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Abstract

For a class of parametric ARCH models, Whittle estimation based on squared
observations is shown to be /n-consistent and asymptotically normal. Our condi-
tions require the squares to have short memory autocorrelation, by comparison with
the work of Zaffaroni (1999), who established the same properties on the basis of
an alternative class of models with martingale difference levels and long memory
autocorrelated squares.
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1 Introduction

Conditional heteroscedasticity arises in much analysis of economic and fi-
nancial time series data. Even series which appear not to be autocorrelated
may exhibit dependence in their squares, a notable example being daily asset

returns. For a covariance stationary process, x;, t = 0, +1, ..., suppose that,
almost surely,
(1.1) E (x| Fi21) =0
(1.2) by = E (yi| Fio1) = o + Z%yt—ja
j=1
where )
(1.3) Y = Xy

and F; is the o-field of events generated by z;, s < t. The requirement
Yy > 0,v; > 0, j > 1, ensures positivity of the conditional variance h;, while
convergence conditions on the ; will be imposed in the sequel. The z; are
observable in some applications, while in others they could be innovations in
a time series model, or regression errors.

In case ¢, # 0 for some j > 0, we say that z; has autoregressive
conditional heteroscedasticity (ARCH). The original ARCH process is the
ARCH(p) proposed by Engle (1982), wherein for known p, ¢; = 0 for all
j > p. Bollerslev (1986) proposed the more general GARCH(p, ¢) process in
which

p q
(14) ht =w+ Z Q5Yt—j + Zﬂjht—j'
j=1

=1

Formally, h; generated by (1.4) is seen to be a special case of (1.2), with
Yo = w/(1— (1)), and, for j > 0, 9, is the coefficient of 27 in the expansion
of a(2)/(1 — B(z)), where

(1.5) a(z) = éajzj, B(z) = ilﬂjzj.

In the literature the term “ARCH” is not now restricted to h; that are
quadratic in z;, as in (1.2) and (1.4), but applies also to the wide variety
of other non-linear forms that have been found to be of interest; further
information can be found in several reviews of the subject, for example,
Bollerslev, Chou and Kroner (1992). Nevertheless, Engle’s ARCH(p) and
Bollerslev’s GARCH(p, q) have attracted considerable theoretical attention,
notably Nelson’s (1990a) demonstration of convergence to diffusion process
used in the option pricing literature, as well as featuring in countless empir-
ical studies, and the present paper focuses on the quadratic ARCH model
(1.2) and its special cases.



The general “ARCH(00)” form (1.2) was considered by Robinson (1991)
in a hypothesis testing context. Following Engle’s (1982) and Weiss’s (1986)
Lagrange multiplier (LM) tests of no-ARCH against ARCH(p) alternatives,
Robinson (1991) justified the asymptotic validity of x* LM tests of no-ARCH
against arbitrary finite parameterizations of the 1; in (1.2), where, for some
explicitly or implicitly defined functions ¢;(¢), 7 > 1, of a p x 1 column
vector 0, we have ¢,(0y) = 1;, j > 1, for some unknown 6, € RP. Robinson
(1991) also justified joint tests of no-autocorrelation in z; and no-ARCH in
this context, as well as tests of no-autocorrelation in z; (cf. (1.1)) that are
robustified to allow for the presence of general conditional heteroscedasticity
as represented by (1.2), without parameterizing the ;. On the other hand,
Robinson and Henry (1999) have found circumstances when robustification
is unnecessary: when the x; are innovations of a possibly long memory series
they showed that a certain semiparametric estimate of the memory parameter
of the latter can have the same limiting distribution under (1.1), (1.2) as when
x; has constant conditional variance. Giraitis et al. (2000) have derived
sufficient conditions for the existence of a stationary solution of (1.2) when
the 1), are constrained to be non-negative, under which they also established
a central limit theorem for partial sums of y;. Their conditions effectively
require 1; to have short memory autocorrelation.

None of these papers discusses parameter estimation in the set-up de-
scribed in the previous paragraph. However, the maximum likelihood esti-
mate (MLE) based on the assumption of conditionally Gaussian z;, which
was considered by Engle (1982) and Bollerslev (1986) for the ARCH(p)
and GARCH(p, ¢) models, extends readily to (1.2). Given observations xy,
t = 1,...,n, the log-likelihood is, apart from an additive constant, approxi-
mately

_ l - * Yt
(16) 6.) =~ 3wt 0.0+ s
where i
(1.7) hi(0,¢) = + 2%(9)%7;’7
=1

and 1 is any admissible value of v,. We describe (1.6) as only approximate
because hj(#,) is not equivalent to Epy(yi| -1, ..., 1); other conventions
can be used, which effectively correspond to different proxies for the un-
observable z;, t < 0, and given suitably rapid decay of the ¢, numerical
differences should be slight for large n. In fact (1.6) was the basis for the
ARCH(o0) LM tests of Robinson (1991).

