The Size Distribution of Businesses’
Part I: A Benchmark Case

by

John Sutton
London School of Economics and Political Science

The Toyota Centre

Suntory and Toyota International Centres for
Economics and Related Disciplines

London School of Economics and Political Science

Discussion Paper Houghton Street
No. EI/9 London WC2A 2AE
December 1995 Tel.: (020) 7955 6674

" | would like to thank Alison Hole, Reinout Koopmans, Michael Raith, Mark
Schankerman and Hugh Wills for t heir very helpful comments on an earlier draft and
Javier Hidalgo, Martin Knott and Jan Magnus for their helpful advice. The financial
support of the Economic and Social Research Council and the Leverhulme Trust are
gratefully acknowledged.



Abstract

This paper examines the evolution of a skew distribution of firm sizes from the
viewpoint of the 'Bounds' approach to market structure. It confines attention to
the role played by non-strategic factors (statistical independence, and cost side-
effects). A model is proposed, which leads to a prediction regarding the least
skew size distribution which is likely to be observed. This distribution provides a
benchmark relative to which the impact of strategic effects on the form of the

size of distribution may be assessed.

Keywords: Skew size distribution; firms; market structure; 'Bounds' approach;
strategic effects; benchmark.

© by John Sutton. All rights reserved. Short sections of text not to exceed two
paragraphs may be quoted without explicit permission provided that full credit,
including © notice, is given to the source.

Contact address: Professor John Sutton, STICERD, London School of
Economics and Political Science, Houghton Street, London WC2A 2AE. email:
j.sutton@]Ise.ac.uk



mailto:j.sutton@lse.ac.uk




Abstract

This paper examines the evolution of a skew distribution of firm sizes from the
viewpoint of the 'Bounds' approach to market structure. It confines attention to
the role played by non-strategic factors (statistical independence, and cost side-
effects). A model is proposed, which leads to a prediction regarding the least
skew size distribution which is likely to be observed. This distribution provides a
benchmark relative to which the impact of strategic effects on the form of the

size of distribution may be assessed.

Keywords: Skew size distribution; firms; market structure; 'Bounds' approach,;
strategic effects; benchmark.

© by John Sutton. All rights reserved. Short sections of text not to exceed two
paragraphs may be quoted without explicit permission provided that full credit,
including © notice, is given to the source.

Contact address: Professor John Sutton, STICERD, London School of
Economics and Political Science, Houghton Street, London WC2A 2AE. email:
j.sutton@]Ise.ac.uk



mailto:j.sutton@lse.ac.uk

1. INTRODUCTION

The typically skewed size distribution of firms within any industry ('businesses')
has for long been seen as one of the most salient features of market structure.
Attempts to explain the form of the size distribution date back to Gibrat (1931),
a paper that initiated a line of research on the 'Growth of Firms' in which purely
stochastic influences played a key role. A central aim of this literature was to
show how the size distribution would converge over time to some specific
form®. This literature has been revived recently with an emphasis on the role
of 'economic’ factors. As this literature has developed, it has become clear that
the form of the size distribution depends delicately on the details of the model
employed, including many details that must be treated as 'unobservables' in
empirical applications’. Meanwhile, it has become accepted in empirical work

that no single form of distribution can be regarded as 'standard’ or typical®.

This paper proposes a new approach to the analysis of the size distribution. The
motivation for this approach lies in the idea that while strategic interactions (and
other 'economic’ factors) have an important influence on equilibrium structure,

they are not the whole story. Any industry will contain clusters of products or

’Lognormal, Yule, etc. A full review of this literature will be found in
Suttqn (1995a).

’See, for example, Jovanovic (1982), Ericson and Pakes (1988) and Roberts
and Samuelson (1988). This point also holds for 'non-strategic' models such as
Lucas (1978), where the size distribution depends on an unobservable
distribution of managerial abilities.

*Richard Schmalensee's (1989) survey in the Handbook of Industrial
Organisation concludes that 'all families of distributions so far tried fail to
describe at least some industries well'. These twin themes, of delicate
theoretical results and a lack of any 'sharp' statistical regularities, are also central
themes in the other major literature on market structure, the 'stage-game’
literature that follows the Bain tradition of amalysing how industry-specific
factors influence cross- mdustry differences in concentration (Sutton (1991)).
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plants that compete closely. But an industry, as conventionally defined in
official statistics, will usually contain more than one sach cluster; it will be
possible to identify pairs, or sets, of products that do not compete directly. In
other words, most conventionally defined industries exhibit both some strategic
interdependence, and some degree of independence across submarkets®.

The task of combining these two features requires a fairly lengthy analysis. If
the theory is to lead to testable predictions as to the effect of 'strategic factors’,
it is necessary to set up a 'null hypothesis’ based on a description of what
happens when such strategic factors are absent, 1.e. where the only sources of
skewness lie in statistical 'independence effects’ and in (absolute or size-related)
cost differences between firms. The aim of this paper is to analyse this

‘benchmark’ case.

In order to develop the main idea in the simplest possible way, we set up the
benchmark model using the simple framework employed in the Growth of Firms

*It might seem attractive to respond to this problem by insisting on an
‘appropriately narrow' definition of an industry. This however, is not
practicable. What is at issue is that a firm's profit function may be additively
separable into contributions deriving from a number of 'remote' products.
Consider, for example, the standard Hotelling model where products are placed
along a line. A firm offering a set of non-neighbouring products has, at
equilibrium, a profit function which is additively separable into contributions
from each product. Any real market in which products are spread either over
some geographic space, or some space of attributes, will tend to exhibit this
feature.

It might also seem that the problem of 'independence’ might be easy to deal
with in the standard game-theoretic models, since all that is involved in principle
is a special (additively separable) form of the profit function. This is not so,
however. The standard program of 'listing all the perfect Nash equilibria’ leads
us, in this kind of setting, to have some equilibria in which all firms have the
same size. Such equilibria play a key role whenever this body of theory is
applied to discussions of market structure. It is the fact that this kind of
outcome is rarely, if ever, observed in practice that motivates the 'size
distribution’ literature.



literature by Herbert Simon and his collaborators®. A companion paper (Sutton
(1995b)) re-casts the present analysis in the form of a game, introduces
'strategic’ factors, and examines their effects.

In defining this 'benchmark’ model, we need to ask about its domain of
application: to what set of industries does this model refer? To answer this, we
need to ask what kinds of strategic effects are potentially important, and in what
kinds of industries will the influence of these effects be small. It is well known
that at least two kinds of strategic effects may be important. The first is
associated with 'escalations' of Advertising or R&D spending, and the second
is associated with the externalities that each plant (or product) has on its near
neighbours in geographic (or product) space. It is proposed in what follows that
the model be applied to markets in which Advertising and R&D are negligible,
and in which the range of products and/or plants are widely dispersed in
geographical or product space.

II. THE SIMON MODEL REVISITED

Imagine a process by which the activities of firms within some specific industry
("businesses")’ grow over time as the industry expands. Imagine that a discrete
sequence of 'investment opportunities’ become available to firms. These
opportunities may be thought of as involving the opening of a new plant, the
establishment of an outlet in a new area, or the introduction of a new product

Simon and Bonnini (1958), Ijiri and Simon (1977).

"This distinction between "business” and "firm" becomes important once we
turn to empirical applications; all empirical data reported below relate to
"businesses”. In presenting the theory, we deal always with a single industry so
that "firms" and "businesses” are synonymous.
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variety. What considerations will determine how the size distribution of firms

evolves over time?

