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ABSTRACT

The concept of cointegration has principally been developed under the assumption
that the raw data vector z is /(1) and the cointegrating residual e, is 1{0), but is also
of interest in more general, including fractional, circumstances, where z; is stationary
with long memory and e, is stationary with less memory, or where 2 Is nonstation-
ary while ¢, is either less nonstationary or stationary, possibly with long memory.
Inference rules based on estimates of the cointegrating vector that have been devel-
oped in the J{1)/I(0) case appear to lose validity in the above circumstances, while
the estimates themselves, including ordinary least squares, are typically inconsistent
when 2, is stationary. Partitioning z, into a scalar ¥, and vector z;, we consider a
narrow-band frequency domain least squares estimate of ¥ on z,. This estimate 1s
consistent under stationarity of z,, whereas least squares is inconsistent due to cor-
relation between z, and ¢,. This correlation does not prevent consistency of least
squares when z, is nonstationary, but it produces a larger second order bias relative
to the frequency domain estimate in the [{1)/I{0) case, and a slower rate of con-
vergence in many circumstances in which z, exhibits less-than-I(1) nonstationanty.
When e, is itself nonstationary, the two estimates have a commmon limit distribution.
Our conclusions in the 1(1)/1(0) case are supperted by Monte Carlo simulations. A
semiparametric methodology for fractional cointegration analysis is applied to data
analyzed by Engle and Granger (1987) and Campbell and Shiller (1987).
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1. INTRODUCTION

Cointegration analysis has developed as a major theme of time series economet-
rics since the article of Engle and Granger (1987), much applied interest prompting
considerable methodological and theoretical development during the past decade. Nu-
merous empirical studies have investigated the possibility of cointegration in areas of
economics in which a long-run relationship can be conjectured between nonstationary
variables, including stock prices and dividends, consumption and income, wages and
prices, short- and long-run interest rates, monetary aggregates and nominal GNP,
exchange rates and prices, GNP and public debt, and many others.

The bulk of theoretical and applied work has focused on what might be called the
“I(1)/1(0)” paradigm. We say a scalar process us, t = 0,1,..., is 1(0) (u, = I(0)) if
it is covariance stationary and has spectral density that is finite and positive at zero
frequency, and, for a scalar process v, that v, = I{d), d > 0, if

(1— Lo =ul(>0),t>0, (1.1)

where 1(.) is the indicator function and formally

o0

d s F(J'—d) 5 . a~1_ -
(1-1L) =;r(_d)r(j+1)L,1"(a)—0/x e*dz.

For d > 0, v; generated by (1.1) is said to have long memory, d measuring the
extent of the “memory”. The initial condition that the innovation in (1.1} is zero
for t < 0 implies that v, is nonstationary for all d > 0. However, for 0 < d < % vy
is asymptotically stationary, while for d > % it 1s not. In the former case we might
replace the right hand side of (1.1) by ., to make v; covariance stationary (and for
convenience we do so in Section 3). In much of the existing literature the definition
of I1(0) effectively employed relaxes covariance stationarity to a form of asymptotic
stationarity or stable heterogeneity because limit theorems for relevant statistics are
available in such settings (though the mixing conditions employed are typically in
other respects stronger than ours, implying that the limiting analogue of the spectral
density is bounded at ali frequencies). The I{1)/1(0) paradigm envisages a vector
of economic variables z; which are all I{1) and are cointegrated if there exists a
linear combination e, = o’z which is I{0}, the prime denoting transposition. Some
approaches employ parametric time serfes models, such as autoregression for z; and
white noise for e; {(e.g. Johansen (1988, 1991)), while others adopt a nonparametric
characterization of 1{0) to cover a wide range of stationary behaviour (e.g. Phillips
(1991a)). In both approaches, it is standard to test such assumptions on 2; and e;.
At the same time, the J(1) and I{0) classes are clearly highly specialized forms of,
respectively, nonstationary and stationary processes, for example when nested in the
I{d) processes, for real-valued d.

To define fractional cointegration for a p x 1 vector z, whose i-th element z; =
1{d),d; >0,i=1,...p, wesay 2z, = FCI(d;,...,dp;d,.) if there exists a p x 1 vector



o # 0 such that e, = o'z, = [(d,.} where 0 < d. < min;<;cpd;. This property is
possible and meaningful if and only if d; = d;, some ¢ # j; moreover, a necessary
condition for a to be a cointegrating vector is that its i-th component be equal to
zero if d; > d; for all j # 1.

In case dy = ... = dp = d it is usual to write 2z, = CI{d, b}, where b = d — d,
measures the strength of the cointegrating relationship. Here the possibility of frac-
tional {(i.e. non-integer) d or d. was mentioned in the original paper of Engle and
Granger (1987). That paper focused, however, on the FCI(1,..,1;0) or CI(1,1)
case, which we hereafter abbreviate to CI(1), and several explanations can be sug-
gested for the overwhelming interest of the subsequent literature in this case. First,
unit roots can sometimes be viewed as a consequence of economic theory, for exarnple
the effictent markets hypothesis and the random walk hypothesis for consumption.
Second, standard tests have failed to reject the unit root hypothesis in very many
time series. Third, the computational implications of the unit root hypothesis, that
simple differencing removes nonstationarity, are attractive. Fourth, asymptotic the-
ory for statistics based on I(0) sequences was much better developed than that for
stationary I(d) series with d # 0. Finally, rules of inference relating to stationary
and nonstationary fractional I{d) processes were not well developed.

On the other hand, as argued by Simns (1988), unit root theory in economics typ-
ically rests on strong assumptions, or provides only very approximate justification,
The power of unit root tests has often been criticised, and the bulk of these have
been directed against I(0) alternatives (for example, stationary autoregressive ones),
and data that seem consistent with the /(1) hypothesis might well also be consistent
with [(d) behaviour on some interval of d values. Fractional differencing is not a
prohibitive computational drawback nowadays, and in recent years progress has been
made on rigorously justifying large sample inference for stationary f(d) processes, in
both parametric and nonparametric directions. Indeed the relative “smoothness” of
the I(d)} class for real d can lead to standard limit distribution theory and optimality
theory in situations where the I(1)/1(0) approach entails nonstandard and discontin-
uous asymptotics; for example, tests of a unit root null against fractional alternatives
were shown by Robinson (1994b) to have a standard null local distribution and opti-
mal asymptotic local power (and to extend immediately to test the /(d) hypothesis
for any other value of d) whereas statistics for testing the value of an autoregressive
parameter have nonstandard asymptotics at the unit root, as evaluated by Dickey and
Fuller (1979) and others, but standard asymptotics at stationary points arbitrarily
close to the unit circle. '

It 1s important to recognize that the CI(1) setting has entailed challenges which
have been surmounted with ingenuity and difficulty. It is also important to appreciate
that CI{1)-based inference rules are largely invalidated when in fact (dy,...,d,; d.} #
(1,...,1;0). It is possible to imagine how aspects of the C'I{1) methodology and thecry
can be extended to more general FCI (d;, ..., d;; d.} sittuations where the d; and d, are,
while not necessarily one and zero, known values, especially in view of limit theory
for nonstationary fractional processes of Akonom and Gourieroux (1987}, Silveira



(1991) and Chan and Terrin (1995). Indeed Dolado and Marmol (1996) have recently
pursued this line of study. However, when non-integral d; and d, are envisaged,
assuming their values seems somehow more arbitrary than stressing the C{(1) case
in an autoregressive setting. Moreover for % < d; < % Dolado and Marmol’s {1996)
definition of a nonstationary fractionally integrated process differs from ours, being
the partial sum of stationary, long memory innovations, and leading to “cointegration
with fractionally integrated errors” (as in Jeganathan (1996)}. The parametrization
we adopt for the nonstationary case {which corresponds to theirs for d; > %) relies
more directly on the linear expansion of the fractional differencing operator; see
Section 4. With an empirical focus, the issue of fractional cointegration is also dealt
with by Cheung and Lai (1993) and others. It seems of greatest interest to study the
problem in the context of unknown orders of integration d; and d. in the observed
and cointegrated processes, possibly less or greater than unity. For example, in
circamstances where C'T{1) cointegration has been rejected it may be pessible to find
evidence of FCI (dy, ..., dp; d.) cointegration for some (dy, ...,dp; de) # (1,...,1;0). Our
allowance for some “memory” remaining in the cointegrating residual ¢, (1.e., d. > 0),
is appealing, espectally recalling how d, can be linked to the speed of convergence to
long run equilibrium (compare for instance Diebold and Rudebusch (1989)).

Cointegration is cormmonly thought of as a stationary relation between nonsta-
tionary variables (so that d; > %, for all %, d, < %) Other circumstances covered by
our definition of cointegration are also worth entertaimng. One case is de > 1 when
both z; and e; are nonstationary. Another is 0 < d; < %, for all ¢, when both 2; and
e, are stationary.

The latter situation was considered by Robinson (1994a}, as an application of
limit theory for averages of periodogram ordinates on a degenerating frequency band
in stationary long memory series. Ordinary least squares estimates {OLS) (and other
“full-band” estimates such as generalized least squares) are inconsistent due to the
usual simultaneous equation bias. Robinson (1994a) showed, in case of bivariate 2z,
that a narrow-band frequency domain least squares (FDLS) estimate of (a normalized)
& can be consistent. It is possible that some macroeconomic time series that have
been modelled as nonstationary with a unit root could arise from stationary I{d)
processes with d near %, say, and interest in the phenomenon of cointegration of
stationary variates has recently emerged in a finance context. Moreover, it is likely
to be extremely difficult in practice to distinguish a z, with unit root from one, say,
composed additively of a stationary auioregression with a root near the unit circle,
and a stationary long memory process.

FDLS is defined in the following section, after which in Section 3 we extend
Robinson’s {1994a) results to a more general stationary vector setting, with rates of
convergence. We go on in Section 4 to establish results of some independent interest
on the approximation of sample moments of nonstationary sequences by narrow-band
periodogram averages. These results, which constitute the main technical innovation
of the paper, are exploited in Section 5 to demonstrate the usefulness of FDLS for
nonstationary z,: correlation between z, and e, does not prevent consistency of OLS,



but it produces a larger second order bias relative to FDLS in the CI{1) case, and a
slower rate of convergence in many circumstances in which z, exhibits less-than-7{1)
nonstationarity. When e, is itself nonstationary, the two estimates share a common
limit distribution. Our theoretical resuit for the CI(1) case is supported in finite
samples by Monte Carlo simulations in Section 6. Section 7 describes a semiparamet-
ric methodology for investigating the question of cointegration in possibly fractional
conditions, and applies it to series that were studied in the early papers of FEngle and
Granger (1987) and Campbell and Shiller (1987). Section 8 mentions possibilities for
further work. Proofs are collected in an Appendix. .

