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Abstract 

Research on intertemporal judgments and choices between a smaller-sooner and a larger-later 

outcome has revealed many anomalies to the discounted-utility model. Attempts to account 

for these anomalies within the discounting paradigm have resulted in convoluted and 

psychologically opaque models. We therefore develop a new model of intertemporal choice, 

the tradeoff model, in which choice results from a tradeoff between the perceived time 

difference (interval) and the perceived outcome difference (compensation). This model is both 

more parsimonious and more intuitive than any rival discounting model of comparable scope. 

Moreover, it accurately describes archival data as well as data from a new experiment. 
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Most choices involve tradeoffs between outcomes occurring at different times. 

Examples include deciding whether to party or work, eat or diet, and spend or invest. These 

are intertemporal choices. Much research has been devoted to observing these choices, and 

finding ways to model them. Many of the preference patterns revealed by this research are 

‘anomalies’ to a normative standard derived from economics. In turn, these anomalies have 

been addressed by developing variants of the normative model. Most of these variants are, 

like the normative model itself, delay-discounting models: A value is assigned to each 

outcome, this value is discounted as a function of the delay to the outcome, and the option 

with the highest discounted value is chosen. Very influential delay-discounting models are 

Samuelson’s (1937) discounted-utility model, commonly seen as the normative standard for 

intertemporal choices, and the model of Loewenstein and Prelec (1992), which accounts for 

many preference patterns that are anomalous to the discounted-utility model. 

Delay-discounting models belong to the broad class of alternative-based choice 

models, in which an overall value is assigned to each option and the option with the highest 

value is chosen. Another class is that of attribute-based choice models, in which options are 

compared along their attributes and the option favored by the comparisons is chosen (Payne, 

Bettman & Johnson, 1988).1 The formal modeling of attribute-based choice processes has a 

long tradition in psychology (e.g., González-Vallejo, 2002; Restle, 1961; Tversky, 1969), but 

it has never been undertaken for intertemporal choice. 

In this paper, we develop and apply an attribute-based model of intertemporal choice, 

which we call the tradeoff model. The thrust of this model is that intertemporal tradeoffs are 

not made implicitly, by computing and comparing discounted values, but explicitly, by 

weighing perceived time differences against perceived outcome differences.2 We show that 

the tradeoff model is both more parsimonious and more intuitive than any rival discounting 

model of comparable scope. 

We begin with the basics of discounting theory. We then describe the anomalous 

preference patterns that have been observed and how they have been explained within the 

discounting paradigm. Subsequently, we develop the tradeoff model and apply it to archival 

data as well as data from a new experiment. We end with a discussion of the relation between 

the tradeoff model and other models of choice based on tradeoffs between attribute 

differences, the relation between the tradeoff model and bilinear choice models (among which 

discounting models), and the scope of the tradeoff model within the domain of intertemporal 

choice. 
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Basics of Discounting Theory 

We focus on choices between smaller-sooner (SS) and larger-later (LL) outcomes, such 

as that between $100 in 1 month and $250 in 13 months. The outcomes are designated as xS 

and xL ($100 and $250), and their respective delays as tS and tL (1 and 13 months). According 

to discounting models, intertemporal choices are governed by the discounted values of the two 

options. In delay-discounting models, these are given as 

),()(),(

)()(),(

LLLL

SSSS

xvtdtxV

xvtdtxV

=

=
 

where V(x,t) is the value of x given that it will be received after a wait of t, v(x) is the value x 

will have when it is received, and d(t) is a discount factor decreasing in t. Indifference arises 

when SS and LL have equal discounted values, i.e., 

d(tS)v(xS) = d(tL)v(xL). 

The indifference point allows us to derive the discount fraction, which is a measure of the 

discounting over the interval tS → tL: 
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The discount fraction can be interpreted as the value of outcome x after delay tL relative to its 

value after tS. Thus, a higher value of 
LS ttF →  indicates less discounting. In turn, we can derive 

a one-period discount fraction, which is a measure of the average discounting over the 

interval: 
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where tS and tL are specified in an appropriate unit, usually in years. A higher value of 
LS tt →δ  

indicates less discounting per unit of time. 

Because the discount function d and the value function v are unknown, researchers 

often define their expectations about intertemporal preferences as deviations from a null 

model that assumes constant discounting of outcomes per unit of time. This model, usually 

called the exponential-discounting model (e.g., Keller & Strazzera, 2002), suggests that, for 

any option pair, indifference between SS and LL arises when L

t

S

t
xx LS δδ = .3 Under the null 

hypothesis, δ is constant across option pairs. Research has shown, however, that δ varies with 

many aspects of the option pairs.4 Within the discounting paradigm, this variation has been 

accommodated in two ways, through modifications of the discount function ttd δ=)(  or the 

value function v(x) = x. 
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Preference Patterns and Discounting Theory 

In this section, we describe the anomalous preference patterns addressed by the 

tradeoff model and show how attempts to account for these patterns within the discounting 

paradigm have proved unsatisfactory. 

Delay effect. A preference pattern that has been the focus of many investigations is the 

‘delay effect’ (Thaler, 1981), which is that a later outcome is discounted less per unit of time 

than an earlier one (i.e., δ increases with t) or, equivalently, that there is less discounting over 

a later interval than over an earlier one of the same length (i.e., δ increases when tS and tL 

increase by the same additive constant a).5 For instance, someone who is indifferent between 

$100 now and $110 in 1 month will prefer $110 in 12 months to $100 in 11 months: There is 

more discounting over the first month than over the twelfth. 

The usual way to account for the delay effect is by modifying the discount function. 

Actually, there is considerable, perhaps remarkable (e.g., Rubinstein, 2003), agreement among 

psychologists and economists that the notion of exponential discounting should be replaced by 

some form of hyperbolic discounting (Ainslie, 1975, 1991), in which δ increases with the 

delay to an outcome, or quasi-hyperbolic discounting (Laibson, 1997), also called present-

biased preferences (O’Donoghue & Rabin, 1999), in which δ is lower when the interval 

separating the outcomes begins now than when it begins later (an instance of the delay effect 

that is called the immediacy effect; see Read, Loewenstein, & Kalyanaraman, 1999). A general 

formulation of hyperbolic discounting has been given by Loewenstein and Prelec (1992): 
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where β > 0 is the degree of discounting and α > 0 is the departure from exponential 

discounting. Given this discount function, the discount fraction for the interval tS → tL is 
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Thus, there is more discounting over a longer interval than over a shorter one, because 
LS ttF →  

decreases with tS → tL, and there is less discounting over a later interval than over an earlier 

one of the same length, because 
LS ttF →  increases when tS and tL increase by the same amount 

of time. Because, in the latter case, tL - tS does not change, there is also less discounting per 

unit of time, i.e., 
LS tt →δ  increases. 

Because the delay effect is the only preference pattern in which δ varies strictly with 
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the delay to an outcome, it is also the only preference pattern that can be easily accommodated 

by modifying the discount function. The two preference patterns discussed next, in which δ 

also varies with characteristics of the outcome itself, require more extensive modifications of 

discounting theory. 

Magnitude effect. The ‘magnitude effect’ (Prelec & Loewenstein, 1991) is that a larger 

outcome is discounted less than a smaller one of the same sign (i.e., δ increases with the 

magnitude of x) or, equivalently, there is less discounting over an interval when the magnitude 

of the outcomes increases by the same factor (i.e., δ increases when the magnitude of xS and 

xL increases by the same multiplicative constant m). For instance, someone who is indifferent 

between $100 now and $110 in 1 month will prefer $1,100 in one month to $1,000 now. The 

magnitude effect has been addressed in two different ways. 

The magnitude effect has often been ascribed to the discount function (e.g., Green, 

Myerson, & McFadden, 1997; Kirby, 1997; Kirby & Maraković, 1996). This solution is 

unsatisfactory from a formal standpoint, because it sacrifices the separability of delay and 

outcome in a psychophysical model: The discounted value of a delayed outcome is now given 

as 

V(x,t) = d(x,t)v(x). 

More importantly, however, the solution is unsatisfactory from a psychological perspective, 

because the question “Why is a larger outcome discounted less than a smaller one?” receives 

the answer “Because it is larger.” Loewenstein (1988), opposing such a development, argued 

that postulating different discount curves for different types of consumption (e.g., smoking, 

drinking, eating), “would collapse the concept of discounting to a tautology.” (p. 212) This 

argument seems even more valid for different amounts of consumption of the same thing. 

Loewenstein and Prelec (1992) ascribe the magnitude effect to the value function 

rather than the discount function. Their value function has three properties that are familiar 

from prospect theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1991): Reference 

dependence (outcomes are evaluated as gains and losses relative to a neutral reference point), 

diminishing sensitivity (the marginal impact of an outcome decreases as the magnitude of the 

outcome increases), and loss aversion (losses loom larger than gains). The dashed value 

function in Figure 1 has these properties. The magnitude effect is accommodated by a fourth 

property: The contrast between the more curved regions near the reference point and the less 

curved regions away from the reference point is greater than in prospect theory. The solid 

value function in Figure 1 has this property as well. 
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------------------------------- 

Insert Figure 1 about here 

------------------------------- 

A formal definition of the fourth property is increasing proportional sensitivity (Prelec 

& Loewenstein, 1991): Augmenting the outcomes by the same multiplicative constant 

augments the value of the larger outcome relative to the value of the smaller one, or 
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For instance, the percentage by which the value of $110 exceeds that of $100 is greater than 

the percentage by which the value of $11 exceeds that of $10.7 An equivalent definition is that 

the elasticity of the value function increases with outcome magnitude (Loewenstein & Prelec, 

1992). 

While the elasticity property accommodates the magnitude effect, it has not been 

invoked as an explanatory device by other theories of judgment and choice, so that its 

epistemic appeal seems rather restricted. 

Sign effect. The ‘sign effect’ (Thaler, 1981) is that a loss is discounted less than a gain 

of the same magnitude (i.e., δ is higher when x > 0 than when x < 0).8 For instance, someone 

who is indifferent between gaining $100 now and gaining $110 in one month will rather lose 

$100 now than lose $110 in one month. 

The sign effect is accommodated by a fifth property of Loewenstein and Prelec’s 

(1992) value function: The section above the reference point is more curved than the section 

below it (see Figure 1). A formal definition of this property is loss amplification (Prelec & 

Loewenstein, 1991): Changing the outcomes from gains to losses has the same effect as 

increasing their magnitude by the same multiplicative constant, or 
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 iff xS, xL > 0 and m > 1. 

An equivalent definition is that the value function is more elastic for losses than for gains 

(Loewenstein & Prelec, 1992). 

Loss amplification, or a greater elasticity for losses than for gains, identifies an 

interaction between loss aversion and diminishing sensitivity, in that sensitivity to losses 

diminishes less than sensitivity to gains. However, such an interaction has not been invoked as 

an explanatory device by other theories of judgment and choice. Rather, loss aversion and 

diminishing sensitivity are usually viewed as independent properties of the value function. 

