-national similarities and differences in children’s online use, skills, opportunities, risks and safety. To do so, it has drawn on a sizable evidence base in Europe, collated across 21 countries.

This report has argued that, without a comparative perspective, national studies risk two fallacies – that of assuming one’s own country is unique when it is not, and that of assuming one’s own country is like others when it is not. However, with a comparative perspective, it is easy to become overwhelmed by both the volume of data and its many complexities and limitations (a problem for the identification of findings) and by the multidimensional diversity of social, economic and cultural factors that differentiate the countries within which such data has been generated (a problem for the explanation of findings).

To identify and explain the available findings, we have produced a theoretical framework (see figure 1.1) that specifies hypothesised relations among key variables:

- Having access to and making use of the internet is a prerequisite for encountering both opportunities and risks online.
- The development of attitudes towards and skills in using the internet both depends on and stimulates further access and use.
- Each of these factors influences — facilitating or reducing — the experience of online opportunities and online risks.
- All of these above factors are expected to vary according to the age, gender and socioeconomic status of the individual child.
- These factors and their interrelations should be understood in social terms – the child is always embedded in a social context, and parents, teachers and peers are especially likely to mediate their online experience.
- While the above relations are, broadly speaking taken to apply universally (i.e. to be cross-national similarities), it is highly likely that the values on each factor (e.g. amount of use, role of gender, degree or type of risk, nature of parental mediation, etc) will vary by country.
- At a country level, such cross-national differences may be explained by any of numerous contextual factors, particularly including the media environment, ICT regulation, public discourses, cultural attitudes and values and the educational system of a country.

In what follows, we summarise the main findings and conclusions of our comparative analysis, focusing on how they support, qualify or contest this framework. The conclusions fall into four parts.

- The overall pan-European similarities that have been identified are summarised, focusing on the individual level of analysis.
- The classification of countries in terms of children’s online use and risk is reiterated as a hypothesis, focusing on the country level of analysis.
- Most crucially, the contextual factors are examined for their potential in explaining the country classification.
- Conclusions are drawn regarding the effectiveness and limitations of the comparative strategy employed.

4.2. Summary of findings from the comparative analysis

In chapter 2.5 a series of key research questions and hypotheses were examined in relation to the available findings across Europe. These permit some general conclusions (i.e. cross-national similarities) which hold, with exceptions, and notwithstanding the limitations on data quality, across the European countries examined.

Online access and use

- The evidence across Europe shows that, notwithstanding considerable cross-national differences in children’s internet use (see next section), the more parents use the internet, the more children do so also. This applies at both a national level (i.e. countries where parents are more likely to use the internet are also countries where children are more likely to use it) and at an individual level (i.e. if an individual parent uses the internet, especially at home, they are more likely to have a child who uses it). It was concluded that parents use the internet both in order to encourage their children and because they have been encouraged to do so by their children.
- Contrary to the widespread assumption that, in general, children are the digital natives and parents the digital immigrants, it seems that (a) although children (under 18 years) use the internet more than adults in general, they use it less than parents in particular, and (b) this is particularly the case for those under 11 years.
- These findings suggest that, in general, it is reasonable to expect that their parents will understand the internet sufficiently to guide their use, but this may not hold for teenagers. Further, even though internet use may be low among the adult population, it is more likely that parents will be sufficiently familiar to undertake a mediating role with their children.
- Across Europe, children generally use the internet more at home than at school, and there is a positive correlation between use at home and school across countries. The more children use the internet at home in a country, the more they are likely to use it also at school, and vice versa.

Online risks and opportunities

- Across Europe, a fair body of research evidence suggests that adults and children agree that children use the internet as an educational resource, for
entertainment, games and fun, for searching for global information and for social networking, sharing experiences with distant others. Other opportunities (e.g. user-generated content creation or concrete forms of civic participation), are less common.

- These opportunities were classified into 12 cells according to the motives of those providing online contents and services and the relation of the child (as recipient, participant or actor) to that provision. However, there is little cross-nationally comparable evidence regarding the incidence and take-up of these various opportunities and, consequently, little can be said regarding the possibility of cross-national differences in online opportunities.

- It was further proposed that each child climbs a ‘ladder of online opportunities’, beginning with information-seeking, progressing through games and communication, taking on more interactive forms of communication and culminating in creative and civic activities. Though many variants are possible, one implication is that communication and games playing may not be ‘time-wasting’ but, instead, a motivational step on the way to ‘approved’ activities.

- Although risks are particularly difficult to define in culturally-consensual ways, and they are difficult to research in methodologically-rigorous and ethically-responsible ways, a classification of 12 categories of risk was proposed as likely to be relevant across Europe (and beyond). However, as only a few studies have been conducted in some countries, evidence for risk within these categories only permits tentative conclusions.

- In terms of overall incidence, findings of risk, as reviewed in the national reports, provide the basis for an equally tentative country classification according to likelihood of encountering online risks (next section). Some cross-national similarities can thus be discerned, particularly in terms of the rank ordering of risks in terms of likelihood.

- Thus, across Europe, notwithstanding considerable cross-national variation, it appears that giving out personal information is the most common risk (approximately half of online teenagers), that seeing pornography is the second most common risk at around 4 in 10 across Europe, that seeing violent or hateful content is third most common risk (at approximately half of online teenagers), that seeing self-harm, race hate, commercial exploitation. In several countries, a degree of distress or feeling uncomfortable or threatened was reported by 15%-20% of online teens, suggesting, perhaps, the proportion for whom risk poses a degree of harm.

- Some of the high reports of risk – in Estonia, Poland, Czech Republic – require urgent awareness-raising. Similarly, the advent of new forms of online activity – e.g. social networking – points to the need for urgent new advice to children and young people. As estimates for now-familiar risks continue to be substantial, these too require continued attention to keep them in children’s minds.

- Findings from the pan-European Eurobarometer survey suggest that, according to their parents, children encounter more online risk through home than school use (though this may be because parents know little of their children’s use at school).

- However, among those children who use the internet in an internet café or at a friend’s house, these are also risky locations, according to parents (especially compared with school use).

- Complicating policy interventions regarding online risk, it was suggested that increasing opportunities tends to increase risks, while decreasing risks tends to decrease opportunities. This suggestion remains for further research to support or contradict.

Online attitudes and skills

- Overall, the evidence supports the hypothesis that internet-related skills increase with age. This is likely to include their abilities to protect themselves from online risks although, perhaps surprisingly, this has been little examined.

- Boys often claim higher skill levels than girls, though this remains to be tested objectively.

- Across countries, those in which a higher percentage of parents claim their children have encountered harmful content tend also to be those in which parents estimate their children to have a lower ability to cope with these potentially harmful encounters. This negative correlation at the European level clearly indicates cross-national differences, though the interpretation is as yet unclear. Note that this correlation does not hold at an individual level (i.e. it cannot be said that if a parent claims their child has encountered harmful content, that parent is also more likely to think their child cannot cope).

- Indeed, though there is growing evidence of the array of coping strategies children employ when faced with online risk, these are not yet systematically studied and nor is their effectiveness evaluated.
There are difficulties measuring internet-related skills as yet, and little available comparable research on children’s attitudes to the internet.

Age, gender and socioeconomic status

- Use of the internet increases with age, at least up until the early to mid teens, when usage may peak. While this trend holds across Europe, in high use countries, children get online younger, and this has implications for risk – notable since high risk countries (see later) include low and high use countries.

- Generally, it seems that older teenagers encounter more online risks than younger children, though the question of how younger children cope with online risk remains little researched.

- The findings also suggest that boys use the internet for longer and in more places than girls do, and that girls and boys differ in the online activities they engage in - girls prefer activities that involve communication, content creation and collaboration, boys prefer competition, consumption and action.

- There are also gender differences in risk: boys appear more likely to seek out offensive or violent content, to access pornographic content or be sent links to pornographic websites, to meet somebody offline that they have met online and to give out personal information; girls appear more likely to be upset by offensive, violent and pornographic material, to chat online with strangers, to receive unwanted sexual comments and to be asked for personal information but to be wary of providing it to strangers; both boys and girls are at risk of online harassment and bullying.

- In almost all countries, higher SES households are more likely to provide their children with access to the internet, this resulting in greater or more frequent use among more advantaged children. It also appears that lower class children are more exposed to risk online.

Parental mediation of children’s online activities

- Parents practice a range of strategies for mediating their children’s online activities - they favour time restrictions, sitting with their children as they go online and discussing internet use, tending to prefer these social strategies to technical mediation (filtering, monitoring software). However, there are differences cross-nationally in preferred strategy that invite further analysis.