OLS by no means represents the state of the art in CI(1) analysis. A number
of more elaborate estimates have been proposed and shown to have advantages over
OLS, such as Engle and Granger’s (1987) two step regression; Johansen’s (1988, 1991)
maximurn likelihood estimate for the error-correction mechanism (ECM}); Phillips and
Hansen’s {1990) fully modified least squares; Phillips’ (1991b) spectral regression for
the ECM; Stock’s (1987) nonlinear least squares; and Bossaerts’ (1988) canonical
correlation approach. Many of these methods make use of OLS at an early stage, so
one implication of our results for the CI(1) case is that FDLS be substitnted here.
These methods are all specifically designed for the CI(1) case, and in more general
settings the validity and optimality of the associated inference procedures will be lost,
and they may have no obvious advantage over OLS. Moreover, like OLS, they will
not even be consistent in the stationary case. For the computationally simple FDLS
procedure, our paper demonstrates a consistency-robustness not achieved by OLS
and other procedures, a matching of limit distributional properties in some cases,
and superiority in others, including the standard CI(1} case.

2. FREQUENCY DOMAIN LEAST SQUARES

For a sequence of column vectors a;, t = 1,..., n, define the discrete Fourier trans-
form

ul f}. 8

ol \/ 2mn Z '

where the sample mean of the a, is given by @ = /(27 /n)w,(0) and ¥, will throughout
denote 37 ,. I by, t = 1,...,n, 1s also a sequence of column vectors, define the (cross-)

periodogram matrix
Iab(/\) = wa(A)w;(’\)!

where * indicates transposition combined with complex conjugation. Further, for
A; = 2mj/n, define the (real part of the} averaged periodogram

ook, 0) —ﬂZRe{Jab (A}, 1<k<e<n—1.

=k



In case Fip(k,£) is a vector we shall denote its i-th element FO(k,¢), and in case it
is a matrix we shall denote its (7,7)-th element F, 43)(k, €); analogously we will use
19(2) and I%7(1) to denote respectively the i-th element of the vector Io,(A) and
the (4,7)-th element of the matrix f4(A).

Now suppose we observe vectors 2, = (z,,4%)', t = 1, ...,n, where y; is real-valued
and x, is a (p — 1)} X 1 vector with real-valued elements. Consider, for various m, the
statistic

Bm = ﬁ‘zz(lam)*lﬁxy(lam)i (21)

assuming the inverse exists. We can interpret ﬁm as estimating the unknown J in the
“regression model”

=ﬁrmt+6;, t= 1,2, es (22)
Notice that
~ 1 P 1 _ _
Fez(L,n— 1) = - Z(‘T't —~ Tz — T), Fay(l,n — 1) = - Z(:c; -y — 7). (2.3)
t t

Thus ,Bn_] its the OLS estimate of § with allowance for a non-zero mean in the
unobservable e;. Our main interest is in cases 1 < m < n — 1, where, because we(A)
has complex conjugate Wo(2m — A), we restrict further to 1 < m < n/2. Then we
call Bm an FDLS estimate. Properties of e, will be discussed subsequently, but these
permit it to be correlated with 2, as well as ¥, Bm being consistent for 3 due to
Foe(1,m) being dominated by F..(1,m) in a sense to be indicated. This can happen
when z; is stationary with long memory and e, is stationary with less roemory, if
lﬁLE—N},asn—«-»oo, (2.4)
m  n
which rules out QLS. Under (2.4) 4,, can be termed a “narrow-band” FDLS estimator.

It can also happen when x; is nonstationary while e; is stationary or nonstationary
with less memory, if only

m<n, m — 00, as N — 00, {2.5)

which includes OLS. In both situations z; = FCI(dy,...,dy; de} and the focus on
low frequencies is thus natural. Notice' that when lim(m/n) = 6 € (0, %) (so that

-~

B,, is not narrow-band), B is a special case of the estimate introduced by Hannan
(1963) and developed by Engle {1974) and others. However, while such m satisfy
(2.5), our primary interest is in the narrow-band case (2.4) where 8. is based on
a degenerating band of frequencies and its superiority over OLS can be established
under wider circumstances. It is the stationary case which we first discuss.



3. STATIONARY COINTEGRATION

The covariance stationary processes with which we shall be concerned will always
be assumed to have absolutely continuous spectral distribution function. Thus, for
jointly covariance stationary column vector processes a;, b, t = 1,2, ..., define the
(cross) spectral density matrix fo,(}) to satisfy

E (a0 — E (a0)) (b; — E (b))’ = / Far(NePdr, § = 0,1, ....

-

We impose the following condition on z introduced earlier. For two matrices A
and B, of equal dimension and possibly complex-valued elements, we say that A ~ B
if, for each (4,7), the ratio of the (¢, j)-th elements of A and B tends to unity.

Assumption A  The vector process z is covariance stationary with
frz(A) ~ AGA, as A — 0t
where G is a real matrix whose leading (p — 1) X (p — 1) submatrix has full rank and
A = diag {,\-d;,..., rl,

for 0 < d; < 3,1<i<p,and there existsa px 1 vector a # 0, andac € (0,00) and
d. € [0,d), such that
o fra( N ~ X7 as X — 0.

Assurmption A is similar to that introduced by Robinson {1995a), where it is shown
to hold for vector stationary and invertible fractional ARIMA processes {we could
allow here, as there, for negative orders of integration greater than —1). However,
there G was positive definite, whereas if Assumption A is imposed it has reduced

rank, because otherwise
& fre(Na ~ (@A) G (Aa) 2 8072 as A — OF,

for 0 < & < oo. Nevertheless G must be non-negative definite because f,,(A)} is, for
all A\. The rank condition on G is a type of no-multicollinearity one on z;. Notice
that z;x = I(d;), i = 1,..,p and e, = I(d.) if we adopt the stationary definition
(replacing w1(¢ > 0) by u; in (1.1)) of an I(d) process. Notice then that Assumption
A follows if z, = FCI {dy, ..., dp; d.) with d. < d. We adopt the normalization given
by a = (—',1), so the cointegrating relation is given by (2.2) if ¢, = I(d.). We
stress that Assumption A does not restrict the spectrum of e, away from frequency
zeto, because it is only local properties that matter since here we consider 3, under
(2.4). Asymptotic properties of 8,, require an additional regularity condition, such
as



Assumption B
Zy =i, + ZAjEt—j: Z ”AJ”2 < 00O, (31)
=0 =0

where u, = F(2)}, and the p x 1 vectors ¢, satisfy
Ele| S1-1) =0, E(eei | Se-1) = %2, as,,

for a constant, full rank matrix 3°, $; being the o-field of events generated by &,
s < t, and ||.|| denoting Euclidean norm, and the ¢} are uniformly integrable.

This assumption is a generalization of that of Robinson (1994a}, the square sum-
mability of the A; only confirming, in view of the other assumptions, the finite vari-
ance of z implied by Assumption A. We could replace the martingzle difference
assumption on £ and &, — 3. by fourth moment conditions, as in Robinson (1994c).
Notice that it would be equivalent to replace z; by (z}, ;) with e, given by (2.2).
When z, satisfies both Assumptions A and B, the A; are restricted by the require-
ment that || o’ A(e") ||~ c*A7% as A — 0%, for 0 < ¢* < co. A very simple model
covered by Assumptions A and B is (2.2) and z; = @z +up, withp =2, 0 < < 1,
w = I{dy) (implying z; = I(d;)), and e, = I{de), 0 < de < dy < % When u, and ¢
are not orthogonal OLS is of course inconsistent for 3, as indeed is any other standard
cointegration estimator, notwithstanding the fact that for ¢ close enough to unity =,
is indistinguishable for any practical purpose from a unit root process.

Theorem 3.1 Under Assumption A with @ = (~#,1)', Assumption B and

(2.4),as n — o
—~ de—d;
)Bim_ﬂizop ((%) ))izll‘“rp_li

where B,—m and §3; are the i-th elements of, respectively, ﬁm and j3.

It follows that if there is cointegration, so d > d., 3,“ is consistent for g. In
case the d; are identical there is a common stochastic order O,({n/m)™"), varying
inversely with the strength b = d; — d, of the cointegrating relation. We conjec-
ture that Theorem 3.1 is sharp and that under suitable additional conditions the
(n/m)di-de (Bim - ﬁi) will jointly com!rerge in probability to a non-null constant
vector. We conjecture also that after bias-correction and with a different normal-
ization the limit distribution will be normal in some proper subset of stationary
(d,...,dp1,d.)-space, and non-normal elsewhere {cf the derivation of Lobato and
Robinson (1996) of the limit distribution of the scalar averaged periodogram). A
proper study of this issue would take up considerable space, however, whereas our
principle purpose here is to establish consistency, with rates, as an introduction to a
study of §,, in nonstationary environments.



4. THE AVERAGED PERIODOGRAM IN NONSTATIONARY
ENVIRONMENTS

In order to analyze FDLS in case z;, and possibly e, is nonstationary, we provide
some basic properties of the averaged (cross-) periodogram that are of more general
interest. For these, it suffices to consider a bivariate sequence (ay:,as), t = 1,2, ...,
given by

t
Air = Z i 1 = 1,2, (41)
j=1
where we impose the following assumptions.

Assumption C {ny,,7m,.), t = 0,£1, ..., is a jointly covariance stationary process
with zero mean and bounded spectral density matrix.

Assumption D Fori=1,2,0< v, < vy, 7y > %, Yy # %, the sequences ,,
satisfy @, = ©.(7,), where for t > 0,
w(7) = 1t=0),v=0,
= o(a+91),v>0,
= Ly=1,

|‘Pt(7) - ‘Pt+1(7)l = O (M) , ¥ > 0.

As we shall see in the next section, Assumption D covers cases where ay¢ is non-
stationary whereas azt is either 1(0) (7, = 0), has asymptotically stationary long
memory {0 < -y, < 3), or is nonstationary (v, > 3).

We consider here not only the statistic FP(1,m), but also F2(m + 1, M),
where 0 < m < M < n/2. The latter arises as follows. We have

FEAm) = T3 (10900) + 182 (0] (42)

nJ =
{F(”) 1,m) + F®(n —m n— 1)}
= EFéé’Q)(l,n - 1)_@— Eﬁ"é;’z)(m +1n—m-—1}
For n odd (4.2) is

2F§i2 (1, 1) = EGP(n +1,(n - 1)/2),

and for n even it is

SEAD (L~ 1)~ L FUDm 4 1,n/2) — L FGAm 4 1,m/2 - 1),



where

1
FU?)]_”__] =EE au—al agt—ag).
t

This development follows Robinson {1994c).
When v, + 7, > 1 we will deduce that

FlB(m +1, M) = 0, (n"1+7271)

by showing that both the mean and the standard deviation of the left side are
o(n"*7271). Thus if Jn' " FA(1,n ~ 1) has a nondegenerate limit distribu-
tion, n' ="~ F32)(1 1) shares it. For 4y + 77, < 1, only the standard deviation of
FD(m 41, M) iso{nn*721) and it is necessary to estimate F (ﬁ‘é;m(l,m)), which
differs non-negligibly from (ﬁ‘éiﬂ)(l, [(n — 1)/2])) We first consider the means.

