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1 INTRODUCTION

Unlike other contributors to this special issue, I was not a research student
or colleague of Denis Sargan’s, and little of my own research has been very
close to his. I am not qualified, therefore, to offer a detailed appraisal of his
contributions, or a fund of personal anecdotes. However, I am very much
aware not only of the striking originality of his research, but also of his role,
along with T.W. Anderson, E.J. Hannan, and others, in creating from the
1950’s and 1960’s, today’s rigorous discipline of econometric theory. I would
like to try to place his work in some sort of historical context, but I am not
a historian of econometrics and so I will try to do so in a rather “individual”
way.
From 1982 until his retirement in 1984, Denis Sargan held the Tooke

Chair of Economic Science and Statistics at the London School of Economics
(LSE). This Chair dates from 1859 - by way of comparison, the first uni-
versity department of statistics, at University College London, was founded
in 1911, while the Econometric Society was founded in 1930. I hope that a
brief survey, in Section 2, of the previous incumbents of the Tooke Chair,
may give a (very casual) picture of how the interface between statistics and
econometrics developed prior to Sargan, whose own treatment of economet-
ric problems was in the highest traditions of mathematical statistics. Such
a review seems especially apt in that one of the previous incumbents of the
Chair was F.Y. Edgeworth, who gave his name to Edgeworth expansions,
one of Sargan’s major contributions to econometrics being his development
of higher-order asymptotic theory. Nowadays, the boundary between the sort
of theoretical and empirical research pursued by econometricians on the one
hand, and many statisticians on the other, has become very blurred. The
influence has not been all in one direction, from statistics to econometrics. In
particular, “identifiability” is a general issue with statistical models, but it
was studied early on in the context of linear simultaneous equations systems
in econometrics, and Sargan’s own contributions (e.g., Sargan, 1983) to this
subject were of particular depth. Also, increasingly many statisticians have
become interested in problems arising in economics or finance. On the other
hand, in recent years econometricians have drawn on an ever wider range
of statistical models and techniques. A particular topic which has attracted
great econometric attention, at both the theoretical and empirical levels, and
has largely developed since Sargan’s retirement, is semiparametric inference,
involving smoothed nonparametric estimation. (Indeed it has been much
studied at the LSE since the mid-1980’s.) This regularity reflects the incom-
plete information typically available in econometric model building, as well
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as increasing availability of large data sets, and improved computing power.
Sargan’s own work was predominantly of a “parametric” character, but one
of his papers “Asymptotic theory and large models” (Sargan, 1975), can be
related to subsequent research on semiparametric estimation, and I will dis-
cuss this paper in section 3, providing also some, minor, development of it.
Section 4 contains some brief final comments.

2 THE TOOKE CHAIR

Denis Sargan was the ninth Tooke Professor of Economic Science and Statis-
tics. The Tooke Chair was founded in 1859 at Kings College London, by
public subscription and in memory of Thomas Tooke, who had died the pre-
vious year. Born in Cronstadt, Russia, the son of a chaplain of a British
factory there, Tooke established himself first as a merchant, and as an early
supporter of the free trade movement, then founding, with Ricardo, Malthus,
James Mill and others, the Political Economy Club. As an economist, he de-
voted himself to systematically collecting and analyzing statistical and his-
torical information concerning price changes from 1793 onwards, concluding
that the fluctuations over the following 45 years were due to circumstances
affecting the supply of commodities rather than to changes in the system of
currency, the popular view then being that the suspension of convertibility
from 1793, and its resumption in 1819, led to a depreciation, and then an
increase, in the value of currency. Tooke’s investigations also led him to op-
pose the quantity theory of money. The data he collected were subsequently
used by other researchers, including Jevons.
Both the first, and the third, holders of the Tooke Chair, at Kings Col-

lege, had been ordained as Church of England clergymen, and were pioneers
of economic history. James Thorold Rogers held the Chair from 1859 to
1890. He espoused controversial political opinions, and was briefly a Mem-
ber of Parliament, but also conducted minute historical and statistical in-
vestigations leading to many publications, the best known being a history
of agriculture and prices from 1759 to 1793. William Cunningham held the
Chair from 1891 to 1897 and wrote the first textbook on economic history,
which went to seven editions; Cunningham’s efforts had much to do with the
establishment of economic history as a separate discipline.
Neither Rogers nor Cunningham were theoretically inclined, and in fact

