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Battle in the Planning Office: Biased experts versus normative 
statisticians1

Marcel Boumans 

 

Abstract 
For the purposes of calculation, context is irrelevant: one is 

expected to strip away the “contingent” details, slot bare numbers into 
the equations, and perform the relevant maths. Medical doctors must 
know this. So why, asked just such a question about the likelihood of a 
diagnostic test being accurate, do two thirds of respondents get the 
answer wrong? These results are usually used to demonstrate the 
medics’ woeful comprehension of probability theory. This paper, 
however, argues that the results can be understood as a reminder of 
the importance of context to the constitution of “rationality.” 
Reinterpreting the results in light of “ecological rationality” – which 
takes account of context – reveals that the problem may not be with the 
respondents, but with the conception of rationality as necessarily 
context independent. “Facts” are statements about the world for which 
there is consensus, and consensus will be achieved when a statement 
can be accepted on rational arguments. But what kind of arguments 
can be considered as rational?2

 
 

1. Introduction 
Most planners consider maximising free choice to be consistent with 

economic efficiency and, thus, the most effective means of promoting or 

enhancing social welfare. This link between the augmentation of choices and 

increase of social welfare is based on the assumption that decisions are 

                                                 
1 This paper is presented at the ‘Biased experts versus plain facts’ session of the Annual 
Meeting of the Society for Social Studies of Science (November 2006), Vancouver, 
Canada and at the International congress ‘The Social Sciences and Democracy: A 
philosophy of science perspective (September 2006), Ghent University, Belgium. I am 
grateful for the comments and encouragements received from participants at both 
sessions. 
2 This abstract has been composed by the series editor, and is not the work of the paper’s 
author.  
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made rationally. However, new behavioural economists and psychologists, 

notably 2002 Nobel prize laureate Daniel Kahneman, have shown over the 

past three decades that people, including experts like physicians, do not 

exhibit rational expectations, fail to make judgements that are consistent with 

Bayes’ rule, use heuristics that lead them to make systematic blunders, 

exhibit preference reversals, make different choices depending on the 

wording of the problem, and suffer from problems of self-control. As a result 

of these findings, these economists and psychologists recommend what they 

call ‘libertarian paternalism’, that is an approach that preserves freedom of 

choice but that authorizes both private and public institutions to steer people 

in directions that will promote their welfare (Thaler and Sunstein 2003). For 

this steering a new type of expert is called for, namely the ‘normative 

statistician’, the expert in rational reasoning with uncertainty. 

As a result, we face a battle for the position of the planner’s counsellor 

between two kinds of expert: 1) The field expert with skilled knowledge of a 

specific field, inclusive knowledge about usage and application of the 

appropriate instruments. 2) The ‘normative statistician’ with skilled 

knowledge of statistical reasoning. This battle is in fact a confrontation 

between two kinds of rationality. To explore this encounter, the paper will 

compare both kinds of expertise within the context of decision making in 

medical practice. The starting point is a classic example of a so-called ‘base 

rate fallacy’: the Harvard Medical School Test (presented below, in section 

2). It appeared that, when a laboratory test result is given, physicians do not 

take account of the base rate, or pre-test probability, to reach a clinical 

decision. 

A base rate fallacy is considered to be a bias, in the sense of a 

violation of the axioms of probability and/or a misperception of probabilities. 

Biases (discussed in section 3) are errors that anyone would want to correct 
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if the matter were brought to his/her attention. A lot of experiments have 

shown that ‘reasoning with uncertainty’ is tough – even to experts – and that 

training can be worthwhile. This ‘normative statistical’ perspective on 

scientific reasoning is compared with another expert perspective on rational 

decision-making, the so-called Evidence-Based Medicine approach. In this 

approach (which will be extensively discussed in section 4), a test is only 

meaningful when the evidence is not clear yet, and is recommended not to 

apply in extreme cases, as was actually the case in the above Harvard 

Medical School Test. From this perspective, clinical judgments are unbiased 

when tests are used appropriately. 

Facts are statements about the world for which there is scientific 

consensus. Consensus will be achieved when a statement can be accepted 

on rational arguments. The problem being studied in this paper is what kind 

of arguments can be considered as rational. Rationality is here roughly 

defined as correctly applying the rules of logic and those of the probabilistic 

calculus. It will appear that decision processes in both kinds of expertises 

are rational and so neither is biased in that sense. If, however, one would 

compare both approaches with a criterion of biasedness as defined in 

classical statistics (which is what is done here, in section 5), it appears that 

both approaches are biased. The distinguishing criterion between both 

expertises is not their rationality but the way they take the environment into 

account, or in other words, how they have modelled the context in which the 

decisions have to be taken. In section 6, two different positions will be 

compared. One is that a decision, inference, or conclusion is rational when 

arrived at by correct reasoning insusceptible for any context. The other 

position, ‘ecological rationality’, is characterized by correct reasoning where 

one is highly susceptible for the environment in which one takes a decision. 