Proposition 4.1 Under {(4.1), Assumptions C and D and (2.5}, for 0 < m <

M <n/f2
f(1,2) — itz -t
E(FGP(m +1,M)) = ofn Yom+r >, (4.3)
and ~
E (Fﬂj)(l,m)) =0 (n""“rl) s Y+ Y > L, (4.4)
n '}"]‘l"ﬁ"Q—]
=0 (‘ﬂ;‘) s N1 <L (4.5)

The proof of this, and of Proposition 4.2 below, is contained in the Appendix. To
consider the variances we impose the additional:

Assumption E  (9,,,7,,) is fourth order stationary with bounded fourth-order
cross-cumulant spectrum f (g, ito, it5) satisfying

kg moTr 3
k(j,k,l)=f//f(#l,#ziﬂs)exp(ijm+ikuz+ilﬂ3)Hd#k,

k=1

- - ® -

where k(j,k,1) is the fourth order cumulant of 7y9,7y,,71 j4x T2 j4e4e fOr 3,50 =
0 +1, ... :

Proposition 4.2 Under (4.1}, Assumptions C, D and E and (2.5), for 0 <m <
M<n/2 asn— o0

Vor (FG?(m +1,M)) = o(n 2n =) (4.6)

and

Var (FD(, M)) = O (nfn#127D), (4.7)



In view of (2.3), I${:9();) distributes the sample covariance F{®(1,n — 1) across
the Fourier frequencies X;, 7 = 1,...,n — 1. Propositions 4.1 and 4.2 suggest that
FO2(1 n — 1) is dominated by the contributions from a possibly degenerating fre-
quency band (0,A;,) when the collective memory In ay, 6o is sufficiently strong
(vy + 7, > 1) while otherwise F{:2(1,m) — 1ELD(1,n — 1) is estimated by its
mean, in view of (4.5). These results are crucial to the derivation of the asymptotic
behaviour of ﬁ’m(l,m) and Bm introduced in Section 2.

5. NONSTATIONARY FRACTIONAL COINTEGRATION

For 2, nonstationary (d,- > %, t=12 ...,p), we find it convenlent to stress a linear

representation for w, = (#},e;) in place of that for z, = (z},7,) in Assumption B.
Introduce the diagonal fractional operator

D(L) = diag {(1 ~ L), (1 L)% (1 - L)*“=}
and

Assumption F  The vector sequence w, is given by
DL — ) = wl(t > 0) (5.)

for a fixed vector g, with p-th element zero, where

1
d; > 5,’52 1L,..p—1, d. > 0,

= C(L)s. Z ;L7 (5.2)
det {C(1)} # 6, (5.3)
g (Z I1Ckll ) < 0, (5.4)

and the ¢, are independent and identically distributed p X 1 vectors such that
|

E(e) = 0, E(e)) = %, rank(T) = p, (5.5)
8 2
Eled| < 00, 8 > max (4, T 1) . (5.6)

Assumption F strengthens the requirements on & of Assumption B. Under (5.4)

Z!IC I< Z (Z ICx| ) < 00 (5.7)

3=0 \&k=j



so (5.3) and (5.4) imply that all elements of u, are in I(0), whereas with reference to
(1.1), for i = 1,...,p — 1 the i-th element of w, (and thus of z,) is in I(d;), while its
p-th element, e, is in I(d,), so in particular w, could be a vector fractional ARIMA
process. We have allowed for an unknown intercept, g, In wy.

From (5.1) and (5.2), we can write

Wy = [y, + z Bjtst—j: (58)
=0
where
min(j,t—1)
ng == Z DiCJ‘_i (59)
=0

with D; given by the formal (binomial) expansion
D(L)= Z D;LI’.
=0

Defining the nonsingular matrix

where [; and O; are respectively the j-rowed identity matrix and the j X 1 vector of
zeroes, we find that {(5.1) is equivalent to

<t = H, + Z Angt_j, (510)

=0

where y, = P~ 'y, A;; = P~'B;;. The representation {5.10) can be compared with
the time-invariant one (3.1) for the stationary case (in which 4; = P7'B;.).
Define d = (d;, ..., dp-1)" and

A(d) = d’lag {n%_dl)”,,n%_dp—l} , G(T, d) — dll’lg {,rdi—l’ "_‘po_i—l} -
Let Q be the leading {(p — 1) x (p — 1} submatrix of C(1) S C(1), and B(r,Q) be

(p — 1)-dimensional Brownian motion with covariance matrix Q@ {which has full rank
under Assumption F). Let

W(rid, Q) = / Glr — s d)dB(s; Q), W(d,Q) = ] W (r; d, Q)dr,

1
V(d,Q) = / (W(r:d, W' (r;d,9) — W{d, )W (d, Q)'} dr.

0



We call W (r; d, ) a multivariate fractional Brownian motion, following Akonorn and
Gourieroux {1987) and Gourieroux, Maurel and Monfort {1989). A somewhat differ-
ent definition of (scalar) fractional Brownian motion was proposed by Mandelbrot and
Van Ness (1968), and has since prevailed in the probability literature (though the lat-
ter authors also mentioned W(r;d, ). Note that the components of W (r;d Q) are
continuous Gaussian processes with zero means and vanances that grow like 7241

i=1,...,p— 1. Let = denote weak convergence and T = n" 7 S ¢ Tt

Theorem 5.1 Under Assumption F, as n — o0

Ald)zpn = W(r;d,Q), 0 <7 <1, (5.11)
Ad)E = W(d, ), (5.12)
A(d)Era(1,m — 1)A(d) = V(d, Q). (5.13)

The proof of (5.11), which relates to results of Akonorn and Gourieroux (1987),
Gourieroux, Maurel and Monfort {1989) and Silveira (1991}, is given by Marinucci
and Robinson (1997), whence {5.12) and (5.13) follow from the continuous mapping
theorem. For d; = ... = dp—y = 1, fractional Brownian motion reduces to classical
Brownian motion and so (5.11) includes a multivariate invariance principle for I(1)
processes, as carn be found for instance in Phillips and Durlauf (1986). (5.13) provides
an invariance principle for the sample covariance matrix of z; (see (2.3)), and due
to the following lernma Propositions 4.1 and 4.2 can be applied to deduce one for

Fm(l,m).
Lemma 5.1 Let Assumption F hold. Then with the choices

(altaa2t) ($:£; et) Y1 = dt'; Yo = de: i = 1; 2Ty 1 (514)

or
(au,agt) - (:Bit,ﬂfjg) s = di, ’}’2 = dj, Z,j = 1, ey P ]., (515)
it follows that Assumptions C, D and E are satisfied.
Lemma 5.2 Under Assurption F and (2.5), asn — oc

A(d)F.(1, 7n)z}1x(d) = V(d,Q).

We can now proceed to investigate asymptotic behaviour of OLS and FDLS in
various of the cases that arise when x, is nonstationary, and e; has short memory or
stationary or nonstationary long memory.

Casel: d;+d.<1,i=1,...,p—1.



Here not only does x; possess less-than-unit-root nonstationarity, but the collective
memory In x; and e, is more limited than in the CI{1) case. It corresponds to
¥ + 73 < 1 of Section 4, and we require first a more precise result than (4.5) in case
m = n—1. Let ¥, be the i-th row of B; = Bjo, = Y0y D;C;_; given by (5.9). Define

Eo=D 0 T by, i=1,..,p— 1.
F=0

Lemima 5.3 Under Assumption F with d; +d, < 1, d; > %, t=1,.,p—1,

lim E‘{F(‘) n—l} £,i=1..,p—1,

where the right hand side is finite.

Lemma 5.3 (and {4.5) of Proposition 4.1) are of some independent interest in
that they indicate how sample covariances between a nonstationary and a stationary
sequence can be stochastically bounded and have the same structure as when both
sequences are stationary, so long as the memory parameters sum to less than 1, as
automatically applies in the fully stationary case.

Define £ to be the (p — 1) x 1 vector with i-th element &, if d; = dy, and zero if
d; > dpin, where dyyy, = min  d;.

1<i<p—1
Theorem 5.2 Let Assumption F hold with d; +d. < 1,d. < d;, i =1,...,p—1,
and
rank {V{d,0)} =p—1, as. (5.16)
Then as n — o0 1 ~
| =2 A(d) ™ (Baoy — B) = VI, Q)7 (5.17)

and under (2.4)

e 3 A@d) " (B ~ ) = Oy ((%)d"‘“‘“"_l) — o,(1). (5.18)

Theorem 5.2 indicates that so long as £ is non-null the pémietd:~1 (B: nel— ﬁ‘-) have
a nondegenerate limit distribution, whereas when the interval (0, A,) degenerates
B — B = 0p (nl "m'ﬂ“") i=1,...,p— 1, so that FDLS converges faster than OLS.
In view of the “global” nature of ﬁm , and the “local” nature of ﬁ this outcome is

at first sight surprising, but it is due to the bias of ﬁmﬁbecommg negligible relative
to that of 3, ;. Notice that the rate of convergence of 3,,_, is independent of d..

Case II: The CI{l)case (d;=1,i=1,.,p—1,d.=0).



Now we consider the case considered in the bulk of the cointegration litera-
ture, where 2z, has a unit root and the cointegrating error is £{0). Write ¢ for the
(p — 1) x 1 vector of units, so that in the present case d = ¢+ and W(r;d,) =
B(r; Q). Let B,(r;€.) be p-dimensional Brownian motion with covariance matrix

.= C(1)>C(1), and thus write

B.(r; ) = ( b’if('ro?)) ) ,

where o2 is the (p, p)-th element of Q,, and in general B(r; Q) and b{r; v?) are cor-
related and thus in effect depend not only on  and ¢? but on the other elements of
2, also. Write

U(Q,) = / B(r; Q)db(r; 0?).

Denote by ; the (p—1) x 1 vector with i-th element E (ui€r45), recalling that d, = 0
implies e; = u,;. Now define

I‘.f = Z Yesign(e) J = 0: :t]-: ey (519)
£={j|
sothat T; = 332,, for j > 0and I['; = T oo 7e for § < 0, and the sum (5.19)

converges absolutely for all § under Assumptlon F. Let h(A} be the vector function
with Fourter coeflicients given by

Ty —Coggj-1= / h(N)e dA, j =0,%1, ... .

-

Assumption G A()) is continuous at A = 0, and integrable.

