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Abstract

An agent (who may or may not want to be found) is located in one
of two boxes. At time 0 suppose that he is in box B. With probability
p he wishes to be found, in which case he has been asked to stay in
box B. With probability 1−p he tries to evade the searcher, in which
case he may move between boxes A and B. The searcher looks into
one of the boxes at times 1, 2, 3, . . .. Between each search the agent
may change boxes if he wants. The searcher is trying to minimise
the expected time to discovery. The agent is trying to minimise this
time if he wants to be found, but trying to maximise it otherwise.
This paper finds a solution to this game (in a sense defined in the
paper), associated strategies for the searcher and each type of agent,
and a continuous value function v(p) giving the expected time for the
agent to be discovered. The solution method (which is to solve an
associated zero-sum game) would apply generally to this type of game
of incomplete information.
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1 Introduction

Rendezvous search was presented within a formal mathematical framework
by Alpern (1995). It has attracted much attention (see e.g., Alpern and Gal
(2003), Anderson and Weber (1990) and Howard (1998)). A novel element
which was introduced by Alpern and Gal (2002), involves an uncertainty
regarding the motives of a lost agent: he may be a cooperating rendezvouser
who shares the same aim as the searcher or he may want to evade her.
(For clarity, we will always assume that the agent is male and the searcher
is female.) We assume that the probability p of cooperation is known to
the searcher and to the agent. In any given search context (search space and
player motions) this gives rise to a continuous family Γ(p) of search problems,
0 ≤ p ≤ 1, where Γ(0) is a search game and Γ(1) is a rendezvous problem.
As we shall show, the uncertainty regarding a priori agent motives affects
both the strategies chosen by the searcher and the strategies chosen by the
(cooperating or evading) agent.

Our formalization of the cooperative part of the problem follows that of
Alpern and Gal (2002) who modelled this as an asymmetric rendezvous
search, where the searcher and agent may agree in advance on what they
will do in the event that the agent gets lost and wants to be found. For
example a mother (the searcher) may tell her son (the agent) to stay in a
specific location, knowing however that this instruction may be disregarded
if the child does not want to be found. The child will follow this instruction
if he wants to be found, and may use the knowledge of these instructions in
deciding on an evasion strategy if he does not. The next section discusses
this in more detail, and shows that the equilibria that interest us can be
found by solving an associated zero-sum game.

The problem that we consider is deceptively simple. The search space consists
of two boxes (A and B) and time is discrete. At times 1, 2, . . . the searcher
looks in one of the boxes, and if the agent is in the box he is found immediately
(i.e. there are no overlook probabilities). The searcher’s objective is to
minimise the expected time to discovery. The agent wishes to be found with
probability p, and with probability 1 − p he wishes to avoid capture. p is
assumed to be common knowledge. In each time period the agent may hide
in either of the boxes. The cooperative agent’s objective is the same as
the searcher’s. The uncooperative agent’s objective is the opposite, i.e. to
maximise the expected time to discovery. We assume that before the game
starts the agent has been told that if he wishes to be found he should stay in
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box B. We will seek solutions where a cooperating agent follows this advice,
and then check at the end to see whether he has any reason to disregard it.
For this simple problem, are there optimal strategies for the two players, and
if so what are they, and what is the value of the game?

The problem was suggested by Alpern and Gal (2002), who suggested that
for p near 1 the optimum strategy is for the searcher to begin by looking in
box B, and if she fails to find him look equiprobably in either box thereafter.
The agent should (if mobile) hide in box A in period 1, and thereafter hide
equiprobably. This is correct. They also suggested that for p near 0 both
players should use equal probabilities from the start. This is not quite correct.
We show that for 0 < p < 2

3
the searcher should start by looking in box B

with a probability greater than 1
2
. If she does look in B and does not find

the hider, she should switch to looking equiprobably. If she looks in A and
fails to find the hider, she repeats the procedure but this time with a higher
probability of looking in B. If she continues to look in A, eventually the
probability for looking in B will reach 1. The paper gives the sequence of
probabilities that should be used by the searcher, the best response by the
uncooperative agent, and the associated value function v(p).