Both positions will be discussed for the case of ‘rational clinical decision 
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making’, where one has to decide to ask for a test and subsequently has to 

interpret its possible outcomes.  

 

 

2. Interpretations by physicians of clinical laboratory results 
The so-called Harvard Medical School Test, carried out by Casscells, 

Schoenberger and Graboys (1978), was a small survey to obtain some idea 

of how physicians interpret a laboratory result. 
 

We asked 20 house officers, 20 fourth-year medical students and 
20 attending physicians, selected in 67 consecutive hallway 
encounters at four Harvard Medical School teaching hospitals, 
the following question: “If a test to detect a disease whose 
prevalence is 1/1000 has a false positive rate of 5 per cent, what 
is the chance that a person found to have a positive result 
actually has the disease, assuming that you know nothing about 
the person’s symptoms or signs?” (Casscells, Schoenberger and 
Graboys 1978: 999) 

 

Using Bayes’ theorem, the ‘correct’ answer should be: 2 percent.3 The result 

of this test was that only 11 of 60 participants gave this answer. The most 

common answer, given by 27, was 95 percent. The average of all answers 

was 55.9 percent, ‘a 30-fold overestimation of disease likelihood’ (p. 1000). 

Discussing these results, Casscells, Schoenberger and Graboys 

observe that, despite probabilistic reasoning has been presented in 

prominent clinical journals for a decade, ‘in this group of students and 

physicians, formal decision analysis was almost entirely unknown and even 

commonsense reasoning about the interpretation of laboratory data was 
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uncommon’ (p. 1000). This problem, however, was considered to be 

remediable by practical instruction in the theory of test interpretation. 

Four years later a similar result was published by David Eddy (1982). 

He discusses a more specific case of deciding whether to perform a biopsy 

on a woman who has a breast mass that might be malignant. Specifically, he 

studied how physicians process information about the results of a 

mammogram, an X-ray test used to diagnose breast cancer. 

The prior probability, Pr(ca), ‘the physician’s subjective probability’, that 

the breast mass is malignant is assumed to be 1 percent. To decide whether 

to perform a biopsy or not, the physician orders a mammogram and receives 

a report that in the radiologist’s opinion the lesion is malignant. This is new 

information and the actions taken will depend on the physician’s new 

estimate of the probability that the patient has cancer. This estimate also 

depends on what the physician will find about the accuracy of 

mammography. This accuracy is expressed by two figures: sensitivity, or 

true-positive rate Pr(+ | ca), and specificity, or true-negative rate Pr(− | benign). 

They are respectively 79.2% and 90.4%. Applying Bayes’ theorem leads to 

the following estimate of the posterior probability: 

 

%7.7
99.0096.001.0792.0

01.0792.0
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⋅
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In an informal sample taken by Eddy, most physicians (approximately 95 out 

of 100) estimated the posterior probability to be about 75%. 

When Eddy asked the ‘erring’ physicians about this, they answered 

that they assumed that the probability of cancer given that the patient has a 

positive X-ray, Pr(ca | +), was approximately equal to the probability of a 

positive X-ray in a patient with cancer, Pr(+ | ca). 
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The latter probability is the one measured in clinical research 
programs and is very familiar, but it is the former probability that 
is needed for clinical decision making. It seems that many if not 
most physicians confuse the two. (Eddy 1982: 254) 

 

According to Eddy, it is not only the physicians who are erring, but a review 

of the medical literature on mammography reveals a ‘strong tendency’ to 

equate both probabilities, that is, to equate Pr(ca | +) = Pr(+ | ca). Generally, 

erroneous probabilistic reasoning is widespread among practitioners, and 

according to Eddy, focusing on improving this kind of reasoning will have an 

important impact on the quality of medical care: 
 

The probabilistic tools discussed in this chapter have been 
available for centuries. In the last two decades they have been 
applied increasingly to medical problems […], and the use of 
systematic methods for managing uncertainty has been growing 
in medical school curricula, journal articles, and postgraduate 
education programs. At present, however, the application of 
these techniques has been sporadic and has not yet filtered 
down to affect the thinking of most practitioners. As illustrated in 
this case study, medical problems are complex, and the power of 
formal probabilistic reasoning provides great opportunities for 
improving the quality and effectiveness of medical care. (Eddy 
1982: 267) 

 

 

3. Heuristics and biases 
Eddy’s article was published in Judgment under Uncertainty: 

Heuristics and Biases (1982), edited by Daniel Kahneman, Paul Slovic and 

Amos Tversky. The first chapter of this volume is a reprint of an article by 

Tversky and Kahneman (1974), with the same title as the book, published in 

Science, eight years earlier. 
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Tversky and Kahneman (1974, 1982) explain that to assess the 

probability of an uncertain event, people rely on a limited number of heuristic 

principles that reduce the complex tasks of assessing probabilities and 

predicting values to simpler judgmental operations. However, though these 

‘heuristics’ are useful, they sometimes lead to ‘severe and systematic 

errors’, also called ‘biases’. They describe three heuristics with 

accompanying biases: ‘representativeness’, ‘availability’, and ‘adjustment 

and anchoring’. Only the first heuristics is of relevance here, because this is 

the one that leads to the bias discussed above: ‘insensitivity to prior 

probability of outcomes’. 

