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Abstract

This paper deals with linear and integer programming problems in which the constraint matrix is a binet
matrix. Binet matrices are pivoted versions of the node-edge incidence matrices of bidirected graphs. It is
shown that efficient methods are available to solve such optimization problems. Linear programs can be solved
with the generalized network simplex method, while integer programs are converted to a matching problem. It
is also proved that an integral binet matrix has strong Chvátal rank 1. An example of binet matrices, namely
matrices with at most three non-zeros per row, is given.
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1 Introduction

If the constraint matrix of a linear program is a network matrix, then we can use the network simplex algorithm
to find an optimal solution much more efficiently compared to the general-purpose simplex method. In this paper,
we shall see that this advantage of network matrices can be extended to their bidirected generalization, the binet
matrices.
Network matrices, a well-known class of totally unimodular matrices, are defined on directed graphs. This

graphical structure behind network matrices made it possible to devise the network simplex method, a successful
cross between the algebra of the simplex method and the combinatorics of the network flow algorithms. It has
been reported in the literature (e.g., in [10]) that the network simplex method can be up to 200 times faster than
the general-purpose linear programming codes. Network matrices and the network simplex method have become
integral parts of the combinatorial optimization apparatus, and they are treated in every textbook in this area, such
as, for example [1],[15] and [16].
Appa and Kotnyek generalized network matrices in [2, 3] by introducing binet matrices. A binet matrix is

defined on a bidirected graph in a way similar to how a network matrix is defined on a directed graph. They
also showed that a binet matrix is 2-regular, i.e., the inverse of any of it’s non-singular submatrix is half-integral.
This fact, together with a theorem proved in [3], implies that if the constraint matrix of a linear program is a binet
matrix, then all basic optimal solutions are half-integral. However, the question of how to find an optimal solution
in an efficient way was left open. We shall deal with it in this paper.
Let us designate a linear programming problem with a binet constraint matrix a binet LP and an integer

programming problem with a binet constraint matrix a binet IP. We shall see that efficient algorithms exist that
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can find the optimal solution to a binet LP or IP. Section 3 is about finding optimal solutions to a binet LP. The
main discovery is that a binet LP can be seen as a generalized network flow problem, therefore the existing
generalized network simplex algorithm can be applied to it. As to binet IP, treated in in Section 4, we show that it
can be converted to a generalized matching problem. Moreover, we prove that the integer hull of the polyhedron
in a binet IP problem can be achieved by rank-1 cuts. In other words, an integral binet matrix has strong Chvátal
rank 1.
Numerous examples of binet matrices can be found in [2, 12]. These include two interesting non-network but

totally unimodular matrices, all the known minimally non totally-unimodular matrices and generalised interval
matrices. Here, in Section 5 we show that the constraint matrix of special integer programs with at most three
non-zeros per row, shown in [11] to have many practical examples, is a binet matrix.

2 Preliminaries

In this section we give a concise description of binet matrices and list some relevant results about them. More
details can be found in [2] and [12].
A bidirected graph can be defined with its node-edge incidence matrix. Given an m × n integral matrix

A = (aij) satisfying
mX
i=1

|aij | ≤ 2 for j = 1, . . . , n, (1)

we can find a bidirected graph G(A) with m nodes and n edges such that its node-edge incidence matrix is A
under the follwoing conventions. Edges of G(A) correspond to columns, and nodes to rows, of A. An edge is
incident to a node if the corresponding cell of the matrix contains a non-zero. Columns with a single non-zero
being ±2 represent loops, i.e., edges whose end-nodes coincide; columns with a single ±1 represent half-edges
with only one end-node. Positive and negative entries in the matrix correspond to heads and tails of edges,
respectively. That is, an edge of a bidirected graph can have at most two heads and at most two tails, with the
condition that if the edge is a loop than both of its ends, which are incident to the same node, are of the same
kind.
Let A = [S,R] be a full row rank node-edge incidence matrix of a bidirected graph, such that R is a basis of

A. The matrix B = R−1S is called a binet matrix. Binet matrices can be achieved by a series of pivoting on the
incidence matrix, and they can contain elements {0,±½,±1,±2}.
Several operations on a binet matrix preserve its binetness. For example, after adding unit rows or columns,

repeating or deleting rows or columns, a binet matrix remains binet.
Binet matrices are 2-regular, i.e., the inverse of any nonsingular submatrix is half-integral. It was proved in [3]

that 2-regularity of the constraint matrix implies half-integral optimal solutions to a linear program, i.e. solution
vectors that contain integers and halves of integers. Specifically for binet matrices:

Theorem 1. If B is a binet matrix and l, u, a, b are integer vectors of appropriate size, then the basic solutions
of the optimization problemmax{cx | l ≤ x ≤ u, a ≤ Bx ≤ b} are all half-integral.

