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Abstract 
 
Certain recently reported statistical regularities relating to the dispersion of firms' growth 
rates have begun to attract attention among IO economists.  These relationships take the form 
of power law or scaling relationships and this has led to suggestions that the underlying 
mechanisms which drive these relationships may have some interesting analogies with the 
mechanisms which drive scaling relationships in other fields.  
 
In this paper, I report some new empirical evidence in this area and I put forward a new 
candidate explanation for the relationships we observe.  This candidate explanation does not 
rely on any correlation mechanisms; rather, it is consistent with the view that the typical firm 
consists of a number of (approximately) independent businesses.  The size distribution of the 
constituent businesses within firms is modelled by reference to an analogy with the partitions 
of an integer. 
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1. INTRODUCTION 

 

Ever since the pioneering work of Gibrat (1931), economists have taken an interest in the 

relationship between the size of a firm and its expected proportional growth rate (for a 

review, see Sutton 1997).  Only recently, however has any systematic work been devoted to 

the related question which links firm size to the variance of growth rates:  taking the set of 

firms whose annual sales revenue lies in the interval (y,y+ε), consider the variance σ2 of the 

change in sales ∆y from one year to the next.  What is the relationship between σ2(∆y) and y? 

 

This relationship has been investigated in the recent physics literature, following Stanley et 

al. (1996)1, who report a �power-law� relationship of the form σ2(∆y) = Ayx.  Stanley et al. 

write this relation in terms of the proportional growth rate g ≡ ∆y/y, viz. σ(g) ≡ σ(∆y/y) = 

σ(∆y)/y = Ayr  where r = (x/2)-1, and they (i) establish the �power-law� form of the relation 

by showing that a plot of  ln (σ/y) against ln y displays linearity over a wide range of y (a 

factor of about 106);  and (ii) they estimate the coefficient r at �0.15, corresponding to a value 

of x = 1.7. More recently, it has been shown that a similar empirical relationship holds not 

only for firms, but for national economies (Lee et al. (1998)).   

 

Stanley et al. suggest that a natural model to have in mind here is one in which each firm 

consists of a number of equal sized units (businesses2, divisions etc.), and they distinguish 

between the possibility that these units growth rates are statistically independent, and the 

possibility that they are correlated in some way.  The �independence� case leads to a power 

law, but the coefficient r takes the value �0.5, far below the reported empirical value of  

�0.15.  

 

                                                 
1 Stanley et al. also investigate the shape of the distribution of proportional growth rates, 
which they find to be well represented by a double exponential distribution.  This aspect of 
their findings lies beyond the scope of the present paper.  See also Amaral et al. (1988), 
Pierrou et al. (1999). 
2 In what follows, the term �business� is used to denote the activities of a firm within a single 
market; thus a firm comprises one or more businesses. 
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The appearance of a power law (or �scaling�) relationship suggests an analogy with areas of 

statistical physics where such laws arise because of subtle forms of correlation between the 

units that comprise a system;  this has raised the question of whether some similar forms of 

correlation might be at work in these economic settings.  Following this idea, Stanley et al. 

(1996) proposed one specific candidate model of decision making in firms that might lead to 

correlated changes in sales by the constituent businesses.  This type of candidate explanation 

raises a number of difficulties: 

 

(a) While we would expect that certain factors impinging on the firm as a whole 

might affect all its constituent businesses in a similar way, the large majority 

of factors affecting the sales of a business from one year to the next are of a 

kind that are specific to the market in which that business operates, and these 

would not be expected to affect the sales of the firm�s other businesses.  (This 

claim is directly testable;  see Section 2 below.)  Any such firm level effects 

will make the ln σ(g), ln y relation �flatter�, relative to a model in which the 

growth rates of the constituent businesses are independent, but these effects, 

insofar as they are present, are probably small, and their magnitude is likely to 

fluctuate from year to year with the changing macroeconomic environment. 

 

(b) While it is possible to suggest various rather context-specific models of 

correlations, following Stanley et al. (1996) or otherwise, it is not clear why 

such a mechanism would lead to a power-law relationship.  Moreover, the fact 

that a power-law relation holds for the very different context of national 

economies suggests that a relatively primitive and robust mechanism may be 

driving this result. 