The MLE of 6,1, is given by

(1.8) 0,1 = argmax /,,(0,v),
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where the optimisation is carried out over a suitable subset of RP*L. In or-
der to conduct inference, the limiting distribution of 6, v is of interest. Weiss

(1986) showed that 6, is \/n-consistent and asymptotically normal in case
of the ARCH(p) model for finite p, while Lee and Hansen (1994), Lums-
daine (1996) established the same properties in case of the GARCH(1, 1),
where p = ¢ = 1 is known a priori in (1.4). The asymptotic theory of these
authors makes significantly weaker assumptions than the conditional Gaus-
sianity motivating 0,1, so that ¢,(0,1) is viewed as a quasi-log-likelihood.
Unfortunately, the analysis becomes considerably more complicated in the
GARCH(p, ¢) model (1.4) for general p and ¢, and no corresponding results
seem yet to be available here, let alone for other parameterizations of the
ARCH(o0) (1.2). Bollerslev and Wooldridge (1993) derived the limit dis-
tribution in general models under high-level conditions, but did not verify
these for the GARCH(p, q). Fortunately, the GARCH(1,1) model (and the
IGARCH(1, 1), where ay + ; = 1 in (1.4)), also covered in the asymptotics
of Lee and Hansen (1994), Lumsdaine (1996), have themselves proved useful
in modelling a variety of data series. On the other hand these simple models
will not always suffice, and one would like an asymptotic theory of inference
which covers not only the general GARCH(p, ¢) (1.4), but also other para-
meterizations of (1.2), in particular ones which permit greater persistence
than (1.4). Under (1.4), y; has autocovariances that decay exponentially (see
Bollerslev (1986)), but there is empirical evidence of sample autocovariances
that decay more slowly (see e.g. Ding, Granger and Engle (1993)) and it is
possible to choose 9, in (1.2) to describe only a power law decay, for example.

In such models, other methods of estimation may afford an easier asymp-
totic theory. In particular, since a principle stylised fact motivating models
for conditional heteroscedasticity is the autocorrelation in squares y;, a fairly
natural approach matches theoretical and sample second moments of the
Y¢, in the same way as if one were dealing with a linear autocorrelated se-
ries. This prompts consideration of Gaussian or Whittle estimation based
on the y;, an idea which is far from new in relation to processes with con-
ditional heteroscedasticity. Harvey (1998), Robinson and Zaffaroni (1997,
1998), employed it for certain stochastic volatility and non-linear moving
average processes, while Zaffaroni (1999) has established consistency and as-
ymptotic normality of Whittle estimates in the latter case. Indeed the idea
is not new in the GARCH case, especially as Bollerslev (1986) pointed out
that y; generated by (1.4) have an ARMA (max(p, q), q) representation, albeit
with conditionally heteroscedastic innovations.

To fix ideas, rewrite (1.2) as

(1.9) Y = Yo+ Z%yt—j + vy,
t=1
where v; = y; — h; are martingale differences. Assuming z; is a fourth-order

3



stationary sequence (for which conditions are given below), y; has spectral

density
2

(1.10) FO) = ;—Wg()\), T <A<,
where L
(1.11) g(\) =1 — iz/;jem

j=1
and
(1.12) o2 = E(v2) = BE(z}) — E(h).

Notice that E(vZ| F; 1) = E(x}| Fi 1) — h? # o* so the v; do not behave
like an independent sequence up to second moments. Nevertheless we can
consider Whittle-type procedures originally designed for processes with the
latter desirable property.

Consider the objective function

(113) wl0) = 5

where () is the periodogram of the y;,

n 2

Z n ez't)\

t=1

(1.14) ) = ﬁ

Y

Aj =2mj/n, and (cf. (1.11))
-2

(1.15) g(A;0) =

1— i 1/1]-(0)6’7"\
j=1

Then we define the estimate

(1.16) 6= argr%inwn(ﬁ),

where © is a compact subset of RP. The discrete frequency form is pre-

ferred over others such as the continuous form and the actual Gaussian like-
lihood, due to the direct use it makes of the fast Fourier transform and of

g(X; 6), which is usually explicitly specified, for example in the ARCH(p) and
GARCH(p, ¢) models, where, following Bollerslev (1986) we have from (1.4)
and (1.5)

Jate) = g
1 BEeNF

4
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Another feature of the discrete frequency form (1.13) is that mean -correction
of y; is taken care of by omission of summands j = 0 (and n).

Asymptotic theory for various Whittle forms was given by Hannan (1973),
Dzhaparidze (1974) and various subsequent authors, from the 1970’s onward.
While the techniques used by these authors are relevant to our setting, the
central limit theorem for quadratic forms (for example, sums of finitely many
sample autocovariances) which is involved in the proof of asymptotic normal-
ity has not previously been checked in case of squares of ARCH sequences.
Like Hannan (1973) and others, we require y; to have short memory autocor-
relation, but in our case it cannot be linear in conditionally homoscedastic
martingale differences and nor is it known to satisfy suitable mixing condi-
tions, so that a direct proof of asymptotic normality of quadratic forms of
ARCH squares is provided. The main results are presented, with discussion,
in the following section, with the bulk of the proof left to Section 3.

It is important to point out the drawbacks of Whittle estimation in an
ARCH setting. 6 has a different limiting variance from 6, in view of the work
of Lee and Hansen (1994), Lumsdaine (1996), so that at least when the z;
are conditionally Gaussian it is asymptotically less efficient than 6. More-
over, whereas in Hannan’s (1973) context the 3, can be Gaussian, so that 6
has the same limit distribution as the Gaussian MLE, it is impossible that
our squares ¥; can be Gaussian and so the objective function w,(#) cannot
possibly approximate the actual log likelihood for any conceivable distribu-
tion of the z;, and so in no circumstances can ¢ be asymptotically efficient.
As a related point, the limiting covariance matrix of 6 is considerably more

complicated in our setting than both that of 6, (1.8), and of § in Hannan’s
(1973) setting, essentially due to the conditional heteroscedasticity in the
innovations v;. Moreover, Whittle estimation based on the squares y; is less
well motivated in our ARCH models than in the stochastic volatility and
nonlinear moving average models considered by Harvey (1998) and Robinson
and Zaffaroni (1997, 1998), because in their cases the actual likelihood, under
any parent innovation distribution, is relatively intractable computationally,

