

On the system of two all_different predicates

G. Appa1, D. Magos2, I. Mourtos1

1London School of Economics and Political Science

Houghton Street, London WC2A 2AE

2Technological Educational Institute of Athens
Ag. Spyridonos Str., Egaleo 122 10, Greece

Working Paper No: LSEOR 05.74 ISBN: 07530 1696 6

First published in Great Britain in 2005
by the Department of Operational Research

London School of Economics and Political Science

Copyright © The London School of Economics and Political Science, 2005

The contributors have asserted their moral rights.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the prior
permission in writing of the publisher, nor be circulated in any form of binding or
cover other than that in which it is published.

Typeset, printed and bound by:

The London School of Economics and Political Science
Houghton Street
London WC2A 2AE

Working Paper No: LSEOR 05.74 ISBN No: 07530 1696 6

On the system of two all_different predicates

G. Appa1, D. Magos2,∗, I. Mourtos1

1London School of Economics, London WC2A 2AE, UK.

email:{g.appa,j.mourtos}@lse.ac.uk

2Technological Educational Institute of Athens, Ag. Spyridonos Str., Egaleo 122 10, Greece.

email:dmagos@teiath.gr

Keywords: combinatorial problems, all_different predicate, constraint logic programming, facet

1 Introduction

Numerous real-life problems require certain variables to be assigned different values. This requirement is

encapsulated in constraints of difference. If x1, x2 denote two problem variables, the (nonlinear) constraint

of difference is x1 6= x2. Given that variables x1,..., xn must all be pairwise different, a constraint of the

type all_different(x1, ..., xn) can be used to formulate in a compact manner the
n(n−1)

2 binary constraints

of difference. Such an n-ary constraint is also called a predicate because it imposes a logical condition on

its variable set. Constraint Programming (CP) makes use of such elaborate predicates in order to provide a

natural modelling framework ([2]). Such models are solved by CP techniques designed to produce feasible

solutions. Alternatively, Integer Programming (IP) methods can be employed in cases where a logic predicate

can be represented by linear inequalities involving integer variables ([1]). Apparently, such representations are

important not only because they enrich the arsenal of resolution techniques but also because they motivate

the integration of CP and IP in a unified modelling and algorithmic framework (see [3]).

An efficient representation of a predicate must be tight, i.e. it must include facet-defining inequalities

of the convex hull of integer solutions satisfying the predicate. Such representations have been proposed

for the all_different predicate ([8]), for cardinality rules ([6]) and for the sum constraint ([7]). A next step

would be to derive such representations for sets of more that one predicates. The current paper works

towards this direction by studying a system of two all_different constraints which may share a number of

variables. In particular, we examine the polytope defined by the convex hull of integer vectors satisfying the

system of the two all_different predicates. The dimension of this polytope is established and subsequently

two classes of facet-defining inequalities are exhibited. These classes are of exponential size, a fact that
∗Corresponding address: D. MAGOS, 30 Theodorou Geometrou Str., Athens 11743, Greece. Email:dmagos@teiath.gr

1

41

2
3 5

6

Figure 1: A graph-coloring example

prohibits their explicit use in a Linear Programming (LP) model. We resolve this difficulty by introducing

a separation algorithm of low complexity, which provides only the facet-defining inequalities violated by a

given vector. We also note that all these results can be directly applied to the optimization problem involving

the (min-)maximization of a linear function over the system of the two all_different predicates.

2 Mathematical formulation and applications

The system consists of two all_different predicates, each including n variables. Let J1 (J2) denote the set

indexing the variables of the first (second) predicate, where |J1| = |J2| = n. Let also D (D ⊂ Z) denote the

domain of each variable with |D| = k. For the system to be feasible, it must be that k ≥ n. For simplicity,

assume D = {0, 1, ..., k − 1}. The system can be written as follows.

all_different{xj : j ∈ J1}, (1)

all_different{xj : j ∈ J2}, (2)

xj ∈ D,∀j ∈ J1 ∪ J2

Let T denote the (possibly empty) subset of indices of the variables appearing in both predicates. In

short, T = J1 ∩ J2 with |T | = t. We denote as Ip = Jp\T, for p = 1, 2, i.e. Ip is the index set of the

non-common variables of each predicate. Let us provide two examples.