 

 

The argument that follows is developed in three steps: 

 

(i) A re-examination of evidence from the database used by Stanley et al. (1996) 

indicates that the value of the power coefficient r fluctuates across years, while 

remaining in the range �0.15 to �0.21.  Moreover, a direct test of whether growth 

rates of constituent businesses within a firm are correlated indicates that, while a 

positive correlation appears to be present, it is extremely weak and unstable.   
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(ii) This suggests an exploration of the appropriate way to model the firm as a set of 

businesses, with a view to asking whether a simple benchmark model based on 

independent businesses might provide a useful (lower) bound to the observed values 

of r.   

 

The most salient feature of this situation is that businesses vary widely in size;  and 

larger businesses must, as a matter of logic, form parts of larger rather than smaller 

firms.  Yet it is not clear how any �general� relationship might hold between the size 

of a firm and the size distribution of its constituent businesses.  The central idea in 

what follows lies in proposing a simple model, in which a firm with annual sales 

revenue y is represented as consisting of a set of businesses with sales y1, y2 ... yi ... 

with ∑ =
i

i yy .  We represent the y and the yis as integers, so that (yi) is a partition of 

the integer y (Andrews (1970).  We set out to explore the consequences of 

hypothesising that, for a randomly selected firm of size y, all partitions of y are 

equally likely.  Assuming that each business is subject to the same distribution of 

proportional shocks, it is shown that the size-variance relation for firms follows an 

(approximate) power law, with a coefficient in the range 1.585 ≥ x > 1.5 or a value of 

r in the range -0.21 ≥ r > -0.25 which corresponds well to the (lower) bound of 

observed values. 

 

(iii) It is suggested that the presence of small �firm level� shocks, whose size fluctuates 

across firms and between years, may explain the small residual fluctuations in the 

observed slope coefficient above this benchmark value. 
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2. RE-EXAMINING THE EVIDENCE3 

 

The relationship was first re-examined for firm level data using the Compustat database for 

1980-98, following the procedure used in Stanley et al. (1996) in which firms are grouped by 

size into 14 �bins�, the boundaries between successive bins being a factor of 4.  The results4 

indicate that the slope coefficient fluctuates in the range -0.21 ≤ r ≤ -0.15.  Linearity is 

preserved in most years (Figure 1a) but in three years a substantial departure from linearity 

arises at the extreme ends of the distribution.  These years are ones in which r is relatively 

low in absolute value and in all cases the nature of the departure is of the form illustrated for 

1997 in Figure 1b.  (It is interesting that the data illustrated in Figure 2 of Stanley et al. 

(1996) shows this same kind of departure from linearity at the extremes.)  In view of the 

relatively small samples encountered for very large and very small firm sizes in this database 

it seems appropriate to draw no more precise conclusions on the basis of this evidence5.   

 

For each of the years 1992-98, the Compustat database contains, for over 800 firms, data for 

several �segments� of the firm6.  Taking all firms for which at least two segments are 

reported, for each year from 1993 to 1997, a correlation coefficient was calculated between 

the rate of growth of the largest segment, and the rate of growth of the second largest 

segment, from that year to the next (Table 1 and Figure 2).  The values fluctuate widely and 

the value for the pooled sample is very low (0.115).  This suggests that, while some positive 

correlation (possibly reflecting �firm level effects� on the sales of constituent businesses) may 

be present, such effects appear to be too small and too unstable to account for the observed 

linearity and flatness of the ln σ(g) versus ln y relationship.  This observation motivates the 

investigation which follows. 

                                                 
3 I am grateful to Jian Tong for his assistance with the computations reported in this section. 
4 The values for each year are illustrated in Figure 3 of Section 3 below. 
5 For example, in 1997 the number of observations in the 14 bins were as follows (lowest bin 
first): 6, 9, 40, 83, 246, 478, 937, 1337, 1412, 1085, 587, 240, 32, 2. 
6These �segments� are defined by the firms themselves in their annual reports and may 
correspond either to individual businesses in the present sense, or to groups of businesses. 
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(a)      (b) 

Figure 1.  The values of ln σ(g) versus ln y for each bin, for 1993-94 (panel (a)) and 1997-98 

(panel (b)).  Following Stanley et al. (1996) firms are grouped into 14 bins, where the 

boundaries between successive bins differ by a factor of 4.  The fitted regression lines are 

shown. 