2 Associated zero-sum game

The problem is a non-zero-sum game, in fact a game of incomplete informa-
tion (as defined by Harsanyi) in which one player has two types with totally
opposite preferences. One equilibrium of this game would be for the searcher
and both types of agent to choose a box with probability 1

2
at each time

period until the agent is found. (This gives a pooling equilibrium — one
where both types of agent use the same strategy.) However we are interested
in separating equilibria, which we take to be equilibria where the two types
of agent have different strategies. (Since one of the agent strategies will in
general be mixed, the difference in strategies will not always be shown by
difference in behaviour.) We will show there is such an equilibrium, and if
there is one there will be infinitely many. This follows because we could
always stipulate that the players choose boxes equiprobably for n moves be-
fore switching to the old strategies. If the agent is not found in these first
n moves, we are back to the starting situation, so the new strategy is also a
separating equilibrium.
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We are interested in one particular separating equilibrium. We imagine that
before the game starts the searcher announces instructions for the agent
to follow. We seek solutions where the cooperating agent will choose to
follow the instructions (because doing this gives him the minimum expected
time to discovery). However, we can imagine another game in which with
probability p the agent must follow the instructions, and with probability
1 − p he can move freely. This is effectively the same game, but the agent
can now be assumed always to want to evade the searcher — although he
may be constrained to move (against his wishes) in order to comply with
the searcher’s instructions. The game becomes zero-sum. The instructions
could be a pure strategy for the agent (for example, ‘start in box A, and then
change boxes every time period’) or a mixed strategy (‘hide in box B with
probability 0.7 independently each period’). Intuitively, issuing instructions
in the form of a mixed strategy will make it harder for the searcher to find
a cooperating agent. On the other hand, it might make it more difficult for
a non-cooperating agent to use his knowledge of the instructions against the
searcher. We will shortly show that the searcher in fact gains no advantage
by giving instructions to use a random strategy.

Let S be the set of all infinite sequences of A’s and B’s. A pure set of
instructions given to the cooperating agent is a member z of S. Once the
instructions have been issued, the agent and the searcher can choose (each
knowing z) pure strategies x and y in S The players are not restricted to
pure strategies, so let S∗ be the set of probability measures on the σ-field
generated by the cylinder sets of S. The searcher wishes, if possible, to find
a strategy (y, z) which guarantees

v(p) = inf
y,z∈S∗

sup
{x|x:S∗→S∗}

[pT (z, y) + (1 − p) T (x(z), y)]

where T (x, y) is the expected time to discovery if the agent uses strategy x
and the searcher uses strategy y (x, y ∈ S∗) in the simple search and evasion
game in two boxes.

Consider first the situation after the searcher has announced a particular
pure set of instructions z ∈ S. Although the remaining sub-game still has
infinitely many pure strategies, for any fixed p consider the game Gn in which
the agent is forced to follow the instructions from time n onwards, whether
he is cooperating or not (and hence can always be found by time n). The
agent has only a finite number of pure strategies in Gn, and the searcher
need consider only a finite number of pure strategies. So Gn has a value vn

and there is a strategy xn ∈ S∗ for the agent which guarantees him at least

5



vn in expectation whatever the searcher does, and also a strategy yn ∈ S∗ for
the searcher which guarantees her at most vn in expectation whatever the
agent does. Because the searcher has the option of looking at random from
the start

1 ≤ vn ≤ 2

and clearly
vn ≤ vn+1

so vn → v ≤ 2 as n → ∞.

Now S∗ is compact under the topology of weak convergence, so there will be
probability measures x and y on S which guarantee the agent at least v and
hold the searcher to at most v in expectation in the unbounded time zero-sum
game. So for each pure set of instructions z the game has a solution with
value say v (z). Moreover, because S is compact, there will be a particular set
of instructions which achieves the infimum of {v (z) | z ∈ S}. The following
lemma shows the searcher could not gain by issuing instructions to the agent
to use a mixed strategy.

Lemma 1 Let G be a two-person zero-sum game in strategic form. G is
modified to give a new game G∗. Before G is played, the column player can
issue instructions telling the row player which pure or mixed strategy to use
when G is played. Before G is played, Nature secretly tells the row player
whether he has to obey the instructions. He has to obey with probability p,
and the value of p is common knowledge. The payoffs in G∗ are the same as
the payoffs in the game G that forms part of G∗. Suppose that for each pure
set of instructions G∗ has a solution, and the infimum of the values of these
games is achievable. Then in the modified game G∗, the column player need
not consider mixed strategies as instructions to the row player.