Example 1 (Graph coloring [4]) Consider the graph of Figure 1. We wish to color each node in such a

way that the endpoints of every edge are assigned a different color. For simplicity, assume that there are

four colors available for every node, namely D = {red, blue, green, orange}. Let xi denote the color used for

node i, with Di = D, for i = 1, ..., 6. Observe that this graph is formed by two cliques that have two nodes in

common. Clearly, the colors assigned to the nodes of each clique must be pairwise different. Therefore, the

2

coloring problem for this graph can be modelled via two all_different predicates:

all_different{x1, x2, x3, x4},

all_different{x3, x4, x5, x6}

According to our notation, J1 = {1, 2, 3, 4}, J2 = {3, 4, 5, 6}, T = {3, 4}.

Example 2 (Timetabling) Consider a two-day course, where students are allocated into five groups {a, b, c, d, e}.

Every group is assigned to a single teacher on each day of the course. To minimise the effort for teach-

ers working on both days, the timetable should assign to them a single group throughout the course. Let

the teachers available on the first and second day of the course be {1, 2, 3, 4, 5} and {3, 4, 5, 6, 7}, respec-

tively, i.e. teachers {3, 4, 5} are teaching on both days. If xi denotes the group tutored by teacher i, with

Di = {a, b, c, d, e}, the timetabling problem for this course is modelled as follows:

all_different{x1, x2, x3, x4, x5},

all_different{x3, x4, x5, x6, x7}

Again, our notation implies that J1 = {1, 2, 3, 4, 5}, T = {3, 4, 5} and I1 = {1, 2}.

The convex hull of integer solutions to the system (1), (2) is denoted as PI , i.e.

PI = conv{x ∈ D2n−t : (1), (2) are satisfied}

Let PL denote a linear programming (LP) relaxation of PI . For k > n, we consider PL to be

k − 1 ≥ xj ≥ 0,∀j ∈ J1 ∪ J2

whereas if k = n, PL is described by

X
{xj : j ∈ J1} =

n(n− 1)
2

, (3)X
{xj : j ∈ I2}−

X
{xj : j ∈ I1} = 0, (4)

xj ≥ 0,∀j ∈ J1 ∪ J2

To facilitate the discussion of the following section, we adopt some conventions. For a matrixX, letX(i, j)

denote the element appearing at row i and column j. Let#col(X) (# row(X)) denote the number of columns

(rows) of X. Assume that Y is another matrix such that #col(Y) ≤ #col(X) and #row(Y) ≤ #row(X).

3

For conciseness, we introduce the operation Y ← X to imply the assignment of X(i, j) to Y (i, j), where

indices i and j span only the rows and columns of matrix Y .

3 Facets of PI

We commence the polyhedral analysis of PI by establishing its dimension. By definition, PI ⊂ PL, therefore

dimPI ≤ dimPL. We will prove that dimPI = dimPL by exhibiting dimPL+1 affinely independent vectors

of PI . First observe that, for k > n, PL is full-dimensional, whereas for k = n PL is defined in terms the

equality constraints (3), (4), which form a system of full row rank.

Theorem 3

dimPI =

⎧⎪⎨⎪⎩ 2n− t, if k > n,

2(n− 1)− t, if k = n

Proof. Let T = {n − t + 1, ..., n}, I1 = J1 \ T = {1, ..., n − t}, I2 = J2 \ T = {n + 1, ..., 2n − t}.

Consider a matrix B, where each row defines an integer point of PI and each column is associated with a

specific variable. Thus, entry B(i, j) is the value of variable xj at point i ∈ PI . For k = n, we consider

#row(B) = 2n− t− 1, whereas for k > n #row(B) = 2n− t.