One type of probabilistic questions are questions like: ‘What is the 

probability that event B will generate event A?’ In answering this question, 

Tversky and Kahenman (1974, 1982) claim that people rely on the 

representativeness heuristics, in which probabilities are evaluated by the 

degree to which A is representative of B, that is, by the degree to which A 

resembles B. One of the biases that go along with this heuristic is the ‘base-

rate fallacy’: the neglect of prior probabilities. 

When discussing the different heuristics and biases, Tversky and 

Kahneman (1974, 1982) emphasize that reliance on heuristics and 

prevalence of biases are not restricted to laymen and ‘naive subjects’, but 

when they think ‘intuitively’, experienced researchers are prone to the same 

biases. ‘Statistical principles are not learned from everyday experience 

because the relevant instances are not coded appropriately’ (1974: 1130, 

1982: 18). This lack of an appropriate code also explains why people do not 

detect the biases in their judgments of probability, when no one brings this to 

their attention. 
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4. Evidence-Based Medicine 
An increasingly influential movement to rationalize clinical examination 

is the Evidence-Based Medicine (EBM) approach, which appeared in the 

early 1990s. This approach was developed by the so-called Evidence-Based 

Medicine Working Group4, chaired by Gordon Guyatt (EBM 1992), and made 

public by an editorial of the ACP Journal Club, a year earlier (Guyatt 1991). 

The primary purpose of ACP (American College of Physicians) Journal Club, 

which originally appeared as a supplement to the Annals of Internal 

Medicine, was ‘to help make evidence-based medicine more feasible’ 

(Guyatt 1991: A-16). EBM was presented as a ‘new paradigm for medical 

practice’: 
 

Evidence-based medicine de-emphasizes intuition, unsystem-
atic clinical experience, and pathophysiologic rationale as 
sufficient grounds for clinical decision making and stresses 
the examination of evidence from clinical research. Evidence-
based medicine requires new skills of the physician, including 
efficient literature searching and the application of formal 
rules of evidence evaluating the clinical literature. (EBM 1992: 
2420) 
 

This approach resulted in a pocketbook (Sackett et al. 2000, first 

published in 1997) with a CD and coloured cards in the cover pocket and a 

book’s website http://hiru.mcmaster.ca/ebm.htm, in which EBM is defined as 

‘the integration of best research evidence with clinical expertise and patient 

                                                 
4 This group consisted of the following members: P. Brill-Edwards, J. Cairns, D. Churchill, 
D. Cook, A. Detsky, M. Enkin, P. Frid, M. Gerrity, H. Gerstein, J. Gibson, B. Haynes. J. 
Hirsch. J. Irvine, R. Jaeschke, A. Kerigan, A. Laupacis, V. Lawrence, Mark Levine, Mitchell 
Levine, J. Menard, V. Moyer, C. Mulrow, P. Links, A. Neville, J. Nishikawa, A. Oxman, A. 
Panju, D. Sackett, J. Sinclair, and P. Tugwell. 
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values’ (p. 1).5 The book describes the practice of EBM in five steps (Sackett 

et al. 2000: 3-4): 

 

• Step 1 – converting the need for information (about prevention, 

diagnosis, prognosis, therapy, causation, etc.) into an answerable 

question. 

• Step 2 – tracking down the best evidence with which to answer that 

question. 

• Step 3 – critically appraising that evidence for its validity (closeness to 

the truth), impact (size of the effect), and applicability (usefulness in 

our clinical practice). 

• Step 4 – integrating the critical appraisal with our clinical expertise and 

with out patient’s unique biology, values and circumstances. 

• Step 5 – evaluating our effectiveness and efficiency in executing steps 

1-4 and seeking ways to improve them both for next time. 

 

The use of test results are part of Step 3, which is dealt with in 

chapters 3-7, and of which chapter 3 ‘Diagnosis and Screening’ is of direct 

relevance here. The main part of this chapter has been written to help one 

answering three questions about diagnostic testing, which can also be found 

on the yellow-ochre card 2A: 

 

 

 

 

 
                                                 
5 A third edition by S.E. Straus, W.S. Richardson, P. Glasziou, and R.B. Haynes was 
published in 2005. The 2nd edition is however used for this paper. 
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1. Is this evidence about the accuracy of a diagnostic test valid? 