 

 

 

 

 

 

 

 

 

 

Figure 2.  A scatter diagram showing the rate of growth of the second largest segment g2 

versus the rate of growth of the largest segment g1 for each firm in 1993 (left hand panel) and 

1995 (right hand panel). 

 

 

year ′93-′94 ′94-′95 ′95-′96 ′96-′97 ′97-′98 pooled 

Correlation 
Coefficient 

.114 .062 .154 .079 .148 .115 

No of 
Observations 

955 970 1053 1073 868 4919 

 

Table 1.  Correlation coefficients between the year-to-year proportional growth rates of a 

firm�s largest �segment�, and that of its second largest �segment�.  

g
2

g1
-2.65588 4.12747

-2.71538

3.50942

g
2

g1
-1.9873 4.99626

-2.96963

7.01433

ln
s
d
(g

)

lnmean(y)
-6.31696 11.4592

-2.37935

1.44245

ln
s
d
(g

)

lnmean(y)
-5.74558 11.537

-1.754

.907683
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3. A MODEL 

 

Denote the size (annual sales revenue) of the firm by an integer n.  Denote the sizes of its 

constituent businesses by integers n1, n2, ... where ∑ =
i

i nn , so that {ni} is a partition of n. 

Assume7  

(i) for a randomly selected firm of size n, all partitions of n are equally likely. 

(ii) each constituent business experiences a proportional change in its size, 

denoted g, where g is an independent draw from some underlying distribution.  

To ease notation we normalize by setting the variance of the distribution of g 

to unity.  Thus the change in size of a firm of initial size n has variance n2. 

 

Assumption (ii) implies that the variance of the change in size of a firm of initial size n, 

whose constituent units are of sizes n1, n2, ... is given by ...nn 2
2

2
1 ++ .  We aim, using 

Assumption (i), to average this value over all possible partitions of n. 

 

The number of partitions of n is denoted  p(n);  Table 1 illustrates the procedure for writing 

down the set of partitions, for successive integers.   For example,  if n = 3  the partitions are  

(1,1,1,), (1,2) and (3).  Here we have  

( ) ( ) ( ) ( ) 17/33
3
121

3
1111

3
1∆nσ 2222222 =+++++=  

 

In order to calculate the variance as a function of n, we first define a function c(m,n), 

representing the number of occurrences of m in the set of partitions of n (Table 3).   

                                                 
7 Assumption (i) carries the main idea of the analysis.  To facilitate comparisons with the 
model of �equal sized units� mentioned earlier, the simple rule for growth rates of businesses 
embodied in Assumption (ii) is maintained for the moment.  In Annex 2, this assumption is 
replaced by a more economically appropriate representation, but the results which follow 
remain unchanged. 
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p(1) = 1 1 1 1 1 1 1 1 

p(2) = 2 1 1 1 1 1 2  

p(3) = 3 1 1 1 1 3   

 1 1 1 2 2   

p(4) = 5 1 1 1 4    

 1 1 2 3    

p(5) = 7 1 1 5     

 1 2 2 2    

 1 2 4     

 1 3 3     

p(6) = 11 1 6      

 2 2 3     

 2 5      

 3 4      

p(7) = 15 7       

 

 

 

 

Table 2.  A table of partitions.  For n = 0, p(0) = 1.  Dotted lines show the table of partitions 

of each integer in turn, 1 ≤ n ≤ 7.  Note that 1 has only one partition, i.e. 1.  For any n ≥ 2, the 

table for n is constructed from the table for n � 1 using the following rule:  adjoin 1 on the left 

to each partition of n � 1.  Now take each partition of n � 2 whose least part is not less than 2;  

adjoin 2 on the left to each such partition.   Continuing for j = 3,4 ..., [n/2], take each partition 

of n � j whose least part is not less than j;  adjoin j on the left of each such partition.  This 

procedure ends with j = [n/2]; here, j is adjoined to the single part n � [n/2].  Finally, the 

single partition n is added. 
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         m = 

    n 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

    1 1       

    2 2 1      

    3 4 1 1     

    4 7 3 1 1    

    5 12 4 2 1 1   

    6 19 8 4 2 1 1  

    7 30 11 6 3 2 1 1 

 

 

 

Table 3.  A table of the function c(m,n), showing the number of instances of m in the set of 

partitions of n, for 1 ≤ n ≤ 7. 
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In this notation, on appealing to assumption (i), we have  