However we choose to model this situation, the shape of the size distribution

will turn upon the answers to two questions:

(1) Is there any systematic bias in favour of 'large' firms (those that
have already entered many products), or 'small' firms? In other
words, is the next product which is introduced by some currently
active firm more likely to be introduced by a larger, or by a
smaller, firm?

(i)  How likely is it that the next product will be introduced by a new
entrant, as opposed to a firm that is already active; and how does
this likelihood change over the course of time?

The traditional 'Growth of Firms' literature dealt with question (i) by postulating
Gibrat's Law, i.e. a larger firm was more likely to fill the next opportunity, in
proportion to its current size. This may appear reasonable, but it is certainly a
rather arbitrary hypothesis to introduce®. Here, in eschewing all attempts to say
what is likely’, we avoid taking any position on this issue. Instead, we aim to
explore the implications of the following condition:

Condition 1: The probability that the next market opportunity is
filled by any currently active firm is nondecreasing in

*Recent empirical studies have suggested that the best simple generalization
is that, on average, smaller firms that survive grow proportionately faster than
large firms, but the probability of survival is lower for smaller firms (Evans
(1987), Dunne Roberts and Samuelson (1988)). The real problem lies not in
characterising what happens 'on average', but in the fact that a wide range of
different patterns occur across different markets, so that it is difficult to make
any generalisations as to what is the 'normal’ size/growth relation, or the 'typical'
shape of the size distribution (for a review of these issues see Sutton (1995a)).
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the size of that firm.

Consider two businesses of different sizes. Condition 1 is violated if the smaller
business is more likely to take up the next market opportunity than is the larger
one. This might happen, for example, if the incremental profit realised from the
new investment was smaller for the larger firn. This supposed disadvantage to
the larger firm could derive either from the cost side or through 'strategic effects'
on the demand side.

As to the cost side, a larger business may enjoy an advantage through
economies of scope in offering several products, or in operating many plants.
On the other hand, a traditional argument suggests that it will not suffer any cost
disadvantage; for, if an integrated business of larger size had higher unit costs,
then it should be possible to split the business into completely independent and
separately managed units under single ownership, so that any such disadvantage
is eliminated™'. This is the standard 'replication’ argument for non-diminishing
returns, and it is a very appealing one. Can an analogous argument be offered
on the demand side?

The answer is 'no’. The game-theoretic literature has afforded us a rich menu
of examples in which the larger firm suffers a disadvantage in the sense that the

profit per product (or plant, or unit capacity) is decreasing in the number of

’Such an argument supposes that 'managerial diseconomies' can be avoided
over the empirically relevant range, whether by divisionalization or otherwise.

“The relationship between the postulate of non-decreasing returns and
Condition 1 is worth noting. A wide range of assumptions regarding the link
between firm size and expected growth are consistent with constant returns:
Simon, for example, appealed to the presence of constant returns to motivate
Gibrat's Law. Condition 1 is consistent with either constant returns or
increasing returns. On the other hand, if diminishing returns are present, so that
large firms are disadvantaged relative to small, then Condition 1 would no
longer be tenable.



products (or plants, or units of capacity) operated by the firm. This effect has
a simple Intuitive interpretation: if the multi-product or multi-plant firm expands
output or cuts price in order to improve the profit of one of its plants, it
generates a negative externality for the other plants. In maximizing its total
profit, the firm seeks to 'internalise’ this externality. This leads to higher prices
and lower profits on each product or plant.

Nonetheless, empirical evidence on size-profitability relationships across
businesses of different sizes within an industry suggests that the rate of return
(profit) is nondecreasing in the size of the business''. This suggests that firms
may have some way of circumventing such strategic disadvantages where they
arise. This will be the case whenever market opportunities are dispersed either
geographically or in some space of 'product attributes'. If a firm that owned a
number of closely clustered plants were to earn lower profit per plant, then that
firm could simply expand by opening a sequence of plants in dispersed
locations, thereby avoiding the strategic disadvantage'?. It is this argument
which motivates the claim that the present model may reasonably be applied to
the general run of manufacturing industries defined at the 4- or 5-digit SIC
level®.

We now turn to the issue of entry, as posed in question (ii) above. Here, this
paper follows Simon in noting that no particular hypothesis suggests itself on

"'The FTC Line of Business data and the PIMS dataset are the standard
sources {Scherer (1980)).

"’This argument is made precise in the companion paper, Sutton (1995b),
where it 1s shown that the results of the present paper hold in a setting where
there are a large number of similar submarkets, whatever the nature of strategic
interactions within each submarket.

“It is not difficult to identify certain narrowly defined markets in which
Condition 1 seems likely to fail. It is argued in the companion paper that the
behaviour of very narrowly defined markets provides one useful test of the
validity of the present analysis.



a priori grounds. What is at issue here is the fraction of new products or plants
introduced by new entrants, as opposed to incumbents. What matters, as will
be shown, is not whether this fraction if high or low -the results of interest turn
out to be independent of this - but whether this fraction varies over time, and
in what manner. Fortunately, this is something which can be checked directly.
It turns out that Simon's simple assumption that this fraction remains constant
over time provides a natural benchmark case, and it will be shown that the
empirical predictions of the theory are fairly robust to empirically reasonable

deviations from this case®®.

Condition 2: The probability p that the next market opportunity is

filled by a new entrant is constant over time.

III. THE BASIC PROCESS

The following process is identical to that used by Ijiri and Simon (1977) apart
from the replacement of Gibrat's Law by Condition 1:

A sequence of discrete and independent investment opportunities arise over time.
Each opportunity is of the same size, in terms of the sales revenue and profit it
yields to any single firm which takes it up; and each opportunity would be

"It is worth noting that the rate of capture of opportunities by new entrants
depends inter alia on the number of potential entrants available. This introduces
an exogenous influence that cannot be removed by appealing to 'optimizing
behaviour'. Any attempt to do so will merely push back the arbitrariness by
introducing some new exogenous influence, such as the (probably unmeasurabie)
distribution of entrepreneurial talent. It seems preferable to develop predictions
that are condtioned directly on the rate of capture of opportunites by entrants,
since this is directly measurable, allowing the robustness of predictions to be
examined.



unprofitable if more than one firm took it up. We label these
opportunities by an index t=1,2,3, .. T. The size of a fimm is measured
by the number of opportunities it has taken up. Firms that have already taken
up at least one opportunity are referred to as active,

We denote by n,, the number of firms of size i at stage t, and by N, the number
of active firms at time t, whence N, = 20, . The process begins at stage
t = 1, when the first opportunity is talz;,ln up by some firm, whence N, = 1,
What we aim to examine is the evolution of the number of firms N, and their

size distribution, described by the vector {n }.

The evolution of N, can be analysed independently of n,,, and is driven only by
Condition 2. This implies that the total number of firms entering between stage
2 and stage t, which by definition equals N, - 1, is described by a binomial
distribution with density

Prob(N, = N) = (g:i) P (1-p) e (1)

Equation (1) defines Prob (N=N)forallN=1,2,3, ... andt = 2,3,... The
number of firms N, takes values 1, 2, ... t and has mean 1 + p (t- 1), where p
denotes the probability that the new opportunity arising in any period is captured
by an entrant.

The evolution of n;, is more complex. Our aim is to characterize the least skew
distribution permitted by Condition 1. It is intuitively clear that this corresponds
to the sub-case of Condition 1 under which each active firm has the same
probability of taking up the next opportunity; this is established in Appendix
2. This remark motivates:

Condition 1"; The probability that the next opportunity is taken up
by any active firm is independent of the size of that
firm.



Conditions 1' and 2 imply that each of the N, firms active at stage t - 1 has an
equal probability (1-p)/N,, of taking up the opportunity which arises at stage t.

