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ABSTRACT
Much macroeconometric discussion has recently emphasized the economic
signi�cance of the size of the permanent component in GNP. Conse-
quently, a large literature has developed that tries to estimate this magni-
tude|measured, essentially, as the spectral density of increments in GNP
at frequency zero. This paper shows that unless the permanent compo-
nent is a random walk this attention has been misplaced: in general, that
quantity does not identify the magnitude of the permanent component.
Further, by developing bounds on reasonable measures of this magni-
tude, the paper shows that a random walk speci�cation is biased towards
establishing the permanent component as important.
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1. Introduction

A large literature has recently developed that purports to estimate the magnitude
of a time series’s permanent component. For GNP, this literature includes the
influential papers by Nelson and Plosser (1982), Watson (1986), Campbell and
Mankiw (1987), and Cochrane (1988). Using non-parametric reasoning Cochrane
(1988) has, further, developed a measure that allows arbitrary serial correlation
in the transitory components. All this research, however, has assumed either that
there is only one disturbance perturbing the time series under study, or that the
underlying permanent component has very special structure—for instance, that it
has serially uncorrelated increments.

More recently, other researchers, e.g., Shapiro and Watson (1988) and Blan-
chard and Quah (1989), have argued that the economic forces underlying GNP
movements imply that multiple disturbances perturb GNP and that the under-
lying permanent component has rich dynamics. In this paper I show that under
these circumstances the measures that had been earlier proposed, in fact, cannot
identify the magnitude of the permanent component. In particular, I prove that
the underlying permanent component in every integrated time series can be taken
to be arbitrarily smooth, so that at all finite horizons it is the transitory com-
ponent that dominates that series’s fluctuations—these permanent and transitory
components can, further, be chosen to be uncorrelated at all leads and lags. This
arbitrary smoothness is achievable regardless of the values taken by Campbell and
Mankiw’s “long-run effect of a shock” or Cochrane’s or Watson’s “size of the ran-
dom walk component” for that integrated time series. This proposition therefore
casts serious doubt on the usefulness of those measures for assessing the magnitude
of a time series’s permanent component. Without explicitly identifying the under-
lying economic disturbances, a researcher cannot quantify the relative importance
of permanent and transitory components.

To see the implications of this arbitrary smoothness result, recall some well-
known assertions in the literature: Nelson and Plosser (1982) and Campbell and
Mankiw (1987) have criticized traditional models of economic fluctuations by ob-
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serving that US GNP might be better characterized as integrated rather than trend
stationary. According to these investigators’ reasoning, traditional macroeconomic
models predict at most transitory effects of disturbances to output. In contrast,
Nelson and Plosser (1982) and Campbell and Mankiw (1987), separately, put for-
ward two claims—both claims based on univariate characterization of GNP’s time
series properties: one, that GNP’s permanent component is highly volatile and,
two, that disturbances to GNP have significant and long-lived effects. The accuracy
of the univariate time series models that these investigators used remains contro-
versial (see, e.g., Watson (1986), Cochrane (1988), Perron (1989), and Christiano
and Eichenbaum (1990)). But, according to the results in the current paper the
accuracy of those measurements turns out to be irrelevant for whether permanent
disturbances are important for GNP fluctuations and for whether most distur-
bances to GNP have long-lived effects. The analysis below shows that a time
series can be integrated and can show significant persistence in its innovations,
but nevertheless still have its fluctuations dominated by transitory disturbances.
Thus this paper makes explicit an important general message: Because studying
the univariate time series characterizations of a variable leaves unidentified the
sources of that variable’s fluctuations, without additional ad hoc restrictions those
characterizations are completely uninformative for the relative importance of the
underlying permanent and transitory components.