- More consistent across Europe is the tendency for higher SES parents to mediate their children’s internet use, and for girls to be more subject to such mediation than boys.

- With regard to age, the consistent finding is that of a U-curve: that parental mediation increases with age until the age of around 10-11 years and then decreases again.

4.3. Classification of countries in terms of children’s online risk

The differences identified across countries were used to construct a classification of countries in terms of children’s online use and risk. Specifically:

- Although generally European children are gaining access to the internet, differences in access and use remain, enabling a country classification based on the percentage of children who use the internet.

- Also striking is the diversity of online risk figures obtained across countries, suggesting a classification of countries based on the likelihood of children’s experiencing online risk.

- Putting these two classifications together produced table 4.1:

<table>
<thead>
<tr>
<th>Children’s internet use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online risk</td>
</tr>
<tr>
<td>Low</td>
</tr>
<tr>
<td>Medium</td>
</tr>
<tr>
<td>High</td>
</tr>
</tbody>
</table>

Table 4.1: Country classification according to internet use and risk

- It is unclear, on the present state of knowledge, that any of these strategies is particularly effective in reducing children’s exposure to risk or increasing their resilience to cope.
countries; (iv) medium use, high risk situations are characteristic of new entrants to the EC; and (v) Southern European countries tend to be relatively lower in risk, though there are differences among them.

- Putting this another way around, we might conclude that, as a broad generality, (i) Northern European countries tend to be “high use, high risk”; (ii) Southern European countries tend to be “low use, variable risk”, and (iii) Eastern European countries can be characterised as “new use, new risk”.

- There are other country classifications possible, as discussed in this report, particularly that based on children's perceived ability to cope with online risk (as reported by parents in different countries) – high ability to cope is claimed for children in Austria, Belgium, Cyprus, Denmark, France, Germany, and the UK; low ability to cope is claimed in Bulgaria, Estonia, Greece, Portugal and Spain (intermediate countries are Czech Republic, Ireland, Poland, Slovenia and Sweden). Across countries, findings for coping are negatively correlated with parents’ perception that their child has encountered harmful content on the internet, indicating that high risk countries tend to have low perceived coping skills and vice versa.

- Also presented earlier is a country classification based on parental mediation. Here it was shown (Table 2.15) that, on the assumption that the degree of television mediation practiced reveals parents’ willingness to mediate domestic media, countries differed in their relative mediation of television and the internet thus. In Austria, Italy, Poland, Portugal, Slovenia and Spain parents of internet users set rules for television more than they do for the internet. In Denmark, Estonia, Netherlands and Sweden, parents set more rules for the internet than for television. In Belgium, Germany, Greece, Ireland and the UK, parental rules are more or less equivalent. In short, in high use countries, parents mediate the internet more than they do television. In low use countries, by contrast, they are more likely to mediate television – suggesting a regulation gap in low use countries (i.e. parents are evidently willing to mediate, since they do so for television, but lack either awareness or skills to mediate the internet to a similar degree).

- Various other forms of country differences were noted in chapter 2. This included the finding that in Poland and Portugal, children between 0 and 17 years use the internet more than parents (i.e. even younger children are digital natives compared with parents and parents may be thus less able to supervise their children’s internet use); that in Italy, parents are especially behind their children; that there is some evidence that in countries with low public or domestic access, children are relatively more likely to go to internet cafés (e.g. Bulgaria, Poland), and that in Ireland, Netherlands, Portugal and the UK, girls use internet more than boys.

To the extent that we find cross-national differences rather than similarities, we must turn to the country level to explain these differences. It can be immediately seen that one simple explanation – country size – plays little relation, though it is equally likely that a country’s wealth (GDP) is related to internet use. Hence, in chapter 3, we reviewed the available evidence for six dimensions on which national contexts might vary in ways that shape children’s online experiences in those countries.

It should also be noted, on the other hand, that the contextual factors identified in what follows appear not to shape the above-noted pan-European similarities – i.e. to the extent that children’s online experience is similar across countries, we do not need to examine cross-national differences in context for such factors appear inconsequential.

4.4. Contextual explanations for cross-national differences

The general model of the research field (see figure 1.1) hypothesises that contextual factors at the country level, discussed in chapter 3, will influence children's patterns of online use, opportunities and risks. As a final step of our comparative analysis, we conceptualized countries as units of analysis in order to explain, if possible, cross-national differences in children’s online experiences in terms of cross-national differences in these contextual factors.

Given the lack of truly comparable data, this step is particularly challenging since both sides of the argument – the “dependent” as well as the “independent” variable – had to be constructed using quite different kinds of empirical data and relying on an on-going process of communicative validation within the EU Kids Online network. Thus, the following interpretations should be treated as highly tentative. Nevertheless, we believe that indications of significant relationships between contextual factors and patterns of online behaviour can provide a strong steer for future policy and research recommendations.

In summary, the discussion in chapter 3 of relevant contextual factors revealed the following hypotheses and observations.

Media environment

- Diffusion of the internet in different countries strongly influences children’s use of the internet. Differences in access and use across European countries are still large. As a consequence, for children in countries in which internet diffusion has reached an advanced stage, online services are a normal part of their media environment and everyday life, whereas for children in other countries, internet use remains something that takes a specific effort or requires particular resources not available to all.

- Diffusion of the internet not only directly affects children’s access and use but also indirectly influences the range of online activities, parental mediation and, as a result, online-related risks and opportunities. One important finding is that gender and SES differences appear to be decreasing in the course of the diffusion process.
Due to the lack of comparable data on safety awareness in the different countries the influence on ISP’s activities in safeguarding online safety cannot be examined directly. Although it is highly plausible that safety information provided by ISPs can raise awareness and reduce risks, there is little empirical evaluation available so far. In this respect there is a particularly urgent need for additional research as we cannot determine, at present, whether variation in national safety awareness activities accounts for cross-national variation in use, risk or coping with risk.

Interpreting the evidence from national reports it may be assumed that the presence of a strong public service broadcaster as a (major) content provider for children, offline as well as online, can play an important role in guiding and teaching children how to use the internet in a safe and constructive way. Although this assumption is highly plausible, it is surprising that there is almost no empirical evidence – even on the national level – evaluating the effects of dedicated online content, which sets out to support children in using the opportunities and avoiding the risks of the internet. In this respect, there is a particular need for additional research.

In conclusion, cross-national variation in the amount of children’s use of the internet, which depends in many ways on cross-national variation in internet diffusion, is a crucial dimension in influencing children’s experience of the internet in Europe. This is likely to have major consequences for their online opportunities. However, as noted above, higher use is associated with higher risk, but not exclusively so – there are also some medium use, high risk countries.

Public discourse

Grouping countries on the basis of media coverage on online risks and opportunities does not lead to clear patterns. There are countries from north and south Europe that are high or low by some criterion of coverage. The same is true for internet penetration e.g. the UK and Denmark are in the same group as Portugal and Greece at one point. Media coverage must be driven by other factors.

One possibility is that there are common patterns of conceptions of childhood that lie behind and are embedded in particular national media coverage. For example, in Norway there is a notion of a ‘natural childhood’, where sexuality is less of a risk while at the same time discussions of children’s rights is strong. Such underlying conceptions may well help to shape the nature of how media engage in the topic of children and the internet.

In all the countries what was common was the newsworthiness of risks compared to opportunities – in all countries over half of all articles reported solely risks, the average of all these countries being nearly two-thirds. In contrast, at most only a quarter of the media articles covered solely opportunities in any country and the average was less than a fifth.

Looking at different types of risk (content, contact, conduct) different national media have very varied levels of coverage of the three types of risk. Countries low on content risks like Italy, can be high on conduct risks, and vice versa if we look at Denmark for conduct vs. contact. Or some countries can be high or low for some risks, but be medium for others. Hence, media coverage in different countries is sensitising people to different kinds of risk, which may have a bearing on the degree to which people in different countries think the various risks are prevalent.

One example of striking differences in the relative attention to certain risks is the media coverage of issues of sexuality, which is mainly coverage of pornography on the net. In some countries this aspect dominates the risk related media coverage (more than one third of all articles): Belgium, Greece, Spain, and the UK. In contrast, interest in this issue is shown to be very low in Norway, Estonia and Denmark. Apart from the influence of particular national histories (e.g. the paedophile cases in Belgium), this probably reflects different national concerns (at least in the media) about what images of sexuality children should be exposed to.