We aim to describe the distribution of firm size {n;,} conditional on N,. At
t=1, wehave N, = 1and {n;,} = {1,0,0 ..}.

For values of t less than 4, it is easy to see that there is only one possible size
distribution vector {n, } for each value of N,. For t = 4, some values of N, are
supported by two or more size distribution vectors. We denote the expected
value of n;, conditional on N, as E(n,, IN,).

The initial condition for t = 1 is:

N,=1; E(n, ,|1) = 1;

E(n2’1|l) =E(n3’l|1) = ...=90 (2)

and for the special case N, = 1 in which no entry occurs after stage 1, so that
there is a single firm of size 1 = t,

E(n; .|]1) =1 for i=t;

otherwise 3)

o
o

Our aim is to analyse the behaviour of E(n, IN)) as t increases.

The evolution of N, is fully described by equation (1). Given N,,,, the number
of firms in the preceding period, N, takes values N, and N, - 1.
Moreover, it follows from (1) that'

('No entry’) Prob(N,=N | N, =N) =1 - (N,-1)/t
4)
(Entry") Prob(N,=N-1 | N.,, =N} = (N.-1)/t

“see Appendix 1, Note 1.



Now consider n,,,. This takes three values, according as the (t + 1)th
opportunity is taken by (a) an entrant, (b) a firm of size 1, or (c) a firm of size
i # 1. If entry occurs, (case (a)), n, rises by 1 unit at stage t. If no entry
occurs, then the firm capturing the new opportunity is a firm of size 1 with
probability n; /N,, and here n, falls by 1 unit (case (b)); otherwise n, remains

unchanged (case {c)).

It follows that, forall t >2 and 2 < N, < ¢,

N, -1
E{n, .,;|N.} = I:t {E(nl,tht -1 +1 }
+ _ N-1 a E(nl.tINc) 5
[ 1 _E._J {E(n1,:|Nt) —NtH} (5)

To interpret (5), note that the first term on the r.h.s. corresponds to the case
where the opportunity is taken by a new entrant. Conditional on entry, n; rises
by one unit, with probability 1. The second term corresponds to the case where
no entry occurs. Conditional on this, n, falls by one unit with probability n, /N,

A similar argument applies when i > 1. If entry occurs, n, remains unchanged.
If no entry occurs, then the firm capturing the new opportunity is a firm of size
1 with probability n, /N,, and here n, falls by 1 unit; while the firm capturing the
new opportunity is of size (i-1) with probability n_, /N,, and here n, rises by one
unit. It follows that:



Foriz2and forallt22and 2 <N, <t,

N, -1
'E(ni,ti-l}Nt) =

{ E(n, .| N.-1) }

+ [ 1- N1 ] {E(ni u|Nt}—E(ni'tht) +E(ni‘1rt|Nt) } (©)
t ' N, N,

Given the boundary conditions (2) and (3), equations (5) and (6) uniquely define
the function E(n;, | N) on the domain t = 2, 2 £ N, £ t. The solution is:

[t—l—l]
-2
E(n, |N,) =N, - L% )

This can be checked by direct substitution of equation (7) in equations (5) and
(6)(see Appendix 1, Note 2). For 1 = 1 equation (7) reduces to

N.-1
E(n, |N) =N, + 2 (7a)
and for i = 2 it becomes
o N-1 P E-Ng o E-N-L E-N-(3-2)
E{ni,tht) _Nt t-1 { ) T3 — i
_ £E-N, . t-N-~1 t-N.-(i-2) b
Einy | N,) { €2 £=3 — &1 — (7b)

The total number of firms N, is binomially distributed with mean 1 + p(t-1),
and the ratio (N,-1)/(1-1) converges in probability to p as t — . For any fixed
1, the expected number of firms of size i increases to infinity as t — e=. In what
follows, we focus on the behaviour of

1

TopreeTy = el

as a function of i.

11



From (7a) we have

1 N N, O N-1
I+pit—IiE(nLtINJ " Tep(t-1y -1

_ £-1 [N,__—l 2+ 1 [Nt—l]
l+pi(t-1} t-1 T+p(t-17L -1

It is convenient to define the random variable (N-1)/(t-1) = 0, whence

.

1+p(E-1} fet]

- 1 _ t-1 2 1

- T+p(E-1) iy {8.) 1+p{t-1) O: + l+p(t—ffec

The unconditional expectation may be obtained by taking the expectation of this
expression over 6. Since 8, B p, however, the limit of the unconditional
expectation may be obtained by substituting p for 6, on the right hand side (by
the Helly-Bray theorem (Rao (1973)). We have,

n
L' 1.t =
t%-I-nE[ T+pTE-1) ] P

It follows in the same way from (7b), on writing each term in {-} in the form

EN-(i-2) g - t-lg 1
t-1 t-1 t-1
that
. nj_,t - - i-1 (8)
Lim B [ THED ] p(l-p)

Hence the size distribution tends to a geometric distribution'® with parameter p.

'*This characterisation of the size distribution for large T is a weak one. It
would be nice to establish a stronger property, and simulations of the process
suggest that a stronger characterisation may be avaijlable. Simon's method (Jjiri
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It will be convenient in empirical applications to treat the size of the firm as a
continuous variable x, replacing the geometric distribution (8) by the
corresponding exponential and expressing the size distribution by the density

£(x) =p exp {-px) 9

Two features of this result are worth noting:

(1) The mean size of finm converges to a constant, 1/p. (Increases in
T, and so in N, raise the size of the largest firms, but only in the
sense that the size of the largest draw among a total of n draws
from a given distribution rises with the number of draws, n.)

(ii) The exponential size distribution (9) may be thought of as the
envelope of a set of size distributions of different age cohorts in the
overall population of firms. It is shown in Sutton (1995b) that the
size at stage t of a firm which entered the industry at stage
1 can be described asymptotically as (1 + x) where x 1s a Poisson
variable with parameter"’

_ 1 1 1 10
(lp){?+t+1+“'+3} (10
Estimating Concentration Ratios

We now tumn to the implications of this for the relationship between the number
of firms in the market, N, and a conventional measure of concentration, the k-

and Simon (1977)), which leads to a very simple calculation of (8) can be used

only if it is assumed that E(n; /N ) converges to a limiting value for each i. (See
Appendix 2.)

“"Were size distribution data available for separate age cohorts of businesses,
this would provide a useful further test of the present model.
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firm concentration ratio.

In what follows, we maintain the exponential approximation (9) throughout'*".
The properties of the k-firm concentration ratio, defined as the fraction of the
t opportunities captured by the k largest firms among the N firms present, now
follow from standard properties of the extreme value distribution for the
exponential (Gumbel (1958) p. 116 ff.).

In Appendix 4, it is shown that for any integer k, as N increases the k-firm

concentration ratio C, tends towards
k 1.k . 11

where 7, is a constant which depends on k. As k increases, 7y, approaches

unity.

Given the range of values of k and N which are usually recorded in official
statistics, the limiting formula

( - Ink ) (11)

will often be adequate in empirical applications (see Appendix 4).

'®*The use of an exponmential distribution, rather than a geometric, is
unproblematic unless p is very close to unity. If p =1, all opportunities are
filled by new entrants and all firms are of size 1. For p close to, but not
equal to 1, the size distnbution is geometric, with f(1) = p

'"The smooth Lorenz curve generated by the exponential distribution
approximates the piecewise linear schedule generated by the geometric
distribution. This approximation is close enough for empirical purposes unless
the top k firms include firms of size unity. This would happen, for a given k,
if a sufficiently high proportion of firms were of size 1. What we require is that
k/N << 1-p. Since we are normally concerned with the top tail of the
distribution and since p normally lies in the range 0.1 - 0.2, this qualification is
unimportant in practice.
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Expressions (11) and (11)' define a Lorenz curve for the industry. The limiting
form (11)' can be derived directly using elementary arguments, as follows: Let
the size distribution be described by the exponential distribution (9), and
consider the ratio between the proportion of opportunities accounted for by firms

of size x or greater, and the number of firms in this size band.