let alone theoretically, whereas the MLE 6 for (1.4) is relatively easy to com-
pute. Moreover, Harvey (1998) and Robinson and Zaffaroni (1997, 1998)
envisage long memory in the squares, when Whittle estimation has the de-
sirable feature of compensating for possible lack of square integrability of the
spectrum, so as to produce y/n-consistency and asymptotic normality. Our
asymptotics only handles short memory in the y; and so Whittle estimation
plays a less special role: a variety of estimates, including simple method of
moment estimates in the GARCH(p, q) case, can be y/n-consistent and as-
ymptotically normal, and indeed over part of the parameter space they could
even be more efficient than 6. As a final drawback, we require finiteness of at
least 8-th unconditional moments of x;, unlike in the work by Lee and Hansen



(1994) and Lumsdaine (1996) on 6, whereas a body of opinion believes that
4-th moments are infinite in much financial data. These considerations may

well restrict practical interest in @, and certainly we can identify no circum-
stances in which it might be preferred on theoretical grounds to 6 in case of

ARCH(p) and GARCH(1, 1) models, where rigorous asymptotic theory for 6
is available, as indeed it is for adaptive estimates (see Linton, 1993, Drost
and Klassen, 1997). However, at least until such theory can be extended to
the general GARCH(p, q) and other cases of (1.2), it is to be hoped that our

study of 6 will fill some gap and add to our knowledge of the performance of
Whittle estimation in nonstandard situations.

2 MAIN RESULTS

We introduce first an assumption, one version of which (J = 4) will be

employed in our proof of consistency of @, and another, stronger version
(J = 8) in our proof of asymptotic normality.

Assumption 1(J) For t =0,+1, ...,
1
(218) Ty = ht2€t;

where the ¢; are strictly stationary and ergodic with finite J-th moment and,
almost surely,

(2.19) E(e] Firy) = 0
(2.20) E(&}|Fer) = 1,
(2.21) E(e|Fict) = poy 5=2,.0/2

for constants ji,;, while h; is given by (1.2) with
(222) ¢0 > 07 wj Z 07 ] 2 17

(2:23) Sy < L
j=1

Properties (2.1)-(2.3) imply the conditional moment restrictions (1.1) and
(1.2). With (2.4), they indicate that ¢, behaves like an independent and
identically distributed (iid) sequence up to J-th moments. Property (2.5)
implies h; > 0, as earlier noted, while, when J = 4, (2.5) is sufficient for
(2.1) to have a unique covariance stationary solution for y;, in terms of &,
s < t, by a slight extension of the argument of Giraitis et al (2000). It
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also follows from Assumption 1(4), as in Giraitis et al (2000), that, defining
1(5) = Cov(yo, ys),

(2.24) 1G) 20, 520, YA0) < ox.

This in turn implies that y; has short memory in the sense that f(\) is
bounded. Consequently, the present paper does not cover long memory au-
tocorrelation in y;.

The remaining conditions for consistency are essentially taken from Han-
nan (1973).

Assumption 2
(i) © in (1.16) is compact.
(i) 0y € © and o2 > 0.

(iii) For all 8 € ©
(2.25) / log g(\; )dA = 0.

(iv) g(X;0)7! is continuous in (), ) € [, 7] X ©.

(v) The set {A: g(\;0) # g(X;60)} has positive Lebesque measure, for all
0 e 0/{6}.

Theorem 1 Under Assumptions 1(4) and 2, as n — o0

(2.26) 6 —, .

Proof. Assumptions 1(4) and (2.25) implies the representation y; — By, =

00 00 2 :
D70 QM where Yilpa; < 00 and {7]]-} is a sequence of uncorrelated,

homescedastic variables. On the other hand we also have y; = f(et, &1 1, ...)
for measurable f. Thus (cf. Theorem 3.5.8 of Stout (1974)) ergodicity of
{e;} implies ergodicity of y;. The proof now follows from that of Theorem 1
of Hannan (1973). |

For the central limit theorem, we introduce

Assumption 3

(i) 6o is an interior point of ©.



(ii) In a neighbourhood of 6y, (8/90)g~*(X;0) and (9% /0000") g~ (\; ) exist

and are continuous in A and 6
(itl) (8/00)g~"(X;00) € Lip(n), n > 3.

(iv) The matrix

1 dlogg();6,) Dlog g(X; 6o)
2.2 = —
(2.27) W 2 / 00 oo dA

—T

is nonsingular.

The proof of the following theorem (see Corollary 6 of Section 3) implies
that under our conditions ¥ has fourth cumulant spectrum f(\,w,v), for
A\ w,v € (—m, 7], given by

1 - —1jA—ikw—ilv
(228) f()‘7w7 V) = (27]')3 Z € Ak ¢ Cum(y(byj’yk’yf)’
jvkyezioo

where the final factor in the summand is the cumulant of yo, y;, Yk, ¥¢, and
also that the matrix

) v=2]] ag(%go)_l 900 10\ o, w)drd

is finite.

Theorem 2 Under Assumptions 1(8), 2 and 3, as n — oo
(2.30) n2(0 = 60) —a N (0,20 1+ W VW ).

The proof of Theorem 2.2 is considerably longer than that of Theorem
2.1 due to the central limit theorem we establish for quadratic forms of ;.
Thus the proof appears in the following section. Meanwhile, we discuss
implications of Theorems 2.1 and 2.2.