2. Does this (valid) evidence demonstrate an important ability of this test 

to accurately distinguish patients who do and don’t have a specific 

disorder? 

3. Can I apply this valid, important diagnostic test to a specific patient? 

 

The third question is subsequently split up in another set of questions: 

 

I. Is the diagnostic test available, affordable, accurate, and precise in our 

setting? 

II. Can we generate a clinically sensible estimate of our patient’s pre-test 

probability? 

• Are the study patients similar to our own? 

• Is it unlikely that the disease possibilities or probabilities have 

changed since this evidence was gathered? 

III. Will the resulting post-test probabilities affect our management and 

help our patient? 

• Could it move us across a test-treatment threshold? 

• Would our patient be a willing partner in carrying it out? 

 

In clinical practice, physicians are faced with three choices: to withhold 

therapy, to order a diagnostic test, or to treat without testing. Therefore they 

must take into account the reliability, value and risks of both testing and 

treatment to maximize both diagnostic accuracy and cost effectiveness 

(Scherokman 1997). 

An ideal test should distinguish absolutely between patients who do 

and who do not have disease. The clinical usefulness of a test is determined 
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by how much it deviates from this ideal. Data on test characteristics are 

derived from studying the test against a ‘golden standard test’, the test that 

definitively determines the presence or absence of disease. An example of a 

‘golden standard test’ would be biopsy. Patients whom biopsy has shown to 

have the disease and patients shown not to have the disease are given the 

diagnostic test in question. To review the accuracy of the test, the results of 

biopsy and diagnostic test are presented in a two-by-two table (see table 1). 

 

  Target disorder
  present

P 
absent

A 
positive 

+ a
 
b 

 
Diagnostic
test result negative

− 
c d 

 

Table 1: Systematic review of a diagnostic test 

 

Two characteristics define the accuracy of a test: 

- ‘Sensitivity’ describes the ability of a test to correctly detect disease, 
Pr(+ | P) = a/(a + c). 

- ‘Specificity’ describes the ability of a test to correctly identify absence of 

disease, 

Pr(− | A) = d/(b + d). 

 

Sensitivity and specificity are considered to be stable properties of a 

test. They do not vary with pre-test probability of disease, also called base 

rate or prevalence, Pr(P). In contrast with these test characteristics, the 

predictive value is not a stable property and varies with the pre-test 

probability: 
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- ‘Positive predictive value’: 
ba

aPPP
+

=
+

+
=+ )Pr(

)Pr(
)|Pr()|Pr(  

- ‘Negative predictive value’: 
dc

dAAA
+

=
−

−
=− )Pr(

)Pr(
)|Pr()|Pr(  

 

Instead of using these ‘old-fashioned’ concepts of sensitivity and 

specificity, EBM recommends to use the ‘new-fangled and more powerful’ 

concepts of likelihood ratios to represent the accuracy of a test (Sackett et 

al.: 72). When dealing with more then one test results, it is easier to use for 

calculating the post-test probabilities. 

 

- ‘Likelihood ratio for positive test result’: LR(+) = Pr(+ | P)/Pr(+ | A)  

- ‘Likelihood ratio for negative test result’: LR(−) = Pr(− | P)/Pr(− | A)  

 

In general, the likelihood ratio is: LR(X) = Pr(X | P)/Pr(X | A), where X is 

the random variable indicating a test result and taking values + or −. Then 

the interpretation of diagnostic test runs as follows: 

 

- Pre-test odds = Pr(P)/Pr(A)  

- Post-test odds = likelihood ratio × pre-test odds = LR(X) × Pr(P)/Pr(A)  

 

Information about post-test probabilities (if required) can easily be 

inferred from information about post-test odds: post-test probability = post-

test odds / (post-test odds + 1). 

Tests can be painful and/or risky, so a clinician only asks for a test 

after a well-considered evaluation of reliability, value and risk. The model for 

making this rational decision in (Sackett et al. 2000) is based on Pauker and 
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Kassirer (1980). This article describes a model that uses two thresholds to 

aid physicians in making clinical decisions: 

 

1) a ‘no treatment/test’ threshold, Tt, which is the disease probability at 

which the expected utility of withholding treatment is the same as that 

of performing a test; 

2) a ‘test/treatment’ threshold, Ttrx, which is the disease probability at 

which the expected utility of performing is the same as that of 

administering treatment.  