Is it worth pointing out that if B is not a binet matrix but a general non-integral and 2-regular matrix, then
only a weaker version of Theorem 1, in which we deal withmax{cx | x ≥ 0, Bx ≤ b}, holds.
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3 Binet LPs

Let B be a binet matrix. We shall deal with the following binet LP problem:

max{cx | l ≤ x ≤ u, a ≤ Bx ≤ b} (2)

The optimal solution of (2) can be achieved by general-purpose methods, like the simplex algorithm, or the
strongly polynomial algorithm of Tardos [17]. This latter states that for rational linear programming problems in
which the elements of the constraint matrix are bounded, there exists an algorithm to solve the problem that uses
arithmetic operations whose number is a polynomial function of the dimension of the problem and which act on
rationals of size polynomially bounded by the size of the input. More about this ingenious algorithm can be found
in [16]. Since the elements of a binet matrix are between −2 and 2, Tardos’ algorithm on problems with binet
constraint matrix have a strongly polynomial worst-case running time. However, despite this attractive theoretical
complexity result, the up-to-date implementations of the simplex algorithm usually outperform Tardos’ strongly
polynomial method on practical instances.
Alternatively, we can apply the following transformation to (2). Let binet matrix B = R−1S where [S,R] is

the node-edge incidence matrix of a bidirected graph. Let us introduce new variables z = −Bx to get:

max{cx+ 0z | l ≤ x ≤ u, −b ≤ z ≤ −a, Bx+ z = 0} (3)

Multiplying the equality by R we get

max{cx+ 0z | l ≤ x ≤ u, −b ≤ z ≤ −a, Sx+Rz = 0} (4)

The constraint matrix of the latter problem, which is equivalent to (2), is the node-edge incidence matrix of a
bidirected graph, therefore it satisfies (1). We shall see now that problems with such constraint matrices can be
solved by a special version of the simplex method that exploits the generalized network structure of the constraint
matrix.
A generalized network is defined on a connected directed graph G. There is a real non-zero multiplier pe

associated with each edge e = (i, j) of G. We assume that if a unit flow leaves the tail i of e, then pe units arrive
at j. G can also contain loops, i.e., edges whose tail and head nodes coincide. We assume that the multiplier of
a loop cannot be +1, as it would mean that the same flow leaves and enters the node on such a loop, making the
loop redundant. Trivially, if all the multipliers equal 1, then we have the well-known pure network. Generalized
networks are discussed in more detail in [1, 14].
A way of describing a generalized network is with its node-edge incidence matrix. The column of the inci-

dence matrix that corresponds to a non-loop edge e = (i, j) has −1 in row i and pe in row j, zeros elsewhere.
If e is a loop at node i, then its column has only one non-zero, (pe − 1) in row i. With simple operations, every
matrix with at most two non-zeros per column can be converted to this form. In what follows, we show how this
can be done for the node-edge incidence matrices of bidirected graphs.
According to (1), the node-edge incidence matrix of a bidirected graph can have columns of the following

forms:

(a) columns with one non-zero, being +1 or ±2,
(b) columns with one −1 and another non-zero, being ±1,
(c) columns with one non-zero, being −1,
(d) columns with two non-zeros, both being 1.