REMARK 2.1 The form of asymptotic covariance matrix in the theorem is

standard in the literature on Whittle estimation in the absence of Gaussian-
ity or linearity assumptions, see e.g. Robinson (1978), Chiu (1988) and in a

more specialized setting, Cameron and Hannan (1979). Of course in the, un-
der present circumstances, impossible event that y; were Gaussian, V' would
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vanish because f (A, w,v) would identically vanish. V would also vanish in the
likewise impossible circumstances that y; were linear in martingale difference
innovations whose first four conditional moments are constant because then
(from e.g. Brillinger, 1975, p.39), f(\, —w,w) is proportional to g(\)g(w)
and (2.8) holds. Unfortunately we have no reason to believe that V' = 0
under our ARCH model, an unattractive feature of Whittle estimation in
this context. Presumably Assumption 1(8) imposes structure on f(A, —w,w)
and hence on V', but we have not analyzed this.

REMARK 2.2 Thus Theorem 2.2 is only useful in inference if V', as well as
W, can be consistently estimated. A consistent estimate of W is easily shown

to be ) R R
= 1= 0logg(A;;0) Olog g(A;,0)

2.31 == .

(2.31) W njzl 00 oo

An estimate of V' was proposed by Taniguchi (1982), and one of 2W + V by
Chiu (1988) both of which can readily be used along with (2.14) in estimating
2W=t + W=V WL, However, these authors established consistency of their
estimates under Brillinger-mixing conditions, and we have no evidence that
these hold under our ARCH model. A proof of consistency under our set-up
would likely be very lengthy, indeed the corresponding proofs of Taniguchi
(1982) and Chiu (1988) were almost entirely omitted due to pressure of space.
Mean square consistency, the property considered by these authors, would
unfortunately require finiteness of 16-th moments of x;, a dubious proposition
in case of much financial data.

REMARK 2.3 Theorem 2.2 is silent about limit distributional behaviour when

(2.6) holds with J = 4 (when 6 is consistent) but not in the more lim-

ited situation when J = 8. Moreover, though (2.5) and (2.6) only restrict

0y, they should ideally be reflected in our choice of ©. This is problem-

atic because, despite the scale restriction (2.3), p, and pg are unknown

since we have imposed no distributional assumption on &;. For Gaussian
1 1

g, pi ~ 1.732 and p¢ ~ 3.2. In this case we can compare (2.6) with
the necessary and sufficient conditions for finiteness of J-th moments of
GARCH(1,1) z; due to Bollerslev (1986) (his &; is our z;). In particular,

for J = 4 (2.6) gives 3a3 + 2.350, 0, + 3 < 1, whereas Bollerslev’s condi-

tion is 302 + 2013, + 87 < 1. For the MLE 6, only oy + 3, < 1 is needed.
Notice that Whittle estimation based on squares could doubtless be justified
under many other assumptions besides ARCH ones, when (2.6) would not be
relevant, indeed not only has this been done under an alternative stochas-
tic volatility model by Zaffaroni (1999) but, unlike the MLE described in the
previous section, the uncorrelatedness of levels property (1.1) is not essential,
for example x;, and thus y;, could be strongly mixing at the same rate.



REMARK 2.4 Recent empirical evidence suggests that in many financial data
sets sample autocorrelations decay more slowly than the exponential rate
prescribed by GARCH (p,q) models. While (2.7) rules out long memory,
Giraitis et al (2000) showed that it permits

(2.32) Y(j) ~ ¢ asj— o0, ¢ >0, (> 1,
and that this occurs when

(2.33) Y~ ¢, as j— 00, ¢ > 0.
We could thus take 6§ = (61,6,)" and

-2

1— (6, —1)60,) 5 "

J=1

(2.34) g(X;0) =

?

where the true 6, is upper-bounded by unity because 3272, 479 is nearly
(6, — 1)~1, while p, and pg are at least unity. Clearly (2.17) satisfies (2.8),
and we conjecture that it satisfies our other conditions for suitable 6, 65,
though the lack of a closed form representation of the infinite series in (2.17)
is a practical disadvantage. Automatic truncation of this series, similar to
that in (1.6), (1.7), is embodied in the alternative Whittle objective function
to (1.13),

n t—1 2
(2.35) Z {yt —Y- ij(e)(ytfj - ?)} ;

t=2 j=1
where 7 = n 'Y} 1. Box and Jenkins (1971) considered (2.18) in the
context of ARMA estimation, where the t; decay exponentially, but it seems
possible to show the minimizer of (2.18) has the properties of Theorems
2.1 and 2.2 in case of (2.17). Alternatively, (2.15) can be described by the
alternative model

9171 _ 91
(2.36)  g(\:0) = exp {92 (%) } 0>
1

which is convenient for use in (1.13). For 6, < 3, (2.19) has a peak at A =0
that is finite but not very smooth, thus approaching long memory behav-
iour. With 6; = 2 a priori, (2.19), or a continuous time version thereof, was
considered by Lumley and Panofsky (1964) in modelling atmospheric turbu-
lence, and in connection with Whittle estimation by Robinson (1978), and
also by Chiu (1988) in connection with an alternative method of estimation.
For 6, = 2, it is readily shown that if 6, is the true value

(2.37) Y(j) o< (0o + 7%, all j,

DN W

) 02>07

~—
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satisfying (2.15) for ( = 2. For 2 < #; < 2 an analytic formula is unavailable
but from Yong (1974, Theorem III-31) we deduce that

(2.38) Y(j) ~ e3i7%, asj— 00, c3>0.