The tradeoff model developed in this paper accounts for the sign effect on the basis of loss 
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aversion alone, not in interaction with diminishing sensitivity.9 

Rescheduling effect. In many studies, the sign effect is either confounded with or 

eclipsed by another preference pattern, which is that a gain is discounted more, and a loss is 

discounted less, when it is postponed from tS to tL than when it is ‘preponed’ over the same 

interval.10 We call this effect, originally described by Loewenstein (1988), the ‘rescheduling 

effect.’ 

Imagine one is entitled to receive $100 immediately but is given the opportunity to 

receive it in 1 month along with some compensation for postponing it. Suppose one demands 

$10 in compensation. Now imagine that one is entitled to receive $110 in 1 month but is given 

the opportunity to receive the money right now and pay a compensation for preponing it. How 

much would one be willing to pay in compensation? In the first scenario, the equivalent of 

$110 in 1 month is $100 now, so one should be willing to pay $10 in the second scenario as 

well. However, the rescheduling effect is that one would offer less than $10 in compensation. 

Thus, δ is lower when a gain is postponed than when it is preponed over the same interval. 

Loewenstein and Prelec (1992) ascribe the rescheduling effect to reference 

dependence and loss aversion. On the one hand, when a gain is postponed, the smaller-sooner 

gain is not evaluated as a gain; rather, foregoing the smaller-sooner gain is evaluated as a loss. 

The larger-later gain, which must compensate for this loss, is evaluated as a gain. Thus, the 

compensation demanded for postponing the gain has two components: A compensation for the 

delay (the discounting component) and a compensation for the loss (the loss-aversion 

component). The greater the discounting and the greater the loss aversion, the larger the 

compensation demanded. Therefore, when a gain is postponed, both components work in the 

same direction, toward a lower δ. 

On the other hand, when a gain is preponed, foregoing the larger-later gain is 

evaluated as a loss, whereas the smaller-sooner gain is evaluated as a gain. In this case, 

discounting and loss aversion work in opposite directions: The greater the discounting, the 

larger the compensation offered; the greater the loss aversion, the smaller the compensation 

offered. Thus, discounting decreases δ, whereas loss aversion increases it. Overall, δ will be 

lower when a gain is postponed than when it is preponed over the same interval. 

In Loewenstein and Prelec’s (1992) model, the sign effect is ascribed to the 

asymmetric elasticity of the value function, whereas the rescheduling effect, which is 

basically a sign effect for compensations, is ascribed to the asymmetric steepness of the value 

function: Compensations to be paid loom larger than compensations to be received. This need 
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to explain very similar phenomena with very different devices poses a threat to the parsimony 

of Loewenstein and Prelec’s model, as well as other comprehensive discounting models of 

intertemporal choice. Indeed, the tradeoff model developed in this paper accounts for both 

phenomena (the sign effect and the rescheduling effect) on the basis of loss aversion. 

Although the four preference patterns discussed above can be addressed by modifying 

delay-discounting models, other patterns cannot. These patterns, which are called ‘interval 

effects’ (Scholten & Read, 2006), require a more drastic revision of the discounting paradigm. 

Interval effects. Imagine we divide an interval, e.g., tS → tL, into a series of shorter, 

contiguous intervals, e.g., tS → tM and tM → tL. For instance, we divide one day into morning 

and afternoon. Now imagine two procedures. In the first, we obtain separate measures of δ for 

the morning and the afternoon and then combine them into a single measure. In the second, 

we obtain a single measure of δ directly for the whole day. Delay-discounting models suggest 

that the two procedures should yield the same result. Expressed in terms of discount fractions, 
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Even when allowing for outcome dependence of the discount factors, i.e., d(x,t), the different 

procedures should yield the same result. Recent studies, however, have shown that this does 

not occur (Baron, 2000; Read, 2001; Read & Roelofsma, 2003; Roelofsma & Read, 2000; 

Scholten & Read, 2006). 

The overall conclusion that can be drawn from these studies is that there is usually 

more discounting when an interval is divided into a series of shorter intervals than when it is 

left undivided (subadditivity), but that there is less discounting when an interval is divided 

into a series of very short intervals (superadditivity). More formally, consider the average 

discounting over a series of intervals: 

n
n

i i

n ∏ =
=

1

)( δδ , 

where n is the number of intervals into which an interval is divided. If m > n, subadditivity 

occurs when δ (m) < δ (n), whereas superaddivity occurs when δ (m) > δ (n). Equivalently, if we 

aggregate short intervals into longer ones, these longer intervals into still longer ones, and so 

forth, δ (n) will decrease and then increase (see Scholten & Read, 2006, Figure 2). 

Interval effects suggest that the discounting over an interval is not only a function of 

the delay to the outcomes, but also of the delay between them (see Footnote 5). Recently, 

interval effects have been accommodated by a generalization of Loewenstein and Prelec’s 

(1992) delay-discounting model. In Scholten and Read’s (2006) interval-discounting model, 
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the discounted values of SS and LL are given as 
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so that indifference arises when 
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where v is a value function with the five properties discussed earlier, and D is an interval-

discount function. Specifically, D is a generalization of Loewenstein and Prelec’s (1992) 

delay-discount function: 

αβ

ϑττα

/

)(1

1
),( 









−+
=

LS

LS
tt

ttD , 

where β > 0 is the degree of discounting and α > 0, ϑ > 1, and 0 < τ < 1 are departures from 

exponential discounting, indicating subadditivity, superadditivity, and diminishing sensitivity 

to delays, respectively. 

The interval-discounting model achieves a gain in scope, but this comes with a loss in 

psychological plausibility. The model basically proposes a combination of alternative-based 

and attribute-based choice: A discounted value is assigned to each option and the option with 

the highest value is chosen (alternative-based choice), but, to obtain the discounted values, the 

options are directly compared along the time attribute (attribute-based choice). Although the 

interval-discounting model is not unique in combining both choice modes (e.g., Mellers & 

Biagini, 1994; Shafir, Osherson, & Smith, 1993), it is unique in proposing that the options are 

compared along one attribute (time) but not along the other (outcome). The question arises 

why the outcome attribute should be treated any differently from the time attribute: Why not 

directly compare the options along the outcome attribute as well? This question is the point of 

departure for the development of the tradeoff model. 

Development of the Tradeoff Model 

The tradeoff model addresses intertemporal judgments and choices that involve a 

comparison between a smaller-sooner (SS) and a larger-later (LL) outcome. It focuses on 

situations in which people treat such options ‘dispassionately but intuitively.’ That is, they are 

neither overridden by powerful emotions (e.g., Loewenstein, 1996), nor guided by formal 

reasoning (e.g., Kahneman, 2003). 

The thrust of the tradeoff model is that judgments and choices are made by weighing 

the perceived interval separating the outcomes against the perceived compensation for 

obtaining a gain later rather than sooner or incurring a loss sooner rather than later. This 



The Tradeoff Model of Intertemporal Choice 10 

weighing process may be more or less cursory, depending on the options under consideration 

and the task at hand (e.g., matching or choice). The more cursory assessments are procedural, 

whereas the more careful assessments are psychophysical. In this paper, we emphasize the 

psychophysics, but we briefly discuss the procedures as well. 

We use f(tS, tL) > 0 to denote the advantage of the smaller-sooner gain or the larger-

later loss along the time attribute and g(xS, xL) > 0 to denote the advantage of the larger-later 

gain or the smaller-sooner loss along the outcome attribute. Indifference between SS and LL 

arises when 

),(),( LSLS xxgttf = .                                               (1) 

Preference for the larger-later gain or the smaller-sooner loss arises when g(xS, xL) > f(tS, tL). 

We will systematically develop this model, starting with its most elementary specification. 

Intra-attribute subtractivity 

In the simplest formulation of the tradeoff model, the advantage of one option along 

the time attribute is weighted against the advantage of the other option along the outcome 

attribute by a single tradeoff parameter: 
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where κ > 0. Thus, an advantage is given by the absolute difference between the options along 

an attribute (intra-attribute subtractivity; cf. Tversky & Krantz, 1970). The tradeoff parameter 

κ reflects the units in which the delays and the outcomes are measured (e.g., when changing 

days into weeks, κ increases sevenfold) as well as the rate at which time differences are traded 

off against outcome differences (e.g., when doubling the compensation demanded or offered 

for each additional week, κ is also doubled). 

The one-parameter model in Equation 2 accounts for two robust preference patterns. 

The first, a shared implication of normative and descriptive models, is that increasing both 

delays by the same multiplicative constant changes indifference into preference for SS (gains) 

or LL (losses). The second pattern is the magnitude effect: Increasing the magnitude of both 

outcomes by the same multiplicative constant changes indifference into preference for LL 

(gains) or SS (losses). According to the tradeoff model, the multiplicative constant increases 

the difference between the options along the time or outcome attribute, thus increasing the 

impact of that attribute. 

Reference dependence and loss aversion 

Like prospect theory, the tradeoff model assumes reference dependence and constant 
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loss aversion (see Tversky & Kahneman, 1991): Each outcome is evaluated as a gain or a loss 

relative to a neutral reference point and changing an outcome from a gain to a loss increases 

its perceived magnitude by a multiplicative constant. The implications of loss aversion depend 

on what the reference point is. 

Sign effect. If the reference point is current wealth, gains and losses coincide with the 

actual amounts to be received or paid (Kahneman & Tversky, 1979). In this case, indifference 

between SS and LL arises when 
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where Λ > 1 is the loss-aversion parameter. Loss aversion gives rise to the sign effect: 

Changing both outcomes from gains to losses changes indifference into preference for SS, 

because Λ increases the perceived difference between the options along the outcome attribute, 

thus increasing the impact of that attribute. 

Rescheduling effect. The above derivation of the sign effect applies only if both 

outcomes are evaluated as deviations from current wealth. However, the reference point may 

be affected by the formulation of the options and by the expectations of the decision maker 

(Kahneman & Tversky, 1979). Specifically, one of the options may be designated as an 

entitlement (a right to receive x at t) or a commitment (a responsibility to pay x at t), and the 

other as an option that includes a compensation for rescheduling x. In this case, it is natural to 

treat the entitlement or commitment as the default. As a result of adaptation to the default, the 

reference point may shift away from current wealth. By how much the reference point will 

shift, however, is unclear. 

Loewenstein and Prelec (1992) assumed complete adaptation to an entitlement or a 

commitment. When specifying, for instance, the minimum to be received at tL to forego a 

receipt at tS, the outcomes are evaluated as a gain of xL at tL and a loss of xS at tS (see also 

Shelley, 1993). Thus, receiving xL is evaluated as a gain relative to current wealth, whereas 

foregoing xS is evaluated as a loss relative to a reference point that has shifted away to current 

wealth plus the entitlement. 