To sharpen understanding of the arbitrary smoothness property, I derive below
explicit lower bounds for two natural measures of the importance of a permanent
component when that permanent component is restricted to be an ARIMA se-
quence. Choosing the permanent component to be a random walk—i.e., to have
serially uncorrelated increments—turns out to maximize both these lower bounds.
This therefore makes precise a sense in which a random walk specification for the
permanent component biases the analysis towards finding the permanent compo-
nent to be important.

Section 2 provides rigorous statements of our theoretical decomposition results
in a general setting; Section 3 does the same for permanent components a priori
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restricted to be ARIMA processes. While those two sections consider the lack of
identifiability of arbitrary permanent and transitory components, some positive
results are in fact available. Section 4 considers permanent and transitory com-
ponents subject to certain orthogonality and informational restrictions. I show
that under those restrictions these components are unique; further, whether such
components exist can be tested for by a Granger-causality characterization. The
paper then concludes with Section 5.

The reader will notice that the analysis of Sections 2 through 4 use moment-
matching reasoning to construct permanent and transitory components. Some-
times a researcher might wish to go beyond this, i.e., to construct what—in the
terminology of stochastic differential equations—are called strong sense solutions
rather than only weak sense ones. The Appendix provides calculations that ac-
complish this. The Technical Appendix contains all the proofs.

2. General Results

This section shows that every integrated sequence admits a decomposition into
permanent and transitory components with the increments of the permanent com-
ponent having arbitrarily small variance—this decomposition is possible even when
the permanent and transitory components are uncorrelated at all leads and lags.

First, establish notation: A random sequence

W = fW (t); non-negative integer t g

is integrated or difference stationary when its first difference or increment
∆W (t) def= W (t) −W (t − 1) is covariance stationary, but W itself is not. We use
the method in Doob (1953) pp. 461-463 to always extend definition of covariance
stationary sequences over all the integers, even if those sequences are initially
defined only for integer t � 1. For the purposes of this paper, we call an
integrated sequence a random walk if its increments are serially uncorrelated
(not necessarily iid). Elements of a sequence, stochastic or otherwise, are denoted
by integer arguments in parentheses; subscripts indicate either distinct sequences
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or the elements of a matrix. Thus, for example, Y1 and Y0 are different stochastic
sequences with the t-th element of each written as Y1(t) and Y0(t). Without loss of
generality, all covariance stationary sequences are taken to have mean zero. Since
there is some arbitrariness in a 2� normalization, we explicitly specify the spectral
density matrix to be the fourier transform of the covariogram matrix sequence:
When W is a jointly covariance stationary vector sequence, its spectral density
matrix is SW (!) def=

P∞
j=−∞E [W (j)W (0)′] e−iωj . Finally, all integrals below are

taken from −� to �.
Next, make precise the decompositions that we are investigating:

Definition 2.1: Let Y be an integrated sequence. A permanent-transitory
(PT) decomposition for Y is a pair (Y1; Y0) such that: (i) Y1 is integrated and

Y0 is covariance stationary; (ii) Var(∆Y1(t)) and Var(∆Y0(t)) are strictly positive;

and (iii) Y (t) = Y1(t) + Y0(t). Further, if (iv) ∆Y1 is uncorrelated with Y0 at all

leads and lags, then the PT decomposition is said to be orthogonal.

Given a PT decomposition (Y1; Y0) for Y , call Y1 a permanent component
for Y ; similarly, call Y0 a transitory component. Permanent in this context
indicates only that disturbances to Y1 have long run effects on Y , not that the in-
crements of Y1 are serially uncorrelated. We will also say that (Y1; Y0) decomposes
Y when (i)-(iii) of 2.1 hold, and that (Y1; Y0) orthogonally decomposes Y when in
addition (iv) is true.

Condition (ii) rules out trivial cases. For instance, when Y is a random walk,
it might be natural to set Y1 to Y . But if so, there is no transitory component; the
definition then sensibly asserts that (Y1; Y −Y1) = (Y; 0) is not a PT decomposition
for Y .