With regard to the question of the extent to which NGOs shape public discourses the main commonalities across Europe consist in the respective

In conclusion, although there appears to be considerable variation in ISP’s activity in safeguarding online safety, this cannot be straightforwardly related to cross-national variation in children’s use or risk. Nor can one discern a straightforward relation between the development of a regulatory framework and children’s experiences online, though it is suggested that more developed frameworks are to be found in countries where internet use is relatively high. Compounding the challenges ahead, it will be observed that relatively low engagement of NGOs with internet safety issues was found in several high risk countries (Table 3.9).
target groups: in almost all countries NGOs are focusing on raising the awareness of parents and children and to a lesser extent they target the service providers. Another commonality is that very few NGOs deal only with safer internet issues. Most of those working on this topic are NGOs working closely with national child protection agencies and more generally consist of child protection organisations and some extent parents’ organisations as well.

- Some countries provided evidence that single media events, e.g. high profile ‘crimes’ or ‘anti-social behaviour’ have generated intense public discussions, as related to the school killings in Germany and Finland, a particular posting of youth misbehaving in a school in Slovenia or cases of happy-slapping in France and Italy. Given the media attention given to these events they might have long-term effects on the public discourses as they frame the perceptions of journalists as well as of the recipients.

In conclusion, media coverage on online risks and opportunities varies substantially across Europe. It may be assumed that parents in the countries with a general high level of risk reporting in the media (Portugal, the UK and Denmark) have a higher perception of risks than the average country. In countries where press coverage reports considerable concerns about the risks of content online, there will be more parental concern about these issues compared to countries where that particular reporting is low; the same logic applies to contact and conduct risks.

Attitudes and values

- The countries can be classified according to the dimensions of individualism and collectivism: 1) UK, Ireland, Belgium with high/moderate individualism and moderate collectivism; 2) Poland, Bulgaria, Estonia, Portugal, and Czech Republic with low individualism and moderate collectivism; 3) Austria, Germany, Slovenia, Spain, Iceland, Italy, France and Greece with moderate individualism and low collectivism; 4) Denmark, Sweden, and the Netherlands with high individualism and low collectivism.

- This classification shows there is a high correspondence between cultural values and the overall country classification as developed in chapter 2 based on children’s internet use and the degree of online risk. Countries of group 4) are high use countries with medium or high risk; countries of group 2) are medium or low use countries with high risk; countries within group 3) are medium or low use countries with medium or low risk; and countries within group 1), somewhat overlapping with group 4) are high (or medium) use countries with high or medium risk.

- Another correlation can be found for the parents’ rules relating to children’s use of the TV and the internet. Almost all countries, in which parents put more emphasis on the mediation of TV use, belong to group 3, which can be called “the Catholic Europe”, whereas all countries in group 4, “the protestant Europe” clearly apply more rules for online use.

In conclusion, the association between general values and patterns of online use/risks indicates that online behaviour as well as perceived online risks are related to and shaped by underlying value orientations which differ across Europe. Thus awareness programmes must consider the cultural specificities of single countries in order to reach their target groups.

Educational system

- With regard to the general level of education, Southern European countries show considerably higher rates of only pre-primary and primary education than Northern, Central and Eastern European countries. However, among the younger generations these differences are going to disappear. So far, cross country differences in children’s online use can be partly explained by different levels of general education: the higher general education of a country, the higher its children’s online use.

- European countries differ in the degree to which differences in education and socio-economic status are transferred to the children’s generation. Unfortunately there is almost no systematic empirical evidence on SES related differences in children’s online behaviour, but illustrative observations support the assumption that in more stratified societies, internet use is particularly shaped by SES differences.

- The technical infrastructure of schools has been massively increased in the last years throughout Europe. However, as several national reports point out, internet penetration in schools is not the same as actual use. Most students cannot use internet at schools without some kind of control by adults. Even in tertiary education, access is not completely without restrictions.

- In most European countries ICT learning is part of the curriculum (both in primary and secondary levels of education). In most countries ICT learning constitutes an autonomous subject. Only in a few countries it is just a cross-curricular subject.

- In conclusion, the educational system is a relevant contextual factor for children’s internet use. Although the evidence available does not allow for systematically checking the hypothesis, it may be assumed that higher education will help a) children to develop online skills and b) parents to develop skills in mediating their children’s online use. The technical infrastructure of schools as well as the way how the internet is integrated in curricula and everyday teaching practices will influence children’s online use at schools. Since online use at schools is often restricted risks as well as opportunities are reduced in that setting.

Background factors

- The EU Kids Online network generated a wide range of hypotheses regarding the cultural, socio-economic and technical factors that might influence children’s
online access, use and safety. In many cases, however, there was too little available comparable evidence to permit examining these hypotheses.

• It was possible to classify countries according to their active endorsement of the information society discourse, but this seemed unrelated to country classifications based on risk, coping or parental mediation, though they are loosely related to the classification based on use. Unsurprisingly, high use countries are more likely to consider themselves on 'the leading edge' in the information society. Whether this results in higher safety awareness among children and parents is unclear.

• Urbanisation may shape children’s encounters with the internet and risk. Countries with large rural populations (Bulgaria, Cyprus, Greece) are also low use countries. Although it is widely held that socioeconomic status inequalities also shape children's access to the internet, we found little use of comparable indicators applied to children in Europe.

• In terms of the State, countries that classified themselves as relatively interventionist tended to be low to medium on use and risk (with the exception of Czech Republic and UK – medium or high use respectively, and both high risk). Notably, two countries described as taking a liberal approach (Bulgaria, Estonia) appear to be high risk for children online.

• Language – we have noted that English language proficiency tends to be higher in Belgium, Denmark, Greece, Iceland, Norway, Sweden and the Netherlands and to be relatively low in Austria, Germany, the Czech Republic, France, Italy, Portugal and Spain. Setting aside the exception of the Czech Republic (where risk was more contact than content risks) and Spain, one may note that, as hypothesised, the former group are generally higher on online risk indicators than the latter. Access to English language content may bring risks as well as opportunities.

In conclusion, the adoption of an information society discourse, plus such socio-structural factors as degree of urbanisation, may be associated with the degree of internet access and use that children in different countries enjoy. Other factors appear to be more closely associated with the degree of online risk encountered – this is seemingly higher where the State is less interventionist in the regulatory regime, where children are more likely to understand English and, perhaps only in the future, where personalised internet access is more common.

4.5. Commentary on the comparative process

Working closely together for two years since June 2006, the 21 national teams that comprise the EU Kids Online network have developed constructive working arrangements designed to capture similarities and diversity across member states so as to facilitate the identification of common patterns, themes and best practice. This twin dynamic of recognising difference and drawing out shared understandings was originally developed in our three-national ‘pilot’ comparison (Hasebrink et al, 2007) and has proved productive.

Thus, we developed a comparative strategy to ‘add value’ on a European level to the many national studies conducted in different countries, disciplines and languages (identified in Staksrud et al, 2009). For those in similar or related domains who are contemplating the conduct of an cross-national analysis of similarities and differences in findings, we propose that our analytic framework and working methods can be of considerable value.

As illustrated in figure 4.1, the strategy required a set of countries (C1… Cn) to work collaboratively to frame research questions relevant to all (RQ1… RQn). These research questions and hypotheses provided a means of explicating the possible cross national similarities and differences, trends and associations that can be derived from the existing research literature and/or are of relevance to safety and risk policy. These were addressed in turn in chapter 2, as summarised above.

The process of comparative analysis can be represented schematically as a grid.

- Reading horizontally, country level reports were generated by using the available data to answer each research questions at the national level (i.e. findings for Belgium, France, UK, etc). These national reports are available on the EU Kids Online website for the 21 countries included in the network.

- Reading vertically, comparative reports are generated by using the cross-national data pertinent to each research question (i.e. findings for age, gender, skills, coping, etc).

4.5. Commentary on the comparative process

Working closely together for two years since June 2006, the 21 national teams that comprise the EU Kids Online network have developed constructive working arrangements designed to capture similarities and diversity across member states so as to facilitate the identification of common patterns, themes and best practice. This twin dynamic of recognising difference and drawing out shared understandings was originally developed in our three-national ‘pilot’ comparison (Hasebrink et al, 2007) and has proved productive.

Thus, we developed a comparative strategy to ‘add value’ on a European level to the many national studies conducted in different countries, disciplines and languages (identified in Staksrud et al, 2009). For those in similar or related domains who are contemplating the conduct of an cross-national analysis of similarities and differences in findings, we propose that our analytic framework and working methods can be of considerable value.

As illustrated in figure 4.1, the strategy required a set of countries (C1… Cn) to work collaboratively to frame research questions relevant to all (RQ1… RQn). These research questions and hypotheses provided a means of explicating the possible cross national similarities and differences, trends and associations that can be derived from the existing research literature and/or are of relevance to safety and risk policy. These were addressed in turn in chapter 2, as summarised above.

