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Abstract

For spatio-temporal regression models with observations taken regularly in time but irreg-

ularly over space, we investigate the effect of spatial smoothing on the reduction of variance in

estimating both parametric and nonparametric regression functions. The processes concerned

are stationary in time but may be nonstationary over space. Our study indicates that under

the infill asymptotic framework, the existence of the so-called nugget effect in either regressor

process or noise process is necessary for spatial smoothing to reduce the estimation variance.

In particular the nugget effect in the regressor process may lead to a faster convergence rate

in estimating nonparametric regression functions.
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1 Introduction

The goal of the paper is to reveal the impact of a nugget effect on spatial smoothing under the

infill asymptotic framework which is also called the fixed-domain asymptotics (c.f. Cressie 1993,

section 3.3, and Stein 1999, Chapter 3). We consider a class of spatio-temporal models designed

for fitting data observed regularly in time and irregularly over space. Since we assume that the

process at a given location depends on the time-lagged values of that location and of the spatial

neighbouring locations, the process is unilateral in time. This is in marked contrast to purely

spatial autoregressive models for which an artificial unilateral order is used in model specification

and this artifact limits severely the applicability in modelling real spatial data (Yao and Brockwell

2006).

Another important feature of our setting is that stationarity is assumed in time only, not

over space. Indeed the model is capable of catching nonstationary spatial variation, although we

require that the functions to be estimated are continuous. Accordingly we adopt a strategy of

two step estimation: an initial estimator at each location is based on the observations taken at

this location only, and then spatial smoothing to pull information together from neighbouring

locations. The initial estimation is the same as that for a time series, which makes effective use of

the stationarity in time. The second estimator, i.e. the spatial smoothing, relies on the continuity

of the function to be estimated. Naturally one would expect that the spatial smoothing could

improve the estimator obtained in the first step. Unfortunately this is only true in the presence

of the so-call nugget effect. We illustrate this phenomenon in both parametric and nonparametric

settings. To highlight the essence of the problem, we impose some generic assumptions on the

initial estimators to avoid some standard and tedious regularity conditions. A special case of

the parametric setting (i.e. linear model) was investigated in Zhang et al. (2003). A part of the

result for nonparametric setting was established in Lu et al. (2007) for varying coefficient spatio-

temporal models. Both Zhang et al. (2003) and Lu et al. (2007) contain some simulation studies

illustrating the finite sample performance of the two step estimation procedure.

The results reported in this paper are somehow in a similar spirit to those of Zhang (2004)

which showed that parameters in some parametric variograms of spatial processes may not be

estimated consistently under the infill asymptotic framework.
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2 Models and estimation methods

2.1 Spatio-temporal regression model

For each fixed location s = (u, v)τ ∈ S, the process {(Yt(s),Xt(s)), t = 1, 2, · · · } is strictly

stationary, where Yt(s) is a scalar, Xt(s) is a d × 1 vector, and S is a bounded subset of R2.

Furthermore, we assume that

Yt(s) = ms{Xt(s)} + εt(s) ≡ m{s,Xt(s)} + εt(s), t = 1, 2, · · · , (2.1)

where the regression function ms(·) = m(s, ·) may be known upto some unknown parameters, or

completely unknown. Nevertheless we always assume m(s, x) is continuous in s. Furthermore we

assume that the noise processes εt(s) satisfy the conditions below.

A1 {ε1(s), s ∈ S}, {ε2(s), s ∈ S}, · · · is a sequence of independent and identically

distributed spatial processes, and E{εt(s)} = 0. Further, for each t > 1,

{εt(s), s ∈ S} is independent of {(Yt−j(s),Xt+1−j(s)), s ∈ S and j ≥ 1}. The

spatial covariance function

Γ(s1, s2) ≡ Cov{εt(s1), εt(s2)} (2.2)

is bounded over S2.

In addition we assume that the noise εt(s) admits the decomposition below.