Proof The column player solves the game for each possible instruction —
i.e. for each pure strategy for the row player in game G. She chooses the
instruction (i say) which gives the lowest game value (v say). By assumption,
if she chooses any instruction j, the row player has a mixed strategy which
guarantees him at least v. The effect of the instruction to choose strategy j
is that he will have to choose strategy j at least with probability p (because
he always has to choose it when he has to obey the instruction). So the
maximin problem for the original game G is modified in just one respect: if
pj is the probability with which he will choose the j’th strategy, he now has
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a constraint pj ≥ p. So for each j he has a strategy sj for G such that the
strategy

p {strategy j} + (1 − p) sj

guarantees v in G.

Suppose now that the column player issues instructions to use a mixed strat-
egy q. Then the row player is constrained to use q with probability p. Suppose
that with probability (1 − p) the row player uses the q mixture of the sj’s.
Then the row player is just using a mixture of strategies in G all of which
guarantee at least v, so the mixture will also guarantee v in G. Hence the
instruction to use a mixed strategy gives no improvement for the column
player. We may assume that the column player will issue instructions to
choose a particular pure strategy.

One example of an application of the lemma would occur when giving in-
structions to an agent who might actually be a double agent (with probabil-
ity 1 − p). It could never be advantageous to instruct him to use a mixed
strategy to coordinate his actions with our own. In our game, the instruction
to use a particular pure strategy for the agent is the instruction to hide in
the boxes in a particular sequence of A’s and B’s. However, any instructions
which specify a particular sequence of boxes in which to hide will be equiv-
alent (by relabelling) to hiding in box B in every time period, so henceforth
we assume these are the instructions.

So with the instructions, b, to the cooperating hider being to stay in box B
until found, v(p) can be expressed as

v(p) = inf
y∈S∗

sup
x∈S∗

[pT (b, y) + (1 − p) T (x, y)]

= min
y∈S∗

max
x∈S∗

[pT (b, y) + (1 − p) T (x, y)]

= min
y∈S∗

[

pT (b, y) + (1 − p) max
x∈S∗

T (x, y)

]

.

This formulation follows Alpern and Gal (2002).

We summarise the argument so far in the following theorem.

Theorem 2 Suppose that at discrete times 1, 2, . . . a searcher looks in one
of two boxes A and B to try to find a hider. S is the set of all infinite
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sequences of A’s and B’s, and S∗ is the set of probability measures on the σ-
field generated by the cylinder sets of S. Before the search starts, the searcher
announces instructions for the hider to follow in the form of z ∈ S∗. The
searcher then searches using a mixed strategy y ∈ S∗.With probability p the
hider is constrained to follow these instructions, and otherwise he is free to
use a sequence of boxes using any probability mixture x ∈ S∗. The hider is
found as soon as the searcher looks in the box in which he is hiding. T (x, y)
is the expected time to discovery if a hider uses strategy x and a searcher uses
strategy y (x, y ∈ S∗) in the simple two box search and evasion game.

Then the searcher can guarantee getting

v(p) = inf
y,z∈S∗

sup
{x|x:S∗→S∗}

[pT (z, y) + (1 − p) T (x(z), y)]

by taking z as the infinite sequence b = (B,B,B, . . .). The game will have a
value which will be v(p) (1 ≤ v(p) ≤ 2) and

v(p) = inf
y∈S∗

sup
x∈S∗

[pT (b, y) + (1 − p) T (x, y)]

= min
y∈S∗

max
x∈S∗

[pT (b, y) + (1 − p) T (x, y)]

= max
x∈S∗

min
y∈S∗

[pT (b, y) + (1 − p) T (x, y)] ,

so optimum mixed strategies exist for both the hider and the searcher.

So we consider a game in which the agent always wishes to evade capture, but
a chance move by nature at the beginning of the game determines whether
the agent can move or not. (Perhaps the searcher shoots at the agent and
wounds him, but does not know for certain whether he is still mobile.) So
from now on we will always refer to the agent as the ‘hider’.

Definition 3 The two box evasion game with immobility probability p is a
zero-sum two player game with discrete time periods 1, 2, 3, . . .. In each time
period, Player 2 (the searcher) looks in one of two boxes A and B. Player 1
(the hider) is immobile with probability p, in which case he must occupy box
B at all times. He is mobile with probability 1− p, in which case he can hide
in either box and switch boxes whenever he wishes. p is common knowledge.
There are no overlook probabilities. The searcher’s objective is to minimise
the expected discovery time, the hider’s is to maximise it.
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3 Searcher strategies

Once the searcher has looked in box B and not found the hider, she knows
that he is mobile (and he knows that she knows, etc.), and so both will
choose at random between the two boxes from that time onwards. Hence the
searcher can restrict herself to the strategies

• BR (box B, thereafter random)

• ABR (box A, then B, thereafter random)

• AABR

• etc.