The process of comparative analysis can be represented schematically as a grid.

- Reading horizontally, country level reports were generated by using the available data to answer each research questions at the national level (i.e. findings for Belgium, France, UK, etc). These national reports are available on the EU Kids Online website for the 21 countries included in the network.

- Reading vertically, comparative reports are generated by using the cross-national data pertinent to each research question (i.e. findings for age, gender, skills, coping, etc).

4.5. Commentary on the comparative process

Working closely together for two years since June 2006, the 21 national teams that comprise the EU Kids Online network have developed constructive working arrangements designed to capture similarities and diversity across member states so as to facilitate the identification of common patterns, themes and best practice. This twin dynamic of recognising difference and drawing out shared understandings was originally developed in our three-national ‘pilot’ comparison (Hasebrink et al, 2007) and has proved productive.

Thus, we developed a comparative strategy to ‘add value’ on a European level to the many national studies conducted in different countries, disciplines and languages (identified in Staksrud et al, 2009). For those in similar or related domains who are contemplating the conduct of an cross-national analysis of similarities and differences in findings, we propose that our analytic framework and working methods can be of considerable value.

As illustrated in figure 4.1, the strategy required a set of countries (C1… Cn) to work collaboratively to frame research questions relevant to all (RQ1… RQn). These research questions and hypotheses provided a means of explicating the possible cross national similarities and differences, trends and associations that can be derived from the existing research literature and/or are of relevance to safety and risk policy. These were addressed in turn in chapter 2, as summarised above.

The process of comparative analysis can be represented schematically as a grid.

- Reading horizontally, country level reports were generated by using the available data to answer each research questions at the national level (i.e. findings for Belgium, France, UK, etc). These national reports are available on the EU Kids Online website for the 21 countries included in the network.

- Reading vertically, comparative reports are generated by using the cross-national data pertinent to each research question (i.e. findings for age, gender, skills, coping, etc).
Insofar as the comparative reports identified cross-national similarities, the focus was on the individual level of analysis (c.f. figure 1.1). Insofar as they identified differences, the focus was on the country level of analysis (i.e. the five contextual factors also shown in figure 1.1, plus a series of background factors).

This approach, we conclude, achieves a systematic and structured outcome in terms of comparative analysis. Regarding Kohn’s (1989) main rationales for comparative research, outlined at the start of this report and here pursued in terms of three of his four approaches, the present strategy permitted us to achieve the following:

- **Treat** countries as objects of analysis in their own right. This approach employs an idiographic lens to understand countries for their own sake; comparison provides a useful strategy for ‘seeing better’ and determining what is distinctive (or not) about a country. It was achieved through production of the country reports.

- **Treat** countries as the context for examining general hypotheses. This approach analyses tests general theoretical models across nations, hypothesising similarities across countries while also permitting findings of cross-national differences to challenge or limit claims. It was here achieved through production of the comparative reports at the individual level of analysis.

- **Treat** countries as units in a multidimensional analysis. This approach seeks to explain patterns of similarities and, particularly, differences across countries, by inquiring into the external indicators that explain how and why nations vary systematically. This was achieved, here through production of comparative reports at the country level of analysis (i.e. explaining the cross-national classification in terms of contextual factors).

We conclude that this comparative strategy has been broadly successful, and offer the following brief comments in terms of methodology.

- Specifically, our approach permitted a clear translation of three main rationales for cross-national research into an effective strategy for comparing countries on multiple dimensions, as organised through a clear theoretical framework.

- The analysis could thereby respect findings of both pan-European similarities and differences. It could test specific hypotheses and also address open research questions. It could situate each country in the context of others, and it could situate the individual child in the context of national cultural factors.

- On the other hand, the process was undoubtedly demanding in terms of research effort – both for each national research team and in terms of the management of and commitment to a highly collaborative and iterative working process.

- The analysis was also limited by the quality and extent of the available evidence base – the many gaps in the data and the many differences in definitions, sample and methods used for such core issues as online use and risk meant that all claims and conclusions in this report must be treated as indicative rather than conclusive.

- Simply put, some data was weaker than could be wished, some was lacking and some was difficult to interpret. We proceeded, therefore, on the bold assumption that conducting comparisons is preferable to saying nothing about pan-European patterns, since some added value must surely be extracted from the many studies conducted. But we did so with extreme caution, not least in order to stimulate more and better research in the future.

- The hardest task, other than locating relevant data and negotiating its significance across the network, was in producing the country classifications. Some may argue that these are too reductive, turning differences in degree into absolute differences. But for theoretical and pragmatic reasons, we propose that country classifications are useful, providing a means of discussing similarities and differences as well as focusing attention on policy priorities (notably, high risk countries).

- It is also noteworthy, if unsurprising, that although most available findings were national studies, for many purposes the comparative European data (mainly Eurobarometer, though other sources were also useful) provided the strongest basis for cross-national analysis.

- In terms of quality control, we have sought to explicate the basis for our claims and conclusions throughout, facilitating a ‘read back’ from conclusions to the evidence base for those and, further back, to the country reports and original reports of data (available at www.eukidsonline.net) from which they were derived.

- Many comparative studies produce the empirical basis for cross-national comparisons but end their work at the stage of producing a series of country reports, effectively leaving the task of identifying and explaining observed similarities and differences to the reader. We hope our present work provides a model for the crucial stage of comparative analysis that can systematize and maximise the benefits of cross-national research.

While it has been our intention to extract as much value for the diversity of studies conducted on topic of children’s online use, opportunities, risk and safety, there can be little doubt that more research, rigorously conducted on a strongly comparative basis, is greatly needed.
5. Bibliography

Annex A: EU Kids Online

EU Kids Online is a thematic network examining European research on cultural, contextual and risk issues in children’s safe use of the internet and new media between 2006 and 2009. It focuses on the intersection of three domains:

- Children (mainly up to 18 years old), their families, domestic users
- Online technologies, especially the internet; focussing on use and risk issues
- European, cross-national, empirical research and policy

This network is not funded to conduct new empirical research but rather to identify, compare and draw conclusions from existing and ongoing research across Europe. It is funded by the European Commission’s Safer Internet plus Programme and coordinated by the Department of Media and Communications at the London School of Economics, guided by an International Advisory Board and liaison with national policy/NGO advisors.

EU Kids Online includes research teams in 21 member states, selected to span diversity in countries, academic disciplines and expertise: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, France, Germany, Greece, Iceland, Ireland, Italy, Norway, Poland, Portugal, Slovenia, Spain, Sweden, The Netherlands and The United Kingdom.

The objectives, achieved via seven work packages, are:

- To identify and evaluate available data on children’s and families’ use of the internet and new online technologies, noting gaps in the evidence base (WP1)
- To understand the research in context and inform the research agenda (WP2)
- To compare findings across diverse European countries, so as to identify risks and safety concerns, their distribution, significance and consequences (WP3)
- To understand these risks in the context of the changing media environment, cultural contexts of childhood and family, and regulatory/policy contexts (WP2&3)
- To enhance the understanding of methodological issues and challenges involved in studying children, online technologies, and cross-national comparisons (WP4)
- To develop evidence-based policy recommendations for awareness-raising, media literacy and other actions to promote safer use of the internet/online technologies (WP5)
- To network researchers across Europe to share and compare data, findings, theory, disciplines and methodological approaches (WP1-7)

EU Kids Online Reports to the Safer Internet Programme

- Lobe, B., Livingstone, S., Ólafsson, K., Simões, J. (2008) Best Practice Research Guide: How to Research Children and Online Technologies in Comparative Perspective. Available as a pdf and online FAQs. Also on the website are a range of good practice resources.