Assumption G is implied by 332 || Tj;; = T'j;-1 {|< 00, which is in turn implied
by

Lo o)

Z(j + 1)y — vy < 00, (5.20)

=0

in which case we may write
1 [s ]
= o g - ’}’—j—l)-

Of course (5.20) is itself true if 3232 (|5 + 1) H’}'J” < oo for which a sufficient
condition in terms of (5.2} is

S G+ 116 < oo, (5.21)

7=0



which is stronger than (5.4), while holding when wu, is a stationary ARMA process.
Lemma 5.4 Under Assumption G and (2.4)

lim E( (1, m) = %h((}).

n—o0o0

Theorem 5.3 Let Assumption F hold with d =+, d, = 0. Then as n — oo

n(Ba_s — B) = V(,2) " {U(Q) + To} (5.22)
and if also Assumption G and (2.4) hold

n (B — B8) = V(. Q) U(Q). (5.23)

Thus in the C1(1) case An_l and Bm have the same rate of convergence but under
(2.4) B,, does not suffer from the “second-order bias” term I' incurred by B,_1. More
precisely, as the proof of Theorem 5.3 indicates, there is a second-order bias of order

O(m/n?) in B, which is thus too small to contribute to (5.23), by comparison with the
O(n™!) second-order bias in (5.22). Phillips (1991b) considered a form of narrow-band
spectral regression in the CI(1) case, albeit stressing a system type of estimate which
has superior limit distributional properties to 3,,, assuming the CI(1) hypothesis is
correct. However his proof is based on weighted autocovariance spectrum estimates,
rather than our averaged periodogram ones. As is well known, in many stationary
environments these two types of estimate are very close asymptotically, but in the
CI(1) case the weighted antocovariance version of 3, turns out to exhibit second-
order bias due to correlation between u; and e; (specifically, to their cross-spectrum
at zero frequency).

Case III: TheCased; +d, >1,i=1,...,p-1,d. < %

We now look at the case where the collective memory in each (z;,4;) combination
exceeds that of the previous two cases, yet e, is still stationary. Thus x; could have
less than unit root stationarity but in that case the memory in e, must compensate
suitably. On the other hand z, could exhibit nonstationarity of arbitrarily high degree.

Theorem 5.4 Let Assumption F hold with d; +d, > 1, 0 < d. < % < dy,
i=1,.,p—1, and let (5.16) hold. Then fori=1,...p—1,asn — o©
B:‘,n—l =B =0, (”de_d*) ) (5.24)

and if also (2.5) holds

3£m ﬁzn 1= 0p (nd di) ! (525)



Bun — B = Oy (ni7%). (5.26)

The results (5.24) and (5.26) only bound the rates of convergence of OLS and
FDLS, and we have been unable to characterize even the exact rate of convergence
of OLS in the present case, due to the fact that on the one hand ¢ is stationary so
that the continuous mapping theorem does not suffice, whereas on the other hand
e; cannot be approximated by a semi-martingale, unlike in the short-memory case
d, = 0 (where in fact an exact rate and limit distribution can be derived, as it was
in the CI(1) case). We conjecture, however, that at least under some additional
conditions the rate in (5.24) is exact, whereupon {5.25) implies immediately that g
shares the same rate and limit distribution as Bn_].

Case IV: The case d, > %

Now we suppose that cointegration does not account for all the nonstationarity
in z, so that e, is nonstationary, as is motivated by some of the empirical experience
to be described in Section 7. Write d, = (d’,d.) and

A,dy) = diag{n%_dl,...,n%'df’",n%"“},G,(r;d,):dz’ag{rd‘_l,...,rd*’“l E

W(r;d, Q) }

Wt(r; d*}ﬂt) = /G*(T - S;d*)dB‘(S;Q‘) - [ w('f‘d 0-2)
/ s le,

1

W.(d., Q) = f W.(r;d., Q.)dr,
1]
1

U(d,,.) f (W(r;d, Q) — W(d, )} w(r; d., 0?)dr.

0

Let w = n' 3, w,. The following theorem is analogous to Theorem 5.1 and needs no
additional explanation.

Theorem 5.5 Under Assumption I and % <d, <d;,it=1,..,p—1,asn— 0

Adwpy = Wi(rd. (),
A(d)T =, W(d,,N0,),

nd-teA(d)Eo(1,n — 1) = U(d,, D). (5.27)

Theorem 5.6 Under Assumption F, 3 < d, < di,i=1,..,p— 1, and (5.16), as
7 — 00

i~ A(d) 7 (Boy — B) = V(A Q)TUE, ), (5.28)
and if also (2.5) holds
ni=%Ad)” (8, - B) = V(d.9) U, Q). (5.20)



Now so long as m is regarded as increasing with n, the limit distribution is unaf-
fected however many frequencies we omit from J3,,. Notice that in case the d; are all
equal the rate of convergence reflects the cointegrating strength b defined in Section
1, such that 8, is nb-consistent.

6. MONTE CARLO EVIDENCE

Because OLS is often used as a preliminary step in CI{1} analysis, the previous
section suggests that even if fractional possibilities are to be ignored, FDLS might
be substituted at this stage. To compare the performance of FDLS with OLS in
moderate sample sizes a small Monte Carlo study in the CI(1) case was conducted.
The models we employed are as follows. For ¢ = 1,2, let u;; be a sequence of N(0,1)
random variables, independent across £.

Model A: AR(1) cointegrating error, p = 2, in (2.2) with

(1 —- L).’Bt = Uy,
(1 - @L)eg = Uy,
K (‘U;]ﬂigg) = 1, ©w = 08, 0.6, 04, 0.2.

Model B: AR(2) cointegrating error, p = 2, in (2.2) with

(]‘ o L):L't = U,
(1— o b= pLP)er = ua,
E(uus) = 1, gy = —0.9;p, = 947, 34, — 34, —.947.

We fix ¢, = —0.9 in Model B to obtain a spectral peak for e; in the interior of
(0,7), in particular at A* = arccos (—¢,(1 + @,)/4p,), that is at A" = n/3,47/9,57/9
and 27 /3, respectively, for the four ¢;. On the other hand in Model A e, always has
a spectral peak at zero frequency.

Series of lengths n = 64, 128 and 256 were generated. ﬁn* and ﬁm, form=3,4,5
were computed, as were an estimate superior to OLS in the CI{1) case, the fully-
modified least squares estimate (FM-OLS, denoted Bp,) of Phillips and Hansen
(1990) which uses OLS residuals at a first step, and also a modified version of this
(denoted I FM) using FDLS residuals. Bartlett nonparametric spectral estimation
was used in By, and Bp,, with lag numbers 7 = 4,6, 8, for n = 64, 128, 256 respec-
tively.

Monte Carlo bias and mean squared error {MSE), based on 5000 replications, are
reported in Tables 1 and 2 for Models A and B respectively. For each m, FDLS is
superior to OLS in terms of both bias and MSE in every single case, often 51g;n1ﬁcant1y
In fact ﬂ is best for the smallest m,3. Our modified version ﬁFM of FM-OLS
improves on the standard one fp,, in 23 out of 24 cases in terms of bias, and 16



out of 24 in terms of MSE, with 8 ties. The intuition underlying FDLS is that on
the smallest frequencies cointegration implies a high signal-to-noise ratio, so it is
not surprising that FDLS performs better for AR(2} ¢, than AR(L) e,, especially as
A increases. It is possible to devise an e; with such power around A = 0 that, in
finite samples, FDLS performs worse than OLS, for example when ¢, =~ 2, , ~ —1,
0, + @y < 1, so e is “near-I(2)” and in small samples e, dominates z,. However,
given the intuition underlying the concept of cointegration, we believe this could be
described as a “pathological” case.

7. EMPIRICAL EXAMPLES

Our empirical work employs the data of Engle and Granger (1987) and Campbell
and Shiller (1987). We consider seven bivariate series, denoting by ¥ the variable
chosen to be “dependent” and by x the “independent” one in (2.2}, and by d,, d,
integration orders. We describe the methodology used in three steps.

1)} Memory of raw data

A necessary condition for cointegration is d; = d,, which can be tested using
estimates of d; and d,. Three types of estimate were computed, and one iest sta-
tistic. The estimates are all “semiparametric”, based only on a degenerating band
of frequencies around zero frequency and assuming only a local-to-zero model for
the spectral density {cf Assumption A) rather than a parametric model over all fre-
quencies. The semiparametric estimates are inefficient when the parametric model
1s correct, but are consistent more generally and seem natural in the context of the
present paper. Their asymptotic properties were established by Robinson (1995a,b)
under the assumption of stationarity and invertibility (having integration order be-

tween —% and %) and so because our raw series seem likely to be nonstationary, and

quite possibly with integration orders between % and %, we first-differenced them
prior to d estimation, and then added unity. The stationarity assumption is natural
in view of the motivation of these estimates, but recently Hurvich and Ray (1995),
Velasco (19972,b) have shown that they can still be consistent and have the same
limit distribution as in Robinson (1995a,b) under nonstationarity (although with a
different definition of I{d} nonstationarity from ours}, at least if a data taper is used.
We thus estimated d; and d, directly from the raw data also, but as the results were
similar they are not reported.

Denote by Az, either Az, or Ay, where A is the difference operator. We describe
the estimation and testing procedures as follows ~ ~

(i) Log-periodogram regression. For z = z,y we report in the tables d, =14 6,,
where &, is the slope estimate obtained by regressing log ({a,a.{A;)) on —2log(};)
and an intercept, for j = 1,..., ¢, where £ is a bandwidth number, tending to infinity

slower than n. This 1s the version proposed by Robinson (1995a) rather than the



original one of Geweke and Porter-Hudak (1983), except that we do not trim out any
frequencies; recent evidence of Hurvich, Deo and Brodsky (1998) suggests that this
is not necessary for nice asymptotic properties.

(ii) Test of d, = d,. We report the Wald statistic, denoted W in the tables, of
Robinson (1995a,b), based on the difference d, —d, = 6, — 8,. The significance of W
is judged by comparison with the upper tail of the x? dlStI‘lbuthIl the 5% and 1%
points being respectively 3.78 and 5.5

(iii) GLS log-periodogram regression. Given that d, = d, we estimate the com-
mon value by dy =1+ Sar —y Where 6,,._.3, is the generalized least squares (GLS) log-
periodogram etimate of Robinson (1995a} based on the bivariate series (Axe, Ay),
using residuals from the regression in (1), b2~y 1s asymptotically more efficient than
33 and Sy when d, = d,.

(iv) Gaussian estimation. For z = x,y we report d, = 1+ &, where &, minimizes

log (z /\2 IAzAz 3)) Z

§=1 F=1

which is a concentrated narrow-band Gaussian pseudo-likelihood, see Kiinsch (1987),
Robinson (1995b). As shown by Robinson (1995b), 4, is asymptotically more efficient
than é,.

For the estimates in (iii) and (iv) we report also approximate 95% confidence
intervals (denoted C! in the tables) based on the {(normal) asymptotic distribution
theory developed by Robinson (1995a,b). Robinson (1995a) assumed Gaussianity in
establishing consistency and asymptotic normality of the estimates in (i) and (iii), but
recent work of Velasco (1997b) suggests that this can be relaxed. For the estimates
in (iv), Robinson {1995b) assumed a linear filter of martingale differences satisfying
mild moment conditions. Although progress is currently being made on the choice
of bandwidth £ in log-periodogram and Gaussian estimation, we have chosen a grid
of three arbitrary values for each data set analyzed in order to judge sensitivity to £.
Note that the estimates are £%-consistent.

2) Cointegration analysis

We report Bm and also a “high-frequency” estimate

5 - Falm+1im-1/2)
7 Falmt 1, [ = D/2)

based on the remaining frequencies, substantial deviations between Bm and B o SUE-
gesting that a full-band estimate such as OLS could be distorted by misspecification
at high frequencies which is irrelevant to the essentially low-frequency concept of
cointegration.