From Beveridge and Nelson (1981), we know that every integrated sequence
admits a decomposition into perfectly correlated permanent and transitory com-
ponents where further the permanent component has serially uncorrelated incre-
ments. Watson (1986) and Cochrane (1988) have considered models where the
permanent component remains a random walk, but has increments that might be
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imperfectly correlated with the transitory component. In all these, the variance of
increments in the permanent component can be identified from the spectral den-
sity of increments in the original sequence (see, e.g., Watson (1986) or Cochrane
(1988)).

By contrast, Shapiro and Watson (1988) and Blanchard and Quah (1989) have
considered models where permanent components have richer dynamics than those
in a random walk. In these more general specifications, permanent components
turn out to have variances that can no longer be identified from just the second
moments of the original sequence. The extent of this lack of identification can be
seen in the following result.

Theorem 2.2: Fix S, a spectral density satisfying:Z
j1− exp(i!)j−2 � jS∆Y (!)− S∆Y (0)j d! <1 and 0 < S∆Y (0) <1:

Let  be an arbitrary non-negative function on [−�; �], symmetric about 0, and

such that:

(i) 0 <  (!) < 1 for ! 6= 0; and

(ii)
R
j1− exp(i!)j−2(1−  (!)) d! <1.

Suppose that ∆X1 and ∆X0 are stochastic sequences orthogonal at all leads and

lags, and have spectral densities S∆X1 =  S and S∆X0 = (1 −  )S, respec-

tively. Then (X1;X0) is an orthogonal PT decomposition for an integrated se-

quence whose increments have the given spectral density S.

Theorem 2.2 asserts that under regularity conditions the second moments of
an arbitrary integrated sequence are consistent with a wide range of dynamics
in the underlying permanent and transitory components.1 Since the sum of or-
thogonal sequences has spectral density equal to the sum of the spectral densities

1 The alert reader will notice that Theorem 2.2 only gives a pair (X1;X0) whose
second moments sum correctly to match a given spectral density S. The Theorem
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of the underlying sequences, it is obvious that ∆X1 + ∆X0 has spectral density
S =  S + (1 −  )S. Thus, the only subtlety in Theorem 2.2 is whether X0 (a
sequence with increments ∆X0) could be covariance stationary. But this follows
from noting that:

Var(X0) =
Z
j1− exp(i!)j−2S∆X0(!) d!

=
Z
j1− exp(i!)j−2S∆Y (!)(1−  (!)) d!

= S∆Y (0)
Z
j1− exp(i!)j−2(1−  (!)) d!

+
Z
j1− exp(i!)j−2(S∆Y (!)− S∆Y (0))(1 −  (!)) d! <1:

Finiteness results from the first summand’s being finite by (ii), and the second
summand’s being bounded from above by:

sup
−π≤λ≤π

j1−  (�)j �
Z
j1− exp(i!)j−2(S∆Y (!)− S∆Y (0)) d! <1:

Thus, X0 can in fact be chosen to be covariance stationary.
Because of (i),  provides a cleaving of the given spectral density S into two

non-negative pieces  S and (1 −  )S. From (ii),  (0) = 1, so that the spectral
density of ∆X1 coincides with S at the origin; everywhere else, S∆X1 is strictly
smaller than S. In the Theorem, condition (ii) and its analogue for jS(!)− S(0)j
impose smoothness on  and S at frequency zero: the conclusion of the Theorem