53 All available at http://www.eukidsonline.net. The website also contains a range of powerpoint slides, consultation responses, and other materials associated with EU Kids Online activities from 2006-9.
Annex B: Network members

Austria
Ingrid Paus-Hasebrink
Andrea Dürager
Christina Ortner
Manfred Rathmoser
Christine Wijnen
University of Salzburg

Belgium
Leen d’Haenens
Verónica Donoso
Bieke Zaman
Joke Bauwens
Nico Carpentier
Katia Segers
Vrije Universiteit Brussel, Katholieke Universiteit Leuven

Bulgaria
Jivka Marinova
Maria Dimitrova
Christina Haralanova
Maria Gencheva
Diana Boteva
GERT

Cyprus
Yiannis Laouris
Tatjana Taraszow
Elena Aristodemou
Cyprus Neuroscience and Technology Institute

Czech Republic
Vaclav Stetka
Masaryk University

Denmark
Gitte Stald
Jeppe Jensen
IT University of Copenhagen

Portugal
Cristina Ponte
Cátia Candeias
José Alberto Simões
Nelson Vieira
Daniel Cardoso
Ana Jorge
Tomas Patrocinio
Sofia Viseu
Ema Sofia Leitao
New University of Lisbon, University of Lisbon

Estonia
Veronika Kalmus
Pille Pruulmann-Vengerfeldt
Pille Runnel
Andra Siibak
Kadri Ugur
Anda Zule-Lapima
University of Tartu

France
Benoit Lelong
Cédric Fluckiger
France Telecom R&D

Germany
Uwe Hasebrink
Claudia Lampert
The Hans Bredow Institute

Greece
Liza Tsaliiki
Despina Chronaki

Iceland
Thorbjörn Broddason
Kjartan Ólafsson
Gudberg Jónsson
University of Iceland, University of Akureyri Research Institute

Ireland
Brian O’Neill
Helen McQuillan
Simon Grehan
Dublin Institute of Technology, National Centre for Technology in Education

Italy
Fausto Colombo
Pierrmarco Aroldi
Barbara Scifo
Giovanna Mascheroni
Maria Francesca Murru
Università Cattolica del S. Cuore

Netherlands
Jos de Haan
Patti M. Valkenburg
Marion Duimel
Linda Adrichem
Netherlands Institute for Social Research – SCP, University of Amsterdam,
Erasmus University Rotterdam

Norway
Elisabeth Staksrud
Ingunn Hagen
Thomas Wold
Petter Bae Brandtzæg
University of Oslo, NTNU

Poland
Wieslaw Godzic
Lucyna Kirwil
Barbara Giza
Tomasz Lysakowski
Warsaw School of Social Psychology

Spain
Carmelo Garitaonandia
Maiaen Garmendia
Gemma Martinez Fernandez
Universidad del Pais Vasco

United Kingdom
Sonia Livingstone
Leslie Haddon
Panayiota Tsatsou
Ranjana Das
London School of Economics and Political Science
Annex C: Template for country reports

WP3: Template for National Reports for Deliverable D3.2

Country: …………………..
Author(s): …………………

Part One: Empirical findings related to children’s online activities, risks and opportunities

Note: up to 2000 words for all for this part, to explain your answers to each hypothesis.

<table>
<thead>
<tr>
<th>Research question R1a: What/how much access to the internet and online technologies do children have?</th>
</tr>
</thead>
<tbody>
<tr>
<td>evidence available</td>
</tr>
<tr>
<td>no pertinent evidence available</td>
</tr>
</tbody>
</table>

Please provide the most recent figures regarding Internet access at home, at school, and at other places.

<table>
<thead>
<tr>
<th>Research question R1b: How much use of the internet and online technologies do children make?</th>
</tr>
</thead>
<tbody>
<tr>
<td>evidence available</td>
</tr>
<tr>
<td>no pertinent evidence available</td>
</tr>
</tbody>
</table>

Please provide the most recent figures on a) how many children use the Internet, and b) how long they use it.

...

<table>
<thead>
<tr>
<th>Research question R2a: What are the main opportunities experienced by children online?</th>
</tr>
</thead>
<tbody>
<tr>
<td>evidence available for (some of) the opportunities listed in the guidelines provided</td>
</tr>
<tr>
<td>no pertinent evidence available</td>
</tr>
</tbody>
</table>

Please provide a list of the main opportunities experienced by children; distinguish opportunities as perceived a) by parents or other adults, and b) by children themselves.

...

<table>
<thead>
<tr>
<th>Research question R2b: What are the main risks experienced by children online?</th>
</tr>
</thead>
<tbody>
<tr>
<td>evidence available for (some of) the risks listed in the guidelines provided</td>
</tr>
<tr>
<td>no pertinent evidence available</td>
</tr>
</tbody>
</table>

Please provide a list of the main risks experienced by children; distinguish risks as perceived a) by parents or other adults, and b) by children themselves.

...

<table>
<thead>
<tr>
<th>Research question R3: Is there evidence showing the consequences of online risks, or showing how children cope with online risks?</th>
</tr>
</thead>
<tbody>
<tr>
<td>evidence available</td>
</tr>
<tr>
<td>no pertinent evidence available</td>
</tr>
</tbody>
</table>

Please summarize relevant findings from your country which qualify the overall result.

...

H1a: As children get older their access to and use (time, frequency) of the Internet and online technologies increases.

| evidence to support |
| evidence to contradict |
| no pertinent evidence available |

Please summarize relevant findings from your country which qualify the overall result.

...

H1b: As children get older, they gain greater online skills (or Internet literacy, including skills enabling self-protection from online risk).

| evidence to support |
| evidence to contradict |
| no pertinent evidence available |

Please summarize relevant findings from your country which qualify the overall result.

...

H2a: As children get older they make a wider range of uses (from the list provided in the guidelines) of Internet/online technologies.

| evidence to support |
| evidence to contradict |
| no pertinent evidence available |

Please summarize relevant findings from your country which qualify the overall result.

...

H2b: As children get older they are exposed to a greater amount and range of online risks (refer to the list provided in the guidelines).

| evidence to support |

54 If there is evidence which supports and contradicts a hypothesis, you may tick both boxes.
<table>
<thead>
<tr>
<th>Evidence to support</th>
<th>Evidence to contradict</th>
<th>No pertinent evidence available</th>
</tr>
</thead>
</table>

Please summarize relevant findings from your country which qualify the overall result.

H2c: As younger children gain online access they are increasingly exposed to online risk.

H3a: There are no gender differences in children’s access to or amount of use of online technologies.

H3b: There are gender differences in the levels of skill (higher for boys).

H4a: There are gender differences in the range/types of uses/opportunities.

H4b: There are gender differences in the range/types of risks.

H5a: There are inequalities in access as a consequence of inequalities in SES (socioeconomic status e.g. household income, parental education, social class).

H5b: There are inequalities in use/opportunities as a consequence of inequalities in SES

H5c: There are inequalities in skills/literacies as a consequence of inequalities in socioeconomic status (household income, parental education, social class).

Research question R4: Are there SES differences in children’s exposure to risk?

- Yes,
- No

Research question R5: What are the main strategies of parental mediation practiced?

- Evidence available

- No pertinent evidence available

H6: As children grow into teenagers they are subject to reduced parental mediation in their use of the Internet.

Evidence to support
Evidence to contradict
No pertinent evidence available
Research question R6a: Are there SES differences in parental mediation?
- yes,
- no
- no pertinent evidence available

Please summarize relevant findings from your country which qualify the overall result.

Research question R6b: Are there gender differences in parental mediation?
- yes,
- no
- no pertinent evidence available

Please summarize relevant findings from your country which qualify the overall result.

H7: Since most children make the broadest and more flexible use of the Internet at home, they will also encounter more risk from home than school use.
- evidence to support
- evidence to contradict
- no pertinent evidence available

Please summarize relevant findings from your country which qualify the overall result.

H8: Those children who use the Internet longer, and for more activities, develop more Internet-related skills and literacies.
- evidence to support
- evidence to contradict
- no pertinent evidence available

Please summarize relevant findings from your country which qualify the overall result.

Research question R7: What is the relation between online skills and risks?
- positive (the more skills, the more risks)
- negative (the more skills, the less risks)
- no pertinent evidence available

Please summarize relevant findings from your country which qualify the overall result.

Research question R8: What is the relation between online opportunities and risks?
- positive (the more opportunities, the more risks)
- negative (the more opportunities, the less risks)
- no pertinent evidence available

Please summarize relevant findings from your country which qualify the overall result.

H9a: More parental mediation results in reduced exposure or children to online risks online. OR H9b: More online risk is experienced by children when there is less parental mediation.
- evidence to support H9a
- evidence to contradict H9a
- evidence to support H9b
- evidence to contradict H9b
- no pertinent evidence available

Please summarize relevant findings from your country which qualify the overall result.

Research question 9: Is there evidence that particular parental strategies or styles of mediation effectively reduce the risk that their children experience online?
- yes (please specify below)
- no
- no pertinent evidence available

Please summarize relevant findings from your country which qualify the overall result.

Please add further hypotheses or overall multivariate findings which are available for your country.
Part Two: Relevant contextual factors

1. Media Environment

1.1 Internet and broadband diffusion

This information will in large part be drawn from European statistics. BUT can you add a note saying whether you think the Internet is widely available in your country (in libraries, Internet cafes), on whether the speed of access was generally good or poor compared to other countries. The point is that some of this information is not available in the general international statistics.

