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Summary

We propose a new method for estimating common factors of multiple time series. One distinctive

feature of the new approach is that it is applicable to some nonstationary time series. The

unobservable (nonstationary) factors are identified via expanding the white noise space step by

step; therefore solving a high-dimensional optimization problem by several low-dimensional sub-

problems. Asymptotic properties of the estimation were investigated. The proposed methodology

was illustrated with both simulated and real data sets.

Some key words: Factor models; Cross-correlation functions; Dimension reduction; Multivariate time series;

Nonstationarity; Portmanteau tests; White noise.

1. Introduction

An important problem in modelling multivariate time series is to reduce the number of pa-

rameters involved. For example, a vector autoregressive and moving average model VARMA(p, q)

with moderately large order (p, q) is practically viable only if a parsimonious representation is

identified, resulted from imposing constraints on the coefficient matrices; see Tiao & Tsay (1989),

Reinsel (1997) and the references within. An alternative strategy is to reduce the dimensionality.

Attempts along this line include, among others, principal components analysis based approaches
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(Priestley, Subba Rao & Tong 1974, Brillinger 1981, Stock & Watson 2002), canonical correla-

tion analysis based methods (Box & Tiao 1977, Geweke 1977, Geweke & Singleton 1981, Tiao

& Tsay 1989, and Anderson 2002), reduced rank regression methods (Ahn 1997, and Reinsel &

Velu 1998), and factor models (Engle & Watson 1981, Peña & Box 1987, Forni et al 2000, Bai &

Ng 2002).

In this paper, we revisit the factor models for multiple time series. Although the form of the

model concerned is the same as that in, for example, Peña & Box (1987), our approach differs

from those in the literature in following three aspects. First, we allow factors to be nonstationary

and the nonstationarity is not necessarily driven by unit roots. The latter was investigated in the

context of factor models by, for example, Ahn (1997), and Peña & Poncela (2006). Secondly, our

estimation method is new and it identifies the unobserved factors via expanding the white noise

space step by step; therefore solving a high-dimensional optimization problem by several low-

dimensional sub-problems. Finally, we allow the dependence between the factors and the white

noise in the model. Therefore this overcomes the restriction that the rank of the autocovariance

matrix at non-zero lag must not be beyond the number of factors; see Peña & Box (1987).

We do not impose distributional assumptions in the model. Instead we use the portmanteau

test to identify the white noise space. The key assumption in the theoretical exploration is that

the sample cross-covariance functions converge in probability to constant limits; see condition C1

in section 3 below. This may be implied by the ergodicity of stationary processes, and may also be

fulfilled for some nonstationary mixing processes, purely deterministic trends and random walks;

see Remark 2 in section 3 below.

The rest of the paper is organized as follows. Section 2 presents the model, the new estimation

method and the associated algorithm. The theoretical results for the estimation of the factor

loading space is presented in section 3. Numerical illustration with both simulated and real data

sets are reported in section 4. All technical arguments are relegated to the Appendix.
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2. Models and Methodology

2·1. Factor models

Let {Yt} be a d× 1 time series generated admitting the decomposition

Yt = AXt + εt, (2.1)

where Xt is a r × 1 time series with finite second moments, r ≤ d is unknown, A is a d × r

unknown constant matrix, and {εt} is a sequence of vector white noise process with mean µε and

covariance matrix Σε, i.e. εt and εs are uncorrelated for any t 6= s. Furthermore we assume that

there exists no linear combination of Xt which is a white noise process. (Otherwise such a linear

combination should be part of εt.) We only observe Y1, · · · ,Yn from model (2.1). To simplify

the presentation, we assume that

S0 ≡ 1

n

n∑

t=1

(Yt − Ȳ)(Yt − Ȳ)τ = Id, (2.2)

where Ȳ = n−1
∑

1≤t≤n Yt. This in practice amounts to replace Yt by S
−1/2
0 Yt before the

analysis.

The component variables of the unobserved Xt are called the factors, A is called the factor

loading matrix. We may assume that the rank of A is r. (Otherwise (2.1) may be expressed

equivalently in terms of a smaller number of factors.) Note model (2.1) is unchanged if we replace

(A,Xt) by (AH,H−1Xt) for any invertible r × r matrix H. Therefore, we may assume that the

column vectors of A = (a1, · · · ,ar) are orthonormal, i.e.,

AτA = Ir, (2.3)

where Ir denotes the r × r identity matrix. Note that even with constraint (2.3), A and Xt are

not uniquely determined in (2.1), as the aforementioned replacement is still applicable for any

orthogonal H. However the linear space spanned by the columns of A, denoted by M(A) and

called the factor loading space, is a uniquely defined r-dimensional subspace in Rd.