 

The decision not to treat, to test, or to treat is determined by pre-test 

disease probability and both thresholds, see figure 1. The best clinical 

decision for probabilities below the ‘no treatment/test’ threshold Tt is to 

refrain from treatment; for probabilities above the ‘test/treatment’ threshold 

Ttrx, the best decision is to administer treatment. When the pre-test disease 

probability lies between the thresholds, the test result could change the 

probability of the disease enough to alter the decision, so the best decision 

would be to administer a test. 

 
 No Rx Rx Test 

0 Probability of disease      1.0

Tt Ttrx 
 

 Figure 1 Test-treatment thresholds  
Adapted from Pauker and Kassirer 1980: 1111 
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So, for clinical decision-making, estimates of disease prevalences are 

crucial. It is noteworthy to see that Pauker and Kassirer, though referring to 

(Tversky and Kahneman 1974), make, unlike Tversky and Kahneman 

(1974), a distinction between expert opinions and of those outside the 

medical domain: ‘Studies in non-medical domains show that people have 

biases and often make inaccurate estimates and that training improves the 

reliability of such estimates’ (Pauker and Kassirer 1980: 1112). The sort of 

studies Tversky and Kahneman are referring to rely, according to Pauker 

and Kassirer, on ‘simple tests in which an actual probability is known (for 

example, the number of various coloured balls in an urn)’, whereas in 

medicine a prevalence ‘represents a belief or opinion for which no actual or 

true value exists’ (p. 1112). Moreover, it appears that physicians make 

probability estimates with ‘reasonable reliability’ (p. 1112). When published 

data on probabilities are not specific enough, the ‘opinions of experts’ are 

needed and used. 

In the EBM approach one will find the same position towards expert 

opinions, that is, needed where data on probabilities are not available, but 

with caution: 
 

Clinical experience and the development of clinical instincts 
(particularly with respect to diagnosis) are a crucial and 
necessary part of becoming a competent physician. Many 
aspects of clinical practice cannot, or will not, ever be adequately 
tested. Clinical experience and its lessons are particularly 
important in these situations. At the same time, systematic 
attempts to record observations in a reproducible and unbiased 
fashion markedly increase the confidence one can have in 
knowledge about patient prognosis, the value of diagnostic tests, 
and the efficacy of treatment. In the absence of systematic 
observations one must be cautious in the interpretation of 
information derived from clinical experience and intuition, for it 
may at times be misleading. (EBM 1992: 2421) 
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From the above-described threshold model test criteria can be 

inferred. First, according to Scherokman (1997), tests that do not change the 

probability of disease enough to cross the threshold probability Ttrx are not 

useful and should not be ordered. This means that when the pre-test 

disease probability lies between the thresholds and we have a positive test 

result, the post-test disease probability should lie above the test/treatment 

probability: 

 

Pr(P | +) > Ttrx. 

 

This is in fact a weak criterion, because it implies that the disease should 

(causally) influence the test result: 

 

 Pr(+ | P) > Pr(+).6 (1) 

 

In statistics, an event A is independent of event B if Pr(A | B) = Pr(A). In 

probabilistic accounts of causality, it is crudely stated that B causes A if Pr(A | 

B) > Pr(A). So, the above requirement (1) obviously excludes tests like flipping 

a coin. 

A stronger test requirement is that it should be ‘most informative’. A 

test is most informative when its predictive values, Pr(P | +) and Pr(A | −), are 

optimal. As is said above, these values depend on the pre-test probabilities. 

It can be shown that both predictive values are optimal when:7

 

                                                 
6 If Pr(P) < Ttrx, and 1

)Pr()Pr(
)|Pr()Pr(

)Pr(
)|Pr(

>>
+

+
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+
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7 This can be seen by maximizing Pr(P | +)⋅Pr(A | −) for Pr(P). 
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Usually the test characteristics sensitivity and specificity are about 

equal, which means that the optimal pre-test probability is about 50%.8 

Generally, it expected that a test is most informative when the pre-test 

probability of disease is between 40% and 60% (Scherokman 1997). 

These demands on tests with respect to accuracy and applicability 

give new light on the interpretation by physicians of clinical laboratory 

results. First, assume that condition for using the test is optimal: Pr(P) ≈ 0.5, 

so Pr(A) = 1 – Pr(P) ≈ 0.5. When sensitivity and specificity are about equal, then 

 

Pr(+) = Pr(+ | P)Pr(P) + Pr(+ | A)Pr(A) ≈ Pr(+ | P)0.5 + Pr(− | P)0.5 = 0.5 

 

So, if physicians assume that a test is used for optimal conditions, there is 

no question of base rate fallacy, because: 

 

)|Pr()Pr(
)Pr(

)|Pr()|Pr( PPPP +≈
+

+
=+  

 

Secondly, let us take Eddy’s figures: Pr(+ | P) = 79.2% and Pr(− | A) = 90.4%, and 

assume that 40% < Pr(P) < 60%, then 37.44% < Pr(+) < 51.36%, and so 

 

84.6% < Pr(P | +) < 92.5%. 