1.2 Internet safety tools

To what extent do ISPs offer Internet safety tools (e.g. filters) or provide warnings/advice?

1.3 Media content for children

Is the Public Service Broadcaster a major provider of content for children? And is it also a major provider of such content online? Who is major content provider for children? Evaluate qualitatively whether this content is rich and/or broad or poor and/or narrow?

To what extent are children targeted by commercial media content?

2. Internet regulation and promotion

2.1 Legislation and Policing (Regulation)

Here we would like to know, to what extent the government in your country tries to regulate ICTs/Internet. Can the national report briefly describe relevant laws and regulatory procedures relating to the Internet, e.g. regarding the monitoring of the Internet for images of children used in pornography or requirements related to youth protection. (NB: Is there a distinction between ‘illegal’ and ‘harmful’ content?)

Can the report also comment the overall density of ICT/Internet regulation (i.e. are there many relevant laws and requirements, as was identified in the 3-country report in the case of the UK?). Can the report comment on how much regulation is enforced by the police (e.g. in the UK there is a special unit working in this area, with regular reports of prosecutions).

2.2 The role of government and regulator

Has your government and/or the regulator:

a) implemented programmes to promote the use of the Internet?

b) implemented programmes to raise awareness of potential social impacts and risks related to the Internet?

c) implemented programmes to promote media literacy?

Please add examples and specify what the government did (e.g. produce leaflets, influence teacher education, pay for school’s Internet access, etc.). In relation to the above, does the government/regulator negotiate with the ISPs and NGOs? (Ask Advisory Panel/Node)

2.3 The influence of NGOs

Although we have some more questions about NGOs, specifically, have they been influential in shaping legislation/regulation? Have they lobbied government to create regulation relating to children’s use of the Internet? Have they lobbied ISPs to introduce more controls/provide awareness material? (Ask Advisory Panel/Node)

3. Public discourses

3.1 Media coverage

This part will be handled by WP2. No answer needed here.

3.2 Role of NGOs and related stakeholders (e.g. charities) in shaping public discourses

a) How much do NGOs collectively or individually try to create awareness of risks among the public?

b) How long have they been active in raising awareness/organising campaigns? (i.e. is this recent?)

c) Do they speak with one voice/are they coordinated/does one dominate?

d) Are they EC and/or national initiatives?

e) Do they provide advice or helplines?

f) Who do they target in their awareness campaigns (parents, children directly, teachers, the public)

g) Are some risks emphasised more than others?

h) How successful have they been at getting media coverage (e.g. are they cited regularly in the media?)

i) How successful have awareness campaigns been? (Ask Advisory Panel/Node)

3.3 Key Events

Are there any examples of key events that influenced public/media discourses in this field? What influence did they have and how did this work (e.g. did the media or politicians publicly respond to the events in some way, raising issues?) Or are their few key, memorable events that stand out, but simply on-going media reports (e.g. of paedophile cases)?

4. Values and attitudes

This section will draw more on survey data at a European level. No answer needed.
5. Educational system

5.1 General literacy of the population
Can national reports make a comment on this, if possible.

5.2 The education of the parents’ generation,
Here we would like to know what proportion of parents have a high level of education. Although we will try to get comparative statistics on this, can national report additionally comment on the distribution of the educational level of people aged 20-50 in each country (i.e. what % had minimal education, what % had higher education etc). Can reports note the extent to which Higher Education is ‘elitist’ or ‘mass’ and has that changed/is that changing.

5.3 The kind of education for today’s children
Can national reports comment on any kind of change in the experience of schooling between the children and parents generations?

5.4 The technical infrastructure of schools
We will try to find European data on this, but could national reports comment on the degree to which schools have the technical infrastructure to support Internet access (e.g. do most schools have broadband? Is it ‘easy’ for children to access the Internet at school?)

5.5 Internet and media education
Is Internet/IT/Media education subject on the curriculum? If not, where would children encounter this, if at all?

6. Background factors

6.1 Levels of social change
a) Social change occurs in all countries, but do national teams feel that some forms of change have been rapid or substantial. What are these, and what are the consequences?
b) To what extent have Governments/the Public been enthusiastic about changes associated with the Information Society – have these been high profile discourses on this topic?
c) In these discourses is there a sense of the country being left behind, or being at the leading edge, or being ‘average’ in relation to these technological changes (can examples be provided relating to this)

6.2 Inequalities
What are the key divides/inequalities in your country and how are they measured (eg – class, income, education, region, language, cultural minority, etc)?

6.3 Urbanisation
To what extent is there still a rural (i.e. working in agriculture) population? Is this changing/has this changed recently? Is there more Internet adoption in urban centres/large urban centres? Are there parts of the country with poor Internet (broadband, telecoms) infrastructure?

6.4 Work and social class
What percentage of the population is involved in manual vs. non-manual work? We will draw on comparative statistics for this information, but please add a qualitative evaluation.

6.5 Free speech and censorship
How does the level of free speech allowed vs. censorship compare to other European countries? Has this changed? This is relevant for the type of material online and concerns that children might access this.

6.6 Migration and cultural homogeneity
This might specifically have a bearing on tolerance (including tolerance of what is on the Internet). Provide examples/ evidence if possible.

6.7 Role of the state
To what extent is the state interventionist in people’s lives vs. a laissez faire regime where the state plans a minimal role? Provide evidence/examples.
To what extent is the state and/or the government regarded as being responsible for Internet safety (compared with industry, school, parents)?

6.8 Language
To what extent is English spoken as a second language? We will draw on comparative statistics on knowledge of foreign languages (at least for adults and adolescents). BUT can the national reports add a qualitative evaluation of the actual knowledge and use of English among children and young people. When do children start to have English lessons at school?
Is the national language part of the Internet large (e.g. reflecting a large country, such as the German language part of the Internet)? Can the population easily read other national languages (e.g. Czechs reading the Slovak sections of the Internet)?

6.9 ‘Bedroom culture’
In some countries, such as the UK, parental fears about the risks to children in unsupervised spaces outdoors have been one factor that has led parents to encourage their children to stay indoors, to spend time in friend's homes and/or participate to participate in (adult) supervised activities elsewhere. The first options have supported the emergence of a ‘bedroom culture’ where children’s rooms have become increasingly media rich, including access to the Internet. To what extent does this apply in your country and can you find any evidence to support your arguments
Annex D: Summary tables from country reports