A2 For any t ≥ 1 and s ∈ S,

εt(s) = ε1,t(s) + ε2,t(s), (2.3)

where {ε1,t(s), t ≥ 1, s ∈ S} and {ε2,t(s), t ≥ 1, s ∈ S} are two independent pro-

cesses, and both fulfill the conditions imposed on {εt(s)} in A1 above. Further,

Γ1(s1, s2) ≡ Cov{ε1,t(s1) , ε1,t(s2)} is continuous in (s1, s2), and Cov{ε2,t(s1) , ε2,t(s2)} =

σ2
2(s1) ≥ 0 if s1 = s2, and 0 otherwise, where σ2

2(s) is continuous.

When σ2
2(s) > 0, Condition A2 implies that the nugget effect exists in the spatial noise

process {εt(s), s ∈ S}. The nugget effect was introduced by G. Matheron in early 1960’s. It

reflects the fact that the variogram E{εt(s1)− εt(s2)}2 does not converges to 0 as ||s1 − s2|| → 0,

where || · || denotes the Euclidean distance. In our notation, it is equivalent to the fact that the
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function γ(s) ≡ Γ(s1 + s, s1) is not continuous at s = 0 for any given s1 ∈ S. For example, A2

implies that Γ(s1 + s, s1) = Γ1(s1, s1) + σ2
2(s1) if s = 0, and Γ1(s1 + s, s1) otherwise. Note that

decomposition (2.3) is a convenient way, but not the only way, to model a nugget effect. In this

decomposition, ε1,t(s) represents system noise which typically has continuous sample realizations

(in s), while ε2,t(s) stands for microscale variation and/or measurement noise; see, e.g. Cressie

(1993, section 2.3.1).

Zhang et al. (2003) considered a parametric form ms(·) = g{·, θ(s)} while Xt(s) consists of

some time-lagged value of Yt(s). Spatio-temporal linear or nonlinear autoregressive model is a

special case of (2.1) for which Xt(s) may consist of time-lagged values of not only Yt(s) but also

Yt(i) for some i in the neighbourhood of s.

2.2 Two estimators for ms(·)

The setting presented above assumes stationarity in time t. But the process may be nonstationary

over space. Under such a setting, a natural initial estimator for ms(·) will be based on the

observations at location s only. This is essentially a time series estimation problem. The continuity

of ms(·) = m(s, ·) invites the possibility that the quality of estimation may be improved by

smoothing the time series estimators over a small neighbourhood in space. Below we outline this

two-step estimation strategy for both parametric and nonparametric ms(·).

2.2.1 Parametric estimation

We first consider the case that ms(·) = g{·,θ(s)}, where the form of the smooth function g

is known, θ(s) is a unknown r × 1 parameter vector. For a given location s ∈ S, we have

the observations in time {Yt(s),Xt(s), t = 1, · · · , T}. Without assuming anything about the

distribution of εt(s), a natural estimator for θ(s) is the least squares estimator (LSE) defined as

θ̂(s) = arg min
θ

T∑

t=1

[Yt(s) − g{Xt(s),θ}]2. (2.4)

Then θ̂(s) is the solution of the equation

T∑

t=1

[Yt(s) − g{Xt(s),θ}]ġ{Xt(s),θ} = 0, (2.5)

where ġ(·, θ) = ∂g(·, θ)/∂θ. We assume that

θ̂(s) − θ(s) = {X (s)τX (s)}−1X (s)τ ε(s) + oP (T−1/2), (2.6)
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where X (s) is a T × r matrix with ġ{Xt(s),θ(s)}τ as its t-th row, ε(s) = {ε1(s), · · · , εT (s)}τ .

Note that (2.6) may be derived from (2.5) with additional conditions on g and the underlying

distribution. Since the goal of this paper is to highlight the essence of spatial smoothing in relation

to the nugget effect, we proceed with our investigation by treating (2.6) as an assumption instead

of going through more detailed technical arguments. Obviously for linear g (i.e. g(x,θ) = xτθ),

(2.6) holds with oP (n−1/2) ≡ 0. In fact it may also be verified for a general class of M -estimators;

see, e.g. Chapter 7 of Serfling (1980).