There is the theoretical possibility, however, that adaptation varies anywhere between 

one extreme case of no adaptation and the other extreme case of complete adaptation. Indeed, 

the possibility of incomplete adaptation has also been considered by Loewenstein and others 

(Hoch & Loewenstein, 1991; Strahilevitz & Loewenstein, 1998). Incomplete adaptation 

implies that foregoing xS would not be as bad as a total loss of xS. Figure 2 depicts the 
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implications of rescheduling an entitlement if there is no adaptation, if there is complete 

adaptation, and if there is, as we propose, incomplete adaptation.11 

------------------------------- 

Insert Figure 2 about here 

------------------------------- 

In Figure 2, xS denotes an entitlement and Lx̂ denotes the outcome that compensates 

for rescheduling the entitlement. The top left panel shows no adaptation, the case described by 

Equation 3. Both xS and Lx̂  are evaluated as deviations from current wealth, the origin of the 

value function. The top right panel shows complete adaptation. Receiving xS is evaluated as a 

neutral outcome, the origin of the dashed value function, whereas foregoing xS is evaluated as 

a loss. Loss aversion implies that the relief from not losing xS is greater than the pleasure of 

gaining xS, so that, when holding tL and tS constant, Lx̂  is larger than in the case of no 

adaptation. The bottom panel shows incomplete adaptation. Receiving xS is evaluated as a 

gain of xS - RS, while foregoing xS is evaluated as a loss of RS. This case is less extreme than 

that of no adaptation (RS = 0) and complete adaptation (RS = xS), so that Lx̂  is less extreme as 

well. 

Applying the above reasoning to all four rescheduling scenarios, we arrive at the 

following specification of the tradeoff model: 
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Because the above reference-point model assumes a linear value function, it can be given as 
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Thus, the compensation that one wants to receive for postponing a gain or preponing a loss, or 

that one is willing to pay for preponing a gain or postponing a loss, can be broken down into a 

component that reflects the weighing of the compensation against the interval over which the 

rescheduling occurs and a component that reflects the reluctance to accept the compensation, 

which results from adaptation. Equation 4 reduces to Equation 3 when there is no adaptation, 

i.e., when RS = RL = 0. 
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To derive the rescheduling effect for gains, we solve Equation 4.1 for Lx̂ : 

SSSLL Rxttx )1()(ˆ −Λ++−= κ . 

This is the minimum that one wants to receive at tL in exchange for xS at tS. Substituting Lx̂  

for xL in Equation 4.3 and solving for Sx̂ , 

))(1(ˆ
LSSS RRxx +−Λ+= . 

This is the minimum that one wants to receive at tS in exchange for Lx̂  at tL. It is evident that 

SS xx >ˆ  as long as there is loss aversion and adaptation. In a similar fashion, the rescheduling 

effect for losses can be derived from Equations 4.2 and 4.4. 

Conclusion. The tradeoff model offers a parsimonious and psychologically plausible 

explanation of the sign effect and the rescheduling effect: Loss aversion is the common cause 

of both, while the degree of adaptation to a rescheduled outcome determines the degree to 

which the sign effect is outweighed by the rescheduling effect. Although this explanation of 

the rescheduling effect is conceptually simple, the formal specification of the tradeoff model 

becomes quite complex, as evident from Equation 4. Therefore, we will discuss the remaining 

properties of our model without the complicating factor of rescheduling. 

Diminishing sensitivity 

Equation 3 implies that the impact of an attribute will not change when the attribute 

amounts change by the same additive constant. For instance, the difference between 1 and 2 

months (or $1 and $2) would have the same impact as that between 11 and 12 months (or $11 

and $12). This is at odds with the principle of diminishing sensitivity (Tversky & Kahneman, 

1991), which has its roots in the Weber-Fechner law. The principle states that sensitivity to a 

given difference between attribute amounts decreases as the distance of the attribute amounts 

from the reference point increases. The tradeoff model incorporates diminishing sensitivity to 

both delays and outcomes. We remove the assumption that delays and outcomes are treated 

objectively by the decision maker, and propose that the tradeoff is between perceived intervals 

and perceived compensations: 
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where w is a delay-perception function and v is a value function. Subjective delays are 

positive deviations from the present, i.e., w(t) ≥ 0 for t ≥ 0, they increase with objective 

delays, i.e., w´(t) > 0, but at a decreasing rate, i.e., w´´(t) < 0. Correspondingly, subjective 

outcomes are either positive or negative deviations from current wealth, i.e., v(x) ≥ 0 for x ≥ 0 
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and v(x) < 0 for x < 0, their subjective magnitude increases with their objective magnitude, 

i.e., v´(x) > 0, but at a decreasing rate, i.e., v´´(x) < 0 for x ≥ 0 and v´´(x) > 0 for x < 0.12 In 

addition, a loss is perceived to be greater than a gain of equal magnitude, i.e., v(-x) = -Λv(x) 

for x ≥ 0. 

Diminishing sensitivity accounts for two preference patterns. The first, a shared 

implication of normative and descriptive models, is that increasing the magnitude of the 

outcomes by the same additive constant changes indifference into preference for SS (gains) or 

LL (losses). The second pattern is the delay effect: Increasing the delays by the same additive 

constant changes indifference into preference for LL (gains) or SS (losses). According to the 

tradeoff model, the additive constant decreases the perceived difference between the options 

along the time or outcome attribute, thus decreasing the impact of that attribute. 

Diminishing sensitivity also attenuates the extremely large effects generated by intra-

attribute subtractivity. The linear model in Equation 3 implies, for instance, that someone who 

is indifferent between $1 sooner and $11 later should also be indifferent between $100 sooner 

and $110 later, because xL - xS = $10 in both cases. This is an extremely large magnitude 

effect, because the person is sensitive only to absolute differences between the options, and 

not at all to proportional differences. In case of any sensitivity to proportional differences, the 

person would prefer $100 sooner to $110 later. To restore indifference, the later outcome 

would have to be larger than $110, i.e., xL - xS increases as xS increases. Because of the 

magnitude effect, however, it would not have to be as large as $1,100, i.e., (xL - xS) / xS 

decreases as xS increases. The combination of diminishing sensitivity and intra-attribute 

subtractivity, as described by the nonlinear model in Equation 5, yields this pattern. 

To see the generality of the result that diminishing sensitivity attenuates the effects 

generated by intra-attribute subtractivity, let x and y be the sooner outcomes (in the above 

example, x = 1 and y = 100), let a be the amount added to both x and y (in the example, a = 

10), and let e be the extra amount added to y. Holding tS and tL constant, indifference among 

each pair of options implies that 

v(x + a) – v(x) = v(y + a + e) – v(y). 

Rearrangement of the terms yields 

v(y) – v(x) = v(y + a + e) – v(x + a).                                      (6) 

The concavity of the value function v implies that 

v(y) – v(x) > v(y + a) – v(x + a). 

In Equation 6, then, it must be true that e > 0. How large e should be to restore indifference 

depends on the specific shape of the value function v, to be discussed when we apply our 
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model to actual data. 

Augmenting and diminishing relative sensitivity 

In a general sense, any formal model of intertemporal choice proposes a weighing of 

delays and outcomes within some theoretical structure. For clarity of exposition, we draw a 

distinction between two types of weighing functions in the tradeoff model. On the one hand, 

the intra-attribute weighing functions: These are the delay-perception function w, which 

weighs delays against one another, and the value function v, which weighs outcomes against 

one another. On the other hand, there is an inter-attribute weighing function, which weighs 

perceived intervals against perceived compensations. In Equation 5, this is a scalar function, 

which multiplies perceived intervals by the tradeoff parameter κ. However, as discussed 

earlier, intertemporal preferences are usually subadditive in intervals. This suggests that, in 

general, the weight of perceived intervals is marginally decreasing relative to the weight of 

perceived compensations (diminishing relative sensitivity). We introduce a tradeoff function 

to capture this: 





<−

>−
=−

.0,if)()(

0,if)()(
))()((

LSLS

LSSL

SL
xxxvxv

xxxvxv
twtwQ                        (7) 

The tradeoff function Q, which includes the tradeoff parameter κ, increases with perceived 

intervals, i.e., Q´(·) > 0, but at a decreasing rate, i.e., Q´´(·) < 0. We emphasize that Q, like κ, 

is strictly comparative: Equation 7 does not imply that the weight of perceived intervals is 

itself marginally decreasing, but only that it is marginally decreasing relative to the weight of 

perceived compensations. 

Although, as discussed earlier, subadditivity is the general rule, it can reverse into 

superadditivity for very short intervals. To capture this, the tradeoff function Q is marginally 

increasing over short perceived intervals, i.e., Q´´(·) > 0, but marginally decreasing over 

longer ones, i.e., Q´´(·) < 0. The marginally increasing weight of short perceived intervals 

(augmenting relative sensitivity) reflects a more general tendency of people to underweight 

small perceived intra-attribute differences, as originally suggested by Tversky’s (1969) 

additive-difference model. 

This completes the development of the tradeoff model. Table 1 draws a comparison 

between the tradeoff model and Scholten and Read’s (2006) interval-discounting model, the 

only discounting model of comparable scope. The tradeoff model is more parsimonious than 

the interval-discounting model, because it replaces the (psychologically implausible) proposal 

of interval discounting with the (more intuitive) principle of intra-attribute subtractivity, and 
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can thereby remove increasing proportional sensitivity and loss amplification as explanatory 

devices. The tradeoff model also has a broader scope than the interval-discounting model, in 

that it allows for incomplete adaptation to rescheduled outcomes. 

------------------------------- 

Insert Table 1 about here 

------------------------------- 

Applications of the Tradeoff Model 

Indifference data 

According to the tradeoff model, indifference between SS and LL arises when f(tS, tL) = 

g(xS, xL). This raises two issues: How to determine the indifference point and how to estimate 

and evaluate the tradeoff model. 

The indifference point is usually determined by fixing the two delays and one of the 

outcomes, and finding the magnitude of the other (variable) outcome that yields indifference 

between SS and LL. In matching, the magnitude of the variable outcome is specified by the 

participants. In choice-based matching, its magnitude is adjusted in response to each of a 

series of choices until the largest amount that yields preference for one option is sufficiently 

close to the smallest amount that yields preference for the other option. The midpoint between 

those two amounts is usually taken to be the indifference point. We analyze data from both 

types of studies. 