The requirement #; > 2 in (2.19) is to satisfy Assumption 3(iii). It is easily
seen that the remaining relevant parts of Assumptions 2 and 3 are satisfied,
though we are unable to check (2.5) or (2.6), the Kolmogorov-Wiener formu-
lae admitting no closed form solution. Note that Assumptions 2 and 3 will
also be satisfied if we generalize (2.19) by multiplying it by a factor corre-
sponding to the g for an ARMA model with standard parameterization, or a
Bloomfield (1973) model; though undoubtedly many members of this family
will not satisfy (2.5), (2.6), nevertheless its practical usefulness in modelling
financial and other data may be worth exploring. Some spectral models do
not satisfy (2.8) in that the prediction error variance o? is not an explicitly
known function of the parameters in f (see (1.10)), as for example when
ARCH z; are observed subject to measurement error, and it is the squares of
these noise-corrupted observations that are analyzed. In such cases we could
replace w,(0) by

= : I(\)
(2.39) ; {log fAj; 1)+ 700 7_)} ,

where 7 is the full set of spectral parameters, and the extension of our as-
ymptotic properties for w,,(6) is standard.

REMARK 2.5 Undoubtedly the asymptotic properties of Theorems 2.1 and
2.2 will hold for other versions of Whittle estimation under (2.8), besides
(1.13) and (2.18). We have stressed w, () because it both exploits the
fact that g(A;#) is more often a known, convenient form than formulae for
autocovariances or autoregressive coefficients, and makes ready use of the
fast Fourier transform which can significantly aid the processing of long fi-

nancial_time series. We can show that alternative estimates that are not
of the Whittle family but are also functions of quadratic forms of y; are

v/n-consistent and asymptotically normal, for example simple method-of-
moments estimates such as that for (2.19) in Robinson (1978). Also, as in
Robinson (1978), it is possible to show that a single Newton-type step from
such an estimate, based on the objective function w,(6), will achieve the
limiting variance of Theorem 2.2. Unfortunately, however, in the present
circumstances we cannot assert that this necessarily corresponds to an effi-
ciency improvement in view of the Whittle approach’s guaranteed inefficiency
under current circumstances; whether matters are made better or worse will
typically depend on the actual values of the true parameters, no general effi-
ciency ordering of these inefficient estimates being possible. We have chosen
to study Whittle estimation based on squares due to the relative difficulty

11



of a general asymptotic theory to cover the maximum likelihood approach
described in Section 1, as well as to the immediate availability of g(A;6) in
ARCH models of form (1.2) and the familiarity of the method and availability
of software to workers in time series analysis.

3 Proof of Theorem 2.2

By-now-familiar arguments from the literature on Whittle asymptotics of
Hannan (1973) and subsequent authors leave us with the the task of estab-
lishing that

(3.40) nt/?)! /7r %g(/\, 00) " (I(A) — EI(N))dX\ =4 N(0,0%),
for any non - null p x 1 vector v, with 0% = /Vv. With
d(j) =/ /7r 2g(A o)~ e dN
00 » V0 )
the left side of (3.40) is n~'/2Q),,, where

On= 3 dlt — $)(XiX, — B(X,X.))

t,5=1

where

Xt =y — Eys.
We shall in fact establish (3.40) under the mild requirement
(3.41) > d(t)? < oo,

t=—0o0

which is equivalent to square - integrability of % g(\, 0y) 1, whereas Assump-
tion 3 (iii) implies that (see Zygmund, 1977, p.240)

From Giraitis et al (2000) and Nelson, (1990b), y; has the unique second -
order stationary solution

o o
2 2_2 2_2 2
ye=oler + 2 Yucieig T D Upieiti s ci

j1=1 J1,j2=1
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(3'42) + Z ¢]1¢J2 ]3gt€t ]1€t —j1— J2€t —Jj1—Jj2—J3 +}

J1,J2,j3=1

after relaxing the iid assumption on ¢; of these authors. Writing &, = £2,

X, = 0> (mult) — Emu(t))

=0

where mq(t) = &, and

my(t) = Z 1/1]1 -T/legtgt—jl - -gt—jl—...—jl

J1yeedi=1
(343) = > UiV, -G (121)
n<...<ji<t
Therefore -
(3.44) Qn = ﬂ% Z Qg,k)
1,k=0
where

Lk) _ i d(t — s) :ml(t) = mk(s) :

t,s=1

with the definition :  := 2z — Ez. Hence
(3.45) Var(Qu) =g S Cov(QUk2) QUhaka)),

By Lemma 5, (3.60) below

(3:46)n~!|Cov(QF*), QF+*))] < C{3 () }(ki+1) ... (k1) D+

t

uniformly in n, k1, ..., ks with D; = ,ué/4 3521 %, so that from (3.45),

o0

(3.47) n'Var(Q,) < C(O_(k+1)*D})" < oo

k=0
and thus the series (3.44) converges in L.

Put
sz) V(lk+R(lk

13



where

and
m;(t) = Z wt J17ji—g2 J_l 1— ]lé-tgjl e éhjz
Ji<o<ji<t
with
d™(t) =d®)1(|t| < L); oy =11 <t <L),
where L > 0 is a fixed large number. Now write

L L 0o
(3.48) @, =5 > V" QF =5 > R + g > Q"
1,k=0 1,k=0 l,k=0:max(l,k)>L

so that - N
Qn = Q'n, + Qn *

The proof of (3.40) now follows immediately from Proposition 4 and Lemma
3 below, where the former result also uses the auxiliary Lemma 5.

Lemma 3 Let Assumption 1(8) and (3.41) hold. Then for any fived L > 1,

(3.49) n Q- EQ;) = N(0,07) (n— o0)
where
(3.50) o3 —o* (L — o).