held strongly critical attitudes to economic theorizing, but their tenures of
the Tooke Chair were separated by that of Francis Ysidro Edgeworth, be-
tween 1890 and 1891, who made contributions of lasting value to both math-
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ematical economics and statistics. Born of an Irish landowning father and
Spanish refugee mother, Edgeworth had no early formal training in advanced
mathematics, and started working in the moral sciences, but he went on to
father the mathematical approach to economic theory. Edgeworth wrote ex-
tensively on such topics as taxation, monopoly and duopoly, international
trade, and index numbers. He was a pioneer in using the indifference curve,
and his invention of the core was not appreciated by the economics profession
for many years. At the same time, he offered numerous important statistical
insights. One, which we take for granted today, is the representation of the
multivariate normal distribution in terms of pairwise correlation coefficients.
Edgeworth’s work on correlation greatly influenced Karl Pearson. He derived
the t-distribution as the posterior distribution for the sample mean. Some
of his papers contain some element of a proof of asymptotic efficiency of
maximum likelihood estimates, prior to Fisher. To many statisticians and
economists he is most associated with the “Edgeworth expansion”, however.
Recognizing that much real data are not normally distributed, he introduced
a series expansion which, as a rival to the Pearson family, is able to flex-
ibly describe skewness, kurtosis and other phenomena. The “Edgeworth
expansion” we refer to nowadays is employed to improve on the central limit
theorem in approximating sampling distributions, and has led to refinements
in statistical inference in many areas of statistics and econometrics; more re-
cently, strong theoretical support for the bootstrap has been provided by its
ability to achieve an Edgeworth correction. Edgeworth was the first editor
of the Economic Journal, serving in that role for twenty-one years.
Edgeworth was the epitome of the absent-minded professor, and an in-

coherent lecturer. The political economist and historian William Albert
Samuel Hewins, Tooke Professor between 1897 and 1904, was more success-
ful as a lecturer, in his early career speaking to working class audiences in the
north of England on trade unionism and factory legislation. Hewins became
the first director (that is, chief executive) of the LSE. He was succeeded as
Tooke Professor by Charles Stewart Loch, later knighted, and then in 1908
by Edmund John Urwick; both Loch and Urwick wrote on social questions.
In 1919 the Tooke Chair was transferred from Kings College to the LSE.

By then, both were colleges of London University, and the aim was to avoid
overlapping by concentrating economic study in one of the two colleges -
Kings College has focussed on the sciences and humanities, LSE on social
science. However, the Tooke Chair was then in abeyance between 1920 and
1931, until it was taken up by Friedrich August von Hayek, arriving from
Vienna. Hayek’s scholarly output spreads over six decades and beyond eco-
nomics. He is widely known for his influence on the monetarist properties
later pursued by western governments, for his critique of Keynesianism, and
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his integration of price theory, capital theory and monetary theory, providing
a base for reinterpreting 19th and 20th century economic history and promot-
ing institutional reform. Hayek was awarded the Nobel Prize in Economics
in 1974.
Hayek left the LSE in 1950, for Chicago, and the Tooke Chair was then

vacant until 1958, when it was filled by the promotion of Albert William
Housego (“Bill”) Phillips. Phillips had a background in electrical engineer-
ing, which provided him with a distinctive perspective on economic prob-
lems. He pioneered the application of optimal control theory to economics,
and even built a hydraulic perspex model of a dynamic Keynesian-type econ-
omy, the “Phillips machine”. Phillips’ single most widely-known contribution
is the “Phillips curve”, relating wage inflation and unemployment. Phillips’
research on continuous time dynamic models may also be mentioned, particu-
larly influencing work of fellow-New Zealanders at the LSE and the University
of Essex.
Phillips left the LSE in 1967 and the Tooke Chair was vacant until, in

1982, it was transferred to Denis Sargan, then Professor of Econometrics.
None of the previous incumbents of the Tooke Chaire comes close to fitting
the modern description of an econometrician (though one could imagine a
synthesis of Edgeworth’s ideas leading to an earlier development of econo-
metrics). But in many of his contributions - his early work in economic
theory (Sargan, 1955), his influential study of wages and prices in the UK
(Sargan, 1964), his deep theoretical development of Edgeworth expansions
(Sargan, 1976), and even his brief interest in continuous time models (Sar-
gan, 1974), Denis Sargan echoed concerns and achievements of a number of
his predecessors.
The preparation of this section has relied very heavily on the references

Blaug (1986), Blyth (1987), Dahrendorf (1995), Davis and Weaver (1927),
Garrison and Kirzner (1987), Lee (1897, 1899), Mai (1975), Morgan (1990),
Newman (1987), Pavetti (1987), Stigler (1987), Weaver (1937), Wickham
Legg (1949), and Who was Who 1929 -1940 and 1941 -1950 .