The tables include results for three values of m for each data set. These are much
smaller than the bandwidths £ used in inference on d; and d, due to the anticipation
of nonstationarity in the raw data; for stationary z,y, optimal rules of bandwidth
choice would lead to m that are more comparable with the £ we have used. After
computing residuals &, = y — f,,%;, we obtained the low- and high-frequency R?
quantities

P(1m) _l_ﬁ%{m+1,[(nu1)/2])

2 _
Rm—-— - = = =y

Fp(l,m) " Fu(m+1,{(n—1)/2])

We can judge the fit of a narrow-band regression by R2, and by comparing this with
R* . see to what extent this semiparametric fit compares with a parametric one.
For each m we report also the fractions

~ -~

Foo(1,m) . _ £, (1,m)
ﬁﬁr(l: [(n - 2)/2]) Lo ﬁxv(lr [('ﬂ, - 2)/21)‘

their closeness to unity indicating directly the empirical, finite sample relevance of
Propositions 4.1 and 4.2 (though note that 7,y need not lie in [0,1].)

Trem =

3) Memory of cointegrating error

We estimated d, first by d, and d,, which are respectively the log-periodogram
and Gaussian estimates of (i} and (iv) above, based on first differences of the &
and then adding unity. We also report d? and d? which use the raw & and do not
add umty, because in general we have little prior reason for believing e, is either
stationary or nonstationary. In addition we report 95% confidence intervals based
on the asymptotic theory of Robinson (1995a,b), though strictly this has not been
justified in case of the residuals é,.

Tables 3-9 report empirical results based on several data sets.

a) Consumption (y) and income () (quarterly data), 1947Q1-1981Q2

Engle and Granger (1987) found evidence of CI(1) cointegration in these data.
Table 3 tends to suggest an integration order very close to one for both variables, the
estimates ranging from .89 to 1.08 for income and from 1.04 to 1.13 for consumption.
The Wald statistic is at most 1.06, so we can safely not reject the d; = d, null
Exploiting this information, one obtains GLS estimates ranging from .953 to 1.02;
but with confidence intervals all so narrow as to exclude unity. The 3, are about
.232, which is close to OLS (.229), but the high frequency estimates B_m are closer to
.20. The unexplained variability is four times smaller around frequency zero {1 — R2))
than at short run frequencies (1 — R%_}. Variability concentrates rapidly around
frequency zero, 85.1% of the variance of income being accounted for by the three



smallest periodogram ordinates, less than 5% of the total. This proportion rises to
92.6% for 6 frequencies, and is even greater for the cross-periodogram, confirming the
high coherency of the two series at low frequencies. The residual diagnostics are less
clear-cut, but in only one case out of 12 does the confidence interval for d, include
zero, providing strong evidence against weak dependence. The estimates of d, vary
quite noticeably with £ and the procedure adopted, ranging from .2 to .87.

b) Stock prices (y) and dividends {z) {annual data), 1871-1986.

The idea that these might be cointegrated follows mainly from a present value
model, which asserts that an asset price is linear in the present discounted value of
future dividends, y, = 8(1 — 8) -2 6° Ey(x44:) + ¢, where 6 is the discount factor; see
Campbell and Shiller (1987). In Table 4, the estimates of d;, d, appear close to unity,
although now the hypothesis that dividends are mean-reverting {(d; < 1) appears
to be supported. The Wald statistics for testing d, = d, are always manifestly in-
significant. A marked difference between §,, and §_,,, is found, the former oscillating
around 33 and the latter below 24. The spectral R? still indicate a much better fit
at low frequencies, but empirical evidence of cointegration is extremely weak. Notice
in particular that if y and x are not cointegrated, d. = max(d;,d,), as is amply
confirmed by the Gaussian estimates, where one gets identical estimates of d, and
de = (1.04,.91,.90) for ¢ = 22,30,40. The results of Campbell and Shiller on this
data set were, in their own words, inconclusive; our findings confirm those of Phillips
and Ouliaris (1988), who were unable to reject the null of no cointegration at the
10% level.

c¢) Log prices (y) and wages (z) (monthly data), 1960M1-1979M12

The results in Table 5 tend to develop those of Engle and Granger {1987) by
supporting an absence of a cointegrating relationship of any order. Where our con-
clusions differ is in the integration orders of  and ¥, in particular of log prices, which
appear not to be unity, ranging from 1.54 to 1.60, while confidence intervals never
include unity. This is not very surprising in that the inflation rate might plausibly
be characterized as a stationary long memory process. W is always above 5.8, so we
reject also at the 1% level the hypothesjs that d; = dy, and so because this necessary
condition for cointegration is not satisfied the analysis is taken no further.

d) Quantity theory of money (quarterly data): log M1, M2, M3 or L (y) and log
GNP (x), where L denotes total liquid assets, 1959Q1 - 1981Q2.

Engle and Granger (1987) found the classical equation MV = PY of the quan-
tity theory of money to hold for M = M2, but not M1, M3, L. This is somewhat
unsatisfactory since the latter monetary aggregates are linked with M2 in the long



run, so that there might exist cointegration (albeit of different orders) between more
than one of these aggregates and GNP. For log L in Table 6 we reject at the 1% level
the hypothesis that GNP shares the same integration order. For M2, in Table 7, the
necessary condition for cointegration is met, GLS confidence intervals tending to sug-
gest integration orders around 1.3, which seems unsurprising since both aggregates
are nominal. The 3, are not noticeably influenced by m and are indeed the same
as OLS (.99). Estimates of the d. are strongly inconsistent with stationarity, rang-
ing from 1.02 to 1.23, the confidence intervals excluding values below .88, Overall,
it seems very difficult to draw reliable conclusions about the existence of fractional
cointegration between these variables given such a small sample. The relationship
of nominal GNP with M1 and M3, in Tables 8 and 9, appears much closer to that
with M2 than Engle and Granger concluded, exploiting the greater flexibility of our
framework. In particular, the common integration order for the bivariate raw data
is again estimated via GLS to be 1.31, 1.39, 1.29, (for m = 16, 22, 30} for nominal
GNP and M1 and 1.33, 1.44, 1.42 for nominal GNP and M3; estimates of d. range
from .76 to 1.20 for the former case and from .88 to 1.08 for the latter.

8. FINAL COMMENTS

The paper demonstrates that OLS estimates of a cointegrating vector are asymp-
totically matched or bettered in a variety of stationary and nonstationary cases by
a narrow-band frequency domain estimate, FDLS. The overall superiority of FDLS
relies on correlation between the cointegrating errors and regressors; in the absence
of such correlation FDLS is inferior to OLS for stationary data, and comparable for
nonstationary data. The finite-sample advantages of FDLS in correlated situations
are observed in a small Monte Carlo study. FDLS is incorporated in a semiparamet-
ric methodology for investigating the possibility of fractional cointegration, which is
applied to bivariate macroeconomic series.

The paper leaves open numerous avenues for further research. It is possible that
the whole of =, does not satisfy the conditions of either Section 3 or one of the cases
I, I or III/IV of Section 5, but rather that subsets of z; are classified differently. It is
straightforward to extend our results to cover such situations, and we have not done
so for the sake of simplicity, and because the case p = 2 is itself of practical Impor-
tance. A more challenging development would cover such omitted cases as when
has integration order %, on the boundary between stationarity and nonstationarity,
though this can be thought of as occupying a measure-zero subset of the parame-
ter space. From a practical viewpoint a significant deficiency of our treatment of
nonstationarity is the lack of allowance for deterministic trends, such as (possibly
nonintegral) powers of ¢, but if these are suitably dominated by the stochastic trends
it appears that the results of Sections 4 and 5 continue to hold.

A more challenging area, for study is the extent to which we can improve on FDLS
in our semiparametric context, with unknown integration orders, to mirror the im-
provement of OLS by various estimates in the CI(1) case. There is also a need, as in



the CI(1) case, to allow for the possibility of more than one cointegrating relation,
where we might wish to permit these to have different integration orders. Certainly
it seems clear that results such as Propositions 4.1 and 4.2 and Lemma 5.1 can be
established for more general quadratic forms, and so the extensive asymptotic theory
for quadratic forms of stationary long memory series can be significantly extended
in a nonstationary direction. The choice of bandwidth m in 3, seems less crucial
under nonstationarity than under stationarity, but nevertheless some criterion must
be given to practitioners. For the stationary case, which seems of interest in financial
applications, bandwidth theory of Robinson (19%4c) can be developed, but there is a
need also to develop asymptotic distribution theory for FDLS, useful application of
which is likely to require bias-correction due to correlation between « and ¢. For the
relatively short macroeconomic series analyzed in the present paper the semipara-
metric approach employed; while based on very mild assumptions, will not produce
as reliable estimates of integration orders as correctly specified parametric time series
models, and it is possible to analyze narrow-band 3 estimates in such a parametric
framework also. In this connection a recent treatment of parametric inference in
multivariate stationary long memory is given by Hosoya (1997).



APPENDIX

Proof of Theorem 3.1 From (2.1}, (2.2) we have

Bm - ﬁ = sz(lam)_lﬁxg(l,m).
By the Cauchy inequality, as in Robinson (1994a)

3=

| FQ(1,m) |< {FE(L ,m) Fee(1,m)}? .

For any non-null p X 1 vectors <y and §, by Assumption A

¥ {Fra(1,m) = FurOm) } 6 = o, ({q/Fzz( 6 Fa ()6} ) asmo oo (A3)

by a straightforward multivariate extension of Theorem 1 of Robinson (1994a) (see

also Lobato, 1997), with

For(¥) = [Re {fu(i)}dp ~ G(Y), 85 A = 0%,

where G(A) has (7, j)-th element

G\ dimdy
7
1—d;—d;’

Gi(A) =
G;; being the I(z', j)-th element of G. Applying (A.3), (A.4) and (24),
A Fa(1,m) A} P A =
where Ap = diag{};*, ..., A2}, so

FED(1,m) = Gy(m) + 05 (M %74},

i

Fgg(l,m) = o “zz(l,m)a = o' Fy(Am)a + 0p(& oz (M) )
— OP(A}“—?dc),

because

1-2d.

Py
o Fyp(A)a = /a faz(p )adHNC/# zdcd,u,—cl_ o Jas A — 07,
]

(A-4)



Denote by Am, G()) the leading (p — 1) x (p — 1) submatrices of A, G(A). For any
(p — 1) % 1 non-null vector v = (vy, ..., vp_1)’

VR POy ~ VAZGOME 20 [ (/250 ) da
o =1

p-1 2
Y

= WAnp 3
JZ___; 1 —2d;

where w is the smallest eigenvalue of the leading (p—1) x (p~1) submatrix of G, which
is positive definite by Assumption A. It follows that A, F, '(An}Am = Oy(n/m),
whence the proof is completed by elementary manipulation. g

To assist proof of Propositions 4.1 and 4.2, we infroduce the following Lemma. In
the sequel, C denotes a generic positive constant.