 

Most physicians estimated the post-test probability to be about 75%. 

 
                                                 
8 When Pr(+ | P) ≈ Pr(− | A), then also Pr(− | P) ≈ Pr(+ | A), and thus LR(+)LR(−) ≈ 1. 
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And finally, the Harvard Medical School Test figure, Pr(+ | A) = 5%, 

leads even to higher post-test probabilities, when the prevalence is between 

40% and 60%: 
93% < Pr(P | +) < 95%. 

 

Recall that most common answer, given by 27 of 60, was 95 per cent. 

Physicians are trained not to ask for diagnostic tests when 

prevalences are too small (or too large). Faced with test results they might 

have assumed automatically that the test was performed for the right 

conditions. So, they might have developed a heuristic to read the sensitivity 

and specificity as predictive values. Seen from this perspective, the 

physician’s high estimates of the post-test probabilities in the case of the 

Harvard Medical School Test and in Eddy’s test are not biased, but show 

‘ecological rationality’. (This type of rationality takes account of the 

environment, and will be discussed in section 6.) 

 

 

5. Statistical bias 
In the literature discussed above, it is assumed that Bayesian 

reasoning is an unbiased heuristic. In mathematical statistics, however, 

unbiasedness has a very specific meaning: An estimator, , is unbiased if 

and only if it’s expected value is equal to the parametric value, θ, it is 

intended to estimate: . A consequence of this specific definition is 

that an estimator based on Bayesian reasoning is not automatically 

unbiased. In a widely used standard textbook on statistics Introduction to the 

θ̂

θθ =]ˆ[E
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Theory of Statistics9, one will find the following remarkable observation: ‘in 

general a posterior Bayes estimator is not unbiased’ (p. 343). A ‘posterior 

Bayes estimator’ is defined as E[Y | X] , where X is a random variable with 

probability Pr(X | Y = y), and Y a random variable with probability Pr(Y). A 

posterior Bayes estimator is an ‘unbiased’ estimator of y when E[E[Y | X] | y] = 

y. It is shown that a posterior Bayes estimator is unbiased only when this 

estimator correctly estimates y with probability one. In all other cases the 

estimator is not unbiased. So, in an early training in statistics, one is already 

warned that Bayesian tools and unbiasedness might be incompatible. 

Being warned, let us check whether the post-test probability, that is 

the probability taking account of test results, Pr(P | X), is an unbiased 

estimator of the pre-test probability, Pr(P). Let X be the random variable 

indicating the test result, taking value + or −. 

 

)Pr()Pr()Pr(
)Pr(

)|Pr()Pr(
)Pr(
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So it seems that our worry was unnecessary. Unfortunately, this is not the 

case. Generally, in rational decision-making (including in EBM), it is highly 

recommended to use likelihood ratios to estimate the disease odds. When 

discussing the use of likelihood ratios, Roger Cooke (1991) gives an 

expression how one can ‘learn’ from observations (adapted from his theorem 

6.3, p. 97): 

 

E[LR(X) | P] ≥ 1, and equality holds if and only if Pr(LR(X) = 1 | P) = 1 

                                                 
9 First edition by Alexander Mood was published in 1950. The 2nd edition coauthored by 
Franklin Graybill appeared in 1963, and the 3rd edition with Duane Boes as third author 
was published in 1974. 
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The equality condition can hold only if Pr(X | P) = Pr(X | A) =  Pr(X). A test 

that would have this latter characteristic is not informative because it is then 

independent of disease, and should therefore be excluded, see equation (1). 

However, this theorem shows only that one can learn from a test in 

case the disease is present. It surprisingly happens to be that in case of an 

absent disease, a test will not ‘learn’ us about the absence of this disease: 
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This result makes the test biased 

 

E[LR(X)] = E[LR(X | P]⋅Pr(P) + E[LR(X) | A]⋅Pr(A) > 1 

 

So, it appears to be the case that post-test odds are not unbiased estimators 

for the pre-test odds: 
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The undesired result of this bias is that each time a test result is being 

taken account of (whatever the result is, positive or negative) the expected 

disease odds will increase. 

This may have the curious effect of going to a hospital because you 

feel some vague disorder, the physicist tries to find out what is the case with 

you by asking for one or more tests, and the result will be that both s/he and 

you have higher expectations of having a disease, and so you will feel more 

miserable when leaving the hospital. 
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6. Ecological rationality 
An important critic of Kahneman and Tversky’s normative statistical 

approach is Gerd Gigerenzer: 
 

If you open a book on judgment and decision making, chances 
are that you will stumble over the following moral: Good 
reasoning must adhere to the laws of logic, the calculus of 
probability, or the maximization of expected utility; if not, there 
must be a cognitive or motivational flaw. Don’t be taken in by this 
fable. (Gigerenzer 2004: 62) 

 

Gigerenzer describes Kahneman and Tversky’s approach as a study 

of cognitive illusions: its primary aim seems to be is to demonstrate that 

people’s judgments do not actually follow the laws of probability or the 

maximization of expected utility. ‘The result is a list of deviations from norms, 

which are interpreted as cognitive fallacies, emphasizing irrationality rather 

than rationality’ (p. 65). 