3 SEMIPARAMETRIC ESTIMATION

So much of Sargan’s work, on instrumental variables, simultaneous equations,
specification testing, and Edgeworth expansions, can be seen as fundamental
to, and influential in, the development of econometrics. “Asymptotic Theory
and Large Models” (Sargan, 1975) can be seen as something of a one-off con-
tribution, which turns out to contain ideas related to a more modern econo-
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metric preoccupation, semiparametric estimation; I referred to Sargan (1975)
in my review article on semiparametric econometrics (Robinson, 1988), but
did not discuss it in any depth there. The paper is not included among
the two volumes of selections of Sargan’s papers (Sargan, 1988) and has in-
deed rather escaped attention, perhaps because interest in large econometric
models was already on the wane by the time the paper was published, in
an issue of International Economic Review devoted to the proceedings of a
symposium in econometric model performance. Though connected to some
of Sargan’s other work, including instrumental variables estimation of lin-
ear simultaneous equations systems (see Sargan, 1958), the main innovation
in Sargan (1975) is the allowance for an increase, with sample size, of the
number of variables, and equations, in the model, and the justification of
parametric convergence rates with respect to the part being estimated, and
asymptotic efficiency, relative to an underlying model involving infinitely
many variables and equations. It thus deserves to be associated with the
statistical and econometric literature on “adaptive” estimation in the con-
text of a semiparametric model: the finite-dimensional parameter vector is
estimated asymptotically as efficiently (in either the Cramer-Rao or Gauss
Markov senses) as if the infinite-dimensional nuisance function were of fi-
nite dimension. Hannan (1963) seems to have obtained the first results of
this kind, showing adaptivity with respect to disturbance autocorrelation
of unknown, nonparametric form, in time series regression models; Hannan
followed this up with work on related semiparametric models, including dis-
tributed lag and linear simultaneous equations models. (Sargan’s own work
on frequency domain semiparametric estimation - Espasa and Sargan (1977)
- and his early paper on the periodogram - Sargan (1953) - also warrant men-
tion here.) The model in Sargan (1975) is perhaps not really semiparametric
in the sense that, even though he was concerned with estimation of only a
finite subset of equations, whose number remains constant as sample size
increases, all equations in his underlying infinite system are assumed to be
identified, each involving variables whose number also remains fixed as sam-
ple size increases. I will point out later that the same statistical achievement
is possible without this kind of “full-information” requirement, presenting
a version of the problem more in keeping with the modern semiparametric
literature. First, however, I would like to describe in more detail the basic
setup and accomplishments of Sargan (1975).
Define arrays {yst; s, t ≥ 1}, {zst; s, t ≥ 1}, {ust; s, t ≥ 1}, {bst; s, t ≥ 1},

{cst; s, t ≥ 1} , and consider the model
∞P
j=1

{bijyjt + cijzjt} = uit, i, t ≥ 1. (3.1)
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In (3.1), i indexes structural equations and t indexes observations (I will
mostly try to follow Sargan’s notation, though he employed instead an infinite-
dimensional matrix presentation here). We will refer to the yjt as “endoge-
nous” variables and the zjt as “exogenous” variables. The uit are unobserv-
able disturbances, satisfying at least

E(uit) = 0, (3.2)

E(uitujt) = ωij (3.3)

E(uisujt) = 0, s 6= t, (3.4)

for all i, j, s, t, and the zjt are nonstochastic and uniformly bounded. The
i-th equation in (3.1) is well-defined, for all t, by the requirements that for
some p <∞, q <∞,

bij 6= 0 for at most p values of j, (3.5)

cij 6= 0 for at most q values of j, (3.6)

and is normalized by the requirement

bii = 1. (3.7)

It is supposed that (3.5)-(3.7) hold for all i ≥ 1. Further, Sargan assumed
that for all i

bij = 0, j > i+ P, for some P > 0, (3.8)

cij = 0, j > qi (3.9)

∞P
j:j 6=i

|bij| < 1, (3.10)

and

max
i,j
|cij| <∞. (3.11)