Columns of types (a) and (b) can be columns of the node-edge incidence matrix of a generalized network:
columns of type (a) are loops, columns of type (b) are ordinary non-loop edges with pe = ±1. Columns with
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a single non-zero −1 cause a problem, because representing them with (pe − 1) would require pe = 0. But
this problem can be easily overcome by multiplying such columns by 2, obtaining a column of type (a). The
multiplication of a column by 2 is equivalent to dividing the corresponding variable by 2. Columns of the last
type are also problematic, as an edge corresponding to such a column cannot be a generalized network edge as
defined in the current literature, as this edge would have no tail. We provide now a simple transformation to deal
with columns of type (d).
Let us suppose that we have a binet LP problem

min c1x1 + c2x2

subject to A1x1 +A2x2 = b

0 ≤ x1 ≤ u1

0 ≤ x2 ≤ u2

(5)

where A = [A1, A2] is the node-edge incidence matrix of a bidirected graph with A1 containing the columns of
type (d). Then with the new variable x01 = −x1 + u1 we get the equivalent binet LP problem

min−c1x01 + c1u1 + c2x2

subject to −A1x01 +A2x2 = b−A1u1

0 ≤ x01 ≤ u1

0 ≤ x2 ≤ u2

(6)

in which all columns are of types (a), (b) or (c), so the constraint matrix can be considered the node-edge incidence
matrix of a generalized network.
The idea behind the network simplex method is that the main steps of the simplex method (such as calculating

the primal and dual solutions corresponding to a basis, or changing the basis) can be executed on the network
associated with the constraint matrix. This idea can be followed in generalized networks too, leading to the
generalized network simplex method. The textbook references given above, [1, 14], contain a detailed description
of the generalized network simplex method. They also give references to papers that deal with the problem of
finite termination of the method. It should be noted that the generalized network simplex method is not polynomial
in the worst case, but for most of the practical problems it is much more efficient than the simplex method, or the
strongly polynomial method mentioned above (see the reference notes in [1]).
As argued in [12], the generalized network simplex method described in the references can be easily adapted

to the case where the network contains edges with two heads and no tails (i.e., edges corresponding to columns
of type (d)). Therefore the generalised network simplex method works on bidirected graphs too, making the
column transformation described above unnecessary. Either way, with column transformation or by modifying
the algorithm, the generalized network simplex method can be seen as the bidirected version of the network
simplex algorithm, able to solve the binet LP problem much more efficiently than a general purpose simplex
algorithm.

4 Binet IPs

Now we turn to the integer case, that is, we are to solve the following binet IP problem.

max{cx | l ≤ x ≤ u, a ≤ Bx ≤ b, x integral} (7)

in which B is an integral binet matrix and l, u, a, b are integral vectors. With the transformation described in (3)
and (4), noticing that the integrality of B implies the integrality of z, we have the following equivalent version of
(7):

4



max{cx+ 0z | l ≤ x ≤ u, −b ≤ z ≤ −a, Sx+Rz = 0, x, z integral} (8)

By translations, i.e., substituting x− l and z + b for x and z, respectively, (8) can be brought to the form of

max{wy | 0 ≤ y ≤ h, Ay = d, y integral} (9)

This problem can be viewed as a bidirected network flow problem, the aim of which is to find the maximum
weight integer flow in a bidirected network that satisfies the net supply (or demand) and the capacity conditions.
Matrix A is the node-edge incidence matrix of the bidirected graph, y represents the flow on the edges, w is the
weight vector, h is the capacity vector and d represents the net supply (or demand) at the nodes. The bidirected
network flow problem was introduced by Edmonds [6]. He also showed that it is equivalent to a general matching
problem (see also [13]).
Edmonds and Johnson [7] showed that there exists a polynomial algorithm to solve general matching prob-

lems, even on bidirected graphs. Thus, as the integer binet optimization problem is essentially a bidirected
network flow problem and the bidirected network flow problem is in effect a general matching problem, we have
the following result.

Theorem 2. There is a strongly polynomial algorithm to solve the binet IP problem.

Edmonds and Johnson also gave polyhedral results in [7, 8]. They showed that the node-edge incidence
matrix of a bidirected graph has strong Chvátal rank 1, that is, the integer hull of a general polyhedron defined by
the incidence matrix of a bidirected graph and any integer right hand side vector can be achieved by rank-1 cuts.
(That is why matrices with strong Chvátal rank 1 are sometimes said to have the Edmonds-Johnson property.)
We extend this result to integral binet matrices.
Formally, let a rank-1 Chvátal-Gomory (CG) cut of polyhedron Q be defined as cx ≤ bδc where c is an

integral vector and δ is a scalar such that cx ≤ δ is valid for all x ∈ Q. The intersection ofQ with the half-spaces
induced by all the possible rank-1 CG-cuts is its rank-1 closure, denoted Q1. An integral m × n matrix B has
strong Chvátal rank 1, if Q1 = QI = conv(Q ∩ Zn) for polyhedron Q = {x | l ≤ x ≤ u, a ≤ Bx ≤ b} and all
integral vectors l, u, a, b.