Table 6.1: Summary of national reports on evidence for forms of risk

<table>
<thead>
<tr>
<th>Form of risk encountered by children and median response across countries researched</th>
<th>Incidence by country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggressive content (child as recipient):</td>
<td>Note: Percentages refer to online teenagers unless otherwise stated</td>
</tr>
<tr>
<td>.... Seen violent or hateful content</td>
<td></td>
</tr>
<tr>
<td>The approximately median response is 32% of online teenagers who have encountered this risk in Europe</td>
<td></td>
</tr>
<tr>
<td>• 90% in Ireland (10-20 yrs – SNS users)</td>
<td></td>
</tr>
<tr>
<td>• 51% in Poland (12-17 yrs)</td>
<td></td>
</tr>
<tr>
<td>• Up to 40% in Belgium (9-12 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 39% in The Netherlands (13-18 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 35% in Denmark (9-16)</td>
<td></td>
</tr>
<tr>
<td>• Up to 33% in France (12-17 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 31% in UK (9-19 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 35% in Iceland (9-18 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 29% in Norway (9-16 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 29% in Germany (on mobile) (12-19 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 26% in Sweden (9-16 yrs)</td>
<td></td>
</tr>
<tr>
<td>• Up to 25% in Italy (7-11 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 15% in Austria (10-15 yrs)</td>
<td></td>
</tr>
<tr>
<td>Aggressive contact (child as participant):</td>
<td></td>
</tr>
<tr>
<td>.... Been bullied/ harassed/ stalked</td>
<td></td>
</tr>
<tr>
<td>The approximately median response is 15-20% of online teenagers who have encountered this risk in Europe</td>
<td></td>
</tr>
<tr>
<td>• 52% in Poland</td>
<td></td>
</tr>
<tr>
<td>• 31% in Estonia (6-14 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 21% (7-11 yrs) and 18% (12-19 yrs) in Italy</td>
<td></td>
</tr>
<tr>
<td>• 20% in UK (11-19 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 19% in Ireland (of chatters 9-16 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 16% in Norway</td>
<td></td>
</tr>
<tr>
<td>• 15% in Iceland (9-16 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 16% in Sweden (9-16 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 10% in Belgium</td>
<td></td>
</tr>
<tr>
<td>Aggressive conduct (child as actor):</td>
<td></td>
</tr>
<tr>
<td>.... Sent bullying/ harassing messages</td>
<td></td>
</tr>
<tr>
<td>The approximately median response is 12% of online teenagers who have encountered this risk in Europe</td>
<td></td>
</tr>
<tr>
<td>• 18% in Belgium</td>
<td></td>
</tr>
<tr>
<td>• 14% in Norway</td>
<td></td>
</tr>
<tr>
<td>• 10% in Denmark</td>
<td></td>
</tr>
<tr>
<td>• 8% in Ireland</td>
<td></td>
</tr>
<tr>
<td>Sexual content (child as recipient):</td>
<td></td>
</tr>
<tr>
<td>.... Seen pornographic or unwelcome sexual content</td>
<td></td>
</tr>
<tr>
<td>The approximately median response is 40% of online teenagers who have encountered this risk in Europe</td>
<td></td>
</tr>
<tr>
<td>• 80% in Poland</td>
<td></td>
</tr>
<tr>
<td>• 57% in UK (9-19 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 54% in Iceland (9-16 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 50% in Austria (10-15 yrs – 60% of 11-18 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 47% in Norway (9-16 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 46% in Netherlands (13-18 yrs)</td>
<td></td>
</tr>
<tr>
<td>• Up to 40% in Belgium (9-12 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 37% in Ireland (9-16 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 37% in Sweden (13-16 yrs)</td>
<td></td>
</tr>
<tr>
<td>• Up to 33% in France (12-17 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 29% in Denmark (9-16 yrs)</td>
<td></td>
</tr>
<tr>
<td>• Up to 25% in Italy (7-11 yrs)</td>
<td></td>
</tr>
<tr>
<td>Sexual contact (child as participant):</td>
<td></td>
</tr>
<tr>
<td>(1) Received unwanted sexual comments</td>
<td></td>
</tr>
<tr>
<td>The approximately median response is 25% of online teenagers who have encountered this risk in Europe</td>
<td></td>
</tr>
<tr>
<td>• 56% (of 12-17 yrs meeting strangers online) in Poland</td>
<td></td>
</tr>
<tr>
<td>• 32% in Sweden (9-16 yrs) have received unwanted sexual comments, and 15% (13-16 yrs) were subject to unwanted talk about sex</td>
<td></td>
</tr>
<tr>
<td>• 31% in UK (9-19)</td>
<td></td>
</tr>
<tr>
<td>• 25% in Iceland</td>
<td></td>
</tr>
<tr>
<td>• 24% in Norway</td>
<td></td>
</tr>
<tr>
<td>• 9% in Germany (6-13 yrs)</td>
<td></td>
</tr>
<tr>
<td>• 9% in Ireland</td>
<td></td>
</tr>
<tr>
<td>• 6% in Portugal (8-18 yrs)</td>
<td></td>
</tr>
</tbody>
</table>
(2) Met online contact (stranger) offline

The approximately median response is 9% of online teenagers who have encountered this risk in Europe

- 20% in Czech Republic (12-17 yrs)
- 20% in Sweden (9-19 yrs)
- 19% (of 12-17 yrs) in Poland
- 16% in Spain
- 14% in Norway
- 9% in Denmark (18% of online chatters, where 48% of those online are chatters)
- 8% in UK (9-19 yrs)
- 8% in Belgium
- 7% in Ireland (9-16 yrs)
- 6% in Estonia (6-14 yrs)

Additionally, a risk associated with most contact risks: ...

Has given out personal information

The approximately median response is 50% of online teenagers who have encountered this risk in Europe

- 91% in Czech Republic
- 79% in Ireland (10-20 yrs)
- 64% in Poland
- 16% in Spain
- 22% in Iceland (9-16 yrs)
- 14% in Norway
- 9% in Denmark (18% of online chatters, where 48% of those online are chatters)
- 46% in UK (9-19 yrs)
- 44% in France (12-17 yrs)
- 13% in Belgium (9-12 yrs)

Miscellaneous other risks:

- Viruses/scams/spam – seen as problem by many children
- 17% in Belgium (9-12 yrs) felt threatened online, and 40% felt shocked by online content
- 19% in Estonia (6-14 yrs) disturbed by stranger online
- 40% in Austria (10-15 yrs) visited gambling sites and 11% 11-18 yrs visited suicide forum
- 44% girls/30% boys in Germany (12-19 yrs) had unpleasant experiences in chat rooms, and 29% had seen a filmed beating
- 19% in Denmark have been harassed/bothered/upset, and 77% of chatters have been insulted
- 15% in Iceland asked for a picture of self naked online
- 16% in Iceland received emails/messages which made them worried or frightened
- 7% in Ireland (10-14 yrs) made uncomfortable by material
- 16% in Italy (13-17 yrs) had unpleasant or bad experiences, 8.1% (12-19 yrs) received threatening content and 21.7% (12-19 yrs) received fake information about themselves.
- 46% in The Netherlands (13-18 yrs) disturbed by annoying comments when chatting/using IM
- 30-40% of young people in Slovenia are bothered by spam/viruses/slowness of the websites loading; 44% express their concern about internet safety.
- 11% in Spain have felt afraid online (and 36% tend to disconnect because they are concerned about other people online)
- 16% in UK seen something frightening/worrying
Table 6.2: Summaries of national reports on types of risks

<table>
<thead>
<tr>
<th>Form of risk/ role of child online</th>
<th>France: Boys more likely to download harmful content</th>
<th>Germany: More boys than girls have seen a fight filmed on mobile phone and more boys have violent videos on their mobile</th>
<th>Ireland: Boys are three times more likely than girls to have visited hate sites.</th>
<th>Norway: More boys visit websites with offensive content.</th>
<th>Poland: From age 10 more boys than girls are at risk of exposure to illegal and offensive material</th>
<th>UK: Boys more likely to seek out violent or gruesome content.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggressive content (child as recipient):</td>
<td>Bolivia: Girls have felt more threatened than boys</td>
<td>Belgium: More girls than boys (12-19 years) have met unpleasant people in a chatroom</td>
<td>Estonia: Cyber-bullying, stalking, harassment is a bigger risk for boys than girls</td>
<td>Iceland: Boys are more likely than boys to receive unwanted sexual explicit messages than boys. They are also more likely than boys to have been asked to send naked picture of themselves</td>
<td>Italy: The risk of harassment is higher for boys than for girls</td>
<td></td>
</tr>
<tr>
<td>.... Seen violent or hateful content</td>
<td>China: More boys than girls have visited pornographic websites</td>
<td>Portugal: Boys are more likely than girls to have visited pornographic websites.</td>
<td>Spain: Boys are more likely than girls to receive internet links to pornographic web pages</td>
<td>UK: Boys are more likely to encounter online pornography, both accidentally and on purpose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggressive contact</td>
<td>Sexual content (child as recipient):</td>
<td>Cyprus: All girls have seen nudity on the internet</td>
<td>Iceland: Girls more likely to have received unwanted sexual explicit messages than boys.</td>
<td>The Netherlands: More girls than boys are upset by sexual images on the internet</td>
<td>Germany: More boys than girls have viewed pornographic material online</td>
<td></td>
</tr>
<tr>
<td>(child as recipient):</td>
<td>Belgium: Girls have felt more threatened than boys</td>
<td>Poland: Girls are more likely to be exposed to erotic material in emails and chatrooms. Girls find sexual and erotic content more shocking than boys.</td>
<td>Poland: Boys are more likely than girls to insert key words in search engines related to sex and erotica.</td>
<td>Germany: More boys than girls have viewed pornographic material online</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... Been bullied/ harassed/ stalked</td>
<td>China: More boys than girls have visited pornographic websites</td>
<td>The Netherlands: More girls than boys are upset by sexual images on the internet</td>
<td>Iceland: Boys are much more likely than girls to have visited pornographic websites.</td>
<td>Spain: Boys are more likely than girls to receive internet links to pornographic web pages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggressive conduct</td>
<td>Sexual contact (child as participant):</td>
<td>France: Many girls visiting chat rooms say they had talked about sexual matters with older boys or men.</td>
<td>Iceland: Girls more likely to have received unwanted sexual explicit messages than boys. They are also more likely than boys to have been asked to send naked picture of themselves</td>
<td>Norway: Mostly boys who receive unwanted sexual comments.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(child as actor):</td>
<td>Received unwanted sexual comments</td>
<td>Iceland: Girls more likely to have received unwanted sexual explicit messages than boys. They are also more likely than boys to have been asked to send naked picture of themselves</td>
<td>Norway: Mostly boys who receive unwanted sexual comments.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.... Sent bullying/ harassing messages</td>
<td>France: Young teenage girls may hide their identity in chat rooms and pretend they are boys or older girls, in order to learn more about sexuality or online flirting.</td>
<td>Norway: Mostly boys who receive unwanted sexual comments.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chat online with strangers</td>
<td>Portugal: More girls than boys chat online with strangers</td>
<td>France: More girls than boys chat online to strangers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met online contact (stranger) offline</td>
<td>Norway: Boys are more likely to have face to face meetings with people they have met on the net.</td>
<td>Iceland: Boys are more likely to have face to face meetings with people they have met on the net.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Given out personal information</td>
<td>Portugal: A higher percentage of boys than girls have contacted people off-line they have met on-line</td>
<td>Spain: More boys than girls meet people offline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous other risks</td>
<td>Estonia: strangers in online forums are more interested in getting to know the real names of girls.</td>
<td>Germany: More girls than boys (12-19 years) have been asked in a chatroom by strangers for their address, telephone number and name. Fewer girls than boys provided the information.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland: More boys than girls receive links to websites, e-mail, mail addresses telephone numbers providing info on how to access illegal or inappropriate contents</td>
<td>Greece: Fewer girls than boys would share personal details with a stranger</td>
<td>Ireland: Girls (9-16 years) more aware than boys of being contacted by strangers when posting personal information.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK: Boys more likely to give out personal information online</td>
<td>Italy: More boys than of girls reported giving out false information about another person</td>
<td>Greece: Fewer girls than boys would share personal details with a stranger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous other risks</td>
<td>Iceland: More of girls than boys asked for personal information about another person</td>
<td>Ireland: Girls (9-16 years) more aware than boys of being contacted by strangers when posting personal information.</td>
<td>UK: Boys more likely to give out personal information online</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6.3: Summaries of national reports on children’s abilities to cope with risks