The bij, cij are otherwise unknown. Condition (3.8) is a kind of near-
recursivity requirement, and along with (3.10), which is clearly very strong,
and (3.11), ensures the existence of a stable solution of (3.1), while, given
(3.6), condition (3.9) is always satisfied by a suitable re-ordering.
The simultaneous equations system (3.1) involves infinitely-many equa-

tions and infinitely-many endogenous variables yjt, j ≥ 1, and exogenous
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variables zjt, j ≥ 1, observed at time points t. In practice we have obser-
vations at t = 1, ..., T , for T finite, and construct a working model of n(T )
equations in yjt, 1 ≤ j ≤ n(T ) and zjt, 1 ≤ j ≤ m(T ), namely

n(T )P
j=1

bijyjt +
m(T )P
j=1

cijzjt = uit, 1 ≤ i ≤ n(T ), 1 ≤ t ≤ T, (3.12)

withm(T )+n(T ) < T . In discussing asymptotic statistical theory for estima-
tion of the unknown parameters explaining the bij , cij in (3.12), traditionally
(see e.g. Johnston, 1984) m(T ) and n(T ) are fixed as T →∞, so m(T ) = m,
n(T ) = n, say. In (3.12), however, m(T ) and n(T ) are regarded as increas-
ing slowly with T , so that (3.12) “tends to” (3.1), to reflect an attitude
often adopted by practical modellers, that the more data we have, the more
unknown parameters one can hope to estimate with reasonable precision.
Even with the restrictions (3.5) and (3.6), when n(T ) → ∞ the number of
unrestricted, unknown bij , cij in (3.12) also tends to infinity, so that (3.12)
has something of a nonparametric, infinite-dimensional character. However,
Sargan (1975) was concerned with estimating only the first N equations of
(3.12), where N stays fixed as T → ∞, so that a finite number of no more
than N(p+q−1) unknowns are being estimated. The situation is then more
like that in various semiparametric models, where it is desired to estimate a
finite-dimensional vector as well as possible, or at least with convergence rate
T

1
2 , in the presence of an unknown nuisance function. In fact, Sargan (1975)

was not concerned with developing new estimates to deal with this situation,
but rather with justifying established ones, developed for the traditional case
of m(T ), n(T ) fixed, in the context of the “increasing” model (3.12) nested in
the infinite-dimensional system (3.1). Specifically, he showed that estimates
which are known to achieve a certain asymptotic efficiency bound with re-
spect to (3.12) with m(T ), n(T ) fixed, achieve the same bound with respect
to (3.1).
To significantly simplify the presentation I will take N = 1 throughout;

since N is in any case fixed, there is no essential loss of generality, the only
substantive difference arising in the case N > 1 being that an estimate of
the covariance matrix of (u1t, ..., uN) is involved in order to achieve efficiency
when those uit are contemporaneously correlated; in the asymptotic theory
Sargan developed, and that which I will later develop, this is handled rela-
tively straightforwardly, given the other techniques employed to address the
problem, and the allowance for this kind of extension to the theory I will
subsequently give is likewise straightforward. We write the first equation of
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(3.1) or (3.12) as

y1t +
p1P
j=2

b1jyjt +
q1P
j=1

c1jzjt = u1t, (3.13)

for p1 ≤ p, q1 ≤ q, where b12, ..., b1p1 , c11, ..., c1q1 are unknown and we have
employed a convenient ordering of the yjt, zjt. Write

yj = (yj1, ..., yjT )
0 , Y1 = (y1, ..., yp1) (3.14)

zj = (zj1, ..., zjT )
0 , Z1 = (z1, ..., zq1) . (3.15)

The estimates considered by Sargan are all of instrumental variables type.
For a T × (p1− 1) matrix W we consider the instrumental variables estimate

âIV =

·
W 0Y1 W 0Z1
Z 01Y1 Z 01Z1

¸−1 ·
W 0y1
Z 01y1

¸
(3.16)

of a = (b12, ..., b1p1 , c11, ..., c1q1)
0, assuming the inverse exists. (Our notation

here differs somewhat from Sargan’s.)
An efficient choice of W involves the reduced form for ỹt = (y2t, ..., yp1t)

0.
Sargan deduced that

E(ỹt) =
∞P
j=1

πjzjt, (3.17)

where the πj are (p1− 1)× 1 vectors, the πj indeed converging exponentially
to zero as j → ∞ under the above conditions (due especially to (3.10)), so
that (3.17) is bounded. Introduce the T × (p1 − 1) matrix

Ỹ1 =
∞P
j=1

zjπ
0
j . (3.18)