Note that the strategy, R, of ‘random from the start’ is available as the
probability mixture ( 1

2
, 1

4
, 1

8
, . . .) of the above strategies.

Similarly, the hider can restrict himself to the set: AR,BAR,BBAR, . . .
when he is mobile, (and has no choice when he is immobile).

The payoff table, showing payoffs to the hider when mobile and when immo-
bile is:

Table 1
Payoffs to the mobile and immobile hider

Searcher
BR ABR AABR AAABR . . .

Immobile hider 1 2 3 4
AR 3 1 1 1

Mobile BAR 1 4 2 2
hider BBAR 1 2 5 3

BBBAR 1 2 3 6
BBBBAR 1 2 3 4

. . . . . .

We will call a mixture of the first i columns of the table (with non-zero
probability for the i’th column) a type i strategy for the searcher. We will call
a mixture of all the columns (with non-zero probabilities given to indefinitely
large column numbers) a type ∞ strategy.
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Definition 4 In the two box evasion game with immobility probability p, a
type i strategy for the searcher is to look in B with successive probabilities
qi, qi−1, . . . , q1 with qj < 1 for 1 < j ≤ i and q1 = 1 until she does look in B
and to randomise

(

1
2

: 1
2

)

thereafter.

A type ∞ strategy for the searcher is to look in B with successive probabilities
q1, q2, . . . with qj < 1 for all j until she does (if ever) look in B and to
randomise

(

1
2

: 1
2

)

thereafter.

Theorem 5 In the two box evasion game with immobility probability p, 2
3
≤

p ≤ 1, the type 1 searcher strategy BR is optimal for the searcher. An optimal
strategy for the mobile hider is AR.

Proof A and then any policy, and specifically AR, is a best response of the
hider to BR.

If the mobile hider plays AR and the searcher starts by looking in A, the
expected meeting time is at least 2p + (1 − p) = 1 + p, while if the searcher
starts by looking in B (and then uses any policy), the expected discovery
time is p + 3 (1 − p) = 3− 2p ≤ 1 + p for p ≥ 2

3
. Thus for 2

3
≤ p the strategy

pair (AR,BR) for the hider and searcher is a solution to the game.

Lemma 6 In the two box evasion game with immobility probability p, p < 2
3
,

any optimal strategy for either player will use a proper mixture of A and B
on the first move.

Proof If the searcher strategy starts with her looking in A for certain on the
first move, then the hider would have dominant strategies hiding in B on the
first move. But then the searcher would do better searching B first, so this
will never be part of a solution. On the other hand, if the searcher definitely
looks in B on the first move, the hider will hide in A on that move, and can
hide at random thereafter. But against this hider strategy the searcher need
consider only BR and ABR. For p > 2

3
she will use BR, and for p < 2

3
she

will use AR (so she will not look in B on the first move as was assumed).
This shows that for p < 2

3
it is optimal for the searcher to make a random

choice where to search on the first move.

We have seen that a solution strategy for the hider could not involve him
hiding in B for certain on the first move. If the hider hides in A for certain
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on the first move and p < 2
3
, we saw that the searcher does best to use AR,

so this also could not be part of a pair of solution strategies. So the mobile
hider also will make a random choice where to hide on the first move.

Theorem 7 In the two box evasion game with immobility probability p, for
each i there is at most one type i strategy, Si, which is a possible optimum
strategy (for some p). This Si uses the sequence qi, qi−1, . . . , q1 of conditional
probabilities for looking in B defined by

q1 = 1

qj+1 =
1 + 2qj

3 + 2qj

,

until the searcher does look in B and to randomise
(

1
2

: 1
2

)

thereafter.

Against Si the mobile hider can get at most ui = 1+2qi, which he can obtain
by playing (until he is found) any sequence of A’s and B’s except for those
sequences which start with i B’s.

Against Si the immobile hider gets wi defined by

w1 = 1

wj+1 = 1 + (1 − qj+1) wj.