In Gigerenzer’s account of heuristics, the rationality of heuristics is not 

logical, but ecological. Ecological rationality implies that a heuristic is not 

good or bad, rational or irrational per se, only relative to an environment. 

Gigerenzer (2004) mentions twelve examples of phenomena that were 

interpreted as ‘cognitive illusions’ but which he re-evaluated as ‘reasonable 

judgments given the environmental structure’ (p. 66). 

In fact, the interpretation of a test result by physicians can be seen as 

another example of ecological rationality. The (fast and frugal) heuristic is to 

read the sensitivity of a test as the predictive value when the test result is 

positive. This is reasonable in an environment of Evidence Based Medicine 

practice where test results are only asked for when prevalence’s are not 

decisive yet, and tests are most informative. 
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Not taking the environment into account can lead to all kind of so-

called ‘paradoxes’ in statistics. These paradoxes are used to show that when 

making judgments regarding the likelihood of uncertain events, even 

mathematically sophisticated people do not follow the principles of 

probability theory. According to Kahneman et al. (1982), ‘this conclusion is 

hardly surprising because many of the laws of chance are neither intuitively 

apparent, nor easy to apply’ (p. 32). A famous example is the Monty-Hall 

problem.10 Discussing this problem in the American Statistician, Morgan et 

al. (1991) ended their conclusions with the following question: ‘“How do you 

expect me to solve a problem that stumped scores of Ph.D.’s [sic] and 

confused the world’s most intelligent person?”!’ (p. 287). In his Comment, 

Seymann (1991) separated this question into two (in his view) distinct 

issues. The first is concerned with clarity of problem definition, and the 

second is concerned with why ‘sensible and mathematically well-trained 

people, given that they agree on what the problem is, still get the wrong 

solution’ (p. 287). To address the latter issue, Seymann gives a few 

examples (Bertrand’s Box Problem, Birthday Problem) well known in 

statistics, but he refers also to Kahneman, Slovik, and Tversky’s edited 

volume Judgement Under Uncertainty (1982), in particular to the Harvard 

Medical School Test. Interestingly, it is this example of the Harvard Medical 

School Test which provoked others to respond to Seymann’s commentary. 

The first comment is by John P. Wendell, and is worth quoting at length: 
 

                                                 
10 This problem raised a good deal of commotion, even among mathematicians, when 
discussed by vos Savant (1990). She phrased the problem as follows: ‘Suppose you're on 
a game show, and you're given the choice of three doors. Behind one door is a car, behind 
the others, goats. You pick a door, say #1, and the host, who knows what's behind the 
doors, opens another door, say #3, which has a goat. He says to you, “Do you want to pick 
door #2?” Is it to your advantage to switch your choice of doors?’ (p. 13). 
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This answer of 2% apparently assumes that everyone in the 
population, whether they have the disease or not, has an equally 
likely chance of receiving the test and that the false negative rate 
is zero […]. Neither of these assumptions is stated or clearly 
implied in the problem. Stating “you know nothing about the 
person’s symptoms or signs” is not the same as stating that the 
test has an equal chance of being administered to people in the 
population, even if that was the intent of the phrase. The medical 
students and staff that were given this question would know full 
well that patients having a disease are almost more likely to have 
a test for their disease administered to them than the general 
public […]. The majority response of 95% is consistent with the 
assumption that persons having the test applied to them have a 
50% chance of actually having the disease […]. Certainly these 
assumptions are more reasonable than those needed to support 
the 2% answer. Perhaps this illustration shows not that medically 
trained people don’t understand probability but that some 
statisticians don’t understand medicine. (Wendell 1992, 242) 

 

In a subsequent response, Seymann (1992) stated that to ‘know 

nothing about the person’s symptoms or signs’ is not an instruction to 

assume random testing, but a ‘a clear instruction to disregard all other 

information, biases, or prejudices we might have’ (p. 242): 
 

one must ask where a 50% prior, though perhaps understand-
able in other circumstances, here results in the fabrication of a 
new prior and the dismissal of a vital piece of explicit information. 
(Seymann 1992, 242) 

 

The problem is here of course is that what is a ‘vital piece of explicit 

information’ for a statistician is not necessarily the same as for a physician. 