Model (2.1) has been studied by Peña & Box (1987) which assumes that εt and Xt+k are

uncorrelated for any integers t and k, and Yt is stationary. Under those conditions, the number

of factors r is the maximum rank of the autocovariance matrices of Yt over all non-zero lags.

Further, both A and r may be estimated via standard eigenanalysis; see Peña & Box (1987).
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Our approach is different. For example, we do not require stationarity conditions on the auto-

dependence structures of Yt and Xt in model (2.1). Furthermore, the capacity of model (2.1) is

substantially enlarged since we allow the autocovariance matrices of Yt to be full-ranked.

2·2. Estimation of A (and r)

Our goal is to estimate M(A), or its orthogonal complement M(B), where B = (b1, · · · ,bd−r)

is a d × (d − r) matrix for which (A,B) forms a d × d orthogonal matrix, i.e. BτA = 0 and

BτB = Id−r (see also (2.3)). Now it follows from (2.1) that

BτYt = Bτεt. (2.4)

Hence {BτYt, t = 0,±1, · · · } is a (d− r) × 1 white noise process. Therefore,

Corr(bτ
i Yt,b

τ
j Yt−k) = 0 for any 1 ≤ i, j ≤ d− r and 1 ≤ k ≤ p, (2.5)

where p ≥ 1 is an arbitrary integer. Note that under assumption (2.2), bτ
i Skbj is the sample

correlation coefficient between of bτ
i Yt and bτ

j Yt−k, where

Sk =
1

n

n∑

t=k+1

(Yt − Ȳ)(Yt−k − Ȳ)τ . (2.6)

This suggests that we may estimate B by minimizing

Ψn(B) ≡
p∑

k=1

||BτSkB||2 =

p∑

k=1

∑

1≤i,j≤d−r

ρk(bi,bj)
2, (2.7)

where the matrix norm ||H|| is defined as {tr(HτH)}1/2, and ρk(b,a) = bτSka.

Minimizing (2.7) leads to a constrained optimization problem with d × (d − r) variables.

Furthermore r is unknown. Below we present a stepwise expansion algorithm to estimate the

columns of B as well as the the number of columns r. Put

ψ(b) =

p∑

k=1

ρk(b,b)2, ψm(b) =

p∑

k=1

m−1∑

i=1

{
ρk(b, b̂i)

2 + ρk(b̂i,b)2
}
.

White Noise Space Expansion Algorithm: let α ∈ (0, 1) be the level of significance tests.

Step 1. Let b̂1 be a unit vector which minimizes ψ(b). Compute the Ljung-Box-Pierce

portmanteau test statistic

Lp,1 = n(n+ 2)

p∑

k=1

ρk(b̂1, b̂1)
2

n− k
. (2.8)
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Terminate the algorithm with r̂ = d and B̂ = 0 if Lp,1 is greater than the top

α-point of the χ2
p-distribution. Otherwise proceed to Step 2.

Step 2. For m = 2, · · · , d, let b̂m minimize ψ(b) + ψm(b) subject to the constraints

||b|| = 1, bτ b̂i = 0 for i = 1, · · · ,m− 1. (2.9)

Terminate the algorithm with r̂ = d−m+ 1 and B̂ = (b̂1, · · · , b̂m−1) if

Lp,m ≡ n2
p∑

k=1

1

n− k

[
ρk(b̂m, b̂m)2 +

m−1∑

j=1

{ρk(b̂m, b̂j)
2 + ρk(b̂j , b̂m)2}

]
(2.10)

is greater than the top α-point of the χ2-distribution with p(2m − 1) degrees of

freedom (see, e.g. p.149-150 of Reinsel 1997).

Step 3. In the event that Lp,m never exceeds the critical value for for all 1 ≤ m ≤ d, let

r̂ = 0 and B̂ = Id.

Remark 1. (i) The algorithm grows the dimension of M(B) by 1 each time until a newly

selected direction b̂m does not lead to a white noise process. Note condition (2.9) ensures that

all those b̂j are orthogonal with each other.