When θ(s) is continuous in s, intuitively the estimator θ̂(s) might be improved by utilizing the

information from the neighbourhood locations of s. A simple approach to achieve this is to use

Nadaraya-Watson kernel smoothing over space. To this end, we assume availability of the data

{(Yt(sn),Xt(sn)), t = 1, · · · , T, n = 1, · · · , N}. The spatial smoothing estimator at the location

s0 is defined as

θ̃(s0) =

N∑

n=1

θ̂(sn)Wb(sn − s0)
/ N∑

n=1

Wb(sn − s0), (2.7)

where W (·) ≥ 0 is a density function on R2, b > 0 is a bandwidth, and Wb(·) = b−2W (·/b). Note

that the estimator θ̃(s0) applies regardless whether or not there are observations available at the

location s0.

2.2.2 Nonparametric estimation

Suppose now ms(·) = m(s, ·) is an unknown smooth function. To simplify our discussion, we use

the local linear regression method for the initial estimation based on time series data only. This

leads to the estimator m̂(s,x) = â, where

(â, â1) = arg min
a, a1

T∑

t=1

[Yt(s) − a− aτ
1{Xt(s) − x}]2Kh{Xt(s) − x}, (2.8)

where K(·) ≥ 0 is a density function on Rd, h > 0 is a bandwidth, and Kh(·) = h−dK(·/h). It

may be shown that

m̂(s,x) −m(s,x) =
1

Tp(s,x)

T∑

t=1

εt(s)Kh{Xt(s) − x}{1 + oP (1)} (2.9)

+
h2

2

∫
yτ m̈(s,x)yK(y)dy{1 + oP (1)},

where p(s, ·) denotes the probability density of Xt(s), and m̈(s,x) = ∂2

∂x∂xτ
m(s,x).
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Similar to (2.7), the spatial smoothing estimator at the location s0 is defined as

m̃(s0,x) =
N∑

n=1

m̂(sn,x)Wb(sn − s0)
/ N∑

n=1

Wb(sn − s0). (2.10)

3 Variance reduction

We study the asymptotic properties of the estimators defined in section 2 above. By comparing

the asymptotic variances, we will see that the spatial smoothing leads to an improvement in the

estimation for ms(·) when there exists a nugget effect.

We consider the asymptotic approximations when both T andN tend to ∞. First we introduce

some regularity conditions which apply to both the parametric and the nonparametric case.

A3 As N → ∞, N−1
∑N

i=1
I(si ∈ A) →

∫
A f(s)ds for any measurable set A ⊂ S,

where f is a sampling intensity (i.e. density) function on S. Further, f > 0 has

continuous first order partial derivatives in a neighborhood of s0 ∈ S.

A4 The kernel W (·) is a measurable density function on R2 with a bounded support,

and
∫

zW (z)dz = 0. As N → ∞, b→ 0 and Nb2 → ∞.

A5 For any s ∈ S, there exists a constant C0 such that E‖Xt(s)‖2δ < C0 < ∞ for

some δ > 2. Further, the process {(Yt(s),Xt(s)), t ≥ 1} is strictly stationary

and α-mixing with the mixing coefficient α(k), independent of s, satisfying the

condition
∑∞

k=1
{α(k)}1−2/δ <∞.

Condition A3 assumes that all the locations are within a fixed area determined by the intensity

function f whenN → ∞. Note thatN is the number of locations where the observations are taken.

Our approach belongs to the category of the fixed-domain asymptotics. Fixed-domain asymptotics

is one of two frequently used asymptotic frameworks in the analysis of spatial statistics; see, e.g.