From (9) we have
Ix fix)dx = —(x + i)e‘l’"
P
jf(x)dx = —gPx

whence the proportion of products (or plants) accounted for by firms of size X
or greater 1s

[xtax / [xE(x)dx = (1 + pR)e™ (12)

and the proportion of firms in this size band is
j" £ (x)dx / J"' f{x)dx = P
X G
Write e as z, whence X= - (1/p)lnz. Substituting this in (12), we have: if

firms are ranked in descending order of size, a proportion z of firms accounts

for a proportion G(z) of sales, where

G(z) =z (1-1Inz) (11)"

This corresponds to equation (11)' above, with z = k/N.



The Lower Bound

In motivating Condition 1, it was argued that while large firms might suffer a
relative disadvantage via 'strategic effects’, they might in practice be able largely
to evade any such disadvantage by a suitable choice of product or plant
locations. On the cost side, it was argued that any disadvantage suffered by
large firms could be avoided via a 'replication' strategy. However, in many
industries, larger firms may enjoy some cost advantage over smaller rivals by
way of economies of scale or scope. For this reason, inter alia, Condition 1 was
stated in terms of an inequality constraint.

Expression (11) has been derived by replacing the inequality constraint of
Condition 1 by the independence postulate of Condition 1', in order to derive a
characterization of the least skew distribution of firm size consistent with
Condition 1. In Appendix 2, it is shown that for any process satisfying the
inequality constraint of Condition 1, the Lorenz curve of the corresponding
limiting distribution lies further from the diagonal than the linﬁﬁng curve given
by (11). Hence, expression (11) provides an asymptotic lower bound to

concentration as a function of the number of firms:

Proposition 1: For any fixed ratio k/N, an asymptotic lower bound to the k-
firm concentration ratio is given by

k k
kazﬁ(l-lnﬁ)

This result has two interesting features:

(1)  The shape of the size distribution, and so the lower bound to
concentration, is independent of the entry parameter p. This
parameter affects average firm size, but not the shape of the size
distribution, or the associated concentration measures. This

contrasts sharply with the traditional literature on the size
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distribution of firms, in which theory led to a family of size
distributions of varying skewness, parameterised by p. In Simon's
- work, this parameter was linked to the level of the entry rate of
new firms to the market. Other early models also led to a family
of size distributions; in Hart and Prais (1956), for example, the
variance of the lognormal distribution could be linked to the
variance of the distribution of ‘'shocks' to firm size between
successive periods. In the present setting, expression (11) contains
no free parameters whose measurement might be subject to error.
Rather, Condition 1 leads to a quantitative prediction regarding the
lower bound to concentration, conditional only on the assumed

constancy of the entry rate (Condition 2).

(i) Various countries publish data on k-firm concentration ratios for
several different values of k. Proposition 1 implies that the various
k-firm ratios are all bounded below by a curve which approximates
(11)' In the next section, we take advantage of this in pooling data

for various reported k-firm concentration ratios.

The lower bound given in Proposition 1 lies far above the minimal level
Cun = K/N corresponding to firms of equal size (See Figure 1 and Table 1). It
1s also well separated from the family of Lorenz curves derived from 'Gibrat's

Law', using 'reasonable’ parameter values.



k/N
S = %(1 "ln‘i}é)
1 33
2 52
3 .66
4 37
S5 .85
.6 91
i 95
.8 .98
9 99
Table 1. Predicted lower bounds for thek-firm concentration ratio in

an N-firm industry.

The prediction of Proposition 1 is set out in Table 1 and can readily be tested
using published data on concentration ratios and firm numbers. In practice,
however, data on firm numbers is widely seen as being problematic, for reasons
noted in the next section. It is of interest, therefore, to ask whether the theory
can be tested in the absence of satisfactory data on firm numbers. So long as
data 1s available for two or more concentration ratios, it is possible to proceed
as follows: if the size distribution converges to some stationary distribution, and
is generated by transition probabilities satisfying Conditions 1 and 2, then if we
know the m-firm concentration ratio C_, we can place a lower bound D, on the
k-firm concentration ratio for any k < m. This lower bound D, will coincide
with the true k-firm concentration ratio if the size distribution is exponential.
In Appendix 2, we establish:

Proposition 2. Let N, be defined implicitly by the equation:

c =0 (1 -1n
n Nm[ lnN}

m



Then a conditional lower bound to the k-firm concentration

ratio is
D, (C,) > Jg{l-mNﬁ] (14)
This procedure allows us to compute a senies of lower bounds to C, conditional

on C,; arange of computed bounds is shown in Table 2, for m = 50 (The 50-

firm concentration ratio 1s the highest normally reported).

Cs Dy Dy D,
1 05 02 .01
2 10 05 .03
3 .15 07 .04
4 21 10 06
S 27 13 .08
6 33 A7 10
7 40 21 12
8 48 25 15
9 57 31 19

.99 1 41 25

Table 2. Predicted lower bounds D, for the k-firm concentration ratio

conditional on an observed value C,y for the 50-firm
comncentration ratio.



IV. ROBUSTNESS

Before turning to empirical tests, we first consider the robustness of the
predicted lower bound, relative to a number of special features of the present

model.

Industry Growth Patterns

The analysis has been couched in terms of a sequence of opportunities, and the
limiting distribution relates to the situation in which the total number of
opportunities becomes large. The results are independent of the rate at which
these opportunities arise over time.

Size of Opportunities: Firm-specific Efficiency Differences

In seeking to describe a lower bound to concentration, the model eliminates all
inessential sources of asymmetry. In particular, it assumes that all opportunities
are of the same size. Insofar as opportunities are discrete, but differ in size, the
size distribution will be more skew, and concentration will lie above the bound

specified in Proposition 1.

If some firms have a higher probability of capturing opportunities than others,
due for example to firm-specific efficiency differences, then the distribution will
again be more skew than the benchmark case.

The Pattern of Entry

The ancillary Assumption 2 on the constancy of entry rates is arbitrary, but it
defines a useful benchmark. If the rate of entry of new firms increases over
time, then the size distribution becomes more skew, and the bound given in

Proposition 1 remains valid. If the rate of entry falls, however, the size
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distribution becomes less skew, and the predicted lower bound may be violated.

Here, we follow Simon and Jjiri in quantifying the size of the deviations from
the predicted lower bound which would follow for empirically reasonable
patterns of firm entry. But how much do entry patterns differ in practice from
constancy? One way of checking the size of such deviations directly is to
identify opportunities with new plants (establishments) and look at the
relationship between the rate of entry of new plants versus the net rate of growth
of firms in the industry over time. A useful benchmark is obtained by taking
all U.S. 4-digit homogeneous goods industries” from 1947 to 1977. Figure
1 shows, on the vertical axis, the firm/establishment ratio for 1977 divided by
the firm/establishment ratio for 1947; this is plotted against the fractional
increase in the total number of establishments over the same period. It is clear
that, for industries in which the number of establishments continued to grow
substantially from 1947 onwards, the proportionate rate of growth in the
number of establishments is very close to the proportionate rate of growth in the
number of firms (observations cluster around unity to the right of the figure).
On the other hand, those industries which attracted few new establishments after
19477 showed widely varying experience: the growth rate in the number of firms
was at most about equal to that of establishments, but in three cases fell to Iess
than 0.5.