Proof. We shall consider decompositions of the form
(3.51) Y,=Y vu+R,
t—1

for given sequence Y,,, with v; a sequence of martingale differences and T,, a
remainder satisfying

(3.52) ER? = 0(1).

With some abuse of notation, but for ease of presentation, we shall employ
the same notation v;, R,,, even when the form of Y,, changes. We show later
that Y,, = @Q,, — @Q,, has a decomposition (3.51) where

(3.53) v = (& — B&) fe + (& — BE&)g,  Bvf < o0

14



where ft = f(€t71>€t72> - 7€th)7 gt = g(gt—bgtf% ce 7€t7K)7 Eft2 < o9, l?gt2 <
00, and f, g are polynomials with K > 1. Clearly,

E(vil&; 1,& 2,---) =0

almost surely, and by the same argument as in the proof of Theorem 2.1, v,
is also stationary and ergodic. It follows that by Theorem 23.1 of Billingsley
(1968)

n~1/2 ivt = N(0, Evi) (n — o0)

=1
so given (3.51) and (3.52),

nV4(Q;, — EQy) = N(0, Ev)  (n — o)

and
n’1Var(Q;) — aL = Evo (n — 00),

to prove (3.49). By (3.61) of Lemma 5 below,

L

nVar(Q,) = Y. n tCov(V k) 1 ksha))

— Z { Z d(w)d(v)Cov(: my, (0) = my (u) =2 my, (k) 32 my (k) 1)} = 0.

From relations (3.60)- (3.62) of Lemma 5 below it follows easily that

= Z { Z A(u)d(v)Cov(: mi™ s m{) . m 2 mlt)) ;)

= i d(u)d(v)Cov(Xo Xy, XpXpyy) <00 (L — 00),

u,v,k=—00

to prove (3.50). It remains to establish (3.51) and (3.52) for Y,, = Q,, —EQy-
From (3.48) it suffices to consider Y,, = V() — B[V (R for arbitrary I, k.
Since d~(t) = 0 if |t| > L, we have

Vn(l’k) = i d (t—s):mg(t) =m, (s):

t,5=1

=V 1 R,

15



where

V=3 Y [ Ra= - Y S

t=1 s:|s—t|<L t=1 s:|s—t|<L,s<0 or s>n
Since
) , L L ntL
ER, <max|dt)FEQ_ Y Imi(Omg ()l + >2 > Img(&)my (s)])°
t=1s=—L t=n—L s=n+1
< max|d(t)|*8L*(Emj; (0)%)"2(Emy (0)*)? < o0
and V% is a linear combination of finitely many sums T, (v) == X", :

my, (t) ©: my (t — v) : it suffices to to establish (3.51), (3.52) for Y,, = T, (v).
By definition

tmy (t) = ' Z ¢j1 - -¢jk (Sté-tfjlgtfjlfjg - 'Stfjlf...fjk

B8 5o+ Somjim i)

Since E[&,& ;& ii—in - Et—ji—.._j.) does not depend on ¢, T,(v) can be
written as the sum of a constant not depending on ¢ and a linear combination
of the finitely many sums

n
Sn(u17 s 7u1€*) = th—ulgt—uz s gt—uk*
t=1

with 1 < k* < k+ 1, where u; < ups < ... < ug and no u; can be re-

peated in (uy, ..., ug) more than twice. Therefore it suffices to show that
Sp(u1, ..., ur) admits the decomposition of type (3.51):

Sp(Ury .o up) — Elsp(ug, ..o upe)]
(3.54) = Z TN TE TR TN th + R
t=1 t=1
We prove this by induction. Let £* = 1. Then
: Sn(ul) = Z(gtful - Egtful) = Z(ﬁt - Egt) + Ry,
t=1 =1

16



where

Ry=Y (& — BE) = Y (€, — By uy)-
t=1 t=1

Clearly (3.54), (3.52) hold.
It remains to show that (3.54), (3.52) hold for k* = p > 2 if they hold
for k* = 1,...,p — 1. Indeed, if uy < uy than E[§, , &, - & y,.] =

E[é-tful]E[gtfug s gtfuk*] and
5t—u1€t—u2 s gt—uk* - E[&t—ulgt—UQ s gt—uk*]
(355) = (gtful - E[é-tful])gtqu s gtfuk* + E[gtful] : é-tfug s gtfuk* e

Since u; < ugy < ... < wugs, the sum over ¢ of the first term on the right

satisfies (3.54):

Z St uy St ul])gt ug * 'gt—uk Z é-t é-t (ug—uq) * gt—(uk*—ul)_l_Rn
t=1

t=1

where clearly ER? = O(1) and E(&, (4, ;) -+ -&t (upe uy))” < 00. For the
sums >y 1 &y, - - §yy,. ¢ from the second term of (3.55), (3.52) holds by
assumption. Ifu; = ug thenuy < wuz < ... < wpe, Bl 0084 0, us -+ St =

E[&?—ul]E[é.tfu:g e Stfuk*] and
gt—ulgt—u2§t—U3 s gt—uk* - E[ﬁt—ulgt—u2§t—u3 s gt—uk*]

= (é-?ful - E[é-?ful])gt—ug e St—uk* + E[é-?ful]gt—ug e St—uk* .
which gives (3.54) by assumption. B

Proposition 4 Let Assumption 1(8) and (3.41) hold. Then
n'VarQ — 0 (L — o)

uniformly in n.