Cressie (1993, §3.3). Condition A4 is standard for kernel smoothing. Note that the number

of observations used in a local estimation is of the order Nb2 which has to tend to ∞ in any

asymptotic argument. Condition A5 requires that at each location, the multiple time series

{(Yt,Xt(s)), t ≥ 1} is strictly stationary and α-mixing. For example, linear and causal ARMA

time series with continuously-distributed innovations are α-mixing with exponentially decaying

mixing coefficients. For further discussion on mixing properties of time series, see section 2.6 of

Fan and Yao (2003).
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3.1 Parametric case

Theorem 1. Let conditions A1 – A5 hold.

(i) Suppose that (2.6) holds for s = s0. Then as T → ∞, it holds that

θ̂(s0) − θ(s0) = T−1/2σ(s0)M(s0)
−1/2 ξ1 {1 + oP (1)},

where ξ1 ∼ N(0, Ir), σ(s)2 = Var{εt(s)}, and M(s) = E[ġ{Xt(s),θ(s)}ġ{Xt(s),θ(s)}τ ].

(ii) Suppose on a neighbourhood of s0 (2.6) holds uniformly in s and θ(s) is twice continuously

differentiable. Then as T → ∞ and N → ∞, it holds that

θ̃(s0) − θ(s0) = b2a(s0) + T−1/2Q(s0)
1/2 ξ2 {1 + oP (1)},

where ξ2 ≡ ξ2,T,N is a sequence of r × 1 random vectors with zero mean and identity covariance

matrix, a(s) is a r × 1 vector with the j-th element

tr
[{1

2

∂2θj(s)

∂s∂sτ
+
ḟ(s)

f(s)

∂θj(s)

∂sτ

} ∫
zzτW (z)dz

]
+ o(1),

and

Q(s) = σ1(s)
2M(s)−1M1(s)M(s)−1 +

σ2(s)
2

Nb2f(s)
M(s)−1

∫
W (z1, z2)

2dz1dz2.

In the above expressions, θj(s) denotes the j-th element of θ(s), ḟ(s) = ∂f(s)/∂s, σ1(s)
2 =

Γ1(s, s), Γ1(·, ·) and σ2(·)2 are defined as in A2, and

M1(s) = lim
i→0

E[ġ{Xt(s),θ(s)}ġ{Xt(s + i),θ(s)}τ ]

Theorem 1(i) follows directly from the LLN and CLT for α-mixing sequences, see, e.g. section 2.6.3

of Fan and Yao (2003). With the assumption imposed on (2.6), the proof for (ii) is similar to the

proof of Theorem 1 of Zhang et al. (2003).

Remark 1. (i) Since σ(s0)
2 = σ1(s0)

2 + σ2(s0)
2 (see condition A2), Theorem 1 implies that the

asymptotic approximation for the variance matrix of θ̂(s0) may be written as

1

T
σ1(s0)

2M(s0)
−1 +

1

T
σ2(s0)

2M(s0)
−1,

while the approximation for the variance of θ̃(s0) is of the form

1

T
σ1(s0)

2M(s0)
−1M1(s0)M(s0)

−1 +
1

T
σ2(s0)

2M(s0)
−1 1

Nb2f(s0)

∫
W (z1, z2)

2dz1dz2.
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Due to possible nugget effect in Xt(s), M1(s0) may not be equal to M(s0). If this is the case,

typically M(s0) − M1(s0) is a positive semi-definite matrix. One such example is the linear

autoregressive model considered in Zhang et al. (2003). Hence the asymptotic variance of θ̃(s0)

is smaller than that of θ̂(s0) as long as σ2
2(s0) 6= 0 and Nb2 → ∞, i.e. the spatial smoothing

reduces the variance of the estimation. However in the case of no nugget effect (i.e. σ2
2(s0) = 0

and M1(s0) = M(s0)), no variance reduction may be obtained via spatial smoothing as the

asymptotic variances of the two estimators are identical then. This is due to the fact that the

spatial smoothing uses effectively the data at locations within distance b from s0. Due to the

continuity of the function Γ1(·, ·) stated in A2, the variogram E[{εt(s)− εt(s0)}2] → 0 as s → s0.