Theorem 3. If B is an integral binet matrix, then it has strong Chvátal rank 1.

Proof: Let B = R−1S and A = [S,R] is the node-edge incidence matrix of the bidirected graph representing
B. Let P be the polyhedron defined by the constraints in (7) and P̄ is the polyhedron defined by the constraints

in (8). Obviously, x ∈ P if and only if

Ã
x

−Bx

!
∈ P̄ .

Let y not be in PI . We show that then y can be cut off from P by a rank-1 CG cut, so that P1 ⊆ PI , which
suffices to prove the theorem.

It is easy to show that

Ã
y

−By

!
6∈ P̄I . Because A has strong Chvátal rank 1, there exists an integral vector

c̄ = (c1, c2) and scalar δ such that (c1, c2)

Ã
x

z

!
≤ δ is valid for all

Ã
x

z

!
∈ P̄ and (c1, c2)

Ã
y

−By

!
> bδc.

Hence for the integral vector c = c1 − c2B, inequality cx ≤ δ is valid for all x ∈ P and cy > bδc.

Note that Theorem 3 cannot be extended to rational binet matrices, as the following example shows.

B = R−1S =

 ½ 1 0

0 1 1

½ 0 1

 with R =
 1 0 −1
1 −1 1

0 1 0

 , S =
 0 1 −1
1 0 0

0 1 1


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The non-integral binet matrix B does not have strong Chvátal rank 1, because the non-zero integral solutions
of the polyhedron P = {x | 0 ≤ x ≤ 1, 0 ≤ Bx ≤ 1} are (1, 0, 0), (0, 1, 0) and (0, 0, 1), so x1 + x2 + x3 ≤ 1
is a facet of PI . But (1,½,½) ∈ P , so δ = 2 is the smallest value for which x1 + x2 + x3 ≤ δ is valid for P .
Note that this counterexample shows that the strong Chvátal rank of binet matrices is not simply a conse-

quence of the fact that binet matrices are pivoted versions of node-edge incidence matrices of bidirected graphs.
If this was the case, i.e., pivoting would preserve the strong Chvátal rank, then any rational binet matrix should
also have strong Chvátal rank 1.
In [9], Gerards and Schrijver gave a characterization of integral matrices whose transpose satisfies (1) and

have strong Chvátal rank 1. In other words, they dealt with the edge-node incidence matrices of bidirected
graphs. The key graph and matrix in their characterization is K4, the undirected complete graph on four nodes,
and its edge-node incidence matrix. They proved that the edge-node incidence matrix of a bidirected graph has
strong Chvátal rank 1, if and only if the graph cannot be transformed to K4 by a series of graph operations. A
consequence of this result and Theorem 3 is that if a graph can be so transformed to K4, then its edge-node
incidence matrix is not binet, though its transpose, the node-edge incidence matrix is clearly binet.
In [3] the authors proved that if A is an integral 2-regular matrix of size m × n, then for polyhedron Q =

{x | Ax ≤ b, x ≥ 0} with integral b, the rank-1 closure Q1 can be achieved by only half-integral cuts, i.e., valid
inequalities of the form λAx ≤ bλbc where λ ∈ {0,½}m and λA is integral. In a compact form, this result states
that Q1 = Q½ for integral 2-regular matrices and any integral right hand side vector, if we define Q½ as the
{0,½}-closure of Q, i.e., the intersection of Q with the half-spaces induced by all the possible half-integral cuts.
As binet matrices are 2-regular, we immediately get the following corollary of Theorem 3.

Corollary 4. If B is an integral binet matrix and b is an integral vector, then the integer hull of Q = {x | Bx ≤
b, x ≥ 0} can be achieved by half-integral cuts, i.e., QI = Q½.

This result has an interesting consequence in separation. The {0,½}-separation problem, as defined in [5], is
the following:

Given x ∈ Q = {x | Ax ≤ b, x ≥ 0}, decide if x is inQ½ or not, and if it is not, find a half-integral
cut that separates it, i.e., a λ ∈ {0,½}m such that λA ∈ Zn and λAx > bλbc.