Proof We prove this by induction. The statement is true for i = 1 because
there is only one type 1 strategy. Suppose it is true for i. Consider a general
type i + 1 strategy with successive probabilities si+1, si, . . . , s1 = 1. If the
searcher looks in A on the first move and the original strategy was optimal,
the remaining sequence si, si−1, . . . , s1 must be an optimal strategy of type i
by the induction hypothesis. (We have now got a problem of the same form as
we started with, but with a different value for the probability of cooperation,
p. Once the game is solved, we will be able to calculate the new value using
Bayes’ theorem.) Hence the only type i+1 strategies we need consider are of
the form q, qi, qi−1, . . . , q1 and we can assume that if the mobile hider hides
in B on the first move and is not found, all his pure strategies thereafter,
except those which hide in B on every one of the next i moves, will give him
ui.

For the strategy to be optimal, we must have p < 2
3

by Lemma 6, and so the
mobile hider must be indifferent between hiding in A (then any sequence) or
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hiding in B (and then if not found getting ui in expectation thereafter). If
he hides in A he expects

(1 − q) + 3q = 1 + 2q

and if he hides in B and then A (then any sequence) he expects

q + (1 − q) [2 (1 − qi) + 4qi]

= 2 (1 + qi) − q (1 + 2qi) .

Equating these we find

1 + 2q = 2 (1 + qi) − q (1 + 2qi)

q (3 + 2qi) = 1 + 2qi

q =
1 + 2qi

3 + 2qi

.

Hence there is only one possibility for a strategy of type i+1, and it is of the
form stated in the induction hypothesis. If the searcher uses this strategy
and the mobile hider hides in A the hider expects

ui+1 = 1 + 2qi+1

and if he hides in B and then A he expects the same (by the construction of
qi+1). If he hides in B and continues with any other strategy, except those
which hide in B on every one of the next i moves, he also expects the same
by the induction hypothesis.

Finally the immobile hider will be found in expected time

wi+1 = qi+1 + (1 − qi+1) (1 + wi)

= 1 + (1 − qi+1) wi.

The induction step is complete.

Note that if the searcher uses Si and the hider responds optimally, the
searcher will find the hider in expected time

vi(p) = pwi + (1 − p) ui.
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Note also that if the searcher uses Si the mobile hider will be indifferent
between all his pure strategies (i.e. all sequences of A’s and B’s) except those
which hide in B on every one of the first i moves. The included strategies
all give him ui in expectation whilst the excluded strategies all give wi in
expectation. Since wi < ui as the mobile hider does not wish to be found,
he would be content with this. Also, if the immobile hider is staying in B
because he wants to be found, he would be happy to remain immobile and
get wi instead of ui.

Theorem 8 In the two box evasion game with immobility probability p, there
is at most one type ∞ strategy, S∞, which is a possible optimum strategy for
some p. This strategy has qj = 1

2
for all j, and finds the hider (mobile or

immobile) in expected time 2.

Proof By Theorem 5 and Lemma 6 a type ∞ strategy could be optimal
only for p < 2

3
. So the mobile hider should also be using a proper probability

mixture of A and B on the first move. Supposing the strategy is given by
s1, s2, . . .. The mobile hider must be indifferent between starting with A and
starting with B. Further, if the hider hides in B and is not found we are back
to the same position, so once again he must be indifferent between continuing
with A or with B. And so on.

So the mobile hider must be indifferent at the start between starting with A
(then random) or starting with B followed by A (then random). Hence

1 + 2s1 = s1 + (1 − s1) [2 (1 − s2) + 4s2]

1 + s1 = 2 (1 − s1) (1 + s2)

s2 =
1 + s1

2 (1 − s1)
− 1

=
3s1 − 1

2 (1 − s1)
.

If the mobile hider starts by hiding in B and is not found he will then be
indifferent between continuing with A or with B followed by A. This gives

s3 =
3s2 − 1

2 (1 − s2)

and in general

sj+1 =
3sj − 1

2 (1 − sj)
. (1)
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Note that (1) implies that if 1
2

< sj < 1 then sj+1 > sj. Thus, s1 > 1
2

implies
that we will obtain an increasing sequence of sj’s. There can be no limit,
s ≤ 1, to that sequence because then s would have to satisfy s(1 + 2s) = 1
which is impossible because s > 1

2
. Thus for some j, sj ≥ 1. Similarly if

0 < sj < 1
2

then sj+1 < sj. Thus, s1 < 1
2

implies that we will obtain a
decreasing sequence of sj’s. There can be no limit, s ≥ 0, to that sequence
because then s would have to satisfy s(1+2s) = 1 which is impossible because
0 ≤ s < 1

2
. Thus for some j, sj < 0.