This suggests the following interpretation: over the first half of an industry's
growth phase, a constant value of p is a reasonable assumption. Over the latter
half, p is likely to decline, and it may in some cases fall by a factor of 0.5 or
so. With this in mind, two following robustness tests were tried. (i} A series
of simulations of the process were carried out, in which p was replaced by p/2
over the latter half of the industry’s history (i.e. after half the final number of
products had been entered). (ii) The process was simulated with p falling
linearly from its initial value to zero, over the course of the industry's history.

®The set of industries used here is that introduced in Section IV below.
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Figure 1.  Growth in firm numbers and establishment numbers for the U.S.,

1947-1977. The horizontal axis shows the fractional rate of
increase in the number of establishments over its 1947 value.
Industries for which this increase is less than 10% were excluded.
The vertical axis shows the ratio between the fractional increase in
the number of firms and the fractional increase in the number of
establishments. The data relates to those industries histed in Section
V1, and is confined to U.S. 4-digit industries whose SIC definitions
were unchanged over this period.



In both cases, it was found that the shift in the Lorenz curve was quite small,
(Figure 2). Indeed, its size is such that it might be difficult to detect in small
samples™.

Cion
1.0
0.8+ /,/
0.6- ,-{{""'
/4
a
4‘4{#
0.4 74
Constant g ———
0.2- Step o ~-—~=----
Linear O svsesmmrenseaaninanas
0 , | | | _
0 02 04 06 08 1.0

k/N

Figure 2.  The solid curve shows the bound predicted by Condition 2,
(‘constant p') together with those curves generated by the robustness
tests described in the text.

®To investigate this, a Lorenz curve was constructed for the industries
shown in Figure 2, and the sample was split into two groups, according as p fell
by more or less than the median amount, during the latter half of the period.
The histograms of residuals between C, and its predicted lower bound were
examined separately for each group; there was no detectable difference between
the two groups. This is consistent with the above suggestion that empirically
reasonable changes in p over time lead to differences in the lower bound which
are so small as to be difficult to detect empirically.
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Shakeout, Acguisition, and Decline

A number of related issues arise regarding the assumption that opportunities are
permanent, and firms never decline.

- It 1s a common feature of industry histories that a substantial
fraction of early entrants may exit the industry after some time
("Shakeout"; See Klepper and Graddy (1990)). The effect of a
one-off shakeout of some point in the industry's history on the long
run size distribution in the model depends on how the opportunities
vacated by exiting firms are re-allocated among surviving firms.
The descriptions of the shakeout process in the literature suggest
that a natural model is one where the size of plant shifts upwards,
and current industry production is re-allocated to a smaller number
of 'surviving' plants. If 'surviving plants' are selected randomly, if
all future plants are of the new larger' size, and if the fraction p of
new plants introduced by entrants is unchanged, then the limiting
size distribution retains its exponential form.

- Some 'disappearances’ of firms occur via acquisition. If acquiring
firms were drawn disproportionately from the low end of the size
distribution, this could cause a violation of the proposed bound; in
practice, however, acquiring firms tend to be drawn from the upper
end of the distribution. (Acquisition activity is one of several
mechanisms which will cause Lorenz curves for 'typical’ industries

to lie further from the diagonal than the proposed bound.)

- The model does not allow for any process of industry decline, in
which market opportunities vanish as products are withdrawn or
plants shut down. To do so would require an additional
assumption, analogous to Condition 1, regarding the relationship
between the size of an incumbent firm and the likelihood that this
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firm will be the next firm to shut down a plant. We make no
assumption here on this question, and so no constraint can be

- placed on the likely size of the effect which might be involved. It
remains an empirical question whether the bound might be
systematicaily violated in declining industries®

V. FROM THEORY TO MEASUREMENT

In order to test Propositions 1 and 2 empirically, we need first to address two
serious problems which arise in relating the theoretical measures C, and N to

their empirical counterparts.

Aggregation

The model set out above relates to a single well defined market in which all
active firms produce similar substitute goods. In implementing the model
empirically, we are faced with data in which the SIC industry may encompass
different subgroups of firms whose activities are focused on different product
lines, or mixes of product lines, within the industry.”® Such problems become

“'A game-theoretic analysis suggests that, for some forms of technology,
there will be a tendency for the sizes of the largest firms in the industry to
converge as industry output falls (Ghemawat and Nalebuff (1990)). This could
lead to a violation of the bound.

ZThis problem is quite distinct from another issue which arises in practice:
that some firms may also be active in other industries. As noted earlier, we
avold this issue here in that all the data presented relates to firms' sales within
the industry (1.e. to businesses). It is worth remarking that, since it is the larger
firms which are more often diversified, the size distribution of firms in terms of
total reported sales {(which was widely studied in the Growth of Firms literature)
should be more skew than the limiting distribution characterized by equation

(11).
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more serious as we move to higher levels of aggregation. For the U.S.,
concentration measures are reported both at the 5-digit "product market' level and
at the 4-digit 'industry’ level. Most countries, however, report ratios only at the
4-digit level. The present model may reasonably be applied at the 5-digit level;

it is less clear whether it is appropriate to apply it at higher levels of
aggregation.

We begin by distinguishing two separate problems which arise with aggregate
data. Firstly, there is the case in which the 'industry’ encompasses two quite
independent product markets A and B. The distinguishing feature of this case
is that A-products are produced by one group of firms, and B-products by a
different group. Each product market may be described by the present model,
but they may differ in respect of the parameter p, and so in terms of average

firm size. We refer to this as the case of Independent sub-industries'.

A separate problem arises, which we label 'Interdependent sub-industries'. Here,
new products are again of 'type A' or 'type B', but a single group of firms
produces both product types. A new product of either type may be introduced
by any firm currently active in the industry, whether that firm is already
producing A, or B, or both.

The following results are established in Appendix 3:

Proposition 3(a): ('Independence"): In the 'independent’ sub-industry case, the
lower bound to the measured values (C,,,N) lies at or above
the lower bound specified by Proposition 1. If mean firm
size in ail sub-industries is equal, then the measured values
coincide with those defined by Proposition 1; otherwise,
they lie strictly within the bound. (The bound is valid, but is
not tight.)



Proposition 3(b): (Interdependence’): In the ‘interdependent' sub-industries
case, the lower bound to the measured values (C,,,N)
coincides with the lower bound specified by Proposition 1.

The overall conclusion, then, is that the bound specified by Proposition 1
continues to be valid for aggregate data, but may not be tight.

Measuring Firm Numbers

A separate problem arises in measuring the number of firms in the industry.
Here, the problem arises at the lower end of the distribution. We often find a
fringe of very small firms allocated by the Census to a particular manufacturing
industry, whose activities do not extend to the production of a standard line of
core industry products, but are confined to small-scale ancillary activities. If
such firms are included, the effect can be represented as an aggregation effect,
in that it introduces an ‘independent’ subindustry whose mean firm size is small
relative to that of the main industry. This will cause a bias of the form noted

in Proposition 3(a): the bound is valid but not tight.

Statistical procedures in some countries deal with the problem of fringe firms
by applying a standard cutoff level for firm size, including only firms with at
least 20 employees, say, in the reported figures. This device is an imperfect
one; it will reduce the bias associated with inappropriate inclusions at the

expense of introducing a reverse bias associated with inappropriate exclusions.

The exclusion of firms causes the reported value of N to be lower than the true
value and this will lead to an inappropriately high estimate of C, using
Proposition 1. Hence we might observe a violation of the proposed bound.
Where a cutoff level is used, therefore, we cannot say anything a priori as to
the net direction of bias in reported (C,,,N) values relative to Proposition 1.