Then take W = Ỹ in (3.16), and thus consider the estimate

âINF =

·
Ỹ 01Y1 Ỹ 01Z1
Z 01Y1 Z 01Z1

¸−1 ·
Ỹ 01y1
Z 01y1

¸
, (3.19)

where “INF” stands for “infeasible”, both because the πj are unknown and
because the zjt are observable only for j ≤ n(T ) (see (3.12)). Sargan argued
that W = Ỹ is an efficient choice of instruments, in the sense that under
suitable additional conditions the limiting variance matrix of T

1
2 (âIV − a)

exceeds that of T
1
2 (âINF − a) by a non-negative definite matrix; for this and

his other results he assumed that the limits

lim
T→∞

1

T

TP
t=1

zitzjt = mij (3.20)
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exist for all i and j, and the m(T )×m(T ) matrix (mij) has eigenvalues that
are uniformly bounded away from zero and infinity as T → ∞ (implying
m(T )→∞).
Sargan then considered feasible efficient estimates, taking W = Ŷ , where

Ŷ1 =
m(T )P
j=1

zjπ̂
0
p = Zπ̃

0
1, (3.21)

writing

Π̂1 =
¡
π̂1, ..., π̂m(T )

¢
, Z =

¡
z1, ..., zm(T )

¢
, (3.22)

for (p1 − 1) × 1 vector estimates π̂j of the πj. We then have the feasible
estimate

âFEA =

·
Ŷ 01Y1 Ŷ 01Z1
Z 01Y1 Z 01Z1

¸−1 ·
Ŷ 01y1
Z 01y1

¸
. (3.23)

For Π̂1 Sargan used preliminary instrumental variables estimates computed
from all equations of (3.12). Given estimates B̂ and Ĉ of the n(T ) × n(T )
and n(T )×m(T ) matrices (bij) and (cij), take

Π̂1 = [Ip1−1, 0] Π̂, (3.24)

where Π̂ = −B̂−1Ĉ, Ir is the r × r identity matrix and 0 is here a (p1 −
1)× (m(T )− p1 + 1) matrix of zeros. In Sargan (1975) B̂ and Ĉ are formed
from preliminary single-equation instrumental variables estimates, as indi-
cated by Brundy and Jorgensen (1971). These authors argued that using the
least squares estimate Y 01Z(Z

0Z)−1 in place of Π̂ in (3.24) is computationally
unattractive when m(T ) is large, due to the need to invert Z 0Z; with pj un-
excluded yjt and qj unexcluded zjt in the j-th equation, pj ≤ p, q0j ≤ q, single
equation instrumental variables estimation of the j-th equation involves in-
version of only a (pj − 1 + qj)-dimensional square matrix, and Brundy and
Jorgensen (1971) preferred the prospect of n(T ) such inversions over least
squares. Imposing some unprimitive conditions on B̂ and Ĉ (though indi-
cating circumstances under which they would be met), Sargan showed that

âFEA−âINF = op(T− 1
2 ), so that T

1
2 (âFEA−a) has the same limit distribution

as T
1
2 (âINF − a), and is thus asymptotically as efficient.
From a technical stand-point, Sargan (1975) solved highly challenging

problems by both deriving the reduced form (3.17) and justifying its esti-
mation by the preliminary structural form estimates of B and C. However,
computing power has developed considerably over the past thirty years, so
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that least squares estimation of the reduced form in the presence of a very
large number of exogenous variables seems a less daunting prospect nowa-
days than it did to Brundy and Jorgenson (1971). Thus, the two-stage least
squares estimate of a,

â2SLS =

·
Y 01Z(Z

0Z)−1Z 0Y1 Y 01Z1
Z 01Y1 Z 01Z1

¸−1 ·
Y 01Z(Z

0Z)−1Z 0y1
Z 01y1

¸
, (3.25)

seems worth considering. This is (3.16) with W = Y 01Z(Z
0Z)−1. â2SLS has a

further, minor, advantage over âFEA in that the first factor on the right of
(3.25) is proportional to a consistent estimate of the limiting covariance ma-
trix of the estimate, whereas the first factor on the right of (3.23), with Sar-
gan’s choice of Ŷ1, is not symmetric so will not be satisfactory for covariance
matrix estimation. The main distinction from Sargan’s work is theoretical,
however. Though exploitation of overidentifying restrictions on all structural
equations of (3.12) may produce desirable finite-sample statistical properties,
as well as avoiding inversion of a very large matrix, there is a cost: some mis-
specification of the restrictions could lead to inconsistent estimation of the
reduced form, and thence at least to a large-sample efficiency loss in the
estimates of the first equation. In fact, the large-sample efficiency achieve-
ment of Sargan is possible without identifying other structural equations,
as two-stage least squares allows in the traditional fixed-m(T ) context. We
demonstrate this by a representation of the problem that is more in keeping
with the modern semiparametric literature than Sargan’s. A further, minor,
observation is that Sargan did not actually present a central limit theorem
for his âFEA, whereas we will do so, requiring some additional conditions,
though in other respects our conditions are weaker.
We assume (3.13) with