Lemma A.1 Under Assumption D,
def hd ;
Suu(A 1) = D e (7)
t=u

satisfies, for 0 < u < v, 0 < |A] <,

Suw(X0) = 1, u=0,
= {,u>0,

and for v > 0

(u+1)t 1
NI

|Stw(’\1f}()| _.<.. len (’U'Yl ) ? U < ’Y S 11

v
IStw(A:Af)l S C'min (Uqa W) Y > 1.
Proof The proof for v = 0 is trivial, so we consider v > (. Drop the argument
v from S,,(A,y) and ¢,{7). Obviously |Su(A)| < Cv?. For 0 < v < 1 we can write,

foru < s < v,
i

s—1 ‘Ui-l t LA
Suv(A) = Z Wtetu + Z(‘P: - ©ei1) Z e 4+ Py Z e
t=s =3

t=u v=g
by summation-by-parts. Thus because

ieim < C(t —s)

2 STTu=a =k (A <, (A.5)




Assumption D implies that

SV < C ((s P w) . (A6)

For 1/{A] < Cv we may choose s ~ |A|™" so that (A.8) is O(I1A™"). On the other
hand we also have

v—1

Sun(A) = Z(eot Prs1) Z e+, Ze‘“ (A.7)

t=u
to give [Suy (M)} < Clu+1)7"1/|Al. For v > 1, (A.7} gives instead

Cvyr1
Al

|1Su ()] <

O

Proof of Propesition 4.1 The discrete Fourier transform of aj¢ is, from (4.1},

1 ‘ 1 .
{A) = —— a; #A _ . /\tb\_,-zlz’
wJ( ) \/27—”; 7€ /_“—2?”;;‘1‘93.?1—‘*.( )8 Nty 7 '
where

t
%‘z(/\) = Zgojse“’\, 1=1,2

=0
Thus by Assumption C

E(I8P0) = 5— [ B1(A, —)®a(— ), 1) fra (), (A.8)

where f;;(2) is the cross spectral density of 7,,, N and
J(’\ )u) Z(p; n—t !t(A+#)s 1=12

The modulus of (A.8) is bounded by ?

1
Z

% sl;P | fr2(pe)| {/ |<I),(,\,—u)|2dpf |‘I’2(_”\:ﬁ)12d”}

59{ f[sgp fﬁ(p)zt:|soj,n-t(f\)[2} : (A.9)



from Assumption C. From Lemma A1, for 0 < [A] <@, ¢t=1,..,nandi=1,2

a0l =0 (S 160> ) + it < )

nmax(7;—1,0)
=0 (—) (A.10)

| A|mm('r.-,1)

when v, > 0. The latter bound also applies for v; = 0, when it is O(1). Thus (A.9)
is, for 0 < [A| < 7,

rymax{y;—1,0)+max(y;-1.0)
l /\‘ min('h ’1)+min(')’2 !1)

Fora=Xx;,5=1..,M,itis

n7]+72
0| e |
gemin Hmin(vy,,1)

Hence, when y; + v, > 1, by (2.5)

B (F&P(m+1,M))| < gnff:lw (1820,)]

J==

< OpMmtr-t i 4§ min{yp,)—minyz,1)

j=m

= p (n'\'l"")‘?_]) ,
|E (F(l 2)( ))] < CnMitr-1 i I min(¥;,1)—min(vs,1)
J=1

= 0 (n"" +”'2_1) :

Likewise, when v, + v, < 1,

p(re7n)| < cornnt S

o)

Proof of Proposition 4.2 We first assume that y, > 0. From (4.1) and (A.8)

i

LN -E (I(I 2 ’\)) ZZ‘F’I n—tl ‘Pz,n—s(_/\)ei[t_m {MeMas — Ti2(s — 1)},

27m



with 7y,;(s —t) = E(nyn;,). The left hand side of (4.6} is thus bounded by the real

part of
1 P
(27[')2714 Z"ol,ﬂ-—t(Aj)(p&n—s(“Aj)(lol.n—r("’Ak)ga&n—q()‘k)e

X {E(ﬂnﬂzs%rnzq) — Y12(s = thral - T)} ,
where
o~ M M
)IEIDIED DI I I
je=m4+lk=m+l t § 7 4
(A.11) can be written as
a) +az +ag,

where the three terms represent contributions from

Yi2{g - t)’hz(s -7), ’Tu(" - t)’}’m(q — 8), k(s —t,r—s,9— r),

respectively, in the last line in (A.11). Now

w
1 ——
= 47r2n4zf / €1t A )Po s (=201 e (= APz g (k)
- -7
x gt ~il DA GHa— O —0dn £, (X) o (p)dAdpt
- 47!'271,4].[ Z Z Lpl,n—t(kj)zwz,n_s(—)\j)e is(Aj—p)
Zx g J=mAl k=m4l s

(-8} —ilr—q) e

(A11)

x> Sol,n—r(—"\j)e—ir(‘\k-'-'u) > %,n—q(f\k)eiq('\"“)flz(/\)fm(ﬁi)d}‘d#
v 7

kis

i T M M
— W[/ Z Z q’](/\j,—/\)¢’2(_’\51”)
w J

i j=m+1 k=m+1

X @1(= e, —1)@2(he, A fr2(N) faa(pr)dAdps,

which is bounded in modulus by

)

w T

M
Z ®d, (Aj, “»\)@2(_)\;5 ) l'-"’)

j=m+1 t

M
x| 30 @i(—Ak, —p)Pa( A, A)| dudA
k==m+1
C ™ m M 2
< -—4‘]/ Y. B1(Ag, —A)Pa(— A, p)| dpdA
" Zn e [j=mAl

T "
C M M

f./_z Y. @i, A=, )

nd
n Zrlx j=m+1 k=m+1

(A.12)



X@g(—/\k,/\)q)z()\k, —,U.)dpd/\, (A13)

due to Assumption C and the fact that ®p(A, 1) = @o(—A, —p). Now for £ =1,2
] De(Aj, = A)Pe(—Ax, A)dA = / S e MNENTNI 0, (= Ae)em PPN
- g t &

= 2?1'(3;;;5‘5, (Al4)

where ‘
Cike = 3 PontXj)Prn_e(~Me)e™ ) g =1 2,
t

Thus (A.13) is

C M M
Z Z Cik,1Ck5,2- (A15)

n4 j=m+1 k=m+1
Consider first the case ¥, + 7, > 1. By (A.10) and elementary inequalities

nm(’h: 1 )

[¢ine] < CW’

so that {A.15)} is bounded in modulus by

n? Z /\{nin{'yl »1)+min(y,,1)

2
n .
1=m+1 5

2 2
M max{y, —1,0)+max(v,—1,0) M
C ( n 1 2 ) < Cn2(71+72—1) ( Z j—min(7l,1)min('yz,1))

j=m+1

2{ys+r2—1)
T
<

mrin{yy 1)+ min{y,,1}-1
— 2{vy+7p—-12
= o (n {(m+m ))’

using (2.5). Now consider the case v, + v, < 1but § <y <land 0< v, < 150
that v, + v, > 7. First we deduce from Lemma A.1 the estimate

Cn
(AjAe)1

Define |
n—1

Pae(A) = 992,71—1()‘) - 902,11—:()\) = Z Wgseis", t=2,...,n

s=n-i+1

and P,,(A) =0, so that

4
— ()
Chiz = D Cho
i=1



where

1
Cf(=332 = ‘Pz,n—l()‘k)ﬂf’z,n—l(_'\j)Dn(/\k - Aj)
2 — ~ i 3.
c§c332 = Z‘Pm()\k)ﬁoza(_)‘j)e Hhe=2y)
¢

3 ~ .
CIEJ? - "992,n—](/\k)Z@Zt(—,\j)e‘t(/\k A5)
4 k
CJ(CJ)Q =~ 1 2‘92 /\k)e it Ak — ,\J}
with
t
Ay ="
i=1
Because
PN (A1)
= O!j?ék, modn,

using also (A.10) we have

1 2 n :
c£3)2 = n |€02,ﬂ,—1(/\j)| =0 (ﬁ) y 3= k; (Alg)
7
= 0,j#k
To consider cg-?,z, note that from Lemma A1, for0 < g<n -1,

2
|C§c33| < Zl‘Pz: Ak)Bar(—Aj)| + Z |Bae( Ak )P (—A)]
t=n-—gq+1

C Cq
—t YAy T
AjAk T Z(n +2) * (AjAe)re

g q
< C
B ( W T (/\j/\k)'”)

< ©
= Dohg)ratir

<

(A.19)

5

on picking g = [(A;Ax)~/?]. Next, to consider C,U 5, WeE write
+ . ﬂ_] .
D Bar(—Ag)e NN = AR SR ) 67 Dy (X - Ay,
t t=1

which by (A.5) is bounded in modulus by
n2tl

1+H|A _)‘k}

Z loael 1De(A; = M) < C



for 1 < 4,k < n/2. Thus by (A.10)

Re) Cnret]
Chaz} = /\72(1 + A= M)

Likewise _
) Cnet!

ki) = ,\"’2(1+n|/\ — M)’
With reference to (A.15) we have from (A.16) and (A.18)

1 & & ) c 2y +72)
. . =27 +72
T Do D CikaCify| < 2 Z A
j=m41 k=mtl Jj=m+l
M
< CpEntr-) Z G HNAR)
j=m+l1
207 +7,~1)
- (1 +tr2-1/2}

From (A.16) and (A.19)

¢ i 77'2
gt
< =S 2N ’
7

T j=rre+1

n4 Z Z "Jkl"kaz

j=m-+1 k=m-+1

IA

i=m+1
nz(')'l +72-1)

AN

m2+72-1/2)

From (A.16) and (A.20)

M

M
Cn2('n+'rzl)( Z jon 72- 3

N — 0 (n2('n +72—1)) _

(A.20)

(A.21)

L Z ‘Jklcm

J =m+1 k-—m+l

F=m-|1 k=mtl

< onnind 3 :f"""m{ S k)R S (k

j=m+1 k=341 E=2j+1

j=m+l1

o J 00
< Cpfntmel) H7 g {j‘“+j"”“2k‘+2k*vn“l}
k=1 P

o0
< Cp¥ntn-l) Z T M og

j=m+l

[a 4]
< epftmh R eI
j=m+l1

< T Yg—2 B & Tt &1
it 3 5 3 T+ alh — DAL

lk ’n}

(A.22)



for £ > 0. Now because y;+v, > % and vy, > 3 we can choose € such that 2y, +v,—¢ >
1 in which case (A.22) is o (nQ("lJr’”_l)). In view of (A.21} the same bound is obtained
on replacing cﬁa 5 by cg)z. Thus we have shown that @, =0 (nz("'l '”2‘”).

Next,

1& I T Hi—3)A; —i{r—
a2 = EZ//(pl,nAt(’\j)‘pZﬂ—s(_’\j)"ol.n—r(_’\k)@Zn—q(A-‘E)e(t Ps=ilr=

—-m -7

x ei{r—t)z\+£(q—s}pf“ ()‘)f22( )d/\dﬂ.

™

YA IR T -

o j=m+1 k=m-+1

X®1(~Ax, A) B2 (M, 1) fr1(A) fr{p)dAdp

and this is bounded in modulus by (A.13) = o (nz(”’l"‘"’?‘l)), in the same way as was
shown for (A.12).