To estimate the tradeoff model, we minimize the sum of squared deviations between 

the observed and predicted values of the dependent variable (which is some function of the 

two delays and the two outcomes at the indifference point) across all option pairs: 

∑ =
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where yi and iŷ  are the observed and predicted value, respectively, for option pair i and n is 

the number of option pairs.13 We thus maximize 
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where y  is the average value of yi across the n option pairs. This average is the best ordinary 

least-squares estimate of a constant value y. Thus, R2 compares the predictive accuracy of the 

tradeoff model with that of a null model, according to which yi = y for all i. For this evaluation 

of the tradeoff model to be meaningful, the null model has to be meaningful, which ultimately 

depends on the choice of y. 
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Discounting models have frequently been estimated and evaluated on the variable 

outcomes that yield indifference between SS and LL (e.g., Green et al., 2005; Green et al., 

1997; Kirby, 1997; Murphy et al., 2001; Rachlin, Raineri, & Cross, 1991; Scholten & Read, 

2006; Simpson & Vuchinich, 2000). However, when using outcomes as the dependent 

variable, the null model predicts a constant outcome across option pairs, which is an overly 

naïve standard of comparison. First, it fails to predict that larger outcomes are discounted by a 

greater amount than smaller ones (e.g., if $10 is discounted by $5 over a period of time, $100 

will be discounted by more than $5 over that period), as predicted by any discounting 

model.14 Second, it fails to predict that outcomes are discounted by a greater amount over 

longer delays than over shorter ones (e.g., if $10 is discounted by $5 over 1 period of time, 

that outcome will be discounted by more than $5 over 2 periods), as contradicted only by a 

model of “dichotomous time preferences” (Loewenstein & Prelec, 1992, p. 580), “in which 

the present outcome has unit weight, and all future events are discounted by a common 

constant.” Thus, when using outcomes as dependent variable, the null model is too easy to 

defeat: Any alternative model can come out favorably by predicting very general discounting 

effects. 

To remove these general discounting effects from model estimation and evaluation, 

the dependent variable should be some indicator of the proportion by which outcomes are 

discounted per unit of time. Such indicators can be derived from the exponential-discounting 

model. According to one formulation of this model, indifference between SS and LL arises 

when LS t

L

t

S xx )1/()1/( ρρ +=+ , where ρ > 0 is a one-period discount coefficient. Solving for 

ρ, 
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An equivalent formulation of this model is L
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The proportion by which the outcomes are discounted per unit of time is ρ / (1 + ρ) = 1 - δ. 

This is the discount rate, which, according to the null model, is constant across outcome pairs. 

The alternative model than predicts that ρ or δ will vary. The predictions of the tradeoff model 

can be obtained by solving Equation 1 for the variable outcome and substituting it into 
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Equation 8 or 9. 

We apply our model to aggregate values of ρ or δ. In the literature, indifference data 

have been aggregated across participants by taking arithmetic means of ρ (e.g., Benzion et al., 

1989), geometric means of ρ (e.g., Chapman, 1996), arithmetic means of δ (e.g., Read & 

Roelofsma, 2003), or geometric means of δ (e.g., Scholten & Read, 2006). We favor the last 

procedure, because it preserves the ratio information in the data: Taking the geometric mean 

of δ is the same as taking the geometric mean of the variable outcome and computing δ from 

there.15 However, our first analysis is conducted on the arithmetic means of ρ reported in a 

highly influential paper by Benzion et al. (1989). The purpose of this analysis is to examine 

the performance of the flexible reference-point model in Equation 4 and to explore whether 

and how the degree of adaptation to the rescheduled outcome varies with its magnitude and 

sign. 

Indifference data from matching 

In the matching study undertaken by Benzion et al. (1989), participants specified, for 

64 option pairs, the magnitude of the variable outcome that yielded indifference between SS 

and LL. Each question was embedded in a scenario that designated the fixed outcome as an 

entitlement or commitment and the variable outcome as a compensation for rescheduling the 

fixed outcome. The 64 option pairs resulted from a 2 (postponing versus preponing) × 2 

(outcome sign) × 4 (outcome magnitude) × 4 (delay to the later outcome) design. The sooner 

outcome was always available immediately, so that the effect of the delay to the later outcome 

(the delay effect) was confounded with the effect of the interval between the sooner and the 

later outcome (subadditivity; see also Footnote 5). Therefore, we will call this the pseudo-

delay effect. The data (Benzion et al., 1989, Table 1) revealed four major preference patterns: 

The rescheduling effect, the sign effect, the magnitude effect, and the pseudo-delay effect. 

We examine the accuracy with which Equation 4 accounts for these data and we 

explore whether and how the degree of adaptation to rescheduled outcomes varies with their 

magnitude and sign. While complete adaptation implies a one-to-one relation between the 

magnitude of the outcomes and the degree of adaptation, incomplete adaptation opens many 

possibilities. For instance, it has been suggested that people adapt more readily to gains than 

to losses of equal magnitude (Strahilevitz & Loewenstein, 1998; Thaler & Johnson, 1990). To 

test for incomplete and asymmetric adaptation, we estimate 2 (outcome sign) × 4 (outcome 

magnitude) = 8 values of R. 

To preserve the computational tractability of the flexible reference-point model in 
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Equation 4, we do not introduce functional forms that capture diminishing sensitivity to 

outcomes and diminishing (relative) sensitivity to delays (perceived intervals).16 Instead, we 

allow the tradeoff parameter κ to vary freely with the magnitude of the rescheduled outcome 

and the delay to the later outcome. We expect the variation of κ to exhibit an orderly pattern, 

because it is supposed to reflect unspecified properties of well-behaved functions, v(x) and 

Q(w(tL)).17 Moreover, we test two hypotheses about how κ varies with outcome magnitude 

and delay. 

First, as discussed earlier, a linear v(x) implies insensitivity to proportional differences 

between outcomes, whereas a concave v(x) yields some degree of proportionality.18 Thus, the 

hypothesis of magnitude dependence is that κ will increase with outcome magnitude. 

Second, if Q(w(tL)) is linear, the perceived compensation for rescheduling is 

proportional to tL. For instance, when a person is indifferent between the options and tL 

doubles, the perceived compensation must increase by a factor 2κ for indifference to be 

maintained. However, if Q(w(tL)) is concave, indifference will be maintained if the perceived 

compensation increases by a factor of less than 2κ. The hypothesis of delay dependence is that 

κ will decrease with delay. A sufficient condition for this to occur is that the combined effect 

of diminishing sensitivity to delay and diminishing relative sensitivity to perceived intervals 

be greater than the effect of diminishing sensitivity to outcomes. 

To test for magnitude and delay dependence, we estimate 4 (outcome magnitude) × 4 

(delay to the later outcome) = 16 values of κ. Combining the eight values of R and the 16 

values of κ with a single value of Λ, we estimated 25 free parameter values from 64 data 

points (one-period discount coefficients). The results are given in Table 2. 

------------------------------- 

Insert Table 2 about here 

------------------------------- 

There was evidence of incomplete adaptation to rescheduled outcomes: R was always 

greater (in absolute terms) than zero, but always smaller than the outcome being rescheduled. 

There was also evidence of asymmetric adaptation to gains and losses: For outcomes of $40, 

$200, and $1,000, R was greater (in absolute terms) for gains than for losses, but for outcomes 

of $5,000, this asymmetry reversed (see the top panel of Figure 3). Outcome magnitude and 

sign accounted for 80% and 11%, respectively, of the variation of R on a logarithmic scale, 

their interaction for 9%. 
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------------------------------- 

Insert Figure 3 about here 

------------------------------- 

There was also evidence of diminishing sensitivity to outcomes and diminishing 

(relative) sensitivity to delays (perceived intervals): κ increased steadily and reliably with 

outcome magnitude (magnitude dependence), and decreased steadily, but not always reliably, 

with the delay to the later outcome (delay dependence). More specifically, κ increased by a 

nearly constant proportion as outcome magnitude increased by a constant proportion; 

conversely, κ decreased by a nearly constant proportion as the delay to the later outcome 

increased by a constant proportion (see the bottom panel of Figure 3). Outcome magnitude 

and delay accounted for 96% and 4%, respectively, of the variation of κ on a logarithmic 

scale, their interaction for virtually nothing. This highly regular variation of κ bolsters our 

confidence in the present estimation of the flexible reference-point model. 

Finally, there was evidence of loss aversion: Λ was reliably greater than one, although 

its magnitude of 1.14 was modest compared with estimates obtained by applying subjectively 

expected value models to risky choices, e.g., Λ = 2.25 (Tversky & Kahneman, 1992), and Λ = 

1.43 (Schmidt & Traub, 2002). 

Figure 4 displays the observed and predicted values of ρ. The top panel shows that ρ is 

greater when postponing a gain than when preponing it, but smaller when postponing a loss 

than when preponing it (the rescheduling effect). Also, ρ is greater for gains than for losses 

(the sign effect). The bottom panel shows that ρ is greater for smaller outcomes than for larger 

ones (the magnitude effect) and greater for longer delays than for shorter ones (the pseudo-

delay effect). 

------------------------------- 

Insert Figure 4 about here 

------------------------------- 

Because the estimated reference-point shifts indicated a tendency to adapt less to gains 

of $5,000 than to losses of equal magnitude, Figure 5 displays observed and predicted values 

of ρ for those outcomes only. Comparison with the overall results in the top panel of Figure 4 

reveals that the rescheduling effect is attenuated for gains of $5,000 but not for losses of equal 

magnitude and that the highest value of ρ no longer occurred for the postponement of gains 

but rather for the preponement of losses. This pattern of results also emerged in a matching 

study by Shelley (1993, Figures 3 and 6), using the same delays and outcomes as Benzion et 
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al. (1989).19 

------------------------------- 

Insert Figure 5 about here 

------------------------------- 

In sum, the results from this first application of the tradeoff model suggest that 

adaptation to a rescheduled outcome is incomplete (e.g., an entitlement of $200 yields a 

reference-point shift of less than $200), that adaptation increases with outcome magnitude 

(e.g., an entitlement of $200 yields a greater reference-point shift than an entitlement of $40), 

and that the level of adaptation to gains is generally higher than the level of adaptation to 

losses (e.g., an entitlement of $200 yields a greater reference-point shift than a commitment of 

$200). As outcome magnitude increases, however, adaptation to losses increases at a higher 

rate than adaptation to gains and may eventually reach a higher level. The issue of adaptation 

to a rescheduled outcome deserves greater attention, both empirically and theoretically. 

The results are also indicative of diminishing sensitivity to outcomes and diminishing 

(relative) sensitivity to delays (perceived intervals). Because of the delay-interval confound, it 

was not possible to distinguish between diminishing sensitivity to delays and diminishing 

relative sensitivity to perceived intervals. This will be possible, however, in the second 

application of the tradeoff model. In the next section, therefore, we specify functional forms 

that capture these properties. 

The weighing of delays 

The delay-perception function w has two properties: Reference dependence (with the 

present serving as the reference point) and diminishing sensitivity to delays. Diminishing 

sensitivity has two limits. One is constant sensitivity, in which case subjective time runs at the 

same speed as objective time and w becomes a scalar function, i.e., w(t) = t. The other limit is 

insensitivity, in which case any delay is treated as if it had no duration at all and w becomes a 

zero function i.e., w(t) = 0 for any t. Both reference dependence and diminishing sensitivity 

are incorporated in the following delay-perception function: 
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+= ,                                               (10) 

where τ > 0 is a diminishing-sensitivity parameter. The delay-perception function becomes a 

scalar function, with constant sensitivity, as τ goes to zero and a zero function, with complete 

insensitivity, as τ goes toward infinity. 