The direction of the bias is known when the reporting of N is complete, but is
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indeterminate if a cutoff size is used.

These problems with the measurement of N are sufficiently serious to warrant
placing particular emphasis on the conditional predictions provided by
Proposition 2, which do not require the use of N values.”

VI. EMPIRICAL EVIDENCE I: PRODUCT LEVEL DATA

Since the theory relates to the size distribution of businesses, the appropriate
context in which to test the predictions of Propositions 1 and 2 is that of
individual product markets; in terms of U.S. data, this corresponds to the 5-digit
SIC level. Data for 4, 8, 20 and 50 firm concentration ratios is available at this
level, but no data is available for the number of firms active in each market.
(Asset concentration ratios are unavailable at this level.) At the 4-digit or
industry’ level, data is available both for 4, 8, 20 and 50 firm concentration
ratios and for the number of firms active in each market.

Few other countries report a wide range of sales-concentration ratios even at the
4-digit level. Figures are available for Germany however, at a level shightly
more aggregated than the U.S. 4-digit level, for 3, 6, 10, 25 and 50 firm ratios.
The number of firms is also reported, though subject to a rather high cutoff size
(20 employees).

A comparison of U.S. and German experience is of particular interest in the

1t is also worth noting that the aggregation problem is also eased in this
setting. To see this, imagine an industry consisting of two subindustries of
widely differing mean firm size. Since Proposition 2 deals only with the upper
tail of the distribution, and since the top k firms will, for sufficiently large k, be
drawn predominantly from the sub-industry with the higher mean firm size, it
follows that the (C,,N) values will again (approximately) satisfy Proposition 1.
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present context, since a central claim of this approach is that little can be said
about 'average' or 'typical' size distributions, but that the lower bound
relationship should be stable in spite of possibly wide fluctuations in 'average'
experience. It is therefore of particular interest to compare experience in
economies between which average experience differs widely. International
comparisons of concentration levels regularly note the fact that U.S. levels are
relatively high, and German levels relatively low.** In what follows, we begin
with an examination of U.S. data at the 5-digit level (at which German data is
unavailable), and then turn to a comparison of U.S. and German experience at
the 4-digit level.

As explained earlier, we focus attention in what follows on those industries in
which neither Advertising nor R&D play a major role. Since we wish to define
a corresponding set of industries for the U.S. and Germany, which use different
industry definitions at lower levels of aggregation, this is done by confining
attention to those 2-digit industry groups in which advertising and R&D
intensities are very low. In what follows, we report results for the following set
of industry groups:

20 Food and Drink (low advertising industries only)®
22  Textiles

23 Clothing
24  Lumber
25  Furniture
26  Paper

27  Printing (excluding 2711, 2721, 2731)

*Some part of this difference may be attributed to differences in industry
definition (levels of aggregation), but substantial differences remain present even
in data sets consisting of closely matched pairs of industries (see Sutton (1991)
for an example.)

*The Food and Drink sector divides into two sets of (4-digit) industries, in
one of which advertising intensity is high; and one in which it is very low
(advertising/sales < 1%; Sutton (1991), Chapter 5). Markets falling within the
latter set of industries are included in the present dataset.

29



31  Leather

32  Stone, Clay and Glass (excluding 3211, 3229)
33  Pnmary Metals

34 - Metal Products

The Conditional Prediction

We first examine the conditional prediction of Proposition 4 for U.S. 5-digit
data. Proposition 4 predicts a lower bound to C,, for k =4, 8 and 20, as a
function of C. Figure 3 shows a scatter diagram in which each point
represents a single 5-digit industry in 1977. The value of Cy; 1s plotted on the
horizontal axis, and the value of C, on the vertical axis. The solid curve shows
the lower bound D, (C,,) predicted by Proposition 2. The lowest possible value
for C,, given C,, is attained by a distribution in which all firms have the same
size, and this corresponds to the ray from the origin C, = (k/50)Cy, which lies
below this curve. (At the other extreme, the highest possible value for C,, given
C,,, is C, = Cy,, corresponding to the diagonal). Figure 4 shows a histogram
of the differences between the observed value C, and the predicted lower bound
D(Cs;). The model predicts that this histogram should lie wholly above zero,
and if the bound is 'tight', we should see a sharp cutoff at zero. (At the upper
end, we expect the histogram to fade out slowly, with no suggestion of any
'upper bound'.)



Figure 3.

Testing Proposition 4 for U.S. data at the 5-digit level, 1977: a
scatter diagram of C, versus C,,. The solid curve shows the lower

bound D (Cs,) predicted by Proposition 4. The ray shown below

this curve corresponds to the symmetric equilibrium in which all
firms are of equal size. (This data is not available for the 1987
Census.)
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A summary measure of the performance of the prediction for varous
concentration ratios is shown in Table 3, which records the fraction of
observations which violate the lower bound, and the fraction of observations
lying above, but within 5 percentage points of, the bound. Table 3 also records
the equivalent results for U.S. data at the 4-digit level, and for the corresponding
German dataset.

It appears that the prediction of Proposition 1 performs reasonably well. While
violations do occur, they are rare; moreover, the cutoff at the iower bound
seems sharp. The form of the histogram in Figure 4 is of particular relevance.
This is not suggestive of a more-or-less symmetric distribution of 'residuals’
about some 'true model'. Rather, the strongly asymmetric shape of the
histogram is suggestive of a bounds relation.

™ Dataset k No of Obs Within 5% Below
U.S. 4 420 0.176 0.002
5-digit 8 421 0.109 0.000
1977 20 420 0.112 0.000
U.S. 4 205 0.146 0.000
4-digit 8 207 0.082 0.000
1987 20 205 0.083 0.000
German 80 0.350 0.063
(=4 digit) 6 80 0.263 0.038
1990 10 80 0.238 0.025
25 80 0.313 0.013

Table 3. The conditional prediction for U.S. 5-digit data (top panel). The

column 'Within 5%' shows the fraction of C, values which lie
above, but within five percentage points of, the predicted lower
bound D(Cy). The column ‘Below' shows the fraction of data
points which violate the lower bound. (U.S. 5-digit data was not
reported in the 1987 Census.) The second and third panels show
equivalent results for U.S. and Germany at the 4-digit level.
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The Lorenz Curve

We now turn to an examination of the Lorenz Curve predicted by Proposition
1. Here, problems of aggregation as well as associated problems related to the

measurement of N play an important role.

In comparing the U.S. and German data-sets in what follows, the related
problems of aggregation and of measuring firm numbers will be evident. Two
points relating to the datasets are relevant. Firstly, the U.S. data includes all
firms, while the German census adopts a high cutoff value, counting only firms
with more than 20 employees. Following the results reported in Section V, we
therefore expect 4-digit data for the U.S. to be biased upwards from the lower
bound (i.e. to be less tight). As to the German data, however, the presence of
the cutoff value in reported firm numbers means that the net direction of bias

is indeterminate.

In Figure 5, we show the pooled data sets for the U.S. in 1987 and for Germany
in 1990. Here, we take advantage of the implications of Proposition 1 to pool
all available concentration ratios on the same figure. In Figure 5, each 4-digit
industry is represented by a set of points, one for each available concentration
ratio. For the U.S. data set, shown in the top panel, each industry that has over
50 firms is represented by three points (k = 4, 8 and 20). The horizontal axis
shows the fraction k/N of firms to which the reported ratio commesponds, while
the vertical axis shows the reported ratio C, for 1987. The bottom panel shows

%The ideal test of the claims in Proposition 3 regarding aggregation
problems would lie in comparing the scatter of observations (C,,N) with the
predicted Lorenz Curve for data collected for the same country at two different
levels of aggregation. This direct test is, unfortunately, not possible for either
the U.S. or Germany. While both 4 and 5-digit C, data is published for the
U.S., the number of firms active in each product market is not recorded at the
5-digit level; while for Germany, data is published only at one level of
aggregation.
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the corresponding scatter for Germany in 1990.