Proof. From (3.48),

L oo
VarQf < 20g{Var (3 R{P)+Var( Y Q)} =gV +4
l,k=0 l,k=0:max(l,k)>L

17



so it suffices to show that
(3.56) n g0 -0 (L—o0), (j=1,2)

uniformly in n > 1. For j = 2, the bound (3.60) of Lemma 5 below gives

n g =0} > Cov(Q{, Qi)
k1,k2=0:max(k1,k2)>L, max(k3,ks)>L
0,) o 3
357) < C{Y(k+12DF{> (k+1)*Df}" -0 (L — o0)
k=L k=0

uniformly in n > 1 since Dy < 1.
We prove now (3.56) for j = 1. Denote m;" (t) = my(t)—my; (t),: m; (t) :
m; (t) — Em; (t) and d*(t) = d(t) — d " (t). Write

n

REF = N7 [d(t — s) o my(t) o mp(s) : —d (¢ — ) my (£) 2 my (s) ]

n

= til dt(t —s) :my(t) = mg(s) : +ti1 d=(t —s):mf(t) = mg(s)
+ il d=(t —s) :my (t) = mf(s)

Then

L L
a® < 3{Var (3 (1)) + Var (3 #09(2)) + Var (3 rl9(3))}.
L,k=0 1,k=0 1,k=0
It remains to show that
L
(3.58) nVar (> r®H () -0 (L—0), j=1,2,3
k=

1,k=0

uniformly in n. Set

.....



If I = 0 define g = gj_l’(l) = 1,9;’(” - =0.

.......... i yeenyJl
Then
k
Z d+ t—s gt —J1,J1= 2,5, J1—1— ngg )81 §1—82,...,Sp—1— Sk(gJ_EgJ)(gS_E&S');
t,s=1
" — l k
’,"S’k)(2) = Z d (t_s)g: gl)jl ]2 ..... ]l 1— ]lgg )51 §1—82,..4y Skp—1— Sk(é-J_Eé-J)(é-S_Eé-S)7
t,5=1
- — — k
rﬁbl’k)(S) - Z d (t_s)gt 51)]1 —J2;-J1-1— ng: (31)51 52,38 —1— Sk(gj_EgJ)(gs_Egs);
t,s=1

Whereg.] = §t§j1 . '§j17 §S = §s§31 . '§3k7 J = {tlea s le}7 S = {87817 .- '7Sk}‘
We have

L L
nVar (3 rP() =n7t Y0 Cov(rR) (), BRI (5), j=1,2,3.

1,k=0 K1, ka=0

By Lemma 5, (3.60)

4
Cov(r (1), r#=R)(1)) < € (@ () Tl ™ sk + 1)*(Bd)" ),

tez
Cov(rif#2)(2), rif**)(2)) < €3 (d ())%llg"*1allg ™" 111]1g“[|1]]g*]]
tez
4
H{(k?z +1)*(Eg)" 1},
Cov(rif+#2)(3), rif>*)(3)) < O3 (d ()%lg " [ullg "Il llg™*=]]1]lg ™[],
teZ
4
Tk + 1) (&)
=1
where || - ||; denotes the L' norm (see (3.59) below. Since
lg Pl < llg®lli=" 3> vy, = Owy)"
Ji,-Jr=1 j=1

LY S Vg 3 100 = L) < (kD )"
j=1

p=1j1,...,Jk=1 j>L
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and Dy = ,ué/4 21 ¥y <1, we have

nVar (32 () < C(|Z dz(t))(gj(k F12DRY 0 (L 0);

L
n~Var (Y () < CD-E@)D ¥)] Z (k+1)*DM* -0 (L —0); j=2,3
1. k=0 k=0

teZ j>L

to prove (3.58). W

We provide now the auxiliary Lemma 5 used in the proof of Proposition

Lemma 5 Define the quadratic forms

Z = Z d(t — s)Y,"y k), Z d(t — )Y, "y k)
t,5=1 t,5=1
where ky,...ky > 0,
(ki) _ (ki) ©
Y; - Z It—j1,j1—jo,. o Jk;—1—Jk; (Sté-jl e 'Sjki_Egtgjl e 'Sjki)’ L= 1’ Tt ’4’
Ty <. <1<t

and Y, = &
Suppose that fori=1,...,4, (3.41) holds and

(359) ||g(kl) Z |gJ1 ..... Ik, | < Q.

J1yesdr, €2

Then

(3.60) W*wazmzmﬂs<X§:fa»11ﬂm@%h@%+1ﬁu%®““}

t

where C > 0 does not depend on n,g*) and d.
Moreover,

[e.°]

n~'Cov(Z,,Z!) — Z d(u)d(v)COV(Y,fkl)Yb(kz),n(k3)Yéi4)) < o0

v
u,v,k=—00

(3.61)
as n — 00, and
> [Cov(Y YL, %>%H<0ng
t3,t4=—00
(3.62)
uniformly in ki, ko.

(ki + 1% (B}
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Proof. Set
c(try. .. tg) = COV(K:lkl)Yt(kQ) Y;gks)}/;im))'

Because

(3.63) i, :=n"'Cov(Z,, Z!) =n~! Z d(t, — ta)d(ts — tq)c(ty, ..., ts)
it follows that for n > 2

(3.64) lin] < Z (@ (tr = t2) + d*(ts — ta) ) |c(tr, -, 1)
Suppose that (3.62) holds. Then

i) <C Y () (sup Z le(t1, . .. ta)| + sup Z et ta)])

t=—o00 11,02 g 44=1 13,04 ¢ to=1

(ki + DAEEHR) < 0.

<cy & H{Ilg

t=—0o0
Thus (3.60) holds. From (3.63) and (3.62) (3.61) follows easily.