The tradeoff function Q has three properties: Augmenting relative sensitivity, 

diminishing relative sensitivity, and a progression of augmenting and diminishing relative 



The Tradeoff Model of Intertemporal Choice 22 

sensitivity as intervals increase in perceived length. Either form of relative sensitivity has two 

limits: Constant sensitivity and insensitivity. Letting T = w(tL) - w(tS), 
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where α > 0 reflects diminishing relative sensitivity and Β ≥ 1 reflects augmenting relative 

sensitivity. Figure 6 displays four variants of Q, corresponding to the presence or absence of 

augmenting or diminishing relative sensitivity. 

------------------------------- 

Insert Figure 6 about here 

------------------------------- 

Figure 7 displays the characteristically S-shaped tradeoff function Q as well as the 

coordinates of the inflection point. The coordinate along the abscissa depends only on α and 

Β, whereas the coordinate along the ordinate depends also on the tradeoff parameter κ. As 

augmenting relative sensitivity vanishes, the inflection point goes to the origin, yielding a 

concave Q. As diminishing relative sensitivity vanishes, the inflection point goes to infinity, 

yielding a convex Q. 

------------------------------- 

Insert Figure 7 about here 

------------------------------- 

Indifference data from choice-based matching 

Our second analysis is conducted on geometric means of δ, as reported by Scholten 

and Read (2006). The tradeoff model is specified as in Equation 7, the delay-perception 

function w as in Equation 10, and the tradeoff function Q as in Equation 11. However, the 

data provide no information about loss aversion, because outcomes were always gains, nor 

about diminishing sensitivity to outcomes, because the smaller-sooner gain was always of the 

same magnitude. The value function v can therefore be specified as v(x) = x while the tradeoff 

parameter κ can be held constant. 

In a choice-based matching study, participants were presented with nine pairs of 

delayed gains. For each option pair, they made an initial choice between a sooner gain of £500 

and a later gain that offered a simple interest of 100% per week. Most participants chose LL. 

The later gain was then adjusted in response to each of a series of choices until indifference 

between SS and LL was reached. The nine option pairs corresponded to the nine intervals 

displayed in Figure 8:  Six short intervals of 1 week, two medium-length intervals of 3 weeks, 
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and one long interval of 17 weeks. There was a medium-length interval at the beginning and 

end of the long interval. Each medium-length interval spanned three short intervals. The 

subintervals at the beginning and end of the long interval will hereafter be designated as 

‘early’ and ‘late’ intervals, respectively. The data revealed three major preference patterns: 

The delay effect, subadditivity, and superadditivity. 

------------------------------- 

Insert Figure 8 about here 

------------------------------- 

As in the original analysis conducted by Scholten and Read (2006), we estimated four 

time-weighing parameters from nine data points. However, we estimated the parameters from 

one-period discount fractions (δ) rather than outcomes (xL). The results are given in Table 3. 

The parameter estimates of the tradeoff model confirmed the delay effect (τ), subadditivity 

(α), and superadditivity (Β). 

------------------------------- 

Insert Table 3 about here 

------------------------------- 

The tradeoff model, once estimated on δ, accounts for 84.35% of the variance of δ. 

Table 4 shows that, had the model been estimated on outcomes (xL), it would have accounted 

for only 75.45% of the variance of δ. Conversely, the tradeoff model, once estimated on xL, 

accounts for 99.78% of the variance of xL, but most of this variance, 98.69%, would also have 

been accounted for had the model been estimated on δ. Therefore, the improved accuracy with 

which we describe anomalies to the exponential-discounting model (i.e., systematic variations 

of δ) does not impair our ability to capture general discounting effects (in this study, the result 

that xL increases with tL - tS). 

------------------------------- 

Insert Table 4 about here 

------------------------------- 

Figure 9 displays the observed and predicted values of δ. The top panel shows that δ 

first decreases but then increases with interval length (superadditivity and subadditivity), 

while the bottom panel shows that it increases with the delay to interval onset (the delay 

effect). 
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------------------------------- 

Insert Figure 9 about here 

------------------------------- 

In sum, the tradeoff model accurately describes the co-occurrence of the delay effect, 

subadditivity, and superadditivity. Our next analysis examines the weighing of delays in 

combination with the weighing of outcomes. This analysis also extends the tradeoff model to 

states of equal or differential preference between SS and LL. To conduct this analysis, we 

need a value function that includes diminishing sensitivity to the outcomes and a tradeoff 

model that includes differential preference between the options. These are provided in the 

next two sections. 

The weighing of outcomes 

The value function v has the three properties that are familiar from prospect theory: 

Reference dependence, loss aversion, and diminishing sensitivity. Reference dependence and 

loss aversion were already specified in the first application of the tradeoff model. Diminishing 

sensitivity has two limits: Constant sensitivity, in which case the value of an outcome is equal 

to its monetary value and v becomes a scalar function, i.e., v(x) = x, and insensitivity, in which 

case any outcome is treated as if it had no value at all and v becomes a zero function, i.e., v(x) 

= 0 for any x. Reference dependence, loss aversion, and diminishing sensitivity are 

incorporated in the following value function: 
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where γ > 0 is a diminishing-sensitivity parameter.20 The value function becomes a scalar 

function, with constant sensitivity, as γ goes to zero and a zero function, with complete 

insensitivity, as γ goes toward infinity.21 

Within the theoretical structure of the tradeoff model, Equation 12 yields meaningful 

boundaries on the compensation demanded or offered for waiting. To illustrate, consider 

indifference between the following option pairs: 

(I)  x = $1 sooner and x + a = $11 later, 

(II) y = $100 sooner and y + a + e = $110 + e later. 

The compensation demanded is a = $10 in I and a + e = $10 + e in II. According to Equation 

12, a + e cannot be smaller than $10 (constant compensation) or larger than $1,000 

(proportional compensation). That is, a ≤ a + e ≤ a · y/x. These boundaries are obtained by 
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solving Equation 6 for a + e, specifying v as in Equation 12, and letting γ go to zero and 

infinity, respectively. 

Preference data 

We generalize the tradeoff model to states of indifference or preference by applying 

Restle’s (1961) binary-choice model. The odds of choosing LL among a pair of gains or SS 

among a pair of losses can be given as 
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where 0 < P < 1 is the probability of choosing LL among a pair of gains or SS among a pair of 

losses and ϑ ≥ 0 is the degree of determinism in choice behavior: The higher ϑ, the higher the 

odds that the option favored by the tradeoff will be chosen. For indifference data, Ω = 1 for all 

option pairs, so that Equation 13 reduces to Equation 1. 

Below, we conduct a choice-based matching study that yields preference data as well 

as indifference data. This allows us to cross-validate our model by estimating its parameters 

from the indifference data and then applying those estimates to the preference data, or vice 

versa. 

Indifference and preference data from choice-based matching 

Participants. The participants were 34 students (nine females and 25 males) from the 

London School of Economics and 18 students (15 females and three males) from the Instituto 

Superior de Psicologia Aplicada in Lisbon. The participants from London were paid £5, those 

from Lisbon received €7.50. 

Design. The design was composed of three within-participant factors: The delay to the 

outcomes (standard, additively increased, or multiplicatively increased), the magnitude of the 

outcomes (small or large), and their sign (positive or negative). Orthogonal manipulation of 

these factors yielded 12 option pairs, which are displayed in Table 5.1. The presentation order 

of these pairs was randomized across participants. 

--------------------------------- 

Insert Table 5.1 about here 

--------------------------------- 

Procedure. Experimental sessions were run by computer, which, for each option pair, 

involved an adjustment procedure. On the first trial, participants chose from a pair of delayed 

outcomes as displayed in Table 5.1. The delays were then fixed, as was the outcome not 

chosen on the first trial. On subsequent trials, the outcome chosen on the first trial was 
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adjusted. The adjustment procedure followed that described by Scholten and Read (2006, 

Appendix). 

Preference data. For each option pair, P was taken to be the proportion of participants 

who chose LL (gains) or SS (losses) on the first trial. These choice proportions are given in 

Table 5.1. 

Indifference data. For each option pair and each participant, the indifference-inducing 

outcome, xS or xL, was taken to be the midpoint between the values of the variable outcome on 

the last two trials. We then computed aggregate values of xS and xL across fixed and variable 

outcomes. These values, and those of δ, are given in Table 5.2. 

--------------------------------- 

Insert Table 5.2 about here 

--------------------------------- 

Results. The data revealed four major preference patterns: The magnitude effect, the 

sign effect, the delay effect, and subadditivity. Consistent with other studies using intervals of 

at least several months (Baron, 2000; Read, 2001; Read & Roelofsma, 2003), there was no 

indication of superadditivity. The tradeoff model was specified as in Equation 7, the delay-

perception function w as in Equation 10, the tradeoff function Q as in Equation 11 with Β = 1, 

and the value function v as in Equation 12. Thus, we estimated five parameters from 12 data 

points (one-period discount fractions). The results are given in Table 6. The parameter 

estimates of the tradeoff model confirmed the sign effect (Λ), the delay effect (τ), and 

subadditivity (α). The magnitude effect, generated by intra-attribute subtractivity, was 

attenuated by diminishing sensitivity (γ). 

------------------------------- 

Insert Table 6 about here 

------------------------------- 

Figure 10 displays the observed and predicted values of δ. The top panel shows that δ 

increases when the delays increase by the same additive constant (the delay effect) or by the 

same multiplicative constant (a shared implication of the delay effect and subadditivity). 

--------------------------------- 

Insert Figure 10 about here 

--------------------------------- 

The top panel also shows that δ is higher for multiplicatively increased delays than for 

additively increased delays. This indicates that subadditivity outweighs the delay effect. To 
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verify this, we divide the interval 12 → 36 (demarcated by the multiplicatively increased 

delays and denoted U) into an early interval 12 → 23 (denoted E), an intermediate interval 23 

→ 29 (demarcated by the additively increased delays and denoted M), and a late interval 29 

→ 36 (denoted L). The delay effect implies that δ will be higher for M than for U, because the 

interval E preceding M is longer than the interval L succeeding M, i.e., M occurs toward the 

end of U.22 Subadditivity has the opposite implication, because M is shorter than U. We verify 

that δ is higher for U than for M, indicating that subadditivity outweighed the delay effect. 

The bottom panel of Figure 10 shows that δ is higher for large outcomes than for small 

ones (the magnitude effect) and that δ is higher for losses than for gains (the sign effect). In 

addition, the magnitude effect is greater for gains than for losses. This confirms the magnitude 

by sign interaction effect previously identified by Loewenstein and Prelec (1992). 