does not show how to construct processes (X1;X0) that will sum to a given process
Y , where the last has increments with spectral density S. In the terminology of
stochastic differential equations, Theorem 2.2 gives only a solution in the weak
sense. The strong sense solution is given below in Theorem A.1 in the Appendix.
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Corollary 2.3 implies that without restricting further the dynamics of the
permanent component X1 the lower bound on Var(∆X1) is simply zero. There-
fore, the results here highlight a similarity between integrated and trend stationary
sequences: both can have their stochastic dynamics dominated by transitory com-
ponents. This observation has been raised elsewhere in the literature but our
reasoning here differs significantly from those other arguments: (1) The results
require only weak regularity assumptions on the univariate dynamics of the in-
tegrated sequence of interest. Thus, contrast the analysis here with, e.g., Clark
(1988), Diebold and Rudebusch (1988), or West (1988), who argue that for certain
parameter values a trend-stationary sequence is close to a difference-stationary one.
(2) The results here rely neither on dynamics being only imprecisely estimated,
nor on a researcher’s misspecifying a Wold representation. Thus, our analysis dif-
fers from Cochrane’s (1988) and Christiano and Eichenbaum’s (1990) criticisms
of Campbell and Mankiw (1987). Arguments about imprecision and possible mis-
specification can also be subsumed in the following: (3) The statements here apply
to the underlying population probability model and are not conclusions due to an
investigator’s having only finite samples. (4) What is not obvious from the above is
that the transitory component X0 can have its autoregressive roots bounded away
from 1 as Var(∆X1) decreases. The truth of this is shown in the numerical calcula-
tions in Quah (1990) where the transitory component X0 has fixed autoregressive
roots despite Var(∆X1) growing arbitrarily small.

That the lower bound on the importance of the permanent component is
zero may at first seem puzzling. We can get some intuition for this zero lower
bound property by studying more restricted and more explicit decompositions
where the permanent components are constrained to be ARIMA sequences—less
trivial bounds then result. That analysis forms the content of the next section.
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3. Finite ARIMA Components

This section specializes the analysis to ARIMA permanent components; doing
so allows explicit formulas for the lower bounds on Var(∆Y1). Some additional
notation will be needed: If W is covariance stationary, let innov(W ) denote its
innovation, i.e., the residual in the minimum mean square error linear predictor of
W based on its own lagged values.

Theorem 3.1: Suppose (Y1; Y0) decomposes Y , with ∆Y1 a moving average se-

quence of order q. Then (i) Var(innov(∆Y1)) � 4−q �S∆Y (0); and (ii) Var(∆Y1) �
(q + 1)−1 � S∆Y (0). Further, there exist (di�erent) PT decompositions with ∆Y1

moving average of order q having innovation variances and variances arbitrarily

close to the bounds in (i) and (ii).

The lower bounds in Theorem 3.1 are strictly decreasing in the moving average
order of ∆Y1, and apply regardless of the correlation between the components.
Thus, letting ∆Y1 be a random walk must maximize the theoretical lower bound
on Y1’s contribution to Y .

The analysis for autoregressive models for ∆Y1 is even simpler. A first order
autoregressive model for ∆Y1 suffices to obtain a theoretical lower bound of zero
on both its variance and innovation variance. To see this, apply the arguments in
the proof of Theorem 3.1 to

S∆Y1(0) = j1− C(1)j−2 � Var(innov(∆Y1)) = S∆Y (0)

=) Var(innov(∆Y1)) = j1− C(1)j2 � S∆Y (0);

and

Var(∆Y1) =
��(1− C(1))� (1 + C(1))−1

�� � S∆Y (0);

where now C(1) is the projection coefficient in a first order autoregression. Then
simply let C(1) " 1. The same conclusion obviously applies to higher order autore-
gressive models. But choosing the permanent component in this way does make
the transitory component more like an integrated sequence, in that the largest
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literature—for instance, Futia (1981), Hansen and Sargent (1991), Lippi and Re-
ichlin (1990), Quah (1990), and Townsend (1983)—questions the appropriateness
of this identifying restriction: explicit economic models can be constructed where
the representations that result from this informational restriction bear no relation
to the true underlying dynamics. While this difficulty is not central to the cur-
rent discussion, the applied researcher should note the potential problem in more
general contexts.

5. Conclusion

It is now well-known that integrated and trend stationary time series produce dif-
ferent implications for classical econometric inference. How does this difference
extend to the observable dynamics of economic variables? What are the implica-
tions for economic theorizing?