Finally
1 P T ° 7
= EZ///(101,n—t(Aj)Lp2,ﬂ-s("_/\J')‘igl.n—r(_Ak)(P2,n—q(Ak)e:(t—‘s}’\j_‘(r‘ﬂlk

3
xelte—tmrir-dmatilahs p (1 1o i) [Tz
=1

11r'n'1r M
=_/// > By, —p)®a( N5 — iag)

n4 j=m+1 k=m+1
X®1(~ Xk, ty — 13)®@2(x, ) f (121, 112, 113) [ ] s
i=1
and in view of Assumption E this is bounded in modulus by

m

<1

M

‘I)I i P1)¢2( Aj, py — PL2)
F=m+1 .

M
x Z Dy (— Ak, 1ty — 113) P2 Ak, 15)

k=m+1

H dis;

T

< e(]]]

—m =

M
Z @1 32 _ﬂl)(I’?(_/\jaﬂl - P'vz)

Fj=m+1

2
H dy;




1
2

Hd,u,-) . (A.23)

M
> (= Ae, kg — 3} P2( Ak i5)

The second integral is bounded by

T T A
QTT[ f > Bk p — 1) B2 (0, p15)
“x lr k=m+1
M
X > Dy(Ae, g~ pg)P2(— A, —pa) [ ] diss- (A.24)
F=m+1 3

Because {cf {A.14))
[ D1 (=i, g — 13)01( N, 15 — pa)dpy = 27Cjx 1,

it follows that (A.24) = O (E E$m+1 Cjk’lﬂkj,z). Treating the other integral in

(A.23) in the same way we see that (A.23) is bounded by (A.15) = o (2™ +%-D),
to complete the proof of (4.6) when <y, > 0. For v, = 0, the same proof applies on
substituting 1 for ®5,(A) and D,(X + u) for @2(A, p), to deduce that ¢; = o(1) for
j=1,2,3

To prove (4.7) we start by bounding the left side by ar analogous expression to
(A.11), with 1., S 41 Teplaced by Y70, S0 in Y. Thus the revised a; is
bounded by

M M M
an('}’1+’)’2—1) Zj—z('}"l"‘"fz) + Zj"}'l_"{g_% + Z j_".fl"z'TZ logj
' j=t =1 =1
=0 (n2(11+72—1}) }
while the revised ag and a3 are similarly easily seen to have the same bound.
Proof of Lemma 5.1 From (5.1)

e = (1= L)% {ul(t>0}},i=1,.,p—1,
ee = (1— L)% {ypl(t >0},

where u,; is the i-th element of u,. We take

Ik + )

ee(7) = TTk+ 1)’ (A.25)

since this is the coefficient of L* in the Taylor expansion of (1 — L), and choose
v = @ (d;) in both cases (5.14) and (5.15), with ¢, = @i (de) in (5.14) and @y, =
@ (d;) in (5.15). Now

(1) =0 (1 +k)7) (A.26)



from Abramowitz and Stegun (1970). Also

e(7) = 01 (V) = ey —1) =0 ((1 + k)1_2) )

to check Assumption D. Next we take n,, = u; in each case and 7,, = u, and
Ny = uj in {5.14) and (5.15) respectively. Now the spectral density matrix of u;

: . 2
is (27)1C(e?*) T C(e*)* whose modulus is bounded by C (Z?’;n IC; ][) < oo from
(5.7). Thus Assumption C is satisfied. Finally the fourth cumulant of wi, tia, ¥je4s,
Ujatbie 15, for a,b,¢ > 0

o0 o0 3 o0
! ! r !
cum (Z Ci—gfds D Chaefer D CrarbmsErs >, C:‘.a+b+c—g59) ;
— o0 — D — o0 —00
where c; is the i-th row of C;. This is bounded in absolute value by

o0
C > llei—all heso—all lliars—all lesasbre—all -

d=—oc

Because the sum of this, over all a, b, ¢, is finite due to (5.7), it follows that the Fourier
coeflicients of the fourth cumulant spectrum of u;, us, uj:, 1, are absolute summable,
so that their spectrum is indeed bounded and Assumption E is satisfied. a

Proof of Lemma 5.2 For brevity we shall write A = A{d) in the sequel.
AF(1,m)A = AF.(1,n—1A
—-A {ﬁ'm(m-k IL,n—-1)—-F (ﬁ'm(m+ 1,n— 1))} A
—AE (Fea(m+ 1L,n - 1)) A
In view of Lemma 5.1 the last two components are op(1} and o(1} from Propositions
4.2 and 4.1 respectively. The proof is completed by appealing to Theorem 5.1. O
Proof of Lemma 5.3 We begin by estimating the b;;,. First

1611 < (i ||c,|l?) (A21)

< % 3 (3 ||Ce||2)§ (A.28)

k=[3] M=*
=0(j7") as j — oo, (A.29)

where (A.28) is due to monotonic decay of the right hand side of (A.27), and (A.29)
follows from (5.4). The i-th diagonal element of Dy is ¢, (d;) fori=1,...,p—1 and



¢, (d.) for i = p, where ,(7) is given by (A.25). Now from (5.9}, fori =1, ...

min{j,t-1)

bijell < Z‘Pe(d)nc-—e”‘i“ Z ©e(di) 1| Cj-ell
£=r+1

< C max ||cg||z;f“ Ly Ot IZIICeN

Jr<E<y

< Crh(i—r)” -!-Crd'

for 1 <r < min(j,t — 1). It follows that for j < 2¢
“b‘iﬁ“ S dei_l'} 1= 1: P la

on taking r ~ j/2. For 7 > 2t we have more immediately

i—-1

IBisell < Sl @) | Cioe IS CG—8)7MtH, =1, ..,p— L.
£=0

Similarly
= O((-t)"t*), 5> 2

Next notice that b;; = b;; for 0 < j < ¢, so from (5.8)

bl < O(3*7!), 5 <2,

E(zqe;) = Z bi; 2 bp; + Z"’ ¢ 22 pst
j=t
91

= Z bi: z bPJ + Z but > bmt + Z bt}t E bpjt

j=2t

= &i + O (Z jdi+de—2 + t.tdﬁ"dc—? + tdi+d= Zj—z)

=t =t

= £+40 (tdi+dc—l)

;p_]'

(A.30)

(A.31)

because d; +d. < 1, where this and (A.30), (A.31) imply that }£;| < co. On the other

hand
e TR 9) 9p 3y LM} AW
t j=0k=0
Imn(2s,3+t)
3 t max(0s-t) a+i

3+t o

+3 3 ES G4t =) +ZZs‘tde 3

min(2s,5+¢)
= 0 (-nd""d"}) :

__3_



The proof is routinely completed in view of (2.3).

Proof of Theorem 5.2 It is convenient to introduce the abbreviating notation
A=F(l,n—1),d=F,(1,n-1), A= F(1,m), @ = Fre(1, m).
Thus ~ _
B,_1 — B =A(AAA)AG, (A.32)
B — B = A(AAA)'AG. (A.33)

Now
AA-A)A=A{(A-A)- B(A- A)} A+ AB(A - A)A

—, 0 (A.34)

from Propositions 4.2 and 4.1, Assumption F and Lemma 5.1, so that AAA, AAA =
V(d, 1) by Theorem 5.1. Now denote by &;, @; the i-th elements of &, 4. From Propo-
sition 4.2, Assumption F and Lemma 5.1

a; = B(@;) + (@ — E(8)) = B@) + Op(n**%"1), i =1,..,p— 1,

whereas from Lemma 5.3
lim nfmin- ZAE(a)

n—oo

Then (5.17) follows from (5.16). Finally

8 = E@) + {&: - B@)} =0 ((%)di”‘_l) +0, (néte1),

from Proposition 4.2, and 4.1, Assumption £ and Lemma. 5.1 so the i-th element of
(A.33) is

ditd.—1 dmin+de~1
1 _a. 1_qg. f N5 g . ' min *ac
Op n2 d; max ne d_, (_) — Op nl d;—dmin (___)
1<i<p m m
— Op (nl“di—“dmin) ,

since dyin + de < 1, to complete the proof of (5.18). 0
Proof of Lemma 5.4 For 1 < j < m, writing T, = 2 Tes

E {Ixe(/\j)} = 27”1 ZZ 73 1 + ...+ Y- t)e?(t 3))‘1

- 271'7], Z Z ( a—t — FS——I) =9
f ( Ifl) oy (A.35)

B



from (A.17). Now for £ > 0 T, = Iy, whereas for £ < 0, Te=Te+1_, - I'y_1, so
(A.35) has real part

1 2! ¢ " £
5} - (1 - E) rg CcOs €/\J + g z (1 + "n*) (Fo + F_l - Fg_]) cOs 8/\:_. (A.SG)

1-n

The first term can be written

1 n-1}

£ r
—_ Z (1 — |?]:|‘) Fm cosf)\j ‘+ 4—:;

dr =

To deal with the second term of (A.36) note that for 1 < j<n -1

e‘/“:)2 1—et 1 — g’

which has real part

n( 1 N 1 )_ nf{2-2cosA;y _ n
2\1—e " 1—e) 212-2cos);) 2

Thus, the second term in (A.36) is

(Fo +I'_;) 2 ¢ - To+D,
- ? 1 - cos €A, 5

1 ! 2] ',
*EZ( )Fﬁ;g! 1c0s fA; + — o

1-n

1w 1 T,
= 4’”2(1 n)l—‘m]COSE/\ +4

1-n

It follows that (A.35) has real part

1 n—-1 |€}
ﬂ Z 1-— —T;- (F_lg[ —_ P_|z|—1) cos E’\j:

1-n
i

which is the Cesaro sum, to n.— 1 terms, of the Fourier series of h{A;)/2. Equivalently
we can write

E{%F (1, m} 4mmilmﬂ (0= A R(A)dA. (A.37)

Fix ¢ > 0. There exists § > 0 such that [h(A} — h(0)]| < £ for 0 < |A| < 6. Let n
be large enough that 2),, < . Then the difference between the right hand side of



(A.37) and h(0)/2 is bounded in absolute value by

L5 [ 1Du(2 = A IRO) — A(O) 4

F=12

) T
i a2 2
p— { max / N O (] [R(A) ] dA + 27 [|2(0) n)}
)
n

because of Assumption G, (A.5} and

4mnm

A

/ IDa(N)[2dA = 277,

Because ¢ is arbitrary, the proof is complete. m]

Proof of Theorem 5.3 (5.22) is familiar under somewhat different conditions
from ours (see e.g. Stock, 1987, Phillips, 1988), but we briefly describe its proof in
order to indicate how the outcome differs from (5.23). We have

n By~ B) = (n'A)7 {@- E@) + B@)}-
Now
nl1A= V(,0),d— E@) = U(Q),asn — o (A.38)

from Assumption F, Theorem 5.1 and the continuous mapping theorem. Because
E(@) — Ty by elementary calculations and V(¢,{?) is a.s. of full rank by Phillips and
Hansen {1990), (5.22) is proved. Next

~ -

n(B3,, — B) = [n“1ﬁ+n" {(

~A)- B(A- A} +n ' BA- A
x[a— E@+{(@—a

) — B(a - &)} + E(@))-
Since 1 {A~ A— B(A~ A)} =, 0,n 'E(A~A) —0anda—a - E@-a) =, 0

from Propositions 4.1 and 4.2, and Lemma 5.1, the proof of (5.23) is completed by in-
voking (A.38), Lemma 5.4 and (2.4). O

Proof of Theorem 5.4 From {A.32), Theorem 5.1, (5.16), (4.4) of Proposition
4.1, and (4.7) of Proposition 4.2 we deduce (5.24). Next, using (A.33),

Brr = B = AAAD) T {A(A~ DA} (AAD) ' NG (A.39)

~(AAAY'A{(@ - &) - E(@ - a)}. (A.40)



The i-th element of the right side of (A.39) is o, (n“"’rd‘) by arguments used in the pre-
vious proof and {A.34), while the i-th element of (A.40) is also op (nd""'d°) on applying

also (4.3) of Proposition 4.1 and (4.6) of Proposition 4.2, to prove (5.25). Then (5.26)
is a consequence of (5.24) and (5.25).