We evaluated the goodness-of-fit of the tradeoff model to the one-period discount 

fractions, outcomes, and choice odds, after we estimated it on each of these dependent 

variables.23 The results are given in Table 7. 

------------------------------- 

Insert Table 7 about here 

------------------------------- 

Estimating the parameters from one data set and then applying those estimates to the 

other obviously detracted from the goodness-of-fit, but the tradeoff model stood up well in the 

cross-validation. Inspection of the left and right panel of Figure 11 reveals that the detraction 

from goodness-of-fit was caused primarily by the overall levels of discounting that were 

predicted: Model estimation on choice odds yielded one-period discount fractions that were 

generally too low (i.e., too much discounting; see the left panel), whereas model estimation on 

one-period discount fractions or outcomes yielded choice odds that were generally too high 

(i.e., too little discounting; see the right panel). This seems to suggest that people are more 

impulsive in choice than in choice-based matching, which is quite intuitive. 

--------------------------------- 

Insert Figure 11 about here 

--------------------------------- 

Pruning 

We earlier mentioned that the comparison of the options under consideration may be 

more or less cursory. The more careful assessments are the psychophysical ones just 

described, and the more cursory assessments are procedural ones, as described in this section. 
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We propose that the psychophysical model applies when there is a meaningful tradeoff 

between the timing and the desirability or undesirability of the outcomes. We also propose, 

however, that, when there is either no tradeoff or such a trivial one that a careful weighing of 

relative advantages is unnecessary, decision makers use low-effort heuristics, which we call 

pruning operations. 

One pruning operation is elimination of dominated options (EDO): If X is better than Y 

along one attribute, and no worse along the other, then choose X. EDO is used when there is 

no tradeoff between delay and outcome, e.g., when the choice is between a smaller-later (SL) 

outcome and a larger-sooner (LS) one. EDO is called detection of dominance in prospect 

theory and corresponds to Stage I of Rubinstein’s (2003) similarity model of intertemporal 

choice. 

The other pruning operation is elimination of nearly-dominated options (ENO): If X is 

better than Y along one attribute, and only trivially worse along the other, then choose X. ENO 

is used when there is a tradeoff between delay and outcome, i.e., a choice between SS and LL, 

but the difference between the options along one attribute is ‘negligible’ and therefore pruned 

away. Take, for instance, the following options: 

X =  ($150, 2 months), 

Y  =  ($151, 24 months). 

For most people, the additional gain of $1 is ‘negligible,’ but the additional wait of 22 months 

is not. The outcome difference is therefore pruned away and the smaller-sooner outcome is 

chosen. ENO corresponds to one of the simplification procedures in prospect theory, called 

elimination of small differences between prospects, and to Stage II of Rubinstein’s (2003) 

similarity model of intertemporal choice. 

EDO and EDO are used when choice is ‘obvious.’ Both operations are fast and free of 

doubt. Indeed, the moment one starts to wonder whether an attribute difference is negligible 

or not, one has stopped pruning, and choice has been passed on to a more careful weighing of 

relative advantages. 

ENO distinguishes itself from both EDO and the more careful weighing of relative 

advantages by a high degree of inter-attribute sensitivity: Whether the difference along an 

attribute is considered to be negligible or not depends to a high degree on the difference along 

the other attribute. Take, for instance, the following options: 

X =  ($151, 2 months), 

Y’ =  ($150, 24 months), 

Z’ =  ($150, 2 months and 1 day). 
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X dominates both Y’ and Z’. Therefore, the choice between X and Y’ is as obvious as the 

choice between X and Z’. Now consider the following options: 

X =  ($150, 2 months), 

Y  =  ($151, 24 months), 

Z  =  ($151, 2 months and 1 day). 

The attribute differences are exactly the same as in the previous example, but this time X 

implies a tradeoff with both Y and Z. When X is compared with Y, only one of the two 

attribute differences is small and therefore likely to be pruned away. However, when X is 

compared with Z, both attribute differences are small, so that neither is likely to be pruned 

away. Thus, ENO will not dictate whether to choose X or Z, and choice is passed on to the 

tradeoff process described by the psychophysical model. 

General Discussion 

Research on intertemporal judgments and choices between a smaller-sooner and a 

larger-later outcome has revealed many preference patterns that are anomalies to the 

discounted-utility model, the economic standard for rational intertemporal choices. Attempts 

to account for these anomalies within the discounting paradigm have resulted in convoluted 

and psychologically opaque models. We developed a new model of intertemporal choice, the 

tradeoff model, in which choice results from a tradeoff between the perceived time difference 

(interval) and the perceived outcome difference (compensation). This model is both more 

parsimonious and more intuitive than any rival discounting model of comparable scope. 

Moreover, it accurately describes archival data as well as data from a new experiment. 

In this final section, we discuss the relation between the tradeoff model and other 

models of choice based on tradeoffs between attribute differences, the relation between the 

tradeoff model and bilinear choice models, and the scope of the tradeoff model within the 

domain of intertemporal choice. 

Tradeoffs and choice 

The tradeoff model draws a distinction between more cursory, procedural assessments 

of the options and more careful, psychophysical assessments. When there is either no tradeoff 

or such a trivial one that a careful weighing of relative advantages is unnecessary, choice is 

based on low-effort pruning operations: Elimination of dominated and nearly-dominated 

options. These operations correspond to Stage I and Stage II, respectively, of Rubinstein’s 

(2003) procedural approach to intertemporal choice (see also Leland, 2002). “If,” according to 

Rubinstein (2003), “the two first stages were not decisive, the choice is made using a different 

criterion.” (p. 1210) The psychophysics of the tradeoff model is a possible description of the 
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‘different criterion’ used in Stage III. Our description of Stage III is a natural continuation of 

Stages I and II, in that each of the three stages is a form of attribute-based choice. 

The formal modeling of attribute-based choice processes, pioneered by Restle (1961) 

and Tversky (1969), has recently seen a growing interest. Recent developments include 

stochastic models that predict probabilities of choice from a set of two (González-Vallejo, 

2002; González-Vallejo & Reid, 2006) or three options (Kivetz, Netzer, & Srinivasan, 2004a, 

2004b; Scholten, 2002; Tversky & Simonson, 1993), as well as stochastic-dynamic models 

that also predict latencies of choice from a set of two (Diederich, 1997) or three options (Roe, 

Busemeyer, & Townsend, 2001; Usher & McClelland, 2004). All of these modeling attempts, 

however, address either risky choice or choice between consumer products. The tradeoff 

model is the first to broaden the scope of attribute-based choice modeling to intertemporal 

choice. 

The tradeoff model is a stochastic model of choice between two options and is 

therefore most directly comparable to the stochastic-difference model of González-Vallejo 

(2002; González-Vallejo & Reid, 2006). As applied to the intertemporal choices addressed by 

the tradeoff model, the stochastic-difference model suggests that indifference between SS and 

LL arises when 

εψ =+− ))(),(())(),(( LSLS twtwHxvxvH , 

where ψ  is a decision threshold and ε is a random error. When ψ  > 0, there is a bias in favor 

of LL (gains) or SS (losses); when ψ  < 0, there is a bias against these options. The tradeoff 

function H translates the attributes into a common currency.24 González-Vallejo (2002) 

proposes that the tradeoff function H is the proportional difference between its arguments: 
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Because the same tradeoff function H applies to perceived outcomes and perceived 

delays, there are not many alternatives to defining it as a proportional-difference function. 

This, however, invites most of the problems that we have identified for Scholten and Read’s 

(2006) interval-discounting model. Most importantly, it must invoke two elasticity properties 

for v, i.e., increasing the magnitude of the outcomes by the same multiplicative constant or 

changing their sign from positive to negative decreases the ratio v(xS) / v(xL), and, on top of 
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this, an elasticity property for w, i.e., increasing the delays by the same multiplicative constant 

decreases the ratio w(tS) / w(tL). A key distinction between González-Vallejo’s (2002) and our 

model is that the stochastic-difference model takes the proportional-difference rule as the 

process within which elasticity operates, whereas the tradeoff model takes an absolute-

difference rule as the process within which diminishing sensitivity operates. We have argued 

that our proposal is both more parsimonious and more intuitive as a description of preference 

patterns in intertemporal choice. 

So much for tradeoffs? 

Discounting models belong to the general class of bilinear choice models, in which the 

value of an outcome is multiplied by a weight corresponding to its delay or probability. Thus, 

the immediacy equivalent of a delayed outcome is: 

xS = v-1[d(tL)v(xL)]. 

The certainty equivalent of a risky outcome can be described analogously (see Birnbaum & 

Sutton, 1992). The multiplicative operation implies that, if we plot the immediacy equivalent 

against the delayed outcome, we will obtain a diverging fan of lines, with a steeper slope 

corresponding to a shorter delay. This has generally been confirmed for delayed outcomes 

(Stevenson, 1986, 1992, 1993) as well as, analogously, risky ones (Anderson & Shanteau, 

1970; Shanteau, 1974; Tversky, 1967a, 1967b). The tradeoff model, however, describes the 

immediacy equivalent as: 
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The subtraction or addition will not produce the diverging fan unless v-1 includes an 

exponential function of its argument. The inverse of the generalized logarithmic function in 

Equation 12 meets this requirement. Consider, for instance, the 12 × 2 = 24 options in Table 

5.2. Let tj and xj denote the delay and outcome, respectively, of option j and let jŷ  denote the 

immediacy equivalent of option j as estimated by the tradeoff model. Thus, 
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For each delayed outcome, we obtain the immediacy equivalent by specifying w, Q, and v as 

in Equations 10, 11, and 12, respectively, and employing the parameter estimates from Table 

6. The results are displayed in Figure 12. The diverging fan of lines is obvious, both for losses 

(left panel) and for gains (right panel). Thus, the evidence for a ‘multiplicative operation,’ 

sometimes treated as evidence against attribute-based choice models (e.g., Stevenson, 1992), 
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is fully compatible with the tradeoff model. 

--------------------------------- 

Insert Figure 12 about here 

--------------------------------- 

Control in intertemporal choice 

The tradeoff model addresses intertemporal judgments and choices that involve a 

comparison between a smaller amount of money after a smaller amount of time (SS) and a 

larger amount of money after a larger amount of time (LL). Although this has been the focus 

of most experimentation on, and formal modeling of, individual intertemporal choices, it is 

nonetheless a narrow focus. For instance, we have not extended the tradeoff model to choices 

between sequences of outcomes (e.g., Loewenstein & Prelec, 1991, 1993), the modeling of 

which will require yet more psychological apparatus, possibly the operation of multiple 

reference points and other forms of intra-attribute sensitivity. But even the domain of 

intertemporal choices between SS and LL is not exhaustively described by our model. Rather, 

we suggest there is a continuum of choices ranging from ‘uncontrolled’ to ‘rationally 

controlled,’ with ‘intuitively controlled’ choices, as described by our model, falling in 

between. This is depicted in Figure 13. 