(ii) The minimization problem in Step 2 is d-dimensional subject to constraint (2.9). It may

be reduced to an unconstrained optimization problem with d −m free variables. Note that the

vector b satisfying (2.9) is of the form

b = Dmu, (2.11)

where u is any (d −m + 1) × 1 unit vector, Dm is a d × (d −m + 1) matrix with the columns

being the (d−m+ 1) orthonormal eigenvectors of the matrix Id −Bm−1B
τ
m−1, corresponding to

the (d−m+1)-fold eigenvalue 1, where Bm = (b̂1, · · · , b̂m). Also note that any k× 1 unit vector

is of the form uτ = (u1, · · · , uk), where

u1 =
k−1∏

j=1

cos θj , ui = sin θi−1

k−1∏

j=i

cos θj (i = 2, · · · , k − 1), uk = sin θk−1.

In the above expressions, θ1, · · · , θk−1 are (k − 1) free parameters.

(iii) Note B̂τ B̂ = Id−br. We may let the columns of Â be the r̂ orthonormal eigenvectors of

Id − B̂B̂τ , corresponding to the common eigenvalue 1. It holds that ÂτÂ = Ibr.

(iv) The multivariate portmanteau test statistic Lp,m given in (2.10) has a normalized constant

n2 which is different from n(n + 2) used in the univariate case (2.8). For the univariate case,
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the modified constant n(n + 2) was suggested to improve the finite-sample accuracy; see Ljung

& Box (1978). For multivariate cases, a radically different suggestion was proposed by Li &

McLeod (1981) which uses

L∗
p,m = Lp,m +

p(p+ 1)(2m − 1)

2n
(2.12)

instead of Lp,m as the test statistic. Our numerical experiment indicates that both Lp,m and L∗
p,m

work reasonably well with moderately large sample sizes, unless d >> r. For the latter cases, both

Lp,m and L∗
p,m may lead to substantially over-estimated r. In our context, an obvious alternative

is to use a more stable univariate version

L′
p,m = n(n+ 2)

p∑

k=1

ρk(b̂m, b̂m)2

n− k
(2.13)

instead of Lp,m in Step 2. Then the critical value of the test is the top α-point of χ2-distribution

with p degrees of freedom.

(v) Although we do not require the processes {Yt} and {Xt} to be stationary, our method

rests on the fact that there is no autocorrelation in the while noise process {εt}. Furthermore,

the χ2-asymptotic distributions of the portmanteau tests used in determining r typically rely on

the assumption that {εt} be i.i.d. Using those tests beyond i.i.d. settings is worth of further

investigation. Early attempts include, for example, Francq, Roy & Zaköıan (2005).

(vi) When Yt is nonstationary, the sample cross-covariance function Sk is no longer a mean-

ingful covariance measure. However since εt is a white noise and is stationary, cτ
1Skc2 is the

proper sample covariance of cτ
1Yt and cτ

2Yt−k for any vectors c1, c2 ∈ M(B). In fact our method

relies on the fact that cτ
1Skc2 is close to 0 for any 1 ≤ k ≤ p. This also indicates that in practice

we should not use large p as, for example, cτ
1Skc2 is a poor estimate for Cov(cτ

1Yt, c
τ
2Yt−k) when

p is too large.

(vii) When the number of factors r is given, we may skip all the test steps, and stop the

algorithm after obtaining b̂1, · · · , b̂r from solving the r optimization problems.

2·3. Modelling with estimated factors

Note ÂÂτ + B̂B̂τ = Id. Once we have obtained Â, it follows from (2.1) that

Yt = Âξt + et, (2.14)
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where

ξt = ÂτYt = ÂτAXt + Âτεt, et = B̂B̂τYt = B̂B̂τεt. (2.15)

We treat et as a white noise process, and estimate Var(et) by the sample variance of B̂B̂τYt.

We model the lower dimensional process ξt by VARMA or state-space models. As we pointed

out, Â may be replaced by ÂH for any orthogonal H. We may choose Â appropriately such that

ξt admits a simple model. See, for example, Tiao & Tsay (1989). Alternatively, we may apply

principal components analysis to the factors; see Example 3 in section 4 below. Note that there is

no need to update B̂ now since M(ÂH) = M(Â) which is the orthogonal complement of M(B̂).

3. Theoretical properties

Note that the factor loading matrix A is only identifiable upto M(A) – a linear space spanned

by its columns. We are effectively concerned with the estimation for the factor loading space

M(A) rather than A itself. To make our statements clearer, we introduce some notation first.