 

( ) ∑
=

=
n

1m

22 n).mc(m,
p(n)

1∆nσ  

 

To proceed, we need an expression for c(m,n).  It can be shown that c(m,n) can be 

represented in terms of the partition function p(n) as follows8: 

 

∑
=

−=
[n/m]

1k
mk)p(nn)c(m,  

 

Using this relation, and inserting the value of p(n), it is possible to compute σ2(∆n) for small 

values of n.   Figure 3 shows a plot of  ln σ2(∆n) versus ln n;  it is clear that the relation is 

(approximately) represented as a ray through the origin, corresponding to a power-law 

relation of the form x2 Ann)(σ =∆ .  (Under the normalisation chosen above, when n = 1 we 

write σ2(∆n) = 1, so A = 1, whence ln σ2(∆n) = ln n = 0.)  The slight departure from  a  

power-law  relation  can  be  illustrated by examining the value of ln n)(σ2 ∆ / ln n, 

corresponding to the slope of a ray from the origin to the n-th observation in Figure 3, for 

successive values of n (Table 4). 

 

                                                 
8 This follows from Theorem 3 of Fine (1980) on choosing Fine's sequence (aj) as follows:  
am = 1, aj = 0 for all j ≠ m.  I am grateful to George Andrews for this observation.  Thus for  
n = 7, we have 

c(1,7) = p(6)+p(5)+p(4)+p(3)+p(2)+p(1)+p(0) 
c(2,7)                      p(5)          +p(3)        +p(1) 
c(3,7) =                            p(4)                  +p(1) 

 
while c(4,7) = p(3); c(5,7) = p(2); c(6,7) = p(1) 
and c(7,7) = p(0) = 1. 
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Figure 3.  The predicted ln σ2(∆n) , ln n relation under the partitions model for n = 1 to 10.   

 

 

n ln (σ2(∆n))/ln n n ln (σ2(∆n))/ln n 

2 1.5850 20 1.5415 

3 1.5789 30 1.5372 

4 1.5687 40 1.5345 

5 1.5651 50 1.5327 

6 1.5600 60 1.5314 

7 1.5580 70 1.5303 

8 1.5549 80 1.5295 

9 1.5530 90 1.5287 

10 1.5511 100 1.5281 

 
 

Table 4.  An illustration of the departures of the function n)(σ2 ∆  from a simple power law.  

The table shows the value of the ratio ln σ2(∆n)/ln n for selected values of n.   

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5

ln σ2(∆n) 

ln n 
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Direct computation indicates that the slope of this ray falls very slowly with n.  The limiting 

behaviour of the relation in the limit n → ∞ can be investigated analytically.  It is shown in 

the Appendix that as n → ∞, the function n)(σ2 ∆  becomes asymptotic to a power law 

relation Anx where x = 1.5. 

 

The  claim  of  this  paper  is  that  this  simple �partitions� model provides a reasonable 

bound, corresponding to the case in which �firm effects� (or correlations across businesses)  

vanish.   This is illustrated in Figure 4,  where the empirical data for ln σ(g) vs. ln y is shown 

together with the candidate bound for x = 1.55, (r = 0.225) corresponding to the �empirically 

plausible� value n = 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.   Empirical values of the slope coefficient r by year as estimated by the slope of the 

ln σ(g) versus ln y relation (Figure 1).  The bound from the �partitions� model of independent 

businesses is shown as a hatched line.  The dotted line corresponds to the model in which 

each firm consists of independent units of a fixed size. 

 

-0.5 
-0.4 
-0.3 
-0.2 
-0.1 

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
year 

r 
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4.  AN EXTENSION: RE-EXAMINING ASSUMPTION (ii) 

 

The analysis in the preceding section begins by assuming that the firm�s sales y may be 

divided into the sales {yi} of a set of businesses, and it proceeds to model the (integer valued) 

yi as a partition of the (integer) y.  From an economic point of view, this procedure might 

seem a little odd:  it might seem more natural to think of the sales of each business, which by 

definition corresponds to the firm�s sales in one particular market as being represented by a 

product siYi where si is the firm�s market share in market i, and Yi is the total (i.e. industry) 

sales revenue of market i.   Once yi is represented in this way, it is natural to ask:  within a 

single market i, what is the relation between a firm�s size (as measured now by its market 

share in that market) and the variance of its change in size (market share) from one year to 

the next? 