It is clear that in general starting with an arbitrary s1, after some iterations
we would get a sj which was negative or more than 1, or that we find sj = 1
having found the Sj strategy. The only other possibility is sj = 1

2
for all j.

This means that whatever the hider does he will be found in expected time
2.

S∞ is the strategy R, S1 is BR, and S2 is the mixture
(

3
5
, 2

5

)

of BR and
ABR. The payoff table now becomes:

Table 2
Payoffs to the hider with searcher strategies Si

Searcher
S∞ S1 S2 S3 S4 . . .

Immobile hider 2 1 7
5

w3 w4

AR 2 3 11
5

u3 u4

Mobile BAR 2 1 11
5

u3 u4

hider BBAR 2 1 7
5

u3 u4

BBBAR 2 1 7
5

w3 u4

BBBBAR 2 1 7
5

w3 w4

. . . . . .

When Si is used against an immobile hider the expected finding time is wi;
when it is used against a mobile hider using the n’th listed strategy for the
mobile hider, the expected finding time is ui for n ≤ i and wi for n > i.

Now we can find explicit formulas for qi, ui, and wi as

ui = 2 +
3

4i − 1

qi =
4i + 2

2 (4i − 1)
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wi = 2 −
3 (2i − 1)

4i − 1

=
2i+1 − 1

2i + 1
.

(It is easy to check that these formulas are correct.)

If the searcher uses strategy Si her maximum expected loss is

vi(p) = pwi + (1 − p)ui

= 2 + ci − p (ui − wi)

= 2 + ci − pdi

where

ci =
3

4i − 1

and

di = ui − wi

=
3 · 2i

4i − 1
.

The figure shows v1(p), . . . , v3(p) and the line v = 2 which the searcher can
obtain with S∞.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5
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v

v
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1

2

3

Figure 1. Value functions v1, v2, v3, and the line v = 2
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Now vi(p) = vi−1(p) when

p = pi =
3 · 2i

4i + 2
.

Since the wi are increasing and the ui are decreasing, vi is better than vi−1

for the searcher when p < pi. Since we have shown that the searcher must
choose a strategy from the set Si for i = 1, 2, 3, . . . ,∞, he should use Si when
p is in the range

pi+1 < p < pi

and should use S∞ only when p = 0. Since Theorem 2 implies that there
exists an optimal search strategy for any p, 0 ≤ p ≤ 1, we have now shown:

Theorem 9 Let

pi =
3 · 2i

4i + 2
i = 1, 2, . . .

and

qi =
4i + 2

2 (4i − 1)
.

Then in the two box evasion game with immobility probability p with pi+1 <
p < pi, the unique optimum strategy for the searcher is to look in box B with
successive probabilities qi, qi−1, . . . , q1 = 1 until B is actually searched, and
then switch to looking equiprobably thereafter. This strategy guarantees for
the searcher (in expectation)

vi(p) = pwi + (1 − p)ui

where

wi =
2i+1 − 1

2i + 1

and

ui = 2 +
3

4i − 1
.

Against this searcher strategy, the mobile hider will obtain ui in expectation
from all his pure strategies (i.e. all sequences of A’s and B’s) except those
which hide in B on every one of the first i moves. The excluded strategies
all give wi < ui in expectation. The immobile hider is found in expected time
wi.
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The table shows the calculations for the first few intervals.

Table 3
Data for S1 to S5

i Strategy pi+1 pi qi ui wi

1 S1 0.667 1 1 3 1
2 S2 0.364 0.667 0.600 2.200 1.400
3 S3 0.186 0.364 0.524 2.048 1.667
4 S4 0.094 0.186 0.506 2.012 1.824
5 S5 0.047 0.094 0.501 2.003 1.909

...
...

...
...

...
...

Notice that pi → 0 as i → ∞.

4 Behavioural approach

The game is specified by one parameter, p, the probability of immobility,
which both players know at the start of the game. Given p, suppose that
with optimal play the searcher will look in cell B with probability q(p) and
the hider will (if mobile) hide in cell A with probability r(p). If the searcher
looks in A and does not find the hider she will change her value for p using
Bayes’ theorem. However, the hider will know she is updating her probability
(because he knows that she has looked in A and not found him), and he can
also calculate her new value p′ of p, so we return to the same game with a
different starting parameter. If the searcher looks in B and the hider hides in
A they both switch to random thereafter. In any other case the game ends.
So all we need are the functions q and r and the Bayesian updating formula
to play the game. What are these functions?