For r < d, let H be the set consisting of all d × (d − r) matrix H satisfying the condition

HτH = Id−r. For H1,H2 ∈ H, define

D(H1,H2) = ||(Id − H1H
τ
1)H2|| =

√
d− r − tr(H1Hτ

1H2Hτ
2). (3.1)

Note that H1H
τ
1 is the projection matrix into the linear space M(H1), and D(H1,H2) = 0 if

and only if M(H1) = M(H2). Therefore, H may be partitioned into the equivalent classes by

D as follows: the D-distance between any two elements in each equivalent class is 0, and the D-

distance between any two elements from two different classes is positive. Denote by HD = H/D

the quotient space consisting of all those equivalent classes, i.e. we treat H1 and H2 as the same

element in HD if and only if D(H1,H2) = 0. Then (HD, D) forms a metric space in the sense that

D is a well-defined distance measure on HD (Lemma 1(i) in the Appendix below). Furthermore,

the functions Ψn(·), defined in (2.7), and

Ψ(H) ≡
p∑

k=1

‖ HτΣkH ‖2 (3.2)

are well-defined on HD; see Lemma 1(ii) in the Appendix. In the above expression, Σk are given

in condition C1 below.
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We only consider the asymptotic properties for the estimation of the factor loading space while

the number of factors r is assumed to be known. (It remains open how to establish the theoretical

properties when r is unknown.) Then the estimator for B may be defined as

B̂ = arg min
H∈H

Ψn(H) (3.3)

Some regularity conditions are now in order.

C1. As n→ ∞, Sk → Σk in probability for k = 0, 1, · · · , p, where Σk are non-negative

definite matrices, and Σ0 = Id.

C2. B is the unique minimizer of Ψ(·) in the space HD. That is, Ψ(·) reaches its

minimum value at B′ if and only if D(B′,B) = 0, where B is specified in the

beginning of section 2.2.

C3. There exist constants a > 0, c > 0 for which Ψ(H)−Ψ(B) ≥ a[D(H,B)]c for any

H ∈ H.

Remark 2. (i) Condition C1 does not require that the process Yt is stationary. In fact it may

hold when ESk → Σk and Yt is ϕ-mixing in the sense that ϕ(m) → 0 as m→ ∞, where

ϕ(m) = sup
k≥1

sup
U∈Fk

−∞
, V ∈F∞

m+k
, P (U)>0

∣∣P (V |U) − P (V )
∣∣, (3.4)

and F j
i = σ(Yi, · · · ,Yj); see Lemma 2 in the Appendix below. It also gives a sufficient condition

which ensures that the convergence in C1 is almost surely. Examples of nonstationary ϕ-mixing

processes include, among others, stationary (ϕ-mixing) processes plus non-constant treads, and

the standardized random walks such as Yt = Yt−1 + εt/n, t = 1, · · · , n, where Y0 ≡ 0 and εt are

i.i.d. with, for example, E(ε2t ) < ∞. Condition C1 may also hold for some purely deterministic

processes such as a linear trend Yt = t/n, t = 1, · · · , n.

(ii) Under model (2.1), Ψ(B) = 0. Condition C2 implies Ψ(C) 6= 0 for any C ∈ H and

M(C) ∩M(A) is not an empty set.

Theorem 1. Under conditions C1 and C2, D(B̂,B) → 0 in probability as n → ∞. Further-

more, it holds that D(B̂,B) → 0 almost surely if the convergence in C1 is also almost surely.

Theorem 2. Let
√
n(ESk − Σk) = O(1), and Yt be ϕ-mixing with ϕ(m) = O(m−λ) for

λ > p
p−2 and supt≥1E‖Yt‖p <∞ for some p > 2. Then it holds that

sup
H∈H

|Ψn(H) − Ψ(H)| = OP (
1√
n

).
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If, in addition, C3 also holds, D(B̂,B) = OP (n−
1

2c ).

Both Theorems 1 and 2 do not require Yt to be a stationary process. Their proofs are given

in the Appendix.

4. Numerical properties

We illustrate the methodology proposed in section 2 with two simulated examples (one sta-

tionary and one nonstationary) and one real data set. The numerical optimization was solved

using the downhill simplex method; see section 10.4 of Press et al (1992). In the first two simu-

lated examples below, we set the significance level at 5% for the portmanteau tests used in our

algorithm, and p = 15 in (2.8). The results with p = 5, 10 and 20 are of similar patterns and,

therefore, are not reported. We measure the errors in estimating the factor loading space M(A)

by

D1(A, Â) =
(
[tr{Âτ (Id − AAτ )Â} + tr(B̂τAAτ B̂)]/d

)1/2
.