It remains to show (3.62). Put J, = {jpo,dp1>---+Jpk, }> P = 1,...,4
We can write c(t1,...,t4) as

(kp) Lediogdo s L gds Ll eda
tl, o .. ’ Z H gtppjp,l7jp,1_jp,27~~~7jp,kp—1_jp,kpCOV(' é- ! .o é- 2 .y . é- 3 .o é- 4 )
()P
where the sum Y ;) is taken over indexes (j) = (Jp0,---sJpk, P =1,...,4)
such that jpr, < ... < Jjp1 < Jpo =tp,p=1,...,4 ¢l = oS - 'gjp,kp
and : &7 = ¢l — Eng for j=1,...,4.
Using the Cauchy inequality it is easy to verify that
J J J &
|Cov(: €M g2 €5 ¢ < ZH(E] ¢l \4)1/4 < Ji 4)1/4
i=1 i=1
(3.65) < 3NN TR

where \y = (E&5)Y* = (Eed)'/4.
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Now observe that
Cov(: 5“71 : 5“72 G 5“73 : fJ“ )

(3.66) = B[: &/ i g2 ¢l ¢l —EBL €N € B[ ¢3¢0 ) =0

in both the following cases
a) The sets J; U Jy and J3 U J; do not have common elements, since then

from condition (2.21) it follows E[: £t 2 €72 ¢ o ¢4 ) = B[ ¢ 2 €72

|E[: 7 &7 ).
b) Ji N (U1 i) = 0 for some i = 1,...,4, since then condition (2.21)

implies
E[: &M g ¢h ¢l = Bl ¢7 B II ) =

E[¢7 ¢ ) =E[L ¢ B¢ ] =0 (i #1).

Suppose neither a) nor b) are satisfied. Then the index (j) = (J1, Ja, J5, Jy)

has at least one of the following properties:
1) JsN(J1UJz) # 0 and JyN (Jy U Jy) # 0 (when we write (j) € My);

Sl)r JsN (J1 U Jy) # 0 and Jy N J3 # 0 (when we write (j) € My);

or
3) J4 N (Jl U JQ) 7£ @ and J3 N J4 7é @ (When we write (j) S M3)
Using (3.65) we get

4
Ayki+..+k (kp)
|e(ty, -y ta)| < 32NN > 1N (S R S A SR A P
())EM1UMaUM3 p=1

Therefore (3.62) follows if we show that for j =1,2,3

T (t1,22) : Z Z |Hgtp —Jp,15Jp,1=Ip, 252 0p kp—1—Jp,kp

t3,ta=1(j)eM; p=1

(3.67) < (k1 4+ 1) .. (kg + 1)) H 19"

By definition of M,

o

TW(ty, ) < 3 > { > > 1(Jsu = Jiy Jaw = Jir )

(3,u)€Ils;(4,v)Ely (3,1),(¢,1))e1 ULy t3,t4=1 jp}kp <..<jp1<tp:p=1,...,4
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H| (kp) . -
Itp—jp.1,dp1—lp.2: Jpkp—1—Jp,kp | [~

Taking the sum over t4;j4,1 < s < kq(s # v), and then over t3,j34,1 <
s" < ks(s # u) we obtain:

TO(ty,t,) < 3 3

(3,u)613;(4,'u) €l (i7l)7(i’ 7l’)611 Ulg

2
k k (kp)
{11g% 119" |+ > H AT |

jp,kp<---<jp,1 <tp:p:172 p:

<{ ¥ > g™l 1lg® s

(3,u)els;(4,v)€ls (3,0),(# ') Ul

< (kL +1) - (b + DY "1 g™

Thus (3.67) holds for i = 1.
Similarly using the definition of M5, we obtain

TO(ty,t,) < 3 3

(3,U)613;(4,1))€I4 (i,l)e[lufg,(i',l’)elg

o0
. (kp)
> > V(3.0 = Jits Jaw = Jiry H (94, 5 1= 2y 1=y | |-
ts,ta=1 jp,kp<...<jp,1<tp:p=1 ..... 4 p=1

Taking the sum over t4; 45,1 < s < ky(s # v) and then over t5; 53,1 <
s" < ks(s # u) we obtain (3.67):

T (t1,t5) < > > {||g(k3)||1||9(k4)||1

(3,u)613;(4,1))614 (Z7l) €1 UIQy(Z.’ 7l’)613

) H| ) k1 —dip |
gtp —Jp,1,Jp,1—Jp,25-»Jp,kp—1"Jp,kp

jp,kp<...<jp,1<tp:p=1,2 p=1
< Ak + 1) (e + DY g™ g™
The proof of (3.67) for T®)(ty,t,) is similar as that for T3 (¢,,t,). W

Corollary 6 Suppose that Assumption 1(8) holds. Then

[e.°]

(3.68) S Cov( Y st Yu Yy 1) < 00

U, V=—00
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and
0

(369) Z |Cum(yt7ysayu7y’li)| <

U,V=—00

uniformly in t, s.

Proof. By Lemma 5, (3.62),

o

D Cov( g Ys Y 2

U,V=—00

[e.°]

< qpé Z i |Cov (: my, () = mpg, () =y Mgy (w) =2 my, (v) 2]

U,Vv=—00 kq k4=0

.....

<C Y A{lki+1)2.. . (ka+ 1B, Pt = €3 DF < oo
kl ..... /i:4:0 k=0

Cov(: Yt = Ys oy Yu 2 Yo 1) = Cum(ys, Ys, Yu, Yo)
+y(t —u)y(s —v) +y(t —v)y(s — )
and Y ez |7(t)| < oo, this and (3.68) give (3.69). W
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