We have already found the searcher’s q function:

q(p) = qi =
4i + 2

2 (4i − 1)
for pi+1 < p < pi.

The hider’s r function can be found because the mobile hider must randomise
between A and B so that the searcher is indifferent between the strategy BR
and the strategy ASi−1 when pi+1 < p < pi with i > 1. The strategy BR
gives

p · 1 + (1 − p) [(1 − r) · 1 + r · 3]
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and ASi−1 gives

p (1 + wi−1) + (1 − p) [r · 1 + (1 − r) (1 + ui−1)] .

Equating these gives

r(p) =
vi−1(p)

(1 − p) (2 + ui−1)
for pi+1 < p < pi.

r(p) can be re-expressed as

r(p) =
vi(p) − 1

2(1 − p)
for pi+1 < p < pi

=
2 + 4i − 3 · 2ip

2 (4i − 1) (1 − p)
.

This graph shows the two functions:
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0.0

0.2

0.4

0.6

0.8

1.0

p

q, r

qr

Figure 2. q and r as functions of p

With optimal play, the value of the game is v(p) where

v(p) = vi(p) for pi+1 < p < pi

and this function is the lower envelope of the family of lines whose first three
members were graphed in Figure 1.
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After one move, if the searcher looks in A and the hider hides in B, p is
updated using Bayes’ theorem. The new p is

p′(p) =
p

1 − (1 − p) r(p)
.

It is easy to check that
p′(pi+1) = pi

so that until the hider is found or the searcher looks in B, the value of p
moves from one interval to the next higher in each time period. We have
now proved:

Theorem 10 Let

pi =
3 · 2i

4i + 2
.

Then in the two box evasion game with immobility probability p, pi+1 < p <
pi, the unique optimum first move for the mobile hider is to hide in box A
with probability r(p), where

r(p) =
2 + 4i − 3 · 2ip

2 (4i − 1) (1 − p)

and to switch to equiprobable hiding if he does hide in A and is not found. If
he hides in B and is not found, he should update p to

p′(p) =
p

1 − (1 − p) r(p)

where p′(p) will satisfy
pi < p′(p) < pi−1.

He then iterates with p′ and i − 1 instead of p and i. Eventually he will
actually hide in A or he will reach the situation p′ > 2

3
and i = 1 when he

will hide in A with probability 1.

5 Behavioural derivation

It is of interest to give an alternative derivation of our results based entirely
on the behavioural approach. Given p, let v(p) be the value of the game. Let
u(p) be the value of the game given that the hider is actually mobile, and w(p)
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be the value of the game given that the hider is actually stationary. Suppose
that the searcher (playing optimally) searches box B with probability q(p),
and the hider (playing optimally) hides in box A with probability r(p). Once
the searcher looks in cell B she will switch to q = 1

2
until the hider is found,

but until then she will use some sequence q(p), q′(p), q′′(p), . . .. u(p) must be
the value that can be obtained by a mobile hider making a best response to
this searcher strategy. If the hider hides in B and is not found, the searcher
will then use the strategy q′(p), q′′(p), q′′′(p), . . . which must be a best strategy
for her updated p, say p′. Let the game starting with p = p′ have value v′

and new values u′ and w′ for u and w.

Theorem 5 established for 2
3
≤ p ≤ 1

q(p) = r(p) = 1

w(p) = 1

u(p) = 3

v(p) = 3 (1 − p) + p = 3 − 2p.

By Lemma 6 if p < 2
3

both players will make a random choice where to hide
or search on the first move. If the hider discovers he is mobile, and then
chooses, whichever choice he makes will give him the same value u(p). So for
p < 2

3
we have

u = (1 − q) + 3q = 1 + 2q if mobile hider chooses A
u = q + (1 − q) [1 + u′] = 1 + (1 − q)u′ if mobile hider chooses B

Now in fact the first equation

u(p) = 1 + 2q(p)

holds for all p, since it holds for 2
3
≤ p ≤ 1. So for p < 2

3
the second equation

gives

1 + 2q = 1 + (1 − q) [1 + 2q′]

q =
1 + 2q′

3 + 2q′
.

Alternatively

q′ =
3q − 1

2 (1 − q)
.
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It is clear that in general starting with an arbitrary q(p), after some iterations
we would get a q which was negative or more than 1. The only way out is
q = 1

2
or that the sequence of ascending q’s ends with 1. This implies we can

iterate backwards from 1 to get a magic sequence of q’s — 1, 3
5
, 11

21
, . . ..