Let the first n−t columns correspond to variables x1, ..., xn−t, the next t columns to variables xn−t+1, ..., xn

and the last n−t columns to variables xn+1, ..., x2n−t. Hence, the sets of indices I1, T, I2 partition the columns

of B into three sets. By also splitting the rows of B into two sets, we impose the following partitioning of B

into six submatrices:

B =

⎡⎢⎣ CI1 CT CI2

DI1 DT DI2

⎤⎥⎦
Clearly, #col(CI1) = #col(DI1) = n − t, #col(CT) = #col(DT) = t and #col(CI2) = #col(DI2) =

n − t. To illustrate the contents of B, we initially examine the first three submatrices. Matrices CI1 , CT

and CI2 include n rows. The submatrix formed by CI1 and CT contains all cyclic permutations of elements

{n− 1, 0, 1, ..., n− 2}. It is illustrated next (the vertical line separates the entries of CI1 from these of CT)

[CI1 |CT] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n-1 0 · · · n-t-4 n-t-3 n-t-2 n-t-1 · · · n-2

n-2 n-1 · · · n-t-5 n-t-4 n-t-3 n-t-2 · · · n-3

...
...

...
...

...
...

...
...

...

0 1 · · · n-t-3 n-t-2 n-t-1 n-t · · · n-1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Also CI2 ← CI1 , i.e. CI2 is identical to CI1 .

The number of rows for DI1 ,DT ,DI2 depends on k: for k = n it equals n− t − 1, whereas for k > n it

equals n − t. These two cases are examined separately in our proof. We set DI1 ← CI1 to emphasise that

matrix DI1 receives only the first #row(DI1) rows of matrix CI1 . For example, in the case of k = n, the

4

last t+ 1 rows of CI! are not contained in DI1 .

DI1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n-1 0 · · · n-t-4 n-t-3 n-t-2

n-2 n-1 · · · n-t-5 n-t-4 n-t-3

...
...

...
...

...
...

t+1 t+2 · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎦
In an analogous manner, we set DT ← CT .

To better illustrate the construction of submatrix DI2 , it is convenient to consider an alternative parti-

tioning of B:

B =

⎡⎢⎣ CI1,T C̄I2 p

DI1,T D̄I2 q

⎤⎥⎦
where CI1,T = [CI1 |CT], DI1,T = [DI1 |DT], CI2 = [C̄I2 |p], DI2 = [D̄I2 |q] with p, q being column vectors.

The actual contents of D̄I2 and q are analysed within the following cases.

Case 1 k = n

MatrixDI1 includes two top-left to bottom-right diagonals, namely d1, d2, of maximum size (i.e. n−t−1).

Diagonals d1 and d2 include the values B(n+ r, r) and B(n+ r, r + 1), respectively, for r = 1, ..., n− t− 1.

We denote as S the triangular part of DI1 including all the elements above d1. Observe that diagonal d2 is

included in S, while diagonal d1 is not. Thus, S includes the elements B(n + i, j), for i = 1, ..., n − t − 1,

j = i + 1, ..., n − t. Also let Q denote the triangular part of DI1 including all the elements below d1 (but

not d1 itself), i.e. Q includes the elements B(n+ i, j), for i = 2, ..., n− t− 1, j = 1, ..., i− 1. Matrix D̄I2 is

identical to DI1 except from its diagonal d1, which is omitted and instead placed in column vector q. Hence,

matrix D̄I2 contains d2 as its single main diagonal. A schematic illustration of DI1 and DI2 is shown below.

DI1 =

⎡⎢⎢⎢⎢⎣
. . . S

d1

Q
. . .

⎤⎥⎥⎥⎥⎦ , DI2 =

⎡⎢⎣ . . . S

Q
. . .

¯̄̄̄
¯̄̄ d1

⎤⎥⎦

5

As an example, we illustrate matrix B for n = 6 and t = 2. Notice that the bordered elements belong to

diagonal d1 and appear also at the last column of DI2 .

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 0 1 2 3 4 5 0 1 2

4 5 0 1 2 3 4 5 0 1

3 4 5 0 1 2 3 4 5 0

2 3 4 5 0 1 2 3 4 5

1 2 3 4 5 0 1 2 3 4

0 1 2 3 4 5 0 1 2 3

5 0 1 2 3 4 0 1 2 5

4 5 0 1 2 3 4 0 1 5

3 4 5 0 1 2 3 4 0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The following series of operations amount to subtracting the columns of [CI1 |DI1]T from those of

[CI2 |DI2]T . We set O ← CI2 − CI1 and E ← DI2 − DI1 . Observe that O is a matrix of zeros since