It is well known (see e.g., [16]), that the separation problem is polynomially equivalent to the optimization
problem. In the special case of {0,½}-separation, it means that if we can optimize linear functions over Q½ in
polynomial time, then we can decide the separation question in polynomial time. As we showed above, the integer
optimization (i.e., optimizing linear functions overQI ) with integral binet constraint matrices is polynomial, since
it is equivalent to a matching problem, so we have the following consequence of Corollary 4:

Corollary 5. If A is an integral binet matrix, then the {0,½}-separation problem can be solved in polynomial
time.

If A or its transpose is a network matrix, then the {0,½}-separation is trivial, as Q½ = Q. This is because
for totally unimodular matrices QI = Q, and for any polyhedron QI ⊆ Q½ ⊆ Q. Corollary 5 extends this result
to integral binet matrices.

5 Matrices with at most three non-zeros per row

Hochbaum [11] examines integer programs in which each constraint involves up to three variables. That is, a
constraint that is not an upper bound on a variable can be of the forms:

aixi + ajxj ≤ b or aixi + ajxj + zij ≤ b
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where ai, aj are rationals without any restriction on their signs. A further assumption is that variable zij appears
in only one constraint. Following [11], we will call such a problem an IP2 problem. The generic matrix format
of IP2 problems is the following:

max cx+ dz"
A1 I

A2 0

#Ã
x

z

!
≤ b (IP2)

l ≤ x ≤ u

lz ≤ z ≤ uz

where matrices A1 and A2 contain at most two non-zeros in each row. It is also permitted to add further identity
matrices while maintaining the results. That is, the constraint matrix can be of the form:"

A1 I · · · I

A2 0 · · · 0

#

A special IP2 problem, called binarized, is when the elements of the constraint matrix are all 0,±1. Hochbaum
[11] concludes that a binarized IP2 problem always has half-integral basic solutions, and builds 2-approximation
methods based on this fact. In other words, she proves that the constraint matrix of (IP2) is 2-regular. Here
we show that the constraint matrix of a binarized IP2 problem is the transpose of a binet matrix, therefore its
2-regularity immediately follows.

Theorem 6. The transpose of the constraint matrix of a binarized IP2 problem is binet.

Proof: MatrixA =

"
A1

A2

#
has at most two non-zeros in each row, and these non-zeros are±1, soAT satisfies (1).

So does [AT , I] too, where I is a unit matrix of appropriate size. Therefore [AT , I] is the node-edge incidence
matrix of a bidirected graph, and AT = I−1AT is a binet matrix. As mentioned in Section 2, adding unit rows to
a binet matrix maintains its binetness, so adding unit columns toA does not change the fact that it is the transpose
of a binet matrix.

Hochbaum also gives combinatorial applications for the binarized IP2 problem, including the feasible cut
problem, the complement of the maximum clique problem, the generalized independent set problem and the
generalized vertex cover problem. These applications are thus examples of combinatorial problems with binet
matrices. For example, we describe the generalized independent set problem. Details of this and the other
problems can be found in [11].
The generalized independent set problem is the generalization of the well-known independent set problem. In

the latter, the aim is to find a maximum weight node set in a graph G(V,E), such that there is no edge between
the selected nodes. In the generalized version, we permit edges, but at a penalty. The IP2 formulation of the
generalized independent set problem is:

max
X
i∈V

wixi −
X

(i,j)∈E
cijzij

subject to xi + xj − zij ≤ 1 ∀(i, j) ∈ E

xi, zij ∈ {0, 1} ∀i, j

7



Variables xi (i ∈ V ) represent nodes; xi = 1 if and only if node i is selected. For each edge e = (i, j), we have
a variable zij , and the constraints of the model guarantee that if both end-points of e are selected, then zij = 1.
The weight of node i is wi, the penalty on edge (i, j) is cij .
A real-life application of the generalized independent set problem concerns the location of postal services [4].

We are given a set of potential location points and the utility value (weight) associated with each point. If two
points are too close to each other, then they compete for the same costumers, so their utility value is decreased.
This is the penalty on the edge connecting these points. The goal is to find a set of locations that maximizes the
utility value.
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