
 

 

Erik Baurdoux  
Examples of optimal stopping via measure 
transformation for processes with one-
sided jumps 
Article (Accepted version) 
(Refereed) 

Original citation: 
Baurdoux, Erik J. (2007) Examples of optimal stopping via measure transformation for processes 
with one-sided jumps. Stochastics: an international journal of probability and stochastic 
processes, 79 (3 & 4). pp. 303-307. ISSN 1744-2508 
 
DOI: 10.1080/17442500600856297 
  
© 2007 Taylor & Francis
 
This version available at: http://eprints.lse.ac.uk/23918/
Available in LSE Research Online: March 2011 
 
LSE has developed LSE Research Online so that users may access research output of the 
School. Copyright © and Moral Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download and/or print one copy of any 
article(s) in LSE Research Online to facilitate their private study or for non-commercial research. 
You may not engage in further distribution of the material or use it for any profit-making activities 
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE 
Research Online website.  
 
This document is the author’s final manuscript accepted version of the journal article, 
incorporating any revisions agreed during the peer review process.  Some differences between 
this version and the published version may remain.  You are advised to consult the publisher’s 
version if you wish to cite from it. 
 

http://www2.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=e.j.baurdoux@lse.ac.uk
http://www.tandf.co.uk/journals/titles/17442508.asp
http://www.tandf.co.uk/journals/titles/17442508.asp
http://dx.doi.org/10.1080/17442500600856297
http://www.taylorandfrancisgroup.com/
http://eprints.lse.ac.uk/23918/


Examples of optimal stopping via measure

transformation for processes with one-sided jumps
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Abstract

In this short note we show that the method introduced by Beibel and
Lerche in [1] for solving certain optimal stopping problems for Brownian
motion can be applied as well to some optimal stopping problems involving
processes with one-sided jumps.

Keywords: Optimal stopping problems, spectrally negative L�evy processes, stable
processses, generalised Ornstein-Uhlenbeck processes.

1 Introduction

In [1] Beibel and Lerche proposed a method for solving certain optimal stopping
problems for a Brownian motion B. They used a change of measure to reduce
the optimal stopping problem to the problem of �nding the maximum of a
(deterministic) function. One example solved in [1] is

sup
�
E

�
B�

� + 1

�
: (1)

This problem was �rst solved in ([5], Theorem 1) and, independently, in ([6],
Example 2). In section 10 of [5] it was suggested that it is of interest to replace
B in (1) by a stable process of index � 2 (1; 2). In this note we show that in
some cases, the method proposed in [1] can be used as well for processes with
one-sided jumps. In particular, for a spectrally negative strictly stable process
of index � 2 (1; 2) we solve the problem (1) in two ways : �rstly by a change
of measure similar to the one used in Problem 3 in [1] and secondly by using
results from [3] about generalised Ornstein-Uhlenbeck processes.

2 Alphabolic boundaries

Denote by fXtgt�0 a spectrally negative strictly stable process of index � 2
(1; 2) de�ned on (
; fFtgt�0;P), a �ltered probability space which satis�es the
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usual conditions. We denote by Px the translation of P under which X0 = x:
Without loss of generality we assume that the Laplace exponent of X is given
by  (�) = ��. We refer to Chapter VIII in [2] and Chapter 3 in[4] for further
details about stable processes. Let � > 0 and de�ne the (�nite) function

H(x) =

Z 1

0

eux�u
�

u���1du:

Suppose h is a function on R such that there exists some x� satisfying

x� = argmax
x

h(x)

H(x)
: (2)

Denote by T the set of stopping times with respect to fFtgt�0. The aim of this
section is to �nd the optimal stopping time in

V (x) := sup
�2T

Ex

"
h
�
(� + 1)�1=�X�

�
(� + 1)�

1f�<1g

#
: (3)

We have the following result.

Theorem 1. Let h be a function on R such that x� in (2) exists. Suppose
x < x�. The optimal stopping time in (3) is given by

�� = infft � 0 : Xt = (t+ 1)1=�x�g:

Furthermore

V (x) =
h(x�)

H(x�)
H(x):

Proof. By changing variables y = u(t+ 1)�1=� we �nd that

H((t+ 1)�1=�Xt) =

Z 1

0

eu(t+1)�1=�Xt�u
�

u���1du

= (t+ 1)�
Z 1

0

eyXt�y
�t�y�y���1dy:

Since feyXt�y
�tgt�0 is a martingale, it follows that fMtgt�0 de�ned by

Mt =
H((t+ 1)�1=�Xt)