A comparison of these figures shows that, in spite of substantial differences in
average concentration levels, both datasets appear to conform well to the
predicted lower bound®.

Overall, the bound specified in Proposition 1 appears to perform reasonably
well, in that violations of the bound are infrequent, and the bound is fairly tight.
The fact that the bound is tighter in the German dataset is consistent with the
predicted consequences of aggregation and measurement problems. In spite of
wide differences in average concentration levels between the two countries, the

lower bound appears to be closely similar in both cases®,

Beyond these remarks, it is difficult to make any precise claim regarding the
goodness of fit of the bound. It might seem of interest to estimate confidence
intervals around the predicted lower bound, and to compare observed deviations
with this. However, such confidence intervals would relate to a population of
firms all of which evolved according to the limiting process (Condition 1'). The
present hypothesis is that different industries will evolve according to different
processes each satisfying Condition 1; and the expected proportion of points
lying below the bound is therefore unspecified by the theory. Confidence
ntervals calculated using Condition 1" could at best only provide an upper limit

to the number of violations expected under the theory.

¥Data for the U.S. is available over a long period, beginning in 1947. An
examination of the corresponding data for each census year from 1947 - not
shown here - indicates that, in spite of substantial changes in overall industrial
structure, the lower bound has displayed considerable stability over time.

*The present tests have been extended to all 4-digit industries. The only
substantial violation of the bound occurs for the Carbon Black industry in the
U.S.. Itis interesting to note that this industry has been steadily declining over
the past 50 years (see footnote 21).
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Figure 5.  Testing Proposition 1. The top panel shows the scatter diagram of
C, against k/N for pooled data (k = 4, 8 and 20) for the U.S., 1987,
at the d-digit level. The Lorenz curve is the limiting curve defined
by Proposition 1 (equation (1 1)). The bottom panel shows data for
Germany, 1990 (k = 3, 6, 10 and 25).



Rather then consider the goodness of fit of this bound, viewed in isolation, we
prefer to take it as providing a potentially useful null hypothesis against which

richer models, and in particular strategic models, can be tested.
VII. CONCLUDING REMARKS

The motivation for this paper lies in the claim that any adequate theory of
market structure will need to encompass two aspects of the problem: the role
of strategic factors, and the part played by 'independence effects’. One
noteworthy feature of the existing literature is that it contains two traditions that
focus on different aspects of market structure, and that use different
mathematical approaches. The modern literature based on multistage games is
directed towards the ‘Bain’ tradition which focuses on explaining cross-industry
differences in concentration be reference to industry-specific factors. This
literature emphasies strategic factors, but while it makes some testable claims
as to concentration ratios, it has nothing of interest to say about the shape of the
size distibution. If a market consists of a large number of independent
submaikets, this kind of model just says that there will be many equilibria,
corresponding to different size distributions. In some cases, these may include
equilibria where all firms are of the same size. Such outcomes are rare, or
nonexistant, in practice. The older Growth-of-Firms literature on the other hand,
focused on the shape of the size distribution and gave a central role to stochastic
factors that might contribute to skewness, but ignored strategic effects. Recent
attempts to re-work this approach to encompass various 'economic’ mechanisms
offer one way of building a bridge between the two traditions. A recent survey
of this literature concluded, however, that it appeared difficult to place any
interesting restrictions on the form of the size distribution, once the model was
enriched in this way (Schmalensee (1989)).

The present paper introduces a different way of building a bridge between the
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two traditions. This approach begins by placing a bound on the degree of
skewness that might result from 'independence effects’ and cost considerations
alone. With this as a benchmark, it may prove easier tq develop testable

predictions regarding the influence of strategic factors.

The usefulness of this benchmark will depend on whether we can identify an
appropriate domain for the model, i.e. a set of industries in which the 'least skew
distribution’ defined by the model is sometimes attained, but rarely violated. In
terms of the Lorenz curve representation, we need a limiting Lorenz curve that
is often attained ('tight’) but is seldom exceeded by a substantial margin. The
importance of having both these features, is that some strategic factors
(‘externatlities’) may cause a shift of the Lorenz curve towards the diagonal
while others (‘escalation’) may cause it to shift away from the diagonal. The
empirical resuits reported above suggest that the present bound may be

satisfactory enough on both these counts to provide us with a usable benchmark.

In a companion paper, Sutton (1995b), we first re-cast the present results in a

game-theoretic setting, and then extend the model to include strategic factors.



APPENDIX 1.
Mathematical Notes

1. Deriving Equation (4)

The state N,,, = N can be entered from state N, = N or from state N, = N-1.

The associated probabilities are:

N(@) = N & 'No Entry": (;j)pl“-l (1-p)* x (1-p)

N(t) = N-1 & 'Entry": (;j)pw (1-p) L x p

Note that these two expressions sum to give the unconditional probability

t - N+
Prob(N.,= N) = (N_l]p“ (1-p)csm

It follows that

Prob (N, = NIN,,, = N} = =

(2] i
n2) v

Prob (N, = N-1|N,,, = N) = =

2. Checking equation (7a,7b)

We first consider the case i = 1. Here, (suppressing the time subscript on N, to

ease notation) equation (7) reduces to

1 _ N-1 '
5 Eln w0 = =2 (72)
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We aim to show that this satisfies equation (5). Substituting {7a) on the r.h.s.
of equation (5) yields:

¥ { E(n, [N-1)+1 } + ( 1-N-1 ) {E(nl,th) _ El(n, ,|N) }

_ N-1 { (N-1) (N-2) ,; } , t-(N-1) [ N-1 = N(N-1)
= { }
N(N-1}

= £ = E(ny .,|N)

We now turn to the case 1 > 1. From equation (7) we have:

_ ] £-i-1 £-1
Blng M) =N (t—i+1—N) / (N—l)

t
B

0

-
n

m-1) (S / (5-2)

et/ (53)

o3|
ja]
R
AA
o
=
i

We aim to show that equation (6} is satisfied.

The r.h.s. of equation (6) is:

N-1 N-1 E{n [N) | E(n, |N)
T{E(ni,t‘N_l)}+(1_T){E(ni'°|N)_ " W }

Inserting the above expressions, and extracting the common factor

{t-1-1)! {t-N)!

12N T (E-1)T =53




from each term, this reduces to:

< { {N—I)E(N’zl (t-N+1) + t—lg+l (N-1}2(t-1+2-N) + t_Ig-'-l (N-1) (t‘i)}

which in turn reduces to:

N{N-1) N .
x{ E (t-N+1) (t 1}}

Similarly, the Lh.s. of (6) reduces to:

it (5] /) < () oy 0]

APPENDIX 2.
The General Process

In the text, the process was analysed for the special case of Condition 1’, in
which each active firm has an equal probability of capturing the next
opportunity. Here, we examine the general case corresponding to Condition 1,
in which this probability is nondecreasing in firm size. Depending on the
relationship between firm size and the probability of capture, it may not be the
case that % E{n; ) tends to a limiting value. Here, we do not discuss
conditions for convergence, but simply develop a characterization result which
specifies the relevant properties of a stationary distribution of firm size, if such
a distribution exists.

