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Abstract 
 
 
We consider the problem of sharing the fixed costs of facilities among a number of 
users. Although the problem can be formulated and solved as an Integer Programme 
this provides limited accounting information. Ways of overcoming this are suggested.  
In addition we consider the issue of fairness among different possible cost allocations 
and how such �fair� costs may be derived 
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1. INTRODUCTION 
 
 
In [ 2 ] we considered the problem of allocating the fixed costs of shared facilities 
among the users in a manner which was both efficient (in the sense of leading to the 
most profitable or economic overall solution) and fair (in a sense discussed in that 
paper). The problems which we considered could all be solved as Linear Programmes 
(LPs) which automatically gave integer solutions. They therefore had well defined 
duals. The dual values could be interpreted as cost allocations which led to the 
optimal solution (whether �optimal� was defined using an efficiency or fairness 
criteria). 
 
This problem has been considered by a number of authors. See, for example, Biddle 
and Steinberg[ 1 ], Shubik[ 7 ], Williams[ 8 ] and [9] and Young[ 13 ]. 
 
In general however such facility location models are not LPs but Integer Programmes 
(IPs). Solving them as LPs (the LP Relaxation) yields a fractional (and therefore 
largely meaningless) solution. We illustrate this by an example, in section 3, below. 
 
First, however, we present the basic model, in section 2, and give an early, 
economically motivated, dual discussing its merits and inadequacies. We show that 
this dual is a specialisation of using  price functions in place of prices. In section 4 we 
adopt an alternative approach of solving the linear programme associated with the 
optimal solution. This is solved for the numerical example where it is shown how it 
leads to a cost allocation. 
 
  
 
2. THE BASIC PROBLEM 
 
We have a set of Facilities F = {1,2,..,m} serving a set of  �customers�   
C = {1,2,..,n}. 
 
Customer j requires one of each of facility i ε  F

k
j ⊂  F for each k ε  K j , ie customer 

j requires one of F 1
j , one of F 2

j  etc. 
 
The fixed cost of i ε  F is f i . 
 
Customer j produces a benefit (revenue) b j . 
 
It may not be desirable to cater for all the customers or provide all the facilities. 
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If a facility i is provided its cost f i  must be split up among the customers j that use it 
in an acceptable or desirable way. 
 
We formulate this problem as a 0-1 Integer Programming model (known as the Primal 
model) 
 
Variables 
 
               iδδδδ  = 1 if facility i  is provided 
                    = 0  otherwise 
 
 
               jγγγγ   = 1 if customer j is catered for 
                      =  0 otherwise 
 
Objective 
 
         Maximise      ∑

j
b j  jγ  -    ∑i

f i δδδδ i                                          (1) 

 
Constraints 

 
                             0       ≤− ∑

k
jFi

ij
ε

δγ    all j εεεε  C, all k εεεε  K       (2) 

 
                             ≤γγγγ j       1                          all j εεεε  C                         (3) 

                              
                              0≥δδδδ i                           all i εεεε  F                         (4) 
 
 
We refer to the above model as P. 
 
Constraints (2) force at least one of F k

j  to be provided, for each j and k, if customer j 
is to be served. It is not necessary to impose non-negativity conditions on the γγγγ  
variables or append upper bounds of 1 on the δδδδ  variables. These conditions are 
guaranteed by the structure of the model. 
 
There is no guarantee that this general model will produce integer solutions if solved 
as a Linear Programme. In certain special cases, however, integral solutions to the LP 
are guaranteed. For example if for all j and k , | F k

j |  = 1 then this is the case. This is 
discussed in, for example,  Rhys[ 6 ]  and  Williams [10] . 
 