ỹt =
∞P
j=1

πjzjt + vt, (3.26)

with

∞P
j=1

j
1
2 kπjk <∞, (3.27)

where u1t and the (p1− 1)×1 unobservable vector vt of reduced form distur-
bances are such that the (u1t, v

0
t) are independent and identically distributed

with zero mean and finite fourth moment. Like Sargan (1975), we assume
the zjt, j ≥ 1, t ≥ 1, are nonstochastic and uniformly bounded, and also
impose the condition in the sentence surrounding (3.20). Denoting by ej the

10



(p1−1)×1 vector whose j-th element is 1 and whose other elements are zero,
by 0 the q1 × 1 vector of zeros, and π̃j = (π

0
j , e

0
j)
0, 1 ≤ j ≤ q1, π̃j = (π0j, 00)0,

j > q1, we assume that

(π̃1, π̃2, ...) has full row rank; (3.28)

this is just an identifiability condition. Then with also

m(T )−1 +m(T )2/T → 0, as T →∞, (3.29)

we have that

T
1
2 (âINF − a) →d N

¡
0, σ2Ω−1

¢
, (3.30)

T
1
2 (â2SLS − a) →d N

¡
0,σ2Ω−1

¢
, (3.31)

where

σ2 = V (u11), Ω =
∞P
j=1

∞P
k=1

π̃jmjkπ̃
0
k, (3.32)

and σ2Ω−1 can be estimated consistently by σ̂2Ω̂−1, where

σ̂2 =
1

T
y01y1 − â02SLSΩ̂â2SLS (3.33)

Ω̂ =
1

T

·
Y 01Z(Z

0Z)−1Z 0Y1 Y 01Z1
Z 01Y1 Z 01Z1

¸
. (3.34)

The proof is described in the Appendix.
It follows that â2SLS has the same asymptotic efficiency as the infeasi-

ble optimal estimate âINF , and inference can be carried out in the manner
presented in elementary textbooks (e.g. Johnston, 1984) for two-stage least
squares with a fixed number of explanatory variables. Note that condition
(3.27) is much milder than the exponential decay of the πj derived by Sargan
(1975) from his set-up. The prescription (3.26) is rather appealing because it
may be felt that whereas we may be prepared to identify a single structural
equation of interest, the included endogenous variables yjt are affected by a
potentially unlimited number of exogenous variables zjt, only some of which
we observe. Moreover, the zjt could be nonlinear functions of a possibly finite

number of observables, so that
Pm(T )

j=1 πjzjt constitutes a series approxima-

tion to a nonlinear E(ỹt) in (3.17), and
Pm(T )

j=1 π̃jzjt a corresponding series

estimate, π̃j being the j-th column of Y
0
1Z(Z

0Z)−1. Our set-up can then be
compared with Newey’s (1990), who considered semiparametric estimation
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using nearest neighbour (instead of our series) nonparametric estimation, and
assumed stochastic exogenous variables, unlike our nonstochastic ones. In-
deed, Andrews (1991) and Newey (1994) have provided extensive theoretical
treatments of the use of series estimation in semiparametric problems, in a
wide context, thought they did not explicitly consider the present problem,
and their regularity conditions were motivated by more general and elabo-
rate situations. Our discussion here aims to draw parallels between Sargan
(1975) paper and later econometric developments, rather than offer some-
thing distinctively novel relative to the current literature. Extended versions
of the problem discussed here might involve the structural equation or equa-
tions of interest being semiparametric or nonparametric, or the number of
equations of interest being thought of as increasing slowly with T .

4 FINAL COMMENTS

The London School of Economics was a sympathetic environment for research
in quantitative economics and statistics before Sargan’s arrival, and in a
more global sense these areas were already quite developed. However, Denis
Sargan deserves to be regarded as a founder of high-level econometric theory
at the LSE, and in the UK, as well as, alongside a few others, internationally.
Econometrics has developed considerably since, and interests have changed,
but nevertheless much of Sargan’s work was ahead of its time and remains
relevant and inspiring today.

12



References

[1] Andrews, D.W.K. (1991) Asymptotic normality of series estimators for
nonparametric and semiparametric regression models. Econometrica 59,
307-345.