--------------------------------- 

Insert Figure 13 about here 

--------------------------------- 

Uncontrolled choices are the ‘poster children’ of intertemporal choices. Examples 

include choosing whether to have the tiramisu, to smoke another cigarette, or to engage in 

unprotected or forbidden sex. The person is hardly a decision maker any longer, but rather a 

servant of uncontrollable fears and desires (Loewenstein, 1996, 2000). These choices cannot 

easily be viewed as deliberate tradeoffs between SS and LL. Sometimes, LL cannot even be 

conceived as such (e.g., how is using a condom an LL in comparison with not using one?), 

and may thus not enter into the decision. Sometimes, of course, and normally as the result of a 

prior decision, people may struggle with their desires by making the tradeoff explicit to 

themselves (e.g., ‘is the pleasure of this dessert worth the extra time I will have to spend in the 

gym to burn off the calories?’), but these are rare occasions, and even on these occasions the 

pull of the present pleasure is so great that we doubt whether any additional insight will come 

from modeling it as a variant of the g-function in the tradeoff model. 

Rationally controlled choices are at the other end of the spectrum. These are made 

through formal reasoning. In the introduction, we described two ways in which a person could 
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choose between delayed outcomes: Either by directly comparing the options along the time 

attribute and the money attribute, as described by the tradeoff model, or by first computing 

and then comparing discounted values. Someone who does the latter is rationally controlled. 

We expect, or rather hope, that the intertemporal choices made by a new Harvard MBA, when 

at work (i.e., not when cruising the night clubs or making personal investment decisions), can 

be formally modeled as the maximization of discounted value. 

Intuitively controlled choices, addressed by the tradeoff model, fall in between these 

two ends of the continuum. These choices are controlled, because the person is not enslaved 

by unbridled passion, and therefore has the capacity to deliberate and to choose the option that 

reason commands. But the control is intuitive, because the person is not an agent that acts as if 

informed by tables of interest rates and discounted values. Rather, an explicit tradeoff is made 

between the timing and the desirability or undesirability of the outcomes. The questions that 

first come to mind are ‘how much sooner?’ and ‘how much smaller?,’ or ‘how much later?’ 

and ‘how much larger?’ The answers are assessments similar to those that would be made 

when assessing any quantity such as loudness (‘how much louder?’) or brightness (‘how 

much brighter?’). The question then becomes how much weight should be given to the 

perceived time difference relative to the perceived outcome difference. It is this intuitive 

process that we have modeled in this paper. 
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TABLE 1 

Comparison of the interval-discounting model and the tradeoff model. 

Interval-discounting model Tradeoff model 

Interval discounting Intra-attribute subtractivity 

Increasing proportional sensitivity  

Loss amplification  

Loss aversion Loss aversion 

Complete adaptation to rescheduled outcomes Adaptation to rescheduled outcomes 

Diminishing sensitivity Diminishing sensitivity 

Superadditive discounting (short intervals) Augmenting relative sensitivity (short intervals) 

Subadditive discounting (medium to long intervals) Diminishing relative sensitivity (medium to long intervals) 
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TABLE 2 

Data from Benzion et al. (1989): Magnitude of the rescheduled outcome, delay to the later outcome, goodness-of-fit to one-period discount coefficients 

and parameter estimates of the tradeoff model, and hypothesis tests.
a
 

100% × R2 = 91.02% 

Magnitude 

dependenceb 

Delay 

dependencec R 

Incomplete 

adaptationd 

Asymmetric 

adaptatione 

Loss 

aversionf 

Magnitude of 

rescheduled 

outcome 

Delay to 

later 

outcome κ  t(39) p t(39) p Gains Losses t(39) p t(39) p Λ t(39) p 

40 ½ 16.33 - - - - 

40 1 10.95 - - -6.56 .00 

40 2 8.11  - - -3.51 .00 

40 4 5.61 - - -3.52 .00 

20.06 -4.95 -3.04 .00 2.28 .01 

200 ½ 60.63 13.23  .00 - - 

200 1 40.57 8.58  .00 -4.37 .00 

200 2 33.54 8.16  .00 -1.56 .06 

200 4 25.20 7.67  .00 -2.13 .02 

67.86 -5.46 -5.33 .00 2.10 .02 

1.14 3.15 .00 
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1,000 ½ 272.53 12.30  .00 - - 

1,000 1 196.54 8.89  .00 -3.24 .00 

1,000 2 150.28 7.08  .00 -1.99 .03 

1,000 4 124.67 7.61  .00 -1.26 .11 

400.32 -72.54 -4.20 .00 2.11 .02 

5,000 ½ 919.57 7.29  .00 - - 

5,000 1 730.30 5.96  .00 -1.55 .06 

5,000 2 588.66 5.10  .00 -1.17 .12 

5,000 4 488.64 4.86  .00 -0.90 .19 

511.52 -971.29 -8.36 .00 -0.80 .79 

aThe tradeoff model was estimated on 64 data points (r) collected from 204 participants. Tests are one-tailed t-tests. 
bTesting whether κ increases reliably when the magnitude of the rescheduled outcome increases (e.g., from $1,000 to $5,000), holding the delay to the later 
outcome constant. 
cTesting whether κ decreases reliably when the delay to the later outcome increases (e.g., from 2 yr to 4 yr), holding the magnitude of the rescheduled 
outcome constant. 
dTesting whether the highest level of adaptation is reliably lower than the level of complete adaptation (e.g., whether a positive reference-point shift of 
$400.32 is reliably smaller than a full shift of $1,000 or whether a negative reference-point shift of $971.29 is reliably smaller than a full shift of $5,000). 
eTesting whether the level of adaptation to a gain is reliably higher than the level of adaptation to a loss (e.g., whether a positive reference-point shift of 
$400.32 is reliably greater than a negative shift of $72.54). 
fTesting whether Λ is reliably greater than one. 
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TABLE 3 

Data from Scholten and Read (2006): Goodness-of-

fit to one-period discount fractions and parameter 

estimates of the tradeoff model.
a 

100% × R2 = 84.35% 

Parameter Estimate t(5) p 

κ  104.76 2.08b .05 

α  0.51 0.86b .21 

Β  1.68 2.79c .02 

τ  0.03 2.44b .03 

aThe tradeoff model was estimated on nine data points (logarithmic transforms of δ) collected 
from 42 participants. 
bTesting whether the estimate is reliably greater than zero (one-tailed t-test). 
cTesting whether the estimate is reliably greater than one (one-tailed t-test). 
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TABLE 4 

Data from Scholten and Read (2006): Fitting and 

cross-fitting the tradeoff model to one-period 

discount fractions and outcomes (100% × R
2
).

a
 

Tradeoff model 

evaluated on 
Tradeoff model 

estimated on δ xL 

δ 84.35 98.69 

xL 75.46 99.78 

aThe tradeoff model was estimated and evaluated on logarithmic transforms of the dependent 
variables. 
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TABLE 5.1 

Preference data from choice-based matching study: Delays, 

outcomes, and choice probabilities. 

tS
a tL

a xS
b xL

b P
c P̂

d 

3 9 20 40 .481 .439 

3 9 -20 -40 .731 .728 

3 9 200 400 .712 .629 

3 9 -200 -400 .769 .853 

23 29 20 40 .750 .783 

23 29 -20 -40 .904 .925 

23 29 200 400 .865 .887 

23 29 -200 -400 .981 .964 

12 36 20 40 .269 .301 

12 36 -20 -40 .692 .596 

12 36 200 400 .481 .483 

12 36 -200 -400 .712 .762 

aDelays in months. 
bOutcomes in pounds or euros. 
cRelative frequencies (N = 52). 
dPredictions from the tradeoff model. 
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TABLE 5.2 

Indifference data from choice-based matching study: Delays, 

outcomes, and one-period discount fractions. 

tS
a tL

a xS
b,c xL

b,c δ c δ̂ d 

3 9 15.94 33.11 .885 .885 

3 9 -29.27 -44.45 .933 .933 

3 9 184.72 296.61 .924 .921 

3 9 -301.87 -430.45 .943 .948 

23 29 19.19 29.00 .934 .934 

23 29 -32.27 -40.62 .962 .961 

23 29 191.52 261.15 .950 .954 

23 29 -345.80 -400.95 .976 .970 

12 36 13.55 36.46 .960 .961 

12 36 -28.79 -44.26 .982 .978 

12 36 176.18 331.57 .974 .974 

12 36 -282.65 -445.06 .981 .983 

aDelays in months. 
bOutcomes in pounds or euros. 
cGeometric means (N = 52). 
dPredictions from the tradeoff model. 
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TABLE 6 

Data from choice-based matching study: Goodness-

of-fit to one-period discount fractions and parameter 

estimates of the tradeoff model.
a 

100% × R2 = 98.80% 

Parameter Estimate t(7) p 

κ  4.58 2.11b .04 

α  1.24 1.39b .10 

τ  0.16 2.41b .02 

γ  0.08 6.19b .00 

Λ  1.52 6.83c .00 

aThe tradeoff model was estimated on 12 data points (logarithmic transforms of δ) collected 
from 52 participants. 
bTesting whether the estimate is reliably greater than zero (one-tailed t-test). 
cTesting whether the estimate is reliably greater than one (one-tailed t-test). 
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TABLE 7 

Data from choice-based matching study: Fitting and cross-fitting the tradeoff 

model to one-period discount fractions, outcomes, and choice odds (100% × 

R
2
).

a
 

Tradeoff model 

evaluated on 
Tradeoff model 

estimated on δ xL Ωc 

δ 98.80 99.89 84.44 

xL 98.56 99.90 82.99 

Ωb 91.96 99.65 91.62 

aThe tradeoff model was estimated and evaluated on logarithmic transforms of the dependent 
variables. 
bThe tradeoff model was estimated on log choice odds by minimizing a weighted least-
squares loss function (see Maddala, 1994, pp. 28-32), in which the squared deviations 
between observed and predicted log choice odds were weighted by 

)1( PNPw −= . 

Minimizing an ordinary least-squares loss function (w = 1 for all option pairs) led to very 
similar results. 
cϑ = 2.81. 



The Tradeoff Model of Intertemporal Choice 47 

Figure Captions 
Figure 1. Examples of the value function from prospect theory (dashed curves) and the value 
function proposed by Loewenstein and Prelec (1992; solid curves). The two value functions 
are scaled such that they cross at the edge of the graph. 
Figure 2. Postponing a gain: The valuation of outcomes in case of no adaptation (top left 
panel), complete adaptation (top right panel), and incomplete adaptation (bottom panel) to the 
postponed outcome. The greater the adaptation to that outcome, the greater the compensation 
demanded for postponing it. 
Figure 3. Applying the tradeoff model to the data from Benzion et al. (1989): The top panel 
shows the estimated values of R, confirming incomplete and asymmetric adaptation; the 

bottom panel shows the estimated values of κ, confirming magnitude and sign dependence. 
Outcomes are in dollars, delays are in years. 