When the LP solution is integer then there is a well defined dual LP model (see eg 
Dantzig [ 3 ]). We consider the dual of the LP relaxation of the above model. (For 
convenience we have reversed the direction of some of the constraints in the formal 
dual model) 
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Dual Model (of LP Relaxation) 
 
      Minimise             ∑

Cj
j

ε
u                                                              (5) 

 
      Subject to:        ∑+

j

vu      
Kk

k
jj

ε
 =   b j       all j εεεε  C                (6) 

 
                                       ∑

k
iFjj ε :

v k
j ≤ f i          all i εεεε  F                   (7) 

                                        
 

 ≥k
jj v   ,  u      0           all j ε  C, ε  k ε  K  (8) 

 
 
We refer to the above model as D. 
 
v k

j can be interpreted as the portion of the fixed cost f i  of each of the facilities i ε  F    
(for k ε  K ) that is allocated to j. In the case that a customer is not catered for ju will 

be zero and the  v k
j , if positive, can be ignored since, in this case, the corresponding 

facilities will not be built (this results from orthogonality in LP). u j  can be interpreted 
as the excess benefit (revenue) which j obtains after contributing all the required 
costs. The objective is to minimise the total excess. 
 
Constraints (7) split the cost f between the customers using the facility. Should the full 
cost not be met (the constraint is non-binding) the orthogonality result of LP 
guarantees that ,0=iδ  ie that the facility not be built. Constraints (6) split the 

benefits to customers between the imputed costs and excesses. Generally there will be 
a number of alternate optimal dual solutions.  
 
When, however, P does not yield an integer optimal solution to the LP relaxation no 
feasible set of solutions to D can lead to the optimal integer solution to P. This is a 
result of the Duality Theorem of Linear Programming. 
  
If, however, we append cutting planes in order to obtain the optimal integer solution 
then this produces a ( superadditive) price function in place of a set of prices (see 
Williams[11]. Unfortunately it is generally not possible to associate the multipliers or 
the rounding operation directly with individual coefficients (see, for example 
Wolsey[12].) Nor is it possible (owing to the rounding operation) to �balance� costs of 
facilities with charges to customers. The price function does, however, (in the absence 
of degeneracy) allow one to �price� economic activities and price out uneconomic 
ones analogous to that done for LP. 
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If, however, we ignore the rounding operation then we can associate prices directly 
with constraints, analogously to dual values in the LP case. This is due to Gomory and 
Baumol [5].  Each of the cutting planes arises as a linear combination of the original 
constraints (together with the intermediate rounding operations). Ignoring the 
rounding operations we can consider how each of the original constraints contributes 
to the final, integer, solution both directly and indirectly through the cutting planes. 
We also have to include some of the non-negativity constraints �x >= 0� in this 
analysis. Gomory and Baumol  apply Gomory cuts derived in the course of Gomory�s 
All-Integer algorithm [4]. This results in some arbitrariness. In order to give the 
method a uniqueness we apply only the facet defining constraints, necessary  to obtain 
the integer optimum,  Each of the original constraints and cutting planes will have 
associated dual values in the (integer) LP solution. The dual values associated with the 
cutting planes are imputed back to the original constraints according to the linear 
multiples of these constraints from which they arise. This procedure is illustrated by a 
numerical example in section 3. The major defect of this method is that  positive dual 
values may also have to be applied to constraints which are not satisfied as equalities. 
In particular this can apply to non-negativity constraints �x>=0� when the associated 
variable �x� takes a positive value. This breaks the orthogonality  result which applies 
in the LP case. There a positive dual value on a non-negativity constraint would be 
interpreted, in the LP case, as a positive reduced cost indicating  that the variable 
takes the value 0 (ie the associated activity should not be carried out). Here we can 
interpret the dual value, on such a constraint, as a  subsidy which should be applied to 
the activity to compensate for its integral nature and therefore allow it to be carried 
out. The drawback of the procedure is that it is no longer always  possible to decide, 
on the basis of dual values alone, which activities should not be carried out. The 
resultant dual values may also depend on which cutting planes are used in the 
derivation of the optimal solution. While that is analogous to the alternate dual 
solutions which arise in the LP case from degeneracy, in practice it is more serious. 
 
 
 
3.  A NUMERICAL EXAMPLE (A) 
 
We have six potential facilities {1,2,3,4,5,6} some of which are needed for three 
potential customers  {A,B,C}. 
 
Customer A requires  1 of  {1,2,3} and 1 of  {4,5,6}. 
 
Customer B requires  1 of   {1,4} and 1 of {2,5}. 
 
Customer C requires  1 of   {1,5} and 1 of {3,6}. 
 
Customer A would derive a benefit of  8. 
 
Customer B would derive a benefit of 11. 
 
Customer C would derive a benefit of  19. 
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The (fixed) costs of the six investments are, respectively,  8, 7, 8, 9, 11, 10. 
 