CI1 = CI2 . By substituting in B the submatrix [CI2 |DI2]T by [O|E]T , we obtain matrix B̄. Evidently,

rankB = rank B̄. Let E = [Ē|q̄] and O = [Ō|0], where q̄ is the last column of E and 0 is a column vector of

zeros. Analytically,

B̄ =

⎡⎢⎣ CI1,T Ō 0

DI1,T Ē q̄

⎤⎥⎦
By construction, Ē is a square upper triangular matrix with non-zero elements in its main diagonal. To see

this, notice that Q appears in the same position both in DI1 and DI2 and d1, d2 differ in all elements. As

a result, Ē(i, i) = d2(i) − d1(i) 6= 0, for every i. Hence, Ē is non-singular. CI1,T is a non-negative square

cyclic matrix, therefore also non-singular. The determinant of the matrix obtained from B̄ by deleting its

last column (i.e. [0|q̄]T) is equal to detCI1,T · det Ē 6= 0. Hence, the matrix B̄ (B also) is of full row rank.

Thus, the rows of B illustrate 2n− t− 1 linearly independent vectors of PI .

Case 2 k > n

For this case we must exhibit 2n− t + 1 affinely independent points of PI . Matrix B remains as in the

previous case except for a few changes. First, recall that submatrix DI1 (and also DT , DI2) includes one

additional row in this case. As a result, DI1 is now a square submatrix with a single diagonal of maximum

size (i.e. n − t), namely d1. Moreover, the last entry of d is set to n, i.e. B(2n− t, 2n − t) ← n. Consider

the matrix

B0 =

⎡⎢⎣ B

g

⎤⎥⎦
6

where row g = (0, 1, ..., n − 2, n, 0, ..., n − t − 1). It is sufficient to prove that the 2n − t + 1 rows of B0,

each corresponding to an integer point of PI , are affinely independent. Based on the definition of affine

independence ([5]), this is equivalent to showing the non-singularity of the matrix

M = [B0| e] =
∙
B

g

¯̄̄̄
e

¸

where e (# row(e) = 2n− t+ 1) is a column vector of 1s. With respect to matrix B0, we subtract the first

n − t columns from the last n − t columns (i.e., perform the same elementary column operations as in the

case of k = n), thus obtaining the submatrix [B̄|ḡ]T , where ḡ = (0, 1, ..., n− 2, n, 0, ..., 0). These operations

transform the matrix M to M̄ which has the same rank as M . We consider the following partitioning of M̄.

M̄ =

⎡⎢⎢⎢⎢⎣
CI1,T O e1

DI1,T E e2

ḡ 1

⎤⎥⎥⎥⎥⎦
where O,E are defined exactly as in the previous case and e1, e2 are column vectors of ones of appropriate

size. Also observe that O,E are square submatrices with O containing zeros and E being upper diagonal

with non-zero entries in its leading diagonal.

To transform the last column of M̄ into the vector (0, ..., 0, 1)T , we perform the following elementary

operations: we subtract (a) the last row of [CI1,T |O|e1] from all other rows of this submatrix, and, (b) the

row [ḡ|1] from the last row of [CI1,T |O|e1] and from the rows of [DI1,T |E|e2]. The derived matrix, namely

M 0, has the same rank as M̄ . Analytically,

M 0 =

⎡⎢⎣ C 0I1,T O0

D0
I1,T

E0

⎤⎥⎦, where E0 =

⎡⎢⎣ E 0

0T 1

⎤⎥⎦, C 0I1,T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n-1 -1 -1 -1 · · · -1 -1 -1

n-2 n-2 -2 -2 · · · -2 -2 -2

n-3 n-3 n-3 -3 · · · -3 -3 -3

...
...

...
...

...
...

...
...

2 2 2 2 · · · 2 -(n-2) -(n-2)

1 1 1 1 · · · 1 1 -(n-1)

0 0 0 0 · · · 0 0 -1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and O0 = [O|0] with 0 being a zero column vector.

It is easy to see that E0 is non-singular. To show that C0I1,T is also non-singular, we perform operations

in terms of rows and columns of M 0 that leave both O0 and E0 unaffected. First, we permute the columns

of C 0I1,T in such a way that its first column is shifted between columns n − 1 and n. Then, to each row

j ∈ {2, ..., n − 1}, we add the multiple of the first row by (n − j). The resulting matrix is upper diagonal

with non zero elements in its leading diagonal. Hence, detM 0 = detC0I1,T · detE
0 6= 0 implying that M̄ , M

7

are non-singular.