It may be shown that D1(A, Â) ∈ [0, 1], and it equals 0 if and only if M(A) = M(Â), and 1 if

and only if M(A) = M(B̂).

Example 1. Let Yti = Xti + εti for 1 ≤ i ≤ 3, and Yti = εti for 3 < i ≤ d, where

Xt1 = 0.8Xt−1,1 + et1, Xt2 = et2 + 0.9et−1,2 + 0.3et−2,2, Xt3 = −0.5Xt−1,3 − εt3 + 0.8εt−1,3,

and all εtj and etj are independent and standard normal. Note that due to the presence of εt3 in

the equation of Xt3, Xt and εt are dependent with each other. In this setting, the number of true

factors is r = 3, and the factor loading matrix may be taken as A = (I3,0)τ , where 0 denotes

the 3× (d− 3) matrix with all elements equal to 0. We set sample size at n = 300, 600 and 1000,

and the dimension of Yt at d = 5, 10 and 20. For each setting, we generated 1000 samples from

this model. The relative frequencies for r̂ taking different values are reported in Table 1. It shows

that when the sample size n increases, the estimation for r becomes more accurate. For example,

when n = 1000 the relative frequency for r̂ = 3 is 0.822 even for d as large as 20. We used L′
m,p

given in (2.13) in our simulation, since both Lm,p and L∗
m,p produced substantially over estimated

r-values when d = 10 and 20. Figure 1 presents the boxplots of errors D1(A, Â). As the sample

size increases, D1(A, Â) decreases. Furthermore, the errors also increases when d increases.
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Example 2. We use the same setting as in Example 1 above but with Xt1,Xt2 and Xt3 replaced

by

Xt1 − 2t/n = 0.8(Xt−1,1 − 2t/n) + et1, (4.1)

Xt2 = 3t/n,

Xt3 = Xt−1,3 +

√
10

n
et3 with X0,3 ∼ N(0, 1),

i.e. Xt1 is an AR(1) process with non-constant mean, Xt2 is a purely deterministic trend, and

Xt3 is a random walk. None of them are stationary. The relative frequencies for r̂ taking different

values are reported in Table 2. The boxplots of the estimation errors D1(A, Â) are depicted in

Figure 2 . The general pattern observed from the above stationary example (i.e. Example 1)

retains. The quality of our estimation improves when sample sizes increases. This is due to the

way in which the nonstationarity is specified in (4.1). For example, the sample {Xt2, t = 1, · · · , n}

always consists of regular grid points on the segment of the line y = 3x between (0, 0) and (1, 3).

Therefore when n increases, we obtain more information from the same (nonstationary) system.

Note that our method rests on the simple fact that the quadratic forms of the sample cross-

correlation function are close to 0 along the directions perpendicular to the factor loading space,

and are non-zero along the directions in the factor loading space. (See Remark 1(vi) and Remark

2(ii).) The departure from zero along the directions in the factor loading space in Example 2

is more pronounced than that in Example 1. This explains why the proposed method performs

better in Example 2 than in Example 1, especially when n = 300 and 600.

Example 3. Figure 3 displays the monthly temperatures in the 7 cities in Eastern China in

January 1954 — December 1986. The cities concerned are Nanjing, Dongtai, Huoshan, Hefei,

Shanghai, Anqing and Hangzhou. The sample size n = 396 and d = 7. As well expected, the

data show strong periodic behaviour with period 12. We fit the data with factor models (2.1).

By setting p = 12, the estimated number of factors is r̂ = 4. We applied principal components

analysis to the estimated factors. The resulting 4 factors, in the descending order in terms of their

variances, are plotted in Figure 4, and their cross-correlation functions are displayed in Figure 5.