To eliminate the possibility of q = q′ = 1
2

(which implies the searcher con-
tinues to look in 2 with probability 1

2
, so u = v = w = 2) look at the choices

for the searcher. We have

v = p + (1 − p) [(1 − r) + 3r] = 1 + 2 (1 − p) r if searcher chooses B.

But then (1 − p) r = 1
2
(v − 1) = 1

2
and the Bayesian update is

p′ =
p

1 − (1 − p) r

= 2p

which must lead (for p > 0) to some p′ > 2
3

in which case q′ 6= 1
2
.

Hence for each p < 2
3

the searcher must use one of the discrete sequence of
q’s, q1, q2, . . . (i.e. 1, 3

5
, 11

21
, . . .) and then follow the sequence backwards until

she looks in B or she reaches q1 = 1.

Suppose for a given p, a best strategy for the searcher is to use strategy Si,
i.e. to start with q = qi where i = i(p) with corresponding u(p) = ui and
w(p) = wi. We have found the sequence of qi’s, and we have that

ui = 1 + 2qi,

and so the sequence of ui’s is determined as 3, 11
5
, 43

21
, . . ..

The recursion for w is

w = q + (1 − q) (1 + w′)

= 1 + (1 − q) w′

so
wi = 1 + (1 − qi) wi−1.

This gives the sequence of wi’s starting 1, 7
5
, 5

3
, . . ..

When the searcher uses strategy Si, and the probability of immobility is p,
the value she expects is

vi(p) = pwi + (1 − p) ui
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and this will be the value for the game if Si is a best strategy for p, i.e.

v(p) = vi(p)(p).

It remains to find the values of p for which the searcher should use qi. We
could argue (as in section 3) that the searcher must choose

i(p) = argmini {vi(p)} .

So that v(p) will be the lower envelope of the set of lines {vi(p)}.

Alternatively, note that q1 is used when p > 2
3

and is not used when p < 2
3
.

Let p2 = 2
3
: then p2 solves

v2(p) = v1(p).

Also

p′(p2) =
2p2

3 − v (p2)

= p1

Let p3 be the value of p which solves

v3(p) = v2(p),

then if p3 < p < p2 since v is a continuous function of p, we must have
q(p) = q2 and v(p) = v2(p). We also find that

p′(p3) =
2p3

3 − v (p3)

= p2

so if we had q(p) = q2 for some p < p3 the searcher would not follow this q2

with q1. Hence q2 is used within (p3, p2) and never used outside [p3, p2].

Continuing in this way we find the same intervals as before.

Also note that from the equations

ui = 1 + (1 − qi)ui−1

and
wi = 1 + (1 − qi) wi−1
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we obtain
vi(p) = 1 + (1 − qi) vi−1(p).

However at p = pi we have vi(pi) = vi−1(pi). Hence we must have

vi(pi) =
1

qi

.

6 Related problems

6.1 More than 2 boxes

Suppose there are 3 boxes with an immobile hider forced to stay in box 3. At
some stage of the game the searcher might have looked in box 3 and found
nobody. She will then know that the hider is mobile. But, unlike the two box
case, the hider will not know that she knows that. Similarly, if the mobile
hider hides in box 3 on the first move and is not found, he will know that
the searcher does not know that he is mobile, but the searcher will not know
that he knows that. The situation seems more complicated than the two box
case.

It seems obvious that, for any time period, if the searcher decides to not
to look in the agreed meeting box, say box n, then he should look in any
of the boxes 1, 2, . . . , n − 1 with an equal probability, 1

n−1
, and similarly for

the hider. Thus, if both the searcher and the evader are not in cell n, then
the probability of capture is 1

n−1
. This leads to the following more general

formulation. Assume that within the rendezvous-evasion problem there are
two boxes A and B, as in the original problem. However, for any time period,
if both the searcher and the evader are in A, then there is a probability α
of capture, where 0 < α ≤ 1 is a known constant, and if capture does not
occur, neither will know which box the other was in. If they are both in B,
then the hider is discovered at once. If they are in different boxes, the hider
is not caught. The solution to this problem seems quite complex even for the
three box problem in which α = 1/2.
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6.2 Continuous time

If the searcher looks in box A, and the hider is there, she finds him in a
Poisson process with rate 1. Similarly for box B. How should the two
players behave if they can switch boxes at zero cost at any time?
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