The facets of the polytope defined as the convex hull of all vectors satisfying a single all_different

constraint are given in [8]. For the system studied here, the corresponding classes of inequalities are

X
{xs : s ∈ S} ≥ |S| (|S|− 1)

2
,∀S ⊆ Jp, p = 1, 2, (5)X

{xs : s ∈ S} ≤ |S| (2k − |S|− 1)
2

,∀S ⊆ Jp, p = 1, 2 (6)

We note that if k = n then S ⊆ Jp is replaced by S ⊂ Jp (strict inclusion). In this case, (5) and (6), taken

for S = Jp, are satisfied as equalities by all points of PI therefore they cannot be facet-defining. For all other

cases, we prove that (5), (6) induce facets of PI .

We illustrate the result for inequality (5) and for S ⊂ J2, all other cases of (5), (6) being symmetrical.

Hence, for H = {i1, i2, ..., ih} ⊂ J2, consider the inequality

xi1 + xi2 + · · ·+ xih ≥
h(h− 1)

2
(7)

Define F = {x ∈ PI : xi1 + xi2 + · · ·+ xih =
h(h−1)

2 }. Let A denote the coefficient matrix of the minimum

equality system for PI . To prove that (7) is facet-defining, we show that if there exists an equation ax = a0

satisfied by all points of F , then [a|a0] can be written as a linear combination of the rows of A and the

coefficients of (7) (see [5]). Notice that, for k = n, the minimum equality system is defined by the linearly

independent equalities (3), (4), while there exists no equality system for k > n. Therefore, rankA = 2 for

k = n, while rankA = 0 for k > n. We examine these two cases separately.

Theorem 3 For k = n, a ∈ R2n−t, a0 ∈ R, if ay = a0 holds for every y ∈ F , there exist scalars λ1,λ2,π

such that

ai =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1, i ∈ T \H,

λ2, i ∈ I2 \H,

λ1 − λ2, i ∈ I1,

λ1 + π, i ∈ T ∩H,

λ2 + π, i ∈ I2 ∩H

(8)

and

a0 = λ1
n(n− 1)

2
+ π

h(h− 1)
2

(9)

Proof. Evidently, there exists at least one s ∈ (I2 ∪ T)\H. If s ∈ I2 define λ1 = a1 + as, λ2 = as,

whereas if s ∈ T define λ1 = as, λ2 = as − a1. By substituting in (7), we obtain the coefficients of the a

8

Table 1: Values of ai
s ∈ I2 s ∈ T

i ∈ T \H a1 + as as
i ∈ I2 \H as as − a1
i ∈ I1 a1
i ∈ T ∩H a1 + as + π as + π
i ∈ I2 ∩H as + π as − a1 + π

Table 2: Proving (8) for i 6∈ H
s ∈ I2 s ∈ T

i ∈ T \H x1 = 1, xs = 1, xi = 0,
x̄1 = 0, x̄s = 0, x̄i = 1

xi = 0, xs = 1,
x̄i = 1, x̄s = 0

i ∈ I2 \H
xs = 0, xi = 1,
x̄i = 0, x̄s = 1

x1 = 1, xi = 1, xs = 0,
x̄1 = 0, x̄i = 0, x̄s = 1

i ∈ I1 x1 = 0, xi = 1, x̄1 = 1, x̄i = 0

vector (ai,∀i ∈ J1 ∪ J2) illustrated in Table 1. We must prove that each ai is equal to the value depicted in

the corresponding cell of the table. We briefly describe the methodology followed. For each case, we consider

two integer points x, x̄ ∈ F . By hypothesis, both points satisfy ay = a0, therefore equation ax = ax̄ holds.

By properly selecting x and x̄, the desired result is obtained after cancelling identical terms in equation

ax = ax̄.