In fact the variances of the 4 factors are, respectively, 542.08, 1.29, 0.07 and 0.06. The first factor

accounts for over 99% of the total variation of the 4 factors, and 97.6% of the total variation of the

original 7 series. The periodic annual oscillation in the original data is predominately reflected

by the fluctuation of the first factor (the top panel in Figure 4), and to a much less extent,
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also by that of the second factor (the second panel in Figure 4). This suggests that the annual

temperature oscillation over this area may be seen as driven by one or at most two ‘common

factors’. The corresponding loading matrix is

Â =





.394 .386 .378 .387 .363 .376 .366

−.086 .225 −.640 −.271 .658 −.014 .164

.395 .0638 −.600 .346 −.494 −.074 .332

.687 −.585 −.032 −.306 .173 .206 −.139





τ

, (4.2)

which indicates that the first factor is effectively the average temperatures over the 7 cities. The

residuals B̂τYt carries little dynamic information in the data; see the cross-correlation functions

depicted in Figure 6. The sample mean and sample covariance of et are, respectively,

µ̂e =





3.41

2.32

4.39

4.30

3.40

4.91

4.77





, Σ̂e =





1.56

1.26 1.05

1.71 1.34 1.91

1.90 1.49 2.10 2.33

1.37 1.16 1.46 1.58 1.37

1.67 1.26 1.91 2.09 1.37 1.97

1.41 1.14 1.58 1.67 1.39 1.56 1.53





. (4.3)

Figure 5 indicates that the first two factors are dominated by periodic components with period

12. We estimated those components simply by taking the averages of all values in each of January,

February, · · · , December, leading to the estimated periodic components

(g1,1, · · · , g12,1) = (−1.61, 1.33, 11.74, 28.06, 41.88, 54.51, 63.77, 62.14, 49.48, 33.74, 18.29, 3.50),

(g1,2, · · · , g12,2) = (1.67, 1.21, 0.47, 0.17, 0.41, 0.48, 1.37, 2.13, 2.98, 3.05, 2.78, 2.22) (4.4)

for, respectively, the first and the second factors. Figure 7 displays the cross-correlation functions

of the 4 factors after removing the periodic components from the first two factors. It shows that

the autocorrelation in each of those 4 series is not very strong, and furthermore cross correlation

among those 4 series (at non-zero lag) are weak. We fitted a vector autoregressive model to

those 4 series with the order 1 determined by the information criterion AICC (see, e.g., p.412 of
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Brockwell & Davis 1991) with the estimated coefficients:

ϕ̂0 =





.07

−.02

−.11

.10





, Φ̂1 =





.27 −.31 .72 .40

.01 .36 −.04 .04

.00 −.01 .42 −.02

−.00 .03 .03 .48





, (4.5)

Σ̂u =





14.24

−.17 .23

−.02 .03 .05

.042 .01 −.00 .05





. (4.6)

Both multivariate portmanteau tests (with the lag value p = 12) of Li & Mcleod (1981) and

Reinsel (1997, p.149) for the residuals from the above fitted vector AR(1) model are insignificant

at the 5% level. The univariate portmanteau test is insignificant at the level 5% for three (out of

the four) component residual series, and is insignificant at the level 1% for the other component

residual series. On the other hand, a vector AR(2) model was selected by the AIC for the 4 factor

series with vector AR(1) as its closest competitor. In fact the AIC values are, respectively, 240.03,

0.11, 0.00, 6.38 and 18.76 for the AR-order 0, 1, 2, 3 and 4.

Overall the fitted model for the month temperature vector Yt is

Yt = Âξt + et,

where the factor loading matrix Â is given in (4.2), the mean and covariance of white noise et are

given in (4.3), and the 4 × 1 factor ξt follows VAR(1) model

ξt − αt = ϕ̂0 + Φ̂1(ξt−1 − αt−1) + ut,

where the periodic component ατ
t = (gm(t),1, gm(t),2, 0, 0), gt,i is given in (4.4),

m(t) = {k
∣∣ 1 ≤ k ≤ 12 and t = 12p + k for some integer p ≥ 0},

the white noise ut has mean 0 and covariance Σ̂u given in (4.5).

12
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Appendix

Proofs

We use the same notation as in section 3. We first introduce two lemmas concerning the

D-distance defined in (3.1) and condition C1. We then proceed to the proofs for Theorems 1

and 2.

Lemma 1. (i) It holds for any H1,H2,H3 ∈ H that

D(H1,H3) ≤ D(H1,H2) +D(H2,H3).

(ii) For any H1,H2, Ψ(H1) = Ψ(H2) and Ψn(H1) = Ψn(H2) provided D(H1,H2) = 0.

Proof. (i) For any symmetric matrices M1,M2 and M3, it follows from the standard triangle

inequality for the matrix norm || · || that ‖M1 − M3‖ ≤ ‖M1 − M2‖ + ‖M2 − M3‖, that is

√
tr(M2

1 + M2
3 − 2M1M3) ≤

√
tr(M2

1 + M2
2 − 2M1M2) +

√
tr(M2

2 + M2
3 − 2M2M3). (A.1)

Let M1 = H1H
τ
1 , M2 = H2H

τ
2 and M3 = H3H

τ
3 . Since now tr(M2

i ) = tr(Mi) = d − r for

i = 1, 2, 3. The inequality required follows from (A.1) and (3.1) directly.