Figure 4. Observed values of ρ (left) from Benzion et al. (1989) and predicted values (right) 
from the tradeoff model. The top panel pools across 4 (outcome magnitude) × 4 (delay to the 
later outcome) = 16 data points, showing the rescheduling effect and the sign effect. The 
bottom panel pools across 2 (postponing versus preponing an outcome) × 2 (outcome sign) = 
4 data points, showing the magnitude effect and the pseudo-delay effect. Outcomes are in 
dollars, delays are in years. 

Figure 5. Observed values of ρ (left) from Benzion et al. (1989) and predicted values (right) 
from the tradeoff model for $5,000 outcomes, pooled across four delays to the later outcome. 
Figure 6. Four variants of the tradeoff function Q, showing constant relative sensitivity (linear 

function; α → 0 and Β = 1), augmenting relative sensitivity (convex function; α → 0), 

diminishing relative sensitivity (concave function; Β = 1), and a sequence of augmenting and 
diminishing relative sensitivity (S-shaped function). 
Figure 7. The inflection point of the tradeoff function Q. 
Figure 8. The nine intervals used by Scholten and Read (2006). 

Figure 9. Observed values of δ (solid curves) from Scholten and Read (2006) and predicted 
values (dashed curves) from the tradeoff model. The top panel pools across the six short 
intervals and across the two medium-length intervals, showing superadditivity and 
subadditivity. The bottom panel pools across the four early intervals and across the four late 
intervals (in either case, three short intervals and one medium-length interval), showing the 

delay effect. Observed and predicted values of δ displayed on a logarithmic scale. 

Figure 10. Observed values of δ (solid curves) from the choice-based matching study and 
predicted values (dashed curves) from the tradeoff model. The top panel pools across the four 
outcome conditions, showing the delay effect and strong subadditivity. The bottom panel 
pools across the three delay conditions, showing the magnitude effect, the sign effect, and 

their interaction. Observed and predicted values of δ displayed on a logarithmic scale. 
Figure 11. Choice-based matching study: Observed and predicted values of the dependent 
variables, displayed on a logarithmic scale. 
Figure 12.  Indifference data from the choice-based matching study: Estimated immediacy 
equivalents of the 24 delayed outcomes. Outcomes are in pounds or euros, delays are in 
months. 
Figure 13. Control in intertemporal choice. 
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FIG. 2 
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FIG. 3 
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FIG. 4 
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FIG. 5 
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FIG. 6 
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FIG.7 
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FIG. 8 
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FIG. 9 

 

Short Medium Long

 

Interval length

.90

.92

.94

.96

.98

1.00

 δ

 

 

 

Early Late

 

Interval onset

.90

.92

.94

.96

.98

1.00

 δ

 



The Tradeoff Model of Intertemporal Choice 57 

FIG. 10 
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FIG. 11 
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FIG. 12 
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Endnotes 

 
1Analogous distinctions have been made between independent and comparative evaluation 
(Tversky, 1969), interdimensional and intradimensional processing (Payne, 1976), holistic 
and dimensional choice strategies (Russo & Dosher, 1983) and separate and joint evaluation 
(Hsee, Loewenstein, Blount, & Bazerman, 1999). 
2We thus associate the term ‘tradeoff’ with attribute-based choice (González-Vallejo, 2002) 
rather than alternative-based choice (Brandstätter, Gigerenzer, & Hertwig, 2006). 
3The exponential-discounting model is not equivalent to Samuelson’s (1937) discounted-
utility model. According to the discounted-utility model, indifference between SS and LL 

arises when )()()()( L

ttt

S

t
xcucucuxcu LSLS ++=++ δδδδ , where c is a constant baseline 

consumption level and u is a concave utility function over consumption levels. Thus, apart 
from the exponential discounting, the models are quite different with respect to the evaluation 
of outcomes: The exponential-discounting model effectively assumes that u is a linear utility 
function over deviations from the constant baseline consumption level. 
4The normative status of exponential discounting arises because only constant discounting 
ensures that preferences will not change merely due to the passage of time (Strotz, 1955-
1956). The exponential-discounting model, however, assumes exponential discounting of 

outcomes, rather than outcome utilities, so that variation of δ does not necessarily disprove the 
constant discounting as prescribed by the discounted-utility model (see also Frederick, 
Loewenstein, & O’Donoghue, 2002). Although the discounted-utility model may account for 

some variation of δ, it often fails on closer scrutiny (see Loewenstein & Prelec, 1992) and it 

certainly fails to account for all variation of δ that has proven reliable across studies. 
5Not counting the studies in which the effect of the delay to outcomes is confounded with that 
of the interval between outcomes (see Read, 2001), the delay effect is seen in some (Green, 
Fristoe, & Myerson, 1994; Green, Myerson, & Macaux, 2005; Keren & Roelofsma, 1995; 
Kirby & Herrnstein, 1995; Scholten & Read, 2006), but not, or not reliably, in others 
(Ahlbrecht & Weber, 1997; Baron, 2000; Holcomb & Nelson, 1992; Read, 2001; Read & 
Roelofsma, 2003). The delay effect has been confirmed in studies where time periods were 
presented as delays proper (e.g., “in 1 year”) and disconfirmed mostly in studies where time 
periods were presented as dates (e.g., “on December 1, 2007”). Recent studies show that using 
dates instead of delays indeed attenuates or eliminates the delay effect (LeBoeuf, 2006; Read, 
Frederick, Orsel, & Rahman, 2005). 
6The paper by Loewenstein and Prelec (1992) contains a typographical error, in that their 
Inequality 18 reads ‘<’ instead of ‘>’. However, the surrounding text is correct (see also 
Prelec & Loewenstein, 1991; but see al-Nowaihi & Dhami, 2006, for a different reading). 
7Because of diminishing sensitivity, both percentages are smaller than 10. 
8Not counting the studies in which the effect of the sign of an outcome is confounded with 
that of the rescheduling of an outcome (see Shelley, 1993), the sign effect is seen in some 
(Murphy, Vuchinich, & Simpson, 2001; Yates & Watts, 1975), but not, or not reliably, in 
others (Ahlbrecht & Weber, 1997; Benzion, Yagil, & Rapoport, 1989; Loewenstein, 1987; 
Shelley, 1993). 
9Thaler (1981) originally ascribed the sign effect to loss aversion. However, a discounting 
model does not generate a sign effect on the basis of loss aversion alone, only in interaction 
with diminishing sensitivity. Therefore, he probably thought of loss amplification rather than 
loss aversion. 
10The word ‘preponing’ is Indian English for ‘bringing forward in time.’ The former may be 
awkward to Anglo-American readers, but it is more concise than the latter, and it may also be 
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less confusing to non-native speakers. 
11See also Hoch and Loewenstein (1991, Figure 1), Loewenstein (1988, Figures 1, 2, and 3), 
Shelley, 1993, Figure 1), and Strahilevitz and Loewenstein (1998, Figures 1a and 1b). 
12The expression that “the subjective magnitude of outcomes increases with their objective 
magnitude” also applies to losses: Greater losses correspond to lower values of x and smaller 
losses correspond to higher values of x, so that v´(x) > 0. 
13We use the Hooke-Jeeves and Quasi-Newton routine of the Statistica software (StatSoft, 
2003) for model estimation. 
14We use the term ‘discounting’ merely to describe empirical regularities in a data set, without 
intending any reference to a psychological process. 
15This procedure thus avoids the problem, discussed by Kirby (1997), that the arithmetic 
mean of individual discount rates is not the same as an aggregate discount rate computed 
from the arithmetic mean of the variable outcome. 
16Because of the delay-interval confound, the present analysis cannot distinguish between 
diminishing sensitivity to delays and diminishing relative sensitivity to perceived intervals. 
17This is different for the variation of R, which we expect to confirm incomplete and 
asymmetric adaptation, but may otherwise not exhibit an orderly pattern. Indeed, the prime 
motive for this first application of the tradeoff model is to explore the variation of R. 
18A linear value function has also been adopted in earlier examinations of the rescheduling 
effect (Loewenstein, 1988; Shelley, 1993; see also Hoch & Loewenstein, 1991). 
19We could not include the data collected by Shelley (1993) in our analysis, because she did 
not report the discount coefficients from all 96 cells in her design. There were 32 more cells 
than in the design of Benzion et al. (1989), because she added a ‘neutral’ condition to the 
rescheduling factor. In this condition, Equation 4 should reduce to Equation 3, which only 
predicts a sign effect, i.e., lower discount coefficients for losses than for gains. However, the 
wording of the matching task in this condition was far from neutral: “You owe a debt of $40 
in four years to a public institute. What is the (negative) value, -$x, of that debt to you now?” 
(Shelley, 1993, Figure 2). This can easily be ‘misinterpreted’ as rescheduling a commitment, 
especially in the context of more explicit wordings to that effect. Actually, the data from the 
‘neutral’ condition revealed higher discount coefficients for losses than for gains (Shelley, 
1993, Figures 3 and 6), suggesting that an undesired rescheduling effect still outweighed the 
sign effect. 
20Tversky and Kahneman’s (1992) value function has two diminishing-sensitivity parameters, 
one for gains and one for losses, thus allowing for different degrees of diminishing sensitivity 

to gains and losses. Equation 12 has only one diminishing-sensitivity parameter γ and captures 

any differential sensitivity to gains and losses with the loss-aversion parameter Λ. 
21Formal choice models often assume a power value function (e.g., Tversky & Kahneman, 
1992), rather than a logarithmic one. The power analogue of Equation 12 is: 
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which becomes a scalar function when γ = 0 and a zero function as γ goes toward infinity. The 
power function has a greater complexity than the logarithmic function, i.e., a greater capacity 
to fit data, but the logarithmic function seems to have a greater generalizability than the power 
function, i.e., a greater capacity to account for data to which it was not fitted (see Pitt, Myung, 
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& Zhang, 2002). 
22Most models that account for the delay effect, including the tradeoff model, imply that δ will 

be higher for M than for U even if E is as long as L, because δ increases by a greater 

proportion from E to M than from M to L, i.e., δM / δE > δL / δM or δM > LEδδ . 
23Applying a preference model to choice odds has the same problem as applying an 
indifference model to outcomes: An overly naïve null model. For instance, if one is equally 
likely to choose $5 now or $10 after 1 period of time, one would be more likely to choose $95 
now than $100 after that period and more likely to choose $5 now than $10 after 2 periods, 
but the null model would assign equal probabilities throughout. 
24González-Vallejo (2002) denotes H as d and ψ as δ, which in this paper represent a discount 
factor and a one-period discount fraction, respectively. 