To illustrate this, let us first have a look at one of the fables of Ackoff: 

 

In a conversation with one of my colleagues I was asked how I 
would go about determining the probability that the next ball 
drawn from an urn would be black if I knew the proportion and 
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number of black balls that had previously been drawn. He told 
me that the urn contained only black and white balls. I replied 
that I would first find out how the urn had been filled. “No”, he 
said, “that is not permissible”. “Why?” I asked, “Certainly you 
have such information”. “No, I don’t”, he replied. “Then how do 
you know the urn contains only black and white balls?” I asked. “I 
have it on good authority”, he answered. “Then let me talk to that 
authority”, I countered. In disgust he told me to forget about the 
whole thing because I clearly missed the point. I certainly did. 
(Ackoff 1974, 89) 

 

The moral of this fable is that the ability to solve a textbook exercise is 

not equivalent to the ability to solve a real-world problem. Textbook 

exercises are usually formulated so as to have only one correct answer and 

one way of reaching it. Real-world problems have neither of these 

properties. An essential part of problem solving, according to Ackoff, lies in 

determining what information is relevant and in collecting it. 

By discussing six problems in reasoning with probabilities, so-called 

‘teasers’, Bar-Hillel and Falk (1982) show that the way we model a problem 

is strongly dependent on the way the information was obtained. 
 

The kind of problem in which the conditioning event does turn out 
to be identical to what is perceived as ‘the information obtained’ 
can only be found in textbooks. Consider a problem which asks 
for ‘the probability of A given B’. This non-epistemic phrasing 
sidesteps the question of how the event B came to be known, 
since the term ‘give’ supplies the conditional event, by definition.  
[…] Outside the never-never land of textbooks, however, 
conditioning events are not handed out on silver platters. They 
have to be inferred, determined, extracted. In other words, real-
life problems (or textbook problems purporting to describe real 
life) need to be modelled before they can be solved formally. And 
for the selection of an appropriate model (i.e., probability space), 
the way in which information is obtained (i.e. the statistical 
experiment) is crucial. (Bar-Hillel and Falk 1982: 120-121) 
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Bar-Hillel and Falk emphasize that a probability space for modelling 

verbal problems should allow for the representation of the given outcome 

and the statistical experiment which yields it. They illustrate how different 

scenarios for obtaining some information yield different solutions. In other 

words, the way one model a problem is strongly dependent on how the 

information is obtained. Different ways of obtaining the selfsame information 

can significantly alter the revision of probability contingent upon it. Real-life 

problems need to be modelled before they can be solved formally. And for 

the selection of an appropriate model (e.g., probability space), the way in 

which information is obtained (i.e. the statistical experiment) is crucial. 

In the case of The Harvard School Test (Casscells et al 1978) and in 

the later test by Eddy (1982), it was simply assumed that both questioner 

and respondent had the same model in mind. However, both were trained 

differently and therefore had modelled the problem differently. 

 

 

7.  Conclusions 
Generally, rational decision-making is conceived as arriving at a 

decision by a correct application of the rules of logic and statistics. If not, the 

conclusions are called biased. After an impressive series of experiments and 

tests carried out the last few decades, the view arose that rationality is tough 

for all, skilled field experts not excluded. A new type of planner’s counsellor 

is called for: the normative statistician, the expert in uncertainty par 

excellence. 

To unravel this view, the paper has explored a specific practice of 

clinical decision-making, namely Evidence-Based Medicine. This practice is 

chosen, because it is a very explicit about how to rationalize practice. 
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One of the key examples of biased expertise is the Harvard Medical 

School Test, which shows that physicians often commit a base rate fallacy: 

they confuse the accuracy of a diagnostic test for its predictive value. 

However, it is shown that for the base rate given in the Harvard Medical 

School Test it is not rational to ask for a diagnostic test. Moreover, it is 

shown that for base rates between the test-treatment thresholds, it is an 

unbiased heuristic to take a test’s accuracy as its predictive value. 

Most practices of rational decision making prefer the ratios of 

likelihoods to simple likelihoods because they are easier and more practical 

to update when new evidence (e.g. a test result) comes in. The term bias 

has a specific meaning in mathematical statistics. Using this specific 

interpretation of biasedness, it is shown that paradoxically a rational 

application of likelihood ratios leads to biased results. 

It has also been shown that whether a decision-making process is 

rational cannot be assessed without taking into account the environment in 

which the decisions have to be taken. To be more specific, the decision to 

call for new evidence should be rational too. This decision and the way in 

which this evidence is obtained are crucial to validate the base rates. 

Rationality should be model-based, which means that not only the isolated 

decision-making process should take a Bayesian updating process as its 

norm, but should also model the acquisition of evidence (priors and tests 

results) as a rational process. The use of thresholds is an option for that. 
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