Hence all the εt(s)
′s from those locations are asymptotically identical as b shrinks to 0. We

argue that asymptotic theory under this setting presents an excessively gloomy picture. Adding a

nugget effect in the model brings the theory closer to reality since in practice the data used in local

spatial smoothing usually contain some noise components which are not identical even within a

very small neighborhood. Note that the nugget effect is hardly detectable in practice since we

can never estimate Γ(s+ ∆, s) defined in (2.2) for ||∆|| less than the minimum pairwise-distance

among observed locations.

(ii) Theorem 1(ii) indicates that to minimize the asymptotic mean squared error of the es-

timator θ̃(s0), we should use bandwidth b of the order (NT )−1/6. Note that Var{εt(s0)} =

σ1(s0)
2 + σ2(s0)

2. With b = O{(NT )−1/6}, the asymptotic mean squared error of the smoothed

estimator θ̃(s0) is smaller than that of θ̂(s0) under the condition T = o(N2). Furthermore, the

smaller is σ2
1(s0)/σ

2
2(s0) (the system-noise-to-measurement-noise ratio), the larger is the improve-

ment due to spatial smoothing. In particular, if σ2
1(s0) = 0, the mean squared error of θ̃(s0) is an

order of magnitude smaller than that of the method using the data at location s0 only.

(iii) Without stationarity over the space, we cannot establish the asymptotic normality for the

smoothing estimator θ̃(s0).

3.2 Nonparametric case

Suppose that ms(x) = m(s,x) is unknown but ∂2

∂x∂xτ
m(s,x) is continuous in x. Similar to the

parametric case considered above, the property of the regressor process {Xt(s), s ∈ S} also plays

an important role in relation to the asymptotic properties of the estimators for m(s, ·). If there

is a nugget effect in {Xt(s), s ∈ S}, the joint density function of Xt(s) and Xt(i), denoted by
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p(s, i;x,y), may admit a well-defined limit:

lim
s→s0, i→s0

p(s, i;x,y) = q(s0;x,y), (3.1)

where q(s0;x,y) is continuous in both x and y. Examples for which such a limit exists include a

simple AR(1) model Yt(s) = m{Xt(s)}+εt(s) with Xt(s) = Yt−1(s) and εt(s) satisfying conditions

A1 and A2, or simply Xt(s) = Xt1(s) + Xt2(s), where Xt1(s) has continuous sample paths over

space while Xt2(s), for different s, are i.i.d.. For the latter, q(s0;x,y) is the joint probability

density function of Xt(s0) and Xt1(s0) + Xt2(s) for any s 6= s0.

On the other hand, if there exists no nugget effect in {Xt(s), s ∈ S} in the sense

E[||Xt(s) −Xt(i)||2] → 0, as ||s − i|| → 0,

the joint density function p(s, i;x,y) is subject to the irregular behavior dictated by the limits

∫
p(s, i;x,y)dxdy → 1 and

∫
||x − y||2p(s, i;x,y)dxdy → 0 as ||s − i|| → 0.

Therefore p(s, i;x,y) exhibits a ridge along the line x = y when ||s − i|| is small. Furthermore,

p(s, i;x,y) may diverge to ∞ when x = y, and 0 otherwise as ||s − i|| → 0. In this case, the

two-dimensional distribution of {Xt(s),Xt(i)} degenerates to a one-dimensional distribution when

||s− i|| → 0. Hence it is reasonable to assume that for any measurable ψ(·), E[ψ{Xt(s)}|Xt(i) =

x] → ψ(x), as ||s − i|| → 0. To facilitate an asymptotic approximation, we assume that for any

||ik − s0|| ≤ Cb (k = 1, 2), where C > 0 is a constant, it holds almost surely that

∣∣∣E[Kh{Xt(i1) − x}
∣∣Xt(i2)]

/
Kh{Xt(i2) − x} − 1

∣∣∣ → 0, (3.2)

as N,T → ∞ and b, h → 0 (see conditions A4 and A6). This condition may be justified by

imposing appropriate assumptions on the manner in which the conditional distribution of Xt(i1)

given Xt(i2) degenerates and on the relative speeds at which both b and h converge to 0.