We define the function,

E(n.

ic)

g;(t) = T35 (E-IT

where E(n;,) denotes the (unconditional) expectation of n. at stage t.
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Let Prob,(t) denote the probability that an opportunity which is captured by some
incumbent at stage t is captured by a firm of size i. |

We now characterise the properties of g,(t) at t ~> oo, on the assumption that
there are two sequences of constants {g;} and { T;} such that

lim g, {t) =G,
L-m

(Al)
lim Prob (t) = &,

1
Lo

Condition 1 implies that the ratio =/g;

is nondecreasing in i. Write % /g, as
¢,, where ¢, is a nondecreasing sequence. Consider the behaviour of n; (t + 1)
for i = 2. This takes the value n(t) + 1 with probability (1-p)Probi(t); the
value n(t) - 1 with probability (1-p)Prob, ,(t); and the value ni(t) otherwise. It
follows that for all i > 2 we have for any fixed t:

E(n, ..} = E(n, .} - {1-p)Prob,(t) + (1-p)Prob,_ (t)  (A2)

i,6+1

Now from the definition of g(t), it follows that:

E{n; .,,} “E(n; ) =(l+pth g {t+l) - (L+p{t-1)} g, (L)

= (1+pt) (g; (t+1) -g;(t) ) +pg; {t)

whence from (Al) it follows that

lim{E(n, .,,} ~E{n, .}] =pG;

[T

Similarly

lim[Prob, (t} - Prob,,(t}]

L

=, - W, =08 - $.9;
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Taking limits in equation (A2), then, we have

pgi = (l'pJ {¢i—l§i-l - ¢i§'i)

or

gi - (1_p)¢i_1 _ (l'P)d)i_l . A3
9 p"'(l_P)d)i p+{1_p)¢i , 122 ( )

Following a similar argument for i = 1, we have

En, (t+l) =En, {(t) +p - {1-p) Prob,(t)

whence by the same argument we obtain

pgl =P - (l_p}‘b;al
or

F o= P
T (A

Equations (A3) and (A4) describe the limiting distribution. For the special case
analysed in the text, we have ¢, = 1 for all i and so (A3) and (A4) coincide with
the geometric distribution specified by equation (8b) of the text. Denote this
special (geometric) density as :f,

Since g. and f, are densities,

Y ig, = Y if = 1 (A5)

1=1

Moreover, since a new firm enters with probability p each period, it follows that

the mean firm size equals 1/p, as in the basic process, whence

Y5 -YE-1/p (A6)
i=1

i=1 i
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A convenient way of comparing the general density g, with the geometric
density fi is as follows: the constants ¢, can be interpreted as a set of weights
attached to firms of different sizes, which determine their relative probabilities
of capturing the next opportunity. The process is obtained by introducing some
nondecreasing sequence of weights ¢, to the equal probabilities assigned in the
basic process. Any increasing sequence ¢, can be reached by successive
multiplication of the {%i} by a sequence of step functions ¢,", for m = 2, which
increase the probability for firms of size greater than or equal to m, while

lowering it for firms below that size, viz.

¢t

a<l , 1<m

b>1 , 1=2m

It 1s clear from inspection of (A3) and (A4), and recalling (AS5), (A6), that
applying this step function to any g, generates a new distribution g;' with the
following properties: g, > g; and g’ crosses g; at two points. In other words,
the operator ¢," shifts weight to the tails of the distribution, and so moves the

corresponding Lorenz curve further from the diagonal.

Figure Al. The effect of the operator ¢,” on the density g; .
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This argument can be extended to the case of the conditionat lower bound
specified in Proposition 2 of the text. To see this, suppose the m-firm
concentration ratio is known, but not the number of firms.

In Figure A2, the heavy curve L is a (rescaled) Lorenz curve, which shows the
fraction of plants owned by the top N firms; the (absolute) number of firms N
is shown on the horizontal axis. We denote by N, the (unobserved) true
number of firms. Say we have an observed value for the m-firm concentration

A
ratio C, = y. Then define N implicitly using
y = 3 (1 —1n£2) (A7)
N N
A
The value N thus defined is shown in Figure A2. Also shown is the Lorenz

curve E for the corresponding exponential distribution; this defines C, as a
A
function of N for all k on 0 <N <N, viz.

C (N} = ”}fé (1 —ln]_fé)
1.0
E /

Cm=y“ ——————————— |

|

}

H

f

|

|

|

|

Cy :

f

]

|

H

I

|

0 T
m ﬁ Ntrue

Figure A2. The Conditional Lower Bound.
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This curve coincides with the true (rescaled) Lorenz curve at the origin and at
the point (m,y). The size distribution to which it corresponds is an exponential
density. Hence the crossing property (Figure Al) ensures that L lies wholly
inside E within the box 0 <N <m, 0 <C, < y. It follows that curve E
defines a lower bound to C, for all k < m.

APPENDIX 3.
Aggregation Effects

Independent Sub-industries

Consider two independent industries i = 1, 2. whose evolution is described by
Conditions 1’ and 2 of the text. Denote the total number of opportunities arising
in industry i as T,. Let industry i have entry parameter p;. The size distribution

of businesses in each sub-industry converges to an exponential f(x) with mean

= Up;

The density function describing the size distribution for the 'Industry’ is now a

weighted average of the exponential densities for each industry, VIZ.

IT; £, (%)

£(x)y ~ 1_2F.r._
If the parameter p; is the same for all sub-industries, f(x) is exponential.
Otherwise, it is a distribution of the type described in Appendix 2 (Figare Al),
whose Lorenz curve lies further from the diagonal than that described by

Proposition 1.



Interdependent Sub-industries

Consider an industry which comprises two product markets. The industry
evolves over time as follows: we begin with one active firm which produces
one product variety; label that product as x and the second product as y. At
each date t = 1, 2, 3 ... one new product is entered. With probability ¢, this is
an X type product and with probability (1-@) it is a Y type product. This new
product is entered by a new entrant to the industry with probability p. With
probability (1-p) it is entered by an active firm.

We assume here that all firms active in the industry - whether or not they
currently produce in product market X - have an equal probability of introducing
the new X product or plant; and likewise for Y. ("Interdependent Industries™)
Hence if there are N active firms in the industry at time t, then each of these has
an equal probability of introducing the next product introduced by an incumbent.

Now the measured size of a firm is described by the total number of products

it offers, i.e. by (x+y). But the evolution of (x+y) is described exactly by the
mode] set out in the text; so Proposition 1 applies.

APPENDIX 4.
The Lorenz Curve
It was noted in the text that when T, and so N, is large, the properties of the

lower bound follow from the standard properties of the extreme value
distribution for the exponential (Gumbel (1958), p.116ff.)



The mean of the m-th smallest value among N draws is given by

N
x = 3 1

N-m+l XL

and so the expected value of the sum of the sizes of the k largest firms equals

Hence, for a given N, the expected value of the k-firm concentration ratio is

]_g{l+§}i)

k+1 1

Given the form of the expression in the summation sign, it is natural to express
this in terms of n(k/N). For k = 1, expression (10) is asymptotically equal to
_ 1 1
Clm‘ﬁ('\""lnﬁ)

where v is Euler's constant (= .577 ...)(Gumbel (1958), p. 116).

For k # 1, it will be convenient to define v, implicitly by

k Nly ok _ k
ﬁ(l+I}—. —ﬁ(yk ln-N)

k+l 1

Computed values of 7, are shown in Table Al for those values of k that are
commonly reported in official statistics. The asymptotic result of Proposition
1 corresponds to the case where k 1s large.

Kk 1 4 6 8 0 | 20 | s0 |
v | 577 8380 | 919 | 939 | 951 | 975 | 990 |

Table Al. Values of ¥,
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