Proof of Theorem 5.6 The proof of (5.28) follows routinely from (A.32),
(5.13), (5.16) and (5.27). Then (5.29) is a consequence of (5.25) and (5.28), because
in view of (A.40) it is clear that (5.25) holds for all d, < dmin. O
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TABLE 1: MONTE CARLO BIAS AND MSE FOR MODEL A

~ R BIAS, n—=64 _ R ~ MSE, n=64 _
01 B3 By Bs Buy Brm Brm B By Bs Bar Brem Bru
8 .194 210 .229 205 171 .154 128 .123 .130 .154 .094 .09l
6 068 083 .096 .177 .062 .041 .033 .033 .034 .059 .027 .024
4 .031 037 .046 .125 .036 .014 .015 .014 .014 .031 .011 .009
2 .017 .020 .026 .097 .024 .003 .009 .007 .008 .019 .007 .006

. ~ BIAS, n—=128 _ ~ ~ MSE, n=128 _
01 B Bs Bs B Bem Bem Pz Ba Bs  Bar Bru Brum
8 .074 087 .110 .175 075 .062 034 .034 .037 .057 .026 .024
6 020 023 .035 .096 .018 .006 .008 .008 .008 .018 .005 .006
4 .008 .010 .015 .066 .010 -le4 .004 .003 .003 .008 .002 .002
2 003 .005 .007 .051 .008 -4e-4 .001 .001 .001 .003 .00L .001

_ . BIAS, n=256 _ A R MSE, n=256 ~
©1 B Bs Bio  Ba-y Brm Bru Bs Ba Bio  Bu-1 Brm Brum
8 .038 048 .053 .097 .026 .019 .008 .009 .009 .018 .006 .005
6 .008 .013 .015 050 .003 -.002 .002 .002 .002 .005 .001 .001
4 004 .005 006 .034 .003 -00I 7ed T7ed T7ed .002 5Sed 5ed
2 .001 .003 .004 .026 .002 -.001 4ed 3e4 4ed4 .00l 3e4 3ed
TABLE 2: MONTE CARLO BIAS AND MSE FOR MODEL B

. BIAS, n=64 _ _ _ MSE, n=64 ~
A By Ba Bs Buy Pem Bru Bz Ba Bs Buci Bru Bra
? -008 -.010 -.010 .08 .025 .007 .007 .007 .006 .025 .010 .007
o -005 -006 -007 .057 .032 .022 .003 .002 .002 .011 .006 .004
% -002 -005 -.006 .040 .01l .003 .001 .001 .001 .007 .002 .002
%”- -003 -.003 -.004 .030 .031 .026 .001 .001 7e-4 .005 .004 .003

_ BIAS, n=128 N R _ MBSE, n=128 _

X By By Bs  Paa Prm Bem Bz By Be  Buor Brem Bru
% -001 -.003 -.004 .0.44 .007 6e4 .002 .00 .001 .005 .002 .001
3 -001 -001 -002 .026 .005 ,5e-4 5e-d4 Se-d 4ed4 .002 5ed 4ded
% -001 -.001 -.001 .020 .014 .011 3e4 3ed 24 001 7ed 5e4d
%35 -001 -001 -.001 .015 .011 .009 24 24 24 9e4 5e-4 4de-4

R _ B{AS, n=256 _ ~ _ MSE, n=256 _
XY Be B Bro  Pn1 Brm Brm Bs Bz B Ba-v Brm Bru
% -9e-4 -001 -002 .022 -002 -004 3ed 3ed 3ed .001 3ed 3ed
5 -001 -7ed -Te4 013 .005 .004 led led led 4ed 2e-4d led
¥ 3e4 -Be-d -001 009 .005 .003 Be5 5eb He-5 24 led TeS
T -3e4 -bed -001 007 .007 .006 3e5 3¢5 3e5 204 led Oe5



TABLE 3: CONSUMPTION (y) AND INCOME (z)
(n=138, 8,_;=.229, 1 — R2=.009)

1) Memory of Raw Data
¢ dy dy W odiy CI dy CI d,

99 89 113 106 .95 .94,.97 .99 .78,1.20 1.13 .92, 1.34
30 95 104 .02 .98 .97,.99 103 .84,121 110 .93, 1.29
40 102 1.04 .02 102 102 1.03 108 .92,1.24 112 .96, 1.28

2) Cointegration Analysis

m am ﬁ_m T:::r.m Ta:y,m ]- - an 1 - Rim
3 231 219 .85 .86 003 013
4 .232 210 .88 &g 004 013
6 .232 201 .93 93  .004 013

3) Memory of Cointegrating Error

¢ 4 Cl 4, ¢t 4  Cl 4, CI

22 .20 -.05,46 .56 .29,.84 .44 .22,.65 .62 .41, .83
30 .57 .27,.87 .84 .60,1.07 .68 .49,.86 .78 .60,.96
40 .61 .38,.84 .86 .66,1.06 .76 .60,.92 .87 .71,1.02

TABLE 4: STOCK PRICES (y) AND DIVIDENDS (z)
(n=116, B,_;=30.99, 1 — R?=.15)

1) Memory of Raw Data

¢ d; dy W dpey CI 4 CI 4 CI

22 91 .96 .07 94 92,96 36 .15 .57 104 .83,1.25
30 .86 .83 .04 .84 .83,.85 48 .30,.66 .91 .73,1.09
40 91 .84 36 87 .86, .87 .70 .54,.8 .90 .74, 106

2) Cointegration Analysis

[ A3 2
m ﬁm f@——m ’r:tx,m rzy,m 1 - R?-,-,_ 1~ R-—m

3 3316 2324 .78 84 '.076 215
4 3355 2149 719 & 093 210
6 3247 2281 .85 .89 114 190

3) Memory of Cointegrating Error

¢ 4 d. i & d, CI

22 .73 .74 47,101 .95 1.04 .83, 1.26
30 .60 .60 .36,.83 .85 .91 .73, 1.09
40 64 66 .46,.86 .84 90 .74, 1.06

CI



TABLE 5: LOG PRICES (y) AND LOG WAGES (z)
(n=360, B, ,=.706, 1 — R?=.033)

Memory of Raw Data

¢ d, d, W d, CI d, CI

30 116 160 584 1.07 .89,1.25 124 1.06, 1.42
40 1.03 154 111 1.07 .92,1.23 1.25 1.09,1.41
60 99 154 199 107 .94,1.20 127 1.14, 1.40

TABLE 6: LOG L (y) AND LOG NOMINAL GNP (z)
(n=90, 3,_,=1.039, 1 — R2=.00085)

Memory of Raw Data
£ d dy, W d, CI d, CI
16 1.29 161 551 123 98,148 146 1.21,1.71
22 136 1.68 630 1.25 1.03,146 1.56 1.35, L.77
30 129 168 999 122 104,140 1.60 1.42 168

TABLE 7: LOG M2 (y) AND LOG NOMINAL GNP (z)
(n=90, B,_,=.99, 1 — R?=.0026)

1) Memory of Raw Data

¢ d, dy W d,, CI dy CI d, Cl

16 129 153 .69 129 1.28 1.30 123 .98, 148 135 1.10,1.60
22 136 1.56 .83 138 137,139 1.25 103, 146 147 125 1.60
30 1.29 164 3.67 1.33 132,134 1.22 104,140 1.59 141, 1.78

2) Cointegration Analysis

-

m f3,, B_m Tezom Toym 11— R?n 1-R?

3 99 .98 83 .84 .002 003

4 .99 .99 87 .87 .002 003

6 .99 .99 91 91 003 © .003
3) Memory of Cointegrating Error

¢ 4 d, CI d  d, Cl

16 115 119 .88, 152 1.20 123 .98 1.48
22 1.10 1.16 .89,143 1.04 1.10 .89, 1.31
30 1.10 115 .92,1.38 1.02 109 .91, 1.27



TABLE 8: LOG ML (y) AND LOG NOMINAL GNP (z)
(n=90, B,_,=.643, 1 — R2=.00309)

1) Memory of Raw Data

¢ dy dy W ody, CI ds CI dy CI

16 1.20 153 7.70 131 130,132 1.23 .98 148 139 1.14, 164
22 1.36 1.42 .346 1.39 1.38, 140 125 .97,146 1.33 1.12 155
30 1.29 129 .00l 1.29 1.28 1.30 1.22 104,140 1.27 1.09,1.45

2) Cointegration Analysis

ﬁ_m Tegm  Toym 1hR3n 1_R3m

m ™m

3 645 632 .83 .84 .003 .003
4 645 630 .87 .88 003 .003
6 645 629 91 91 003 003
3) Memory of Cointegrating Error

¢ & d. I 4 d. CI

16 99 1.20 .88,152 .97 1.06 .81,1.31
22 .76 107 80,134 .77 92 71,113
30 .78 .88 64,111 .76 .8 .67, 1.03

TABLE 9: LOG M3 (y) AND LOG NOMINAL GNP (z)

(n=90, 8, _,=1.0997, 1 — R?=0023)

1) Memory of Raw Data

£
16

d: dy W dy, CI d,
1.20 145 .79 133 133,134 1.23

CI
98, 1.48

dy CI
1.34 1.08, 1.60

22 136 162 201 14
30 129 171 7.04 1.42

2) Cointegration Analysis

143,144 125 1.03,1.46 150 1.28 1.71
141,143 122 1.04, 1.40 165 1.47, 1.83

m

3
4
6

Z‘]m B—m r:l:r,m ra':y,m 1 - R?n 1 - Rg—m

1.10 110 83 &3 002 002
1.10 110 .87 .87 002 002
.10 110 .91 .91 .002 .002

3} Memory of Cointegrating Error

4

16
22
30

& 4, o & 4«
88 .89 57,121 102 102 .76, 128
97 100 .73,1.27 105 108 .87, 129
96 101 78,121 .98 1.04 .86, 1.22
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