 

It is difficult to address this question using standard economic datasets: records are rarely 

available of the market shares of even a set of leading firms for a usefully long number of 

years.  The following discussion draws on some results arising from a dataset for Japan, 

compiled by the author, which contains the market shares of a set of �largest� firms within 50 

well defined markets in each year from 1973 to 1997.  For each market share band, the 

variance measure σ2(∆s) was computed.  The data is illustrated in Figure 5.  The �size-

variance of growth� relation was investigated by running a regression of ln(σ(∆s)/s) versus ln 

s, together with industry dummies.  The results are consistent with a power-law relation with 

slope r =~  -0.5 corresponding to the relation var (∆s) = constant · s .  This relation can be 

interpreted by reference to a model in which a firm�s market share consists of its sales to a 

number of �independent customers� of equal size.  The slope coefficient r, in other words, 

corresponds to the reference model of Stanley et al. noted in Section 1 above.  This begs the 

question: how can this result be reconciled with the much flatter slope coefficients (|r| ≤ 0.21) 

found for firm level data? 

 

The two results are easily reconciled by appealing to the idea that the market share s is drawn 

from some given distribution; but the size of the industry is drawn from a distribution which 

is very diffuse.   This idea is made precise in what follows. 
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Figure 5.  The ln σ2(∆s) versus ln s relation for Japanese manufacturing firms.  The data 

relates to a set of leading firms in each of 45 narrowly defined industries from 1973 to 1997.  

The pooled observations are split into twelve bins containing equal numbers of observations.  

A fitted regression incorporating industry dummies gives a slope of �0.5. 

 

 

 

 

 

 

 

 

 

ln s
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-3 

-2 

-1
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Let the sales of the firm y be represented, as before, as the sum of the sales of a number of 

businesses in a series of markets indexed by i, so that the sales of these businesses, y1, y2, ... 

form a partition of y, all partitions being equally likely.  Now, however, interpret each yi as 

being a product of the form siYi, viz. 

∑ ∑==
i i

iii Ysyy  

In what follows, the sales of a single business will be denoted y, the subscript i being dropped 

to ease notation.  Assume that shocks to y derive wholly from fluctuations in market share, 

the industry sales revenue Y being constant.  It follows that  

var s)(varYy)( 2 ∆=∆  

 

Now we assume that s is a draw from some (discrete) distribution, whence it takes values s1, 

s2, ... sj ... with associated probabilities p1, p2, ... pj ... so that the sales revenue y corresponds 

with probability pj to a market share of sj in a market whose size Y equals y/sj (In Bayesian 

terms, this amounts to treating the distribution of Y as a diffuse prior.). 

 

It now follows that the variance of the change in sales of a business of size y is given by 

 

var (∆y)  = Y2 var (∆s) 

  = 
2

j
j

j s
ypΣ 









 var (∆sj) 

Using the empirical result cited above to write var (sj) = constant · sj, it follows that  

 

var (∆y) = constant · 
j

j2
s
p

Σy
j

 

 

Since Σ(pj/sj) is a constant which depends only on the underlying distribution of s, it follows 

that var (∆y) is proportional to y2, so that σ(∆y/y) ≡ σ(g) is independent of y, whence 

Assumption (ii) above, and so the results of the basic model of Section 3, follow directly. 
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5. CONCLUSIONS 

 

 

It has been suggested that the power-law nature of the σ(g) versus y relationship reflects the 

workings of some form of correlation of growth rates across the firm�s constituent businesses.  

Here, it has been shown that a simple model which allows for the fact that these businesses 

vary in size, as modelled by a simply �partitions� of independent businesses, provides a good 

first order approximation to what is observed empirically.  One candidate explanation for the 

fluctuations in the value of the slope from year to year is that these are associated with weak 

�firm level� effects whose size fluctuates from one year to the next; whether or not this is so 

remains an open question.  The relationship derived from the partitions model of independent 

businesses should be thought of as providing only a lower bound to the (negative) value of 

the slope coefficient r.  The presence of correlations in the growth rates of a firm�s 

constituent businesses will lead to a flattening of the ln σ(g) versus ln y relationship. 
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APPENDIX 
 

 
Using the expressions for σ2(∆n) and c(m,n) in Section 2, the expression for the variance can 
be written either as 
 
 

[ ]







 −
∑∑
==

n/m

1k

n

1m

2
p(n)

mk)p(nm      (1) 

 
where the inner sum is taken within rows in Table 5, (and where [·] denotes the integer part) 
or by first summing within columns leading to  
 

p(n)
m)p(ns(m)

n

1m

−
∑
=

     (2) 

 
 
 

where s(m) is defined as the sum of squares of the divisors of m (whence m2 ≤ s(m) < cm2 
where c is a constant (≈ 1.6)). 
 