We illustrate analytically this approach for i ∈ T \H, and for s ∈ I2. Assume an integer point x ∈ F

such that x1 = 1, xs = 1, xi = 0. Notice that this point satisfies both all_different constraints and also (7)

as an equality. By hypothesis, it holds that ax = a0 or analytically:

a1 + as + 0 · ai +
X
{ajxj : j ∈ (I1 ∪ I2 ∪ T)\{1, s, i}} = a0 (10)

Also consider the integer point x̄, such that x̄1 = 0, x̄s = 0, x̄i = 1, x̄j = xj for all j ∈ (I1 ∪ I2 ∪ T)\{1, s, i}.

Observe that x̄ ∈ F . We can write equation ax̄ = a0 in the following form:

0 · a1 + 0 · as + ai +
X
{ajxj : j ∈ (I1 ∪ I2 ∪ T)\{1, s, i}} = a0 (11)

It is easy to see that equations (10) and (11) imply ai = a1 + as, as required.

The remaining cases for i /∈ H can be checked in the same fashion through Table 2. This table depicts

only the relevant values of x, x̄ ∈ F ; the remaining ones have identical values in both x and x̄, thus resulting

in the corresponding terms of ax = ax̄ to cancel out.

9

It remains to prove our claim for i ∈ H. For s ∈ I2, define

πi =

⎧⎪⎨⎪⎩ ai − a1 − as, for i ∈ T ∩H

ai − as, for i ∈ I2 ∩H
(12)

We will show that all πi are equal. Let is, iq ∈ T ∩H. Consider an integer point x ∈ F with xiq = 1, xis = 0

and x̄ having x̄is = 1, x̄iq = 0, x̄m = xm, for all m ∈ (J1 ∪ J2) \ {is, iq}. Then, equation ax = ax̄, after

cancelling identical terms and substituting the remaining terms from (12), yields πis = πiq . A similar result

is valid for is, iq ∈ I2 ∩H. Finally, let iq ∈ T ∩H and is ∈ I2 ∩H. Consider an integer point x ∈ F with

xiq = 1, x1 = xis = 0 and x̄ having x̄1 = x̄is = 1, x̄iq = 0, x̄m = xm, for all m ∈ (J1 ∪ J2) \ {1, is, iq}. Thus,

ax = ax̄ yields aiq = ais + a1. By substituting terms aiq , ais from (12) and cancelling out identical terms,

we obtain πis = πiq = π.

For s ∈ T , define

πi =

⎧⎪⎨⎪⎩ ai + a1 − as, for i ∈ I2 ∩H,

ai − as, for i ∈ T ∩H

The proof is carried out in a manner analogous to that of the previous case.

The proof of (8) is complete. To show (9), consider s ∈ I2 and an arbitrary integer point x ∈ F . Then

ax = a0 can be written as

a0 =
X
i∈I1

aixi +
X

i∈(I2∪T)\H
aixi +

X
i∈H

aixi

By substituting all terms from Table 1, we obtain

a0 = a1
X
i∈I1

xi + as
X

i∈I2\H
xi + (a1 + as)

X
i∈T\H

xi

+(as + π)
X

i∈I2∩H
xi + (a1 + as + π)

X
i∈T∩H

xi

= a1
X

i∈I1∪T
xi + as

X
i∈I2∪T

xi + π
X
i∈H

xi

= (a1 + as)
n(n− 1)

2
+ π

h(h− 1)
2

In an analogous manner we show (9) for s ∈ T .

Establishing an analogous result for k > n is simpler.

Theorem 4 For k > n, a ∈ R2n−t, a0 ∈ R, if ay = a0 holds for every y ∈ F , there exists a scalar π such

that

ai =

⎧⎪⎨⎪⎩ 0, i ∈ (J1 ∪ J2) \H,

π, i ∈ H
(13)

10

and

a0 = π
h(h− 1)

2
(14)

Proof. As in the previous proof, we define πi = ai, for all i ∈ H, and prove that all πi are equal. Let

is, iq ∈ H. Since H ⊂ J2, we must examine the following cases: (i) is, iq ∈ I2 ∩H, (ii) is, iq ∈ T ∩H and

(iii) is ∈ I2 ∩H, iq ∈ T ∩H. For the first two cases, the proof proceeds exactly as in Theorem 3. For the

third case, consider an integer point x ∈ F such that xiq = 1, xis = 0 and xi 6= 1, for all i ∈ I1. Such a point

exists only for k > n, since there are enough values in D \ {1} to be assigned to the variables indexed by I1.