 
Model P is    
 
 
Maximise: 

)9(1011987819γ11γ8γ 654321cba δδδδδδ −−−−−−++
 

Subject to: 
 

(18)1cγ
(17)1bγ
(16)1aγ

(15)06δ3δcγ
(14)05δ1δcγ
(13)05δ2δbγ
(12)04δ1δbγ
(11)06δ5δ4δaγ
(10)03δ2δ1δaγ

≤
≤
≤

≤−−
≤−−
≤−−
≤−−
≤−−−
≤−−−

 
 
The optimal solution is 
 

1,0,1,1,1,1 654321 ========= δδδδδδγγγ cba ,    Objective = 13 
 
ie build only facilities 1, 2 and 6 and serve all customers. 
 
Our (aspired) problem is to split the costs of the facilities up among A,B and C so as 
to: 
 
1.  Make facilities 3, 4 and 5 too expensive. 
2.  Pay for facilities 1, 2 and 6. 
 
If P had an optimal integer solution to its LP Relaxation  its dual model provides such 
a split in costs (if there is no degeneracy). 
 
The optimal solution to the LP relaxation , in this case, is: 
 

2
10,

2
1,0,

2
1,1,

2
1,1 6514321 ========= δδδδδδγγγ cba  ,  Objective = 14 
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Clearly this fractional solution has little meaning, although there is a dual solution 
which would provide a split in costs which would produce it. This is: 
 

8,0,6,8,6,,2,0 321
22121 ======== uuuSv cbbaa νννν  

 
It is given in diagrammatic form in figure 1. Note that all the facilities to be built have 
the appropriate proportion of their fixed costs recompensed by the customers. 
Customers excess profits are indicated. 
 
 
 

Surpluses

2½

1½

0

4

1
3

1½
1
4

Customers Facilities

2

B 3

6

4

5

½ x8=4

C

0

½ x8=4

½ x11=5½

½ x10=5

8

6

½ x11=5 ½

19

8

A
1

 
                                                               Figure 1 
             Linear Programming (Fractional) Solution and Cost Allocation 
 
 
 
If, however, we append the following (facet) cutting plane to the model above the 
optimal solution to the LP relaxation is the optimal integer solution given above. 
 
      05421 ≤−−−−+ δδδδγγ cb                               (19)     
 
This cutting plane arises as the following linear combination of the original 
constraints (including the non-negativity constraints). 
 
(12) + (13) + (14) + (18) + )0( 2 ≤−δ + )0( 4 ≤−δ            (20) 
 
The result of applying these multipliers and rounding down the resultant right-hand-
side gives the cutting plane (19). 
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These operations produce the following price function on the coefficients α  in the 
constraints (10) to (15), and the coefficients β  in the constraints (16) to (18)  for each 
column of the model P. 
 

  ( )



 ++++++++++ )(

2
11378115135

2
1

35433216542 βαααβββαααα        (21) 

                             
Applying this price function to the coefficients of each column in P customers A, B 
and C  each have an associated price equal to their benefit (the prices on (16), (17), 
(18) are the surpluses they each gain). Facilities 1,2 and 6 are recompensed their full 
costs . Facility 3 is not fully recompensed and therefore not built. Facilities 4 and 5 are 
exactly paid for but are not built as the resultant solution is degenerate. (Degeneracy is 
likely to happen in a model with the structure of P). 
 
If we ignore the rounding operations in (21) then we can aggregate the multipliers to 
obtain the following amended dual values for the constraints. We also give the dual 
values which apply to the non-negativity constraints used in the derivation of the 
cutting plane. 
 
Constraint        Amended Dual Value 
 
(10)                                0 
(11)                               5/2 
(12)                               13/4 
(13)                               15/4 
(14)                               19/4 
(15)                               15/2 
(16)                               11/2 
(17)                                 4 
(18)                                27/4 
 
 ≥2δ  0                          13/4 

 ≥4δ  0                          13/4 
                                     
 Note that constraint  ' ≥2δ  0 '  is not satisfied as an equality in the optimal IP solution 
although it has a positive �dual value�. Constraint ' ≥2δ  0 ' is not redundant in the 
absence of constraint (10) and therefore has a positive �economic value� in that sense. 
 