Now we introduce an additional regularity condition.

A6 The kernelK(·) is a density function on Rd with bounded support, and
∫

yK(y)dy =

0. As T → ∞, h→ 0 and Thd → ∞.

Theorem 2. Let conditions A1 – A6 holds, and x ∈ Rd be fixed with p(s0,x) > 0, where

p(s, ·) > 0 denotes the marginal density function of Xt(s).
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(i) As T → ∞, it holds that

m̂(s0,x) −m(s0,x) = h2µ1(s0,x) + (Thd)−1/2ν1(s0,x) ξ3{1 + oP (1)},

where ξ3 ≡ ξ3,T is a sequence of random variables with mean 0 and variance 1, and

µ1(s,x) =
1

2
tr{m̈(s,x)

∫
yyτK(y)dy} + oP (1), ν1(s,x)2 = σ(s)2

∫
K(y)2dy

/
p(s,x).

(ii) Suppose on a neighbourhood of s0 (2.9) holds uniformly in s, and ∂2

∂s∂sτ
m(s,x) and p(s,x)

are uniformly continuous in both s and x.

(a) Under condition (3.1), it holds that as T → ∞ and N → ∞,

m̃(s0,x) −m(s0,x) = h2µ1(s0,x) + b2µ2(s0,x) (3.3)

+ (Thd)−1/2ν2(s0,x) ξ4{1 + oP (1)},

where ξ4 ≡ ξ4,T,N is a sequence of random variables with mean 0 and variance 1, and

µ2(s,x) = tr
[{1

2

∂2m(s,x)

∂s∂sτ
+
ḟ(s)

f(s)

∂m(s,x)

∂sτ

} ∫
zzτw(z)dz

]
+ o(1),

ν2(s,x)2 = hdσ1(s)
2 q(s;x,x)

p(s,x)2
+

1

Nb2
σ(s)2

p(s,x)f(s)

∫
w(z)2dz

∫
K(y)2dy.

(b) Under condition (3.2), (3.3) still holds but with ν2(s0,x) replaced by ν3(s0,x),

where

ν3(s,x)2 = σ1(s)
2

∫
K(y)2dy

/
p(s,x).

Remark 2. (i) The condition (3.3) indicates that the variance of the estimation for m(s0,x)

may be reduced by the spatial smoothing provided there exists a nugget effect in the process

of Xt(s) in the sense of (3.1) and Nb2 = O(h−d). In fact the convergence rate for m̃ is
√
T

while that for m̂ is merely
√
Thd. Since the only difference between ν3(s,x)2 and ν1(s,x)2 is

that σ1(s)
2 in the definition of ν3(s,x)2 is replaced by σ(s)2 = σ1(s)

2 + σ2(s)
2, the variance of

the estimator is reduced by the spatial smoothing if there is a nugget effect in the noise process

εt(s) (i.e. σ2(s0) > 0) but not in the process of Xt(s), although the convergence rates for the two

estimators are the same. On the other hand, there is no variance reduction in case that there is

no nugget effect in both the noise and regressor processes.
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(ii) With some additional regularity conditions, it may be proved that ξ3,T converges in dis-

tribution to an N(0, 1) random variable. See, for example, section 2.6.4 of Fan and Yao (2003).

However without the stationarity over the space, ξ4 is not necessarily normal.

Proof of Theorem 2. We only sketch the proof for (ii), as the proof for (i) is similar and less

involved.

Condition A3 implies
∑

1≤n≤N Wb(sn−s0) ∼ Nf(s0). Note that W (·) has a bounded support.