(ii) Under the condition D(H1,H2) = 0, H1H
τ
1 = H2H

τ
2 as it is the projection matrix into

the linear space M(H1) = M(H2). Now

‖ Hτ
1ΣkH1 ‖2= tr{(Hτ

1ΣkH1)
τHτ

1ΣkH1} = tr(Στ
kH1H

τ
1ΣkH1H

τ
1) =‖ Hτ

2ΣkH2 ‖2 .

Hence Ψ(H1) = Ψ(H2). The equality for Ψn may be proved in the same manner. �

Lemma 2. Let {Yt} be a ϕ-mixing process and ESk → Σk. Suppose that Yt can be

represented as Yt = Ut + Vt, where Ut and Vt are uncorrelated for each t, supt≥1E‖Ut‖h <∞

for some constant h > 2, and

1

n

n∑

t=1

Vt
P→ c,

1

n

n∑

t=1

EVt → c, (A.2)
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where c is a constant vector. It holds that

(i) Sk → Σk in probability, and

(ii) Sk → Σk almost surely provided that the mixing coefficients satisfy the condition

ϕ(m) =






O(m− b

2b−2
−δ), if 1 < b < 2,

O(m− 2

b
−δ), if b ≥ 2,

(A.3)

where δ > 0 is a constant, and the convergence in condition (A.2) is also almost surely.

Proof. Assertion (i) follows from the the law of large number for ϕ-mixing processes; see,

eg. Theorem 8.1.1 of Lin & Lu (1997). Applying the result of Chen & Wu (1989) to the sequences

{Ut} and {UtU
τ
t−i}, and using the condition (A.2), we may obtain (ii). �

Proof of Theorem 1. Applying the Cauchy-Schwartz inequality to the matrix norm, we have

|Ψn(H) − Ψ(H)| ≤
p∑

k=1

∣∣ ‖ HτSkH ‖2 − ‖ HτΣkH ‖2
∣∣

≤
p∑

k=1

‖ Hτ (Sk −Σk)H ‖ [‖ HτSkH ‖ + ‖ HτΣkH ‖] ≤‖ H ‖4
p∑

k=1

‖Sk − Σk‖[‖ Sk ‖ + ‖ Σk ‖].

Note that ‖ H ‖2= d − r for any H ∈ H, ‖Sk − Σk‖ → 0 in probability, which is implied by

condition C1, and ‖ Sk ‖ + ‖ Σk ‖= OP (1). Hence,

sup
H∈HD

|Ψn(H) − Ψ(H)| P→ 0. (A.4)

Lemma 1(i) ensures that (HD,D) is a well-defined metric space which is complete. Lemma 1(ii)

guarantees that Ψn(·) is a well-defined stochastic process index by H ∈ HD, and Ψ(·) is well-

defined function on the metric space (HD,D). Now it follows from the argmax theorem (Theorem

3.2.2 and Corollary 3.2.3 of van der Vaart & Wellner 1996) that D(B̂,B) → 0 in probability.

To show the convergence with probability 1, note that the convergence in (A.4) is with prob-

ability 1 provided Sk → Σk with probability 1. Suppose by contradiction that there exists a δ

such that P{lim supn→∞D(B̂,B0) > δ} > 0. Denote H′
D = HD ∩ {B : D(B, B0) ≥ δ}. Then H′

D

is a compact subset of HD. Note that supH∈HD
|Ψn(H) − Ψ(H)| a.s.→ 0 implies that there exists a

set of sample points Ω′ satisfying Ω′ ⊂ {lim supn→∞D(B̂,B0) > δ} and P (Ω′) > 0 such that for

each ω ∈ Ω′ one can find a subsequence {B̂nk
(ω)} ⊂ H′

D with B̂nk
(ω) → B ∈ H′

D. Then, by the

definition of B̂,

Ψ(B) = lim
k→∞

Ψnk
(B̂nk

(ω)) ≤ lim
k→∞

Ψ(B0) = Ψ(B0)