However, as in LP, there are alternate �dual values� (arising from alternative cutting 
planes) corresponding to a degenerate solution. In the presence of constraint (10) the 
constraint  ' ≥2δ  0 ' would be redundant having a zero �dual value� (and constraint 
(10) a positive �dual value�). 
 
Facility 1 would be recompensed a total cost of  5/2 + 11/2 = 8  making it  
worthwhile. 
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Facility 2 would be recompensed a total cost of  15/4  which, together with the 
subsidy of  13/4, gives 7 making it worthwhile. 
 
Facility 3 would be recompensed a total cost of  15/2  making it  not worthwhile. 
 
Facility 4 would be recompensed a total cost of  5/2 + 13/4 = 23/4  which, together 
with a subsidy of  13/4  gives 9  making it appear worthwhile although it is not built. 
This is an example of degeneracy. 
 
Facility 5 would be recompensed a total cost of  5/2 +  15/4 + 19/4 = 11 making it 
appear worthwhile although it is not built. Again this is an example of degeneracy. 
 
Facility 6 would be recompensed a total of  5/2 + 15/2 = 10 making it worthwhile. 
 
Customer A would be charged a total cost of  5/2   allowing it to be served with a 
surplus of 11/2. 
 
Customer B would be charged a total of 7 allowing it to be served with a surplus of 4. 
 
Customer C would be charged a total of  49/4 allowing it  to be served with a surplus 
of 27/4. 
 
This allocation of costs has a number of unsatisfactory features. 
 
(i)  Facilities 4 and 5 would have all of their costs recompensed but neither is in the 

optimal solution. 
 
In the LP case this would indicate alternate solutions each involving facilities 4 and 5. 
This is not, however, the case here. 
 
(ii)  The allocation of subsidies to facilities 2 and 4 seems somewhat arbitrary and the   
      reason for this is not transparent. 
 
(iii) The total payment of  21 ¾ by the customers falls short of the total cost of 25 for 

the facilities. 
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5.  AN ALTERNATIVE APPROACH 
 
Since it is, in general, impossible to have a set of prices which 
 

(i) allows one to discriminate between economic and uneconomic activities  
and 

(ii) satisfactorily splits costs of facilities between users 
 
we will abandon the requirement of (i) and concentrate on (ii).  
 
In order to do this we first obtain the optimal solution and then modify the model to 
only include those facilities which should be built. If the resultant model is solved as 
an LP the optimal solution (ignoring possible alternatives) will be the optimal integer 
solution. The dual values corresponding to this solution then give a satisfactory 
allocation of costs of the facilities to the customers. We illustrate this by the numerical 
example. 
 
For model P we only include variables 21,,,, δδγγγ cba  and 6δ  corresponding to 
the optimal solution. The LP relaxation gives the solution presented above and dual 
values   
  1,4,8,10,8,7,0,0,0 321

212121 ========= uuuccbbaa νννννν  
 
This solution, interpreted as a cost allocation is given in Figure 2. 
 
 

A

Surpluses   Customers                                           Facilities

8
1

B

6

5

4

3

2

8

4

1

11

19

8

7

0

0

0

10

7

8

10

C

 
                  Figure 2 
                Integer Programming Solution and Cost Allocation 
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6.  A FAIR SOLUTION 
 
There are alternative dual solutions to the model above. Following the discussion in 
[2] some resulting splits in the costs of the facilities among the customers can be 
regarded as �fairer� than others. To illustrate this we will try to equalise the 
contribution each customer makes to the facilities that serve it by the following 
objective applied to the dual of the restricted model above. 
 
 Minimise ( ( ) )321 ,,Maximum uuu                                (22) 
 
 This can be dealt with by  
 
 Minimise             Z                                                 (23) 
 Subject to            Z 321 ,, uuu≥                            (24) 

 
It results in the allocation of costs given in figure 3. 
 
 

Surpluses   Customers                                           Facilities

A41/3

1

B

6

5

4

3

2

41/3

11

19

8

7

0

0

1010
C

0
31/3

42/3

8
32/3

31/3

41/3

 
    Figure 3 

                                            A Fair Allocation 
 
Clearly the distribution of surpluses is as equitable as it can be. In practice it will not 
always be possible to make them all exactly equal. 
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