[2] Blaug, M. (1986) Who’s Who in Economics: A Biographical Dictionary
of Major Economists 1700 (2nd Edition). Brighton: Wheatsheaf.

[3] Blyth, C.A. (1987) Albert William Housego Phillips. In J. Eatwell et
al (eds.) The New Palgrave: A Dictionary of Economics, pp.857-858.
London: MacMillan.

[4] Brundy, J.M. and D.W. Jorgenson (1971) Efficient estimation of simul-
taneous equations by instrumental variables. Review of Economics and
Statistics 53, 207-224.

[5] Dahrendorf, R. (1991) A History of the London School of Economics
and Political Science 1895-1995. Oxford: Oxford University Press.

[6] Davis, H.W.C. and J.R.H. Weaver (1927) Dictionary of National Biog-
raphy, 1912-1921. London: Humphrey Milford.

[7] Espasa, A. and J.D. Sargan (1977) The spectral estimation of sets of
simultaneous equations with lagged endogenous variables. International
Economic Review 18, 583-605.

[8] Garrison, R.W. and I.M. Kirzner (1987) Friedrich August von Hayek. In
J. Eatwell et al (eds.) The New Palgrave: A Dictionary of Economics,
pp.609-614. London: MacMillan.

[9] Hannan, E.J. (1963) Regression for time series. In M. Rosenblatt (ed.)
Time Series Analysis, pp.17-37. New York: John Wiley.

[10] Johnston, J. (1984) Econometric Methods (3rd Edition). New York:
McGraw-Hill.

[11] Lee, S. (1897) Dictionary of National Biography, Vol 49. London: Smith,
Elder & Co.

[12] Lee, S. (1899) Dictionary of National Biography, Vol 57. London: Smith,
Elder & Co.

[13] Mai, L.H. (1975) Men and Ideas in Economics: A Dictionary of World
Economists Past and Present. Totowa: Rowman and Littlefield.

13



[14] Morgan, M.S. (1990) The History of Economic Ideas. Cambridge: Cam-
bridge University Press.

[15] Newey, W.K. (1990) Efficient instrumental variable estimation of non-
linear models. Econometrica 58, 809-837.

[16] Newey, W.K. (1994) Series estimation of regression functionals. Econo-
metric Theory 10, 1-28.

[17] Newman, P. (1987) Francis Ysidro Edgeworth. In J. Eatwell et al
(eds.) The New Palgrave: A Dictionary of Economics, pp.84-98. Lon-
don: Macmillan.

[18] Pavetti, M. (1987) Thomas Tooke. In J. Eatwell et al (eds.) The New
Palgrave: A Dictionary of Economics, pp.657-659. London: MacMillan.

[19] Robinson, P.M. (1988) Semiparametric econometrics: a survey. Journal
of Applied Econometrics 3, 35-51.

[20] Sargan, J.D. (1953) An approximate treatment of the properties of cor-
relogram and periodogram. Journal of the Royal Statistical Society, Se-
ries B 8, 140-152.

[21] Sargan, J.D. (1955) The period of production. Econometrica 23, 151-
165.

[22] Sargan, J.D. (1958) The estimation of economic relationships using in-
strumental variables. Econometrica 26, 397-415.

[23] Sargan, J.D. (1964) Wages and prices in the U.K.: a study in econo-
metric methodology. In P.E. Hart et al. (eds.) Econometric Analysis for
National Planning, pp.25-59. London: Butterworth.

[24] Sargan, J.D. (1974) Some discrete approximations to continuous time
stochastic models. Journal of the Royal Statistical Society, Series B 36,
74-90.

[25] Sargan, J.D. (1975) Asymptotic theory and large models. International
Economic Review 16, 75-91.

[26] Sargan, J.D. (1976) Econometric estimators and the Edgeworth expan-
sion. Econometrica 44, 421-448.

[27] Sargan, J.D. (1983) Identification and lack of identification. Economet-
rica 51, 1605-1633.

14



[28] Sargan, J.D. (1988) Contributions to Econometrics (Ed. E. Maasoumi),
Vols. 1 and 2. Cambridge: Cambridge University Press.

[29] Stigler, S.M. (1987) Edgeworth as a statistician. In J. Eatwell et al
(eds.) The New Palgrave: A Dictionary of Economics, pp. 98-99. Lon-
don: MacMillan

[30] Weaver, J.R.H. (1937) Dictionary of National Biography, 1922-1930.
London: Humphrey Milford.

[31] Wickham Legg, L.G. (1949) Dictionary of National Biography, 1931-
1940. London: Geoffrey Cumberlege.