14



holds for ω ∈ Ω′ and with positive probability. This is a contradiction to Condition C2. Therefore

it must hold that D(B̂,B0) → 0 with probability 1. �

Proof of Theorem 2. Denote by s(i,j),k and σ(i,j),k, respectively, the (i, j)-th element of Sk and

Σk. By the Central Limit Theorem for ϕ-mixing processes (see Lin & Lu 1997, Davidson 1990),

it holds that
√
n{s(i,j),k − Es(i,j),k} → N(i,j),k in distribution, where N(i,j),k denotes a Gaussian

random variable, i, j = 1, ..., d. Hence, ‖ √
n(Sk − ESk) ‖= OP (1). It holds now that

sup
H∈HD

√
n|Ψn(H) − Ψ(H)| ≤ sup

H∈HD

√
n

p∑

k=1

∣∣ ‖ HτSkH ‖2 − ‖ HτΣkH ‖2
∣∣

≤ sup
H∈HD

p∑

k=1

‖ Hτ√n(Sk − ESk)H ‖ ·[‖ HτSkH ‖ + ‖ HτΣkH ‖]

+ sup
H∈HD

p∑

k=1

‖ Hτ{
√
n(ESk − Σk)}H ‖ ·[‖ HτSkH ‖ + ‖ HτΣkH ‖]

≤ p sup
H∈HD ,1≤k≤p

‖ Hτ√n(Sk − ESk)H ‖ ·[‖ HτSkH ‖ + ‖ HτΣkH ‖]

+p sup
H∈HD,1≤k≤p

‖ Hτ{
√
n(ESk − Σk)}H ‖ ·[‖ HτSkH ‖ + ‖ HτΣkH ‖]

≤ p(d− r)4{ sup
1≤k≤p

‖
√
n(Sk − ESk) ‖ ·[‖ Sk ‖ + ‖ Σk ‖]

+ sup
1≤k≤p

‖
√
n(ESk − Σk) ‖] · [‖ Sk ‖ + ‖ Σk ‖]} = OP (1). (A.5)

By condition C3, (A.5) and the definitions of B and B̂, we have that

0 ≤ Ψn(B) − Ψn(B̂)

= Ψ(B) − Ψ(B̂) +OP (1/
√
n) ≤ −a[D(B̂,B)]c +OP (1/

√
n).

Now let n→ ∞ in the above expression, it must hold that D(B̂,B) = OP (n−
1

2c ). �
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Table 1: Relative frequencies for r̂ taking different values in Example 1. (The true
value of r is 3.)

r̂
d n 0 1 2 3 4 5 ≥ 6

5 300 .000 .209 .444 .345 .002 .000
600 .000 .071 .286 .633 .010 .000

1000 .000 .004 .051 .933 .120 .000

10 300 .000 .219 .524 .255 .002 .000 .000
600 .000 .049 .290 .649 .012 .000 .000

1000 .000 .007 .062 .898 .033 .000 .000

20 300 .000 .162 .543 .285 .010 .000 .000
600 .000 .033 .305 .609 .053 .000 .000

1000 .000 .004 .066 .822 .103 .005 .000
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Table 2: Relative frequencies for r̂ taking different values in Example 2. (The true
value of r is 3.)

r̂
d n 0 1 2 3 4 5 ≥ 6

5 300 .000 .000 .255 .743 .002 .000
600 .000 .000 .083 .907 .010 .000

1000 .000 .000 .033 .945 .022 .000

10 300 .000 .000 .283 .695 .022 .000 .000
600 .000 .000 .103 .842 .054 .001 .000

1000 .000 .000 .051 .871 .077 .001 .000

20 300 .000 .000 .258 .663 .076 .001 .002
600 .000 .000 .035 .673 .278 .012 .002

1000 .000 .000 .099 .733 .162 .006 .000
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Figure 1: Example 1 – Boxplots of D1(A, Â).
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Figure 2: Example 2 – Boxplots of D1(A, Â).
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Figure 3: Example 3 – Time series plots of the monthly temperature in (from top to bottom)
Nanjing, Dongtai, Huoshan, Hefei, Shanghai, Anqing and Hangzhou (the first 10 year segments).
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Figure 4: Example 3 – Time series plots of the 4 estimated factors (the first 10 year segments) .
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Figure 5: Example 3 – Sample cross-correlation functions of the 4 estimated factors.
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Figure 6: Example 3 – Sample cross-correlation functions of the 3 residuals B̂τYt.
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Figure 7: Example 3 – Sample cross-correlation functions of the 4 factors, after removing the
periodic components from the first two factors.
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