<table>
<thead>
<tr>
<th>Country</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>Pupils fairly confident they can manage the risks of online contact with strangers.</td>
</tr>
<tr>
<td>Denmark</td>
<td>When visit hateful websites, 24% don’t think much about it; 23% get upset; 7% thinks it’s funny; 6% agree with the content; 5% thinks it’s cool</td>
</tr>
<tr>
<td></td>
<td>39% of children ignore it when they come across violent content. 19% of children have visited harassment sites. Most of them don’t give it much thought or they might think that it’s fun or cool to agree, with the content on the site. A third of the children passed the link on to friends.</td>
</tr>
<tr>
<td>France</td>
<td>Qualitative research reveals children’s strategies for caution online e.g. revealing personal info gradually when trust; meeting stranger in open places/with friends; motivations for risk-taking also explored – learning to flirt, testing identity and relationships, exploring adult world</td>
</tr>
<tr>
<td>Greece</td>
<td>Qualitative Eurobarometer: children (9-10 & 12-14) conscious of online risks and take measures to reduce them, following parental advice; children inform friends more than parents, discussing how to cope.</td>
</tr>
<tr>
<td>Iceland</td>
<td>Of those children who had seen a website with pornographic content 41% told a friend 17% told an adult and 53% told no one about it.</td>
</tr>
<tr>
<td></td>
<td>Of those children who had seen a website with pornographic content 42% never visited that site again and another 43% ignored the site.</td>
</tr>
<tr>
<td></td>
<td>Of those who had seen websites with pornography or violent content 47% said they did not think about it, 33% said they found it unpleasant, 18% said they wished they had not seen it, 13% said they found it odd and 10% said they thought it was cool.</td>
</tr>
<tr>
<td></td>
<td>Of those children who received spam with pornographic content 18% told their parents about it; younger children were more likely to do so than the older ones.</td>
</tr>
<tr>
<td></td>
<td>Of those who had received e-mail which they found unpleasant or which frightened them, 65% deleted the messages instantly, 29% told a friend, 26% told an adult and 24% tried to prevent further e-mails from the sender.</td>
</tr>
<tr>
<td></td>
<td>Of those children who had met someone offline that they first met online, almost all said nothing unpleasant resulted.</td>
</tr>
<tr>
<td>Ireland</td>
<td>Evidence that children accept/respond to parental advice; younger children talk to parents, older to peers</td>
</tr>
<tr>
<td></td>
<td>12-14 yrs accept offensive material is part of online experience – they ‘think before they click’, and practice range of cautious practices</td>
</tr>
<tr>
<td></td>
<td>Common strategies among 9-16 yrs – give false info when asked for personal info or ignore request, ask to be left along, block unknown senders, report to their parents</td>
</tr>
<tr>
<td></td>
<td>But also an increase in children who use internet when forbidden by parents or get around parental rules</td>
</tr>
<tr>
<td>Italy</td>
<td>Among 7-11 yrs, 21% ask the harasser to leave them alone, 10% stop talking to strangers, 10% avoid those sites</td>
</tr>
<tr>
<td></td>
<td>29% teenagers leave problematic sites/forums, 23% ask harasser to stop, 18% ignore disturbing messages, 1% are curious and continue the conversation.</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Online porn associated with recreational attitudes to sex and negative views of women as sex objects</td>
</tr>
<tr>
<td>Norway</td>
<td>1 in 5 of those frightened or hassled online told an adult</td>
</tr>
<tr>
<td></td>
<td>Fewer trust info on the internet than in 2003 (down from 49% to 37%)</td>
</tr>
<tr>
<td></td>
<td>Fewer willing to publish post info online for safety reasons than in 2003</td>
</tr>
<tr>
<td></td>
<td>85% of those who meet online contacts offline would not tell a parent after an unpleasant meeting</td>
</tr>
<tr>
<td></td>
<td>16% stated having received an e-mail that bothered or frightened them (13% in 2003); over half of them deleted it at once, and 1/3 told a friend about it.</td>
</tr>
<tr>
<td></td>
<td>1/3 of those (9-16 yrs) who visited a pornographic site say that they didn’t give it much thought, while more than in 2003 thought it was funny. Those who had seen such a site generally did nothing about it or did not visit it again. More in 2003 stated that they did not tell anyone about having visited such a site.</td>
</tr>
<tr>
<td></td>
<td>22% of children who use the internet received pornographic junk mail, but few have told their parents.</td>
</tr>
<tr>
<td></td>
<td>After the visit to a website with violent or gruesome pictures, there is an increase in the number that said they wished they had never seen it, while somewhat fewer thought it was cool. [Source: SAFT, 2006]</td>
</tr>
<tr>
<td>Poland</td>
<td>Most follow safety rules for stranger danger (refuse disclosure of personal info, etc), yet most ignored these rules in last year – 64% gave online contact their phone number, 42% address, 44% photo; many accepted invitation to meet.</td>
</tr>
<tr>
<td></td>
<td>More than 30% of the 12-17 yr olds who had been induced to sexual conversations felt frightened/ scared about this situation (Wołtasiak, 2003).</td>
</tr>
<tr>
<td></td>
<td>Many victims of cyber-bullying responded to this bullying with neutral emotional reaction: 35% of victims of humiliation/poking, 43% of victims of threats/blackmailing, more than 80% of those who received unwanted photo or video and 54% of filmed respondents responded with neutral emotional reaction.</td>
</tr>
<tr>
<td></td>
<td>Nearly half (49%) of those who have received links to pornographic websites have used them (29% repeatedly)</td>
</tr>
<tr>
<td></td>
<td>Cyberbullying - most tell no-one – very few tell an adult</td>
</tr>
<tr>
<td>Spain</td>
<td>Most teens don’t falsify personal info online or ask online contacts for help; if concerned, they disconnect.</td>
</tr>
<tr>
<td>Sweden</td>
<td>1 in 4 of those who see online porn are disgusted by it</td>
</tr>
<tr>
<td>UK</td>
<td>54% of those who saw online porn – not bothered, while 20% were disgusted</td>
</tr>
<tr>
<td></td>
<td>Of those who go to offline meetings, 66% took a friend and most told a parent or friend</td>
</tr>
<tr>
<td></td>
<td>31% of 12-15 yrs check reliability of websites and 67% trust most of what they find online</td>
</tr>
</tbody>
</table>

Source: Findings reported in National Reports (see www.eukidsonline.net)
Contact details
Professor Sonia Livingstone and Dr Leslie Haddon
Department of Media and Communications
The London School of Economics and Political Science,
Houghton Street, London WC2A 2AE, UK
f +44 (0) 20 7955 7248
e s.livingstone@lse.ac.uk / leshaddon@aol.com

The EU Kids Online thematic network has received funding from the European Community’s Safer Internet Plus programme. The authors are solely responsible for the contents of this report. It does not represent the opinion of the Community nor is the Community responsible for any use that might be made of information contained in it.