It follows from the uniform convergence assumption on (2.9) that

m̃(s0,x) −m(s0,x) =
1

NTf(s0)

N∑

n=1

1

p(sn,x)

T∑

t=1

εt(sn)Kh{xt(sn) − x}Wb(sn − s0){1 + oP (1)}

+
h2

2Nf(s0)

N∑

n=1

∫
yτ m̈(sn,x)yK(y)dyWb(sn − s0){1 + oP (1)},

+
1

Nf(s0)

N∑

n=1

{m(sn,x) −m(s0,x)}Wb(sn − s0){1 + o(1)}

≡ I1{1 + oP (1)} + I2{1 + oP (1)} + I3.

Again it follows from condition A3 that

I2 ∼ h2

2

∫
yτ m̈(s0,x)yK(y)dy, (3.4)

I3 ∼ b2
∫ {1

2
zτ ∂

2m(s,x)

∂s∂sτ

∣∣∣
s=s0

z + zτ ḟ(s0)

f(s0)

∂m(s,x)

∂sτ

∣∣∣
s=s0

z
}
W (z)dz. (3.5)

Note that EI1 = 0. Let ξ3 = I1/
√
E(I2

1
). In view of (3.4) and (3.5), Theorem 2(ii) holds if we

may show E(I2
1 ) ∼ ν2(s0,x)2/(Thd) under (3.1), and E(I2

1 ) ∼ ν3(s0,x)2/(Thd) under condition

(3.2). We prove these two asymptotic results below.

It follows from condition A1 that

EI2
1 =

1

N2T 2f(s0)2

N∑

n=1

1

p(sn,x)2

T∑

t=1

σ(sn)2Wb(sn − s0)
2E[Kh{Xt(sn) − x}2]

+
1

N2T 2f(s0)2

∑

1≤n 6=j≤N

1

p(sn,x)p(sj ,x)

T∑

t=1

Γ(sn, sj)Wb(sn − s0)Wb(sj − s0)C(sn, sj)

=
1

N2Thdf(s0)2

N∑

n=1

1

p(sn,x)
σ(sn)2Wb(sn − s0)

2

∫
K(y)2dy{1 + o(1)}

+
1

N2Tf(s0)2

∑

1≤n 6=j≤N

1

p(sn,x)p(sj ,x)
Γ(sn, sj)Wb(sn − s0)Wb(sj − s0)C(sn, sj)

≡ I11 + I12, (3.6)
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where C(sn, sj) = E[{Kh{Xt(sn) − x}{Kh{Xt(sj) − x}]. By condition A3,

I11 ∼ 1

NThdb2
σ(s0)

2

f(s0)p(s0,x)

∫
W (z)2dz

∫
K(y)2dy. (3.7)

Under condition (3.1),

I12 ∼ 1

N2Tf(s0)2

∑

1≤n 6=j≤N

1

p(sn,x)p(sj ,x)
Γ(sn, sj)Wb(sn − s0)Wb(sj − s0)p(sn, sj ;x,x)

∼ 1

T
σ1(s0)

2q(s0;x,x)/p(s0,x)2.

This, together with (3.7), implies ThdE(I2
1 ) ∼ ν2(s0,x)2.

On the other hand, condition (3.2) implies

C(sn, sj) = E
{
Kh{Xt(sn) − x}E[Kh{Xt(sj) − x}|Xt(sn)]

}
∼ E[Kh{Xt(sn) − x}2]

∼ h−dp(sn,x)

∫
K(y)2dy

for all sn, sj with the distances of order b from s0. Hence

I12 ∼ 1

N2Thdf(s0)2

∑

1≤n 6=j≤N

1

p(sn,x)
Γ(sn, sj)Wb(sn − s0)Wb(sj − s0)

∫
K(y)2dy

∼ 1

Thd

σ1(s0)
2

p(s0,x)

∫
K(y)2dy.

This implies ThdE(I2
1 ) ∼ ThdI12 ∼ ν3(s0,x)2, as now I11 = o(I12). This completes the proof.
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