In this paper, I have approached these issues by considering an integrated
time series as the sum of permanent and transitory components. I have character-
ized the range of such decompositions for arbitrary integrated time series. That
range turns out to always include a smooth permanent component, i.e., a perma-
nent component with increments having arbitrarily small variance. Further, the
associated transitory component need not have high persistence. Thus, the ob-
servable dynamics of an arbitrary integrated sequence are similar to those of some

trend stationary sequence. While there are infinitely many permanent-transitory
decompositions, all share the same long run effect of a disturbance in the perma-
nent component in that their increments all have the same spectral density value
at frequency zero. That value is therefore uninformative for the importance of
permanent components in a time series.

In summary, the attention that has been devoted to measuring the size of the
permanent component in GNP, as the spectral density at frequency zero of its in-
crements, is unwarranted—without explicitly identifying the underlying economic
disturbances, it is simply not possible to gauge the magnitude of the permanent
component in a time series.
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Finally, I have provided exact lower bounds on the magnitude of permanent
components that are restricted to be ARIMA processes. Those bounds imply
that restricting the permanent component to be a random walk maximizes its
theoretical minimum importance.

Appendix: Explicit Construction of a Strong Sense Solution

This appendix shows how one can, beginning with the PT decomposition of Sec-
tion 4, explicitly compute other orthogonal PT decompositions—decompositions
having the properties specified in Theorem 2.2. We use the notation for �̃ and �̃
established below in the proof of Theorem 4.1.

Theorem A.1: Suppose that Y is a given integrated sequence, with the spectral
density of ∆Y satisfying:Z

j1− exp(i!)j−2jS∆Y (!)− S∆Y (0)j d! <1 and 0 < S∆Y (0) <1;

and that for some given W , (Y1; Y0) is the orthogonal PT decomposition of Y given
by A.1. Suppose further that 0 < S∆Y1(!) < S∆Y (!) for all ! in (0; �]. Let  be
a non-negative function on [−�; �], symmetric about 0, and such that:

(i) 0 <  (!) < 1 for ! 6= 0; and
(ii)

R
j1− exp(i!)j−2(1−  (!)) d! <1.

De�ne �
def= S∆Y1=S∆Y and choose sequences � and � so that

j�̃j2 =
�
 (1 −  )�−1(1− �)−1; for ! 6= 0;

0 for ! = 0
and

�̃ =  − �̃�:

If ∆X1
def= ��∆Y +��∆Y1 and ∆X0

def= ∆Y −∆X1, then (X1;X0) is an orthogonal
PT decomposition for Y with S∆X1 =  S∆Y .

The restrictions on S∆Y and  in Theorem A.1 are unchanged from Theo-
rem 2.2, but the result here gives an explicit construction for an orthogonal PT
decomposition for Y .
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Proofs

Proof of Theorem 2.2: Trivial, following discussion in the text. Q.E.D.

Proof of Corollary 2.3: Clearly,  in 2.1 can always be selected so thatR
S∆Y (!) (!) d! < 2��. Q.E.D.

Proof of Theorem 3.1: Since ∆Y1 is a moving average process of order q,

∆Y1(t) =
qX
j=0

C(j)innov(∆Y1)(t− j); for all t;

with C(0) = 1 and
Pq
j=0C(j)zj 6= 0 for jzj < 1. But because Y1 is a permanent

component for Y , both ∆Y1 and ∆Y have the same spectral density at frequency
zero: ��� qX

j=0

C(j)
���2 �Var(innov(∆Y1)) = S∆Y (0):

Thus the lower bound on Var(innov(∆Y1)) is obtained by solving:

sup
C

���� qX
j=0

C(j)
���2 =

���� qX
j=0

C(j)zj
� ���

z=1

���2�

subject to C(0) = 1 and

qX
j=0

C(j)zj 6= 0 for jzj < 1:

Recall that any such polynomial
Pq
j=0 C(j)zj can be written as the product of q

monomials:
Pq
j=0 C(j)zj =

Qq
j=1(1 + D(j)z), with jD(j)j � 1; j = 1; 2; : : : ; q,

and D(j) appearing in complex conjugate pairs if not real. Since

j
X

C(j)zj j2 = j
qY
j=1

(1 +D(j)z)j2 =
qY
j=1

j1 +D(j)zj2;



– 15 –

its maximization at z = 1 is equivalent to the maximization of j1 + D(j)j2, for
each j = 1; 2; : : : ; q. This occurs at D(j) = 1 for each j. Therefore, the solution to
the optimization problem attains the value 4q. The lower bound on the innovation
variance is then 4−q �S∆Y (0), and results when the moving average representation
for ∆Y1 is (1+L)qinnov(∆Y1), where L is the lag operator. Next, the lower bound
on Var(∆Y1) is obtained by solving:

inf
(C,σ2)

�2

qX
j=0

C(j)2

subject to C(0) = 1;
qX
j=0

C(j)zj 6= 0 for jzj < 1; and
��� qX
j=0

C(j)
���2�2 = S∆Y (0):

Substituting out for �2, we need to minimize
(Pq

j=0 C(j)2
�
=
��Pq

j=0C(j)
��2 subject

to the boundary conditions above. First notice that

�� qX
j=0

C(j)
��2 � ( qX

j=0

jC(j)j
�2
:

Next apply the triangle and Cauchy-Schwarz inequalities:��� qX
j=0

C(j)
���2 � � qX

j=0

jC(j) � 1j
�2

�
� qX
j=0

jC(j)j2
�
�
� qX
j=0

12
�

=
� qX
j=0

C(j)2
�
� (q + 1);

so that: � qX
j=0

C(j)2
�
=
��� qX
j=0

C(j)
���2 � (q + 1)−1:

Notice that C(j) = 1 for j = 0; 1; : : : ; q, achieves this lower bound, and because

qX
j=0

zj = lim
λ↑1

(1− �q+1zq+1)=(1− �z);
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Proof of Theorem A.1: First, verify that ∆X1 has the correct spectral density:

S∆X1 = j�̃j2S∆Y + j�̃j2S∆Y �+ 2Re[�̃�̃∗S∆Y �]

= S∆Y

h
j�̃j2 + j�̃j2�+ 2�Re(�̃�̃∗)

i
:

Completing the square,

S∆X1 = S∆Y

h
j�̃+ �̃�j2 + j�̃j2(�− �2)

i
= S∆Y

�
 2 +  (1 −  )

�
= S∆Y  :

Next, check that ∆X1 and ∆X0 are uncorrelated at all leads and lags; by direct
calculation, the cross-spectral density is:

S∆X0∆X1 = S∆Y∆X1 − S∆X1 = S∆Y �̃
∗ + S∆Y ��̃

∗ − S∆Y  = 0:

Finally, verify that ∆X0 is the �rst di�erence of a covariance stationary sequence.
From the uncorrelatedness just shown, the spectral density S∆X0 = S∆Y −S∆X1 =
S∆Y (1−  ). Then,Z

j1− exp(i!)j−2S∆X0(!) d!

=
Z
j1− exp(i!)j−2S∆Y (!)(1−  (!)) d!

= S∆Y (0)
Z
j1− exp(i!)j−2(1−  (!)) d!

+
Z
j1− exp(i!)j−2(S∆Y (!)− S∆Y (0))(1 −  (!)) d!:

From condition (ii), the �rst summand is �nite. The result then follows from
noting that the second summand is bounded from above by:

sup
−π≤λ≤π

j1−  (�)j �
Z
j1− exp(i!)j−2(S∆Y (!)− S∆Y (0)) d! <1;
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using (i). This completes the proof. Q.E.D.
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