H(x)(t+ 1)�

is a mean 1 martingale under Px. Hence for any Px stopping time � we have
that

Ex

�
h((� + 1)�1=�X� )

(� + 1)�
1f�<1g

�
= Ex

�
H(x)

h((� + 1)�1=�X� )

H((� + 1)�1=�X� )
M�1f�<1g

�

� H(x)
h(x�)

H(x�)
Ex[M�1f�<1g]

� H(x)
h(x�)

H(x�)
;
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and thus
�� := infft � 0 : (t+ 1)�1=�Xt = x�g

is the optimal stopping time if we can show that Px(�
� < 1) = 1 and that

Ex[M�� ] = 1. By the law of iterated logarithm for spectrally negative stable
processes (see Theorem 5 (ii) in [2]) we deduce that for any x < x�

Px(�
� <1) = 1:

Also, since H is an increasing function and since (�� + 1)�1=�X�� � x� we
deduce that for x < x� and any n 2 N

M��^n �
H(x�)

H(x)
under Px:

We use the optional sampling theorem and bounded convergence to conclude
that

1 = lim
n!1

Ex[M��^n]

= Ex[M�� ]:

This completes the proof.

3 Generalised Ornstein-Uhlenbeck process

Let Z be a spectrally negative L�evy Process de�ned on a �ltered probability
space (
; fFtgt�0;P) satisfying the usual conditions. The Laplace exponent  
of Z is given by

 (�) =
�2

2
�2 + a�+

Z 0

�1

�
e�x � 1� �x1fx��1g

�
�(dx); � � 0:

Again we refer to [2] for further details. The Generalised Ornstein-Uhlenbeck
process fYtgt�0 is the solution to

dYt = ��Ytdt+ dZt; Y0 = y under Py:

Let r > 0. In this section we consider optimal stopping problems of the form

U(y) := sup
�2T

Ey[e
�r�g(Y� )1f�<1g]; : (4)

where g belongs to a class of functions which is yet to be speci�ed. Assume that

� > 0 or a�

Z 0

�1

z�(dz) > �y; (5)

since otherwise the Generalised Ornstein-Uhlenbeck process never hits points
b > y with probability one (see Remark 1 in [3]). Clearly (5) is satis�ed when
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Z is of unbounded variation.
To simplify we also assume that

E[log(1 + (�Z1)
+)] <1: (6)

Denote

�(u) =
1

�

Z u

0

 (v)

v
dv:

Introduce for r > 0

G(x) =

Z 1

0

eux��(u)u�1+r=�du

and
Nt = e�rtG(Yt): (7)

Theorem 1 in [3] states that under the assumptions (5) and (6) the process
fNtgt�0 is a martingale for any r > 0. Introduce the locally equivalent measure
Q by

dQy

dPy

����
Ft

=
Nt

G(y)
:

We see that (4) can be written as

U(y) = G(y) sup
�2T

EQy

�
g(Y� )

G(Y� )
1f�<1g

�
:

Theorem 2. Suppose g is a function on R such that g=G attains its maximum
at y� and suppose that fZtgt�0 is a spectrally negative L�evy process satisfying
(6) and

� > 0 or a�

Z 0

�1

z�(dz) > �y�:

Then for any Y0 = y < y� the optimal stopping time in (4) is given by

�� = infft � 0 : Yt = y�g:

Furthermore

U(y) =
g(y�)

G(y�)
G(y):

Proof. Let y < y�. It su�ces to prove that �� is almost surely �nite under Py
and Qy. The �rst statement is contained in Theorem 2 in [3]. The proof of the
second statement is similar to the end of the proof of Theorem 1.

Denote by Y (�) the generalised Ornstein-Uhlenbeck process which has a
spectrally negative strictly stable process X(�) with index � 2 (1; 2) as driving

L�evy process and for which � = 1=� and Y
(�)
0 = 0. It is not di�cult to show
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that e�t=�(X(�)(et � 1)) is equal in distribution to Y
(�)
t (they have the same

Laplace exponent). We deduce that

sup
�
E

"
X

(�)
�

� + 1

#
= sup

�
E
h
e��X(�)(e� � 1)

i
= sup

�
E
h
e�(1��

�1)�Y (�)
�

i
:

Hence for a spectrally negative strictly stable process we can also solve (1) by
applying Theorem 2 to the case g(x) = x and r = (�� 1)=�.
Acknowledgement This note was written during a stay at Heriot-Watt Uni-
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