Using the standard asymptotic formula 
 

3
2πbwheree

n34
1p(n) nb =≈   (3) 

 
 
to write 
 

( )mnnbe
mn

n
p(n)

m)p(n −−−
−

≈−     (4) 

 
we approximate (2) by defining the sum 
 

m)nnb(n

1m
0 e

mn
ns(m)S −−−

= −
= ∑     (5) 

 
 
To evaluate S0, use the fact that  
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nm1,
mn2

mmnn
n2

m ≤≤
−

<−−<  

 
 
 
 
 
 
and define the associated sums, 
 
 

∑
=

−
−

=
n

1m

mn2
bm

1 s(m)eS  and ∑
=

−

−
=

n

1m

n2
bm

2 e
mn

ns(m)S  

 
 
whence S1 < S0 < S2. 
 
 
As n → ∞, S1 and S2 (and so S0) both converge to the same limit9, viz. the limit of 
 







−=∑

= n2
bexpawheres(m)a

n

1m

m    (6) 

 
It remains to investigate the behaviour of the series (6) as n → ∞.  To do this, it is convenient 
to write (6) in its alternative form (analogous to first summing within rows in Table 5), viz. 
 

[ ]












∑∑
==

mk
n/m

1k

2
n

1m
am      (6′) 

 
 
The inner sum in (6′) can be written as 
 

m

n
mm

[n/m]m
m

a1
a1a

a1
)(a1a

−
−≈

−
−  

 
whence (6′) becomes  

                                                 
9 To show this: choose any θ, 0 < θ < 1 and break each of the sums S1, S2, S0 into two parts, 

viz. ∑∑
+==

+=⋅+⋅
n

1θnm
ii

θn

1m
RS~)()( .  The presence of the exponential term ensures that the 

remainder term Ri → 0 with n → ∞.  Moreover, by choosing θ sufficiently small, the ratio 

21 S~/S~  can be made arbitrarily close to 1. 
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m

m2n

1m

n

a1
am)a(1

−
− ∑

=
    (7) 

 
 
 
 
 
 
For large n, we can approximate the sum in (7) by the integral 
 

∫ −

n

1
z

z
2 dz

a1
az   = ∫ −

n

1
cz-

cz-
2 dz

e1
ez  

 
where )nb/(2ac =−= nl .  On writing cz as x this becomes 
 

dx
e1

ex
b

n2dx
e1

ex
c
1

x

x
2

/2nb   

nb/2   

3

x

x
2

cn  

c   
3 −

−

−

−

−







=

−
⋅ ∫∫  

 
so that (7) becomes 
 

dx
e1

ex
b

n2e1
x

x
2

/2nb  

nb/2   

3
nb/2

−

−
−

−












 − ∫    (8) 

 
 
For large n, the integral in (8) converges to the standard integral  
 

∫
∞

−

−

−0
x

x
2 dx

e1
ex  

 
whose value is the constant 
 

0.404
k
12 3

1k
≈∑

∞

=
 

 
Writing this constant as c0, (8) coincides asymptotically with  
 

1.5
30

3

0 n
2
3

π
3c

b
n2c =







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value of mk 
 

 1 2 3 4 5 6 7 8 9 10 
m=1 1 1 1 1 1 1 1 1 1 1 
m=2  4  4  4  4  4 
m=3   9   9   9  
m=4    16    16   
m=5     25     25 
m=6      36     
m=7       49    
m=8        64   
m=9         81  
m=10          100 

 
 
 
Table 5.    Table of coefficients of p(n-mk)/p(n) in the sums (1) and (2): the table shows 
the case n = 10.  The inner sum (over k) corresponds to summing a row in this table. 
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