[32] Who Was Who 1929-1990. London: A&C Black.

[33] Who Was Who 1941-1950. London: A&C Black.

15



5 APPENDIX

We describe the main details of the proof of (3.31); the proofs of consistency
of σ̂2 and Ω̂ for σ2 and Ω use similar techniques but are easier, while the
proof of (3.30) involves straightforward use of standard central limit theorem
for independent non-identically distributed variables, noting the conditions
on the zjt and (u1t, v

0
t); it is perhaps only necessary here to observe that Ω is

non-singular owing to the condition on the mjk and (3.28).
Given (3.30), we immediately deduce (3.31) on proving

âINF − â2SLS = op
³
T−

1
2

´
. (A.1)

We may write the left side of (A.1) as

D−11 d1 −D−12 d2 =
¡
D−11 −D−12

¢
d1 +D

−1
2 (d1 − d2) ,

where

D1 =
1

T

·
Ỹ 01Y1 Ỹ 01Z1
Z 01Y1 Z 01Z1

¸
, d1 =

1

T

·
Ỹ 01u1
Z 01u1

¸
,

D2 =
1

T

·
Y 01Z(Z

0Z)−1Z 0Y1 Y 01Z1
Z 01Y1 Z 01Z1

¸
, d2 =

1

T

·
Y 01Z(Z

0Z)−1Z 01u1
Z 01u1

¸
,

with u1 = (u11, ..., u1T )
0. Since D1 →p Ω is entailed in the proof of (3.30),

it suffices to show that D1 − D2 →p 0 and d1 − d2 = op(T
− 1
2 ). We give

the proof only for the latter, the proof of the former being easier due to the
slower convergence that suffices.
Now

Ỹ 01u1 = ΠZ 0u1 + c1,
Y 01Z(Z

0Z)−1Z 0u1 = ΠZ 0u1 + c2 + c3,

where

c1 =
∞P

j=m(T )+1

πj
TP
t=1

zjtu1t,

c2 =
TP
t=1

vtz̃
0
t(Z

0Z)−1
TP
t=1

z̃tu1t,

c3 =
∞P

j=m(T )+1

πj
TP
t=1

zjtz̃
0
t(Z

0Z)−1
TP
t=1

z̃tu1t,
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writing z̃t =
¡
z1t, ..., zm(T ),t

¢0
. It thus remains to show that

ci = op(T
1
2 ), i = 1, 2, 3. (A.2)

First, c1 has mean zero and variance matrix

σ2
∞P

j=m(T )+1

∞P
k=m(T )+1

πj
TP
t=1

zjtzktπ
0
k,

whose largest eigenvalue is

O

T Ã ∞P
j=m(T )+1

kπjk
!2 = o(T ), as T →∞,

where kAk denotes the square root of the largest eigenvalue of A0A. This
proves (A.2) for i = 1.
Next, c2 has mean

E(v1u11)
TP
t=1

z̃0t(Z
0Z)−1z̃t = E(v1u11)tr

¡
(Z 0Z)−1Z 0Z

¢
= O(m(T )) = o(T

1
2 ),

and variance matrix

E {v1u11 − Ev1u11} {v1u11 − Ev1u11}0
TP
t=1

©
z̃−1t (Z

0Z)−1z̃t
ª2

+
©
E(v1v

0
1)E(u

2
11) + E(v1u11)E(v

0
1u11)

ª TP
t=1

TP
s=1
s6=t

©
z̃0s(Z

0Z)−1z̃t
ª2

= O

µ
max
1≤t≤T

kz̃tk2
°°(Z 0Z)−1°°¶+O(m(T ))

= O

µ
m(T )2

T
+m(T )

¶
= o(T ),

so (A.2) is proved for i = 2.
Finally, c3 has mean zero and variance matrix

σ2
∞P

j=m(T )+1

∞P
k=m(T )+1

πj
TP
t=1

zjtz̃t(Z
0Z)−1

TP
t=1

z̃tzktπ
0
k. (A.3)

Now °°°° TP
t=1

zjtz̃t

°°°° ≤ ½ TP
t=1

z2jt
TP
t=1

kz̃tk2
¾1

2

= O
³
Tm(T )

1
2

´
,
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so (A.3) is

O

Ã
Tm(T )(

∞P
j=m(T )+1

kπjk)2
!
= O

T Ã ∞P
j=m(T )+1

j
1
2 kπjk

!2 = o(T ),

to prove (A.3) for i = 3.
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