Consider also x̄ ∈ F such that x̄iq = 0, x̄is = 1, x̄i = xi, for all i ∈ (J1 ∪ J2) \ {is, iq}. Equation ax = ax̄

yields πiq = πis = π.

To show (14), consider an arbitrary integer point x ∈ F . Then,

ax =
X
i∈H

aixi +
X

i∈(J1∪J2)\H
aixi = π ·

X
i∈H

xi + 0 ·
X

i∈(J1∪J2)\H
xi = π

h(h− 1)
2

The above theorems imply the following.

Corollary 5 For n ≥ 2, inequalities (5) and (6) define facets of PI .

4 A separation algorithm

Linear programming can be employed to provide a point of PL. Checking whether this solution violates
the facet-defining inequalities (5), (6) constitutes the separation problem. Separation is important because

violated inequalities can be added to the linear program, thus obtaining a tighter LP relaxation. In our case,
solving the separation problem by a brute-force method is not efficient since the number of inequalities is
exponential in n, i.e. equals 2(2n−1). Next, we present a polynomial-time separation algorithm which, given
x ∈ PL, either ends up with a violated inequality belonging to (5), (6) or proves that no such inequality
exists. Comments are included in /* */.

Algorithm 6 /* Input x ∈ PL*/
Step 1:v ← 0, u← 0;

Step 2: Sort the variable of x in ascending order, in terms of their values, deriving {xi1 , xi2 , ..., xin};
Step3:For h = 1, ..., n,

{
v ← v + xih ;

if v < h(h−1)
2 then return; (/* Inequality

Ph
j=1 xij ≥

h(h−1)
2 is violated*/)

u← u+ xin+1−h ;

if u > h(2k−h−1)
2 then return; (/* Inequality

Ph
j=1 xin+1−j ≤

h(2k−h−1)
2 is violated*/)

}

Proposition 7 Algorithm 6 determines in O(n log2 n) steps whether a facet of PI described by (5) (6) is

violated.

11

Proof. Because of the ordering it holds that
Ph

j=1 xij ≤
P
{xs : s ∈ S} for every S ⊆ Jp, |S| = h. Hence

if there exists S (|S| = h) such that
P
{xs : s ∈ S} < h(h−1)

2 then
Ph
j=1 xij <

h(h−1)
2 . The case is similar

for the inequalities (6). The complexity of Step 3 is O(n). Thus, the most expensive operation is the sorting

of the variables (Step 2), which can be accomplished easily in O(n log2 n) time.

References
[1] K. Darby-Dowman, J. Little, Properties of some combinatorial optimization problems and their effect in

the performance of integer programming and constraint logic programming, INFORMS J. Comput. 10
(1998) 276-286.

[2] P. van Hentenryck, Constraint Satisfaction in Logic Programming, MIT Press, Boston, MA, 1989.

[3] J. N. Hooker, Logic Based Methods for Optimization, Wiley-Inter-Science, New York, NY, 2000.

[4] C. Le Pape, Private communication, ILOG S.A., 2004.

[5] W. R. Pulleyblank, Polyhedral combinatorics, in: G. L. Nemhauser, A. H. G. Rinnooy Kan, M. J. Todd,
(Eds.) Optimization, North-Holland, Amsterdam, 1989, pp. 371-446.

[6] H. Yan, J. N. Hooker, Tight Representation of Logic Constraints as Cardinality Rules, Math. Program.
85 (1999) 363-377.

[7] T. H. Yunes, On the sum constraint: relaxation and applications, in: P. van Hentenryck, (Ed.) Principles
and Practice of Constraint Programming - CP2002, LNCS 2470, Springer, Berlin, 2002, pp. 80-92.

[8] H. P. Williams, H. Yan, Representations of the all_different predicate of constraint satisfaction in integer
programming, INFORMS J. Comput. 13 (2001) 96-103.

12

	WP74 Title Page.doc
	Copyright © The London School of Economics and Political Science, 2005
	Working Paper No: LSEOR 05.74 ISBN No: 07530 1696 6

	05074.pdf

