SEASONAL AND CYCLICAL LONG MEMORY

by

Josu Arteche
University of the Basque Country, Bilbao

and

Peter M Robinson’
London School of Economics and Political Science

Contents:
Abstract

ahwpNpE

6.

~

Introduction

Modelling Seasonality and Cycles
SCLM Processes

Estimation in SCLM Processes
Testing Seasonal/Cyclical Integration
and Cointegration

Estimation of the Frequency T
Conclusion and Extensions

References
List of previous papers

The Suntory Centre

Suntory and Toyota International Centres
for Economics and Related Disciplines
London School of Economics and Political

Science
Discussion Paper Houghton Street
No. EM/98/360 London WC2A 2AE
September 1998 Tel.: 0171-405 7686

*

Research supported by ESRC grant R000235892. Josu Arteche also acknowledges

financial support from the Bank of Spain and UPV grant 0.38.321-HB039/97. We thank the
referees for their comments.



Abstract

There has recently been great interest in time series with long memory,
namely series whose dependence decays slowly in the sense that
autocovariances are not summable and the spectral density is
unbounded. This concept has been extended to SCLM
(Seasonal/Cyclical Long Memory) where the dependence between
seasonal or cyclic observations decays similarly slowly. We discuss
iIssues related to SCLM processes such as modelling, estimation,
statistical inference, applications and extensions.
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1 INTRODUCTION

Long memory of a covariance stationary series x;, t = 0,41,4+2 ..., may be modelled in
the frequency domain by the spectral distribution function, F'()), or spectral density f(\) =
dF'(N\)/dA, satisfying 7r

1= [ F)eos(inaA (L1)

where v; = E(x; — Exg) (2445 — Exg) is the lag-j autocovariance of z;. In a semiparametric setup

f(A) is typically assumed to behave as
fO) ~CN ™2 as A —0 (1.2)

where 0 < C' < oo and the memory or persistence parameter, d, satisfies d < 1/2 for stationarity
and d > —1/2 for invertibility. z; is said to have long memory if d > 0, short memory if d = 0
and negative memory if d < 0. For reviews see Beran (1994a) or Robinson (1994c). Under

additional assumptions (see Yong (1974))
v~ K§%71 as § — oo, (1.3)

where K is a positive constant when 0 < d < 1/2. (??) implies that the autocovariances decay
at a slow hyperbolic rate rather than the exponential one typical of stationary ARMA processes,
and they are eventually positive.

Many time series move in a regular or quasi-regular manner showing a cyclical evolution that
produces oscillating autocorrelations and peaks in the spectral density whose locations define
the cycles, a spectral peak at frequency w reflecting a cycle of period 27/w. A particular case
occurs when the spectral density has peaks at seasonal frequencies wy, = 2wh/s, h = 1,2, ...,[s/2],
where s is the number of observations per year (s = 4 for quarterly data, s = 12 for monthly
data) and [s/2] denotes the integer part of s/2, that is s/2 if s is even and (s — 1)/2 if s is odd.
In this case we say that x; is a seasonal process. Nerlove (1964) described seasonality as “that
characteristic of a time series that gives rise to spectral peaks at seasonal frequencies”. In this
sense we consider seasonality a special case of cyclical behaviour.

In this paper we focus on processes whose spectral density has a singularity or a zero at any

frequency w, 0 < w < 7, such that

flw+XN~CIAN 2 as A—0, |[d <1/2 (1.4)

where C' is a positive constant. Thus f(\) has a pole at A = w if d > 0 and a zero if d < 0.
When f(A) satisfies (??) for every seasonal frequency w = wyp,, h = 1,2, ..., [s/2], possibly with the
memory parameter, d, varying across h, we say that the process has “seasonal long memory”.
However, for non-seasonal time series, perhaps of annual data, we can have cyclic behaviour
such that (??) holds for a single w or for a single w € (0, 7] as well as w = 0. We thus use the
terminology SCLM (Seasonal/Cyclical Long Memory) for processes satisfying (??) for one or
more w € (0, 7] (though strictly —1/2 < d < 0 entails “negative dependence”, not long memory).



SCLM processes might be described in terms of their autocovariances just as mentioned in
(??) for standard long memory processes. A characteristic of autocovariances of SCLM processes
is oscillating slow decay such that often 7; = O(5%%=1) as j — oo but with oscillations whose
amplitude depends on w instead of the eventual monotonic decay in (??) of standard long
memory processes at frequency zero .

The models traditionally used for seasonal and cyclical time series are stationary short
memory processes on the one hand, or nonstationary processes due to a deterministic component
such as seasonal dummies or to a stochastic trend such as seasonal unit roots. This work is
reviewed in Section 2 in order to place SCLM in some perspective. The modelling of SCLM is
described in more detail in Section 3. Section 4 discusses several parametric and semiparametric
methods of estimation in SCLM processes. Tests of seasonal integration and cointegration are
reviewed in Section 5. All this work assumes knowledge of the location of the poles/zeros in
f(A), as is reasonable in a seasonal setting, but not necessary in a cyclic one. Section 6 describes
approaches for estimating w in parametric and semiparametric SCLM processes. Section 7

concludes the paper with some mention of extensions and applications.

2 MODELLING SEASONALITY AND CYCLES

Seasonality has traditionally been considered a nuisance that obscure the more important
components of time series (e.g. growth and cyclical components), and several seasonal adjustment
procedures have been proposed. They are typically based on the idea that a time series, possibly
after logarithmic transformation, is additively composed of three different components, the

trend-cycle, T3, the seasonal, Sy, and the irregular component, I,

Traditionally T3 includes also the possibility of a cyclical component, considering the cycle as a
periodic component with period larger than the number of observations per year. This implies
a spectral peak at some frequency between zero and 27 /s which may be indistinguishable from
a stochastic trend, characterized by a spectral pole at the origin. However, there may be cycles
of period different from the seasonal ones, s/j, for j = 1,2, ...,[s/2]. To allow for this behaviour

we can include a cyclic component, Cy, in (?77?),
vy =T, +Cy + S + L. (2.2)

The additive form in (??) and (??) is often known as Unobserved Component (UC) or Structural
Time Series model. The seasonally adjusted series is obtained by subtracting an estimate of S;.
We group the different methods of estimation of S; and adjustment of x; in two classes, “model-
free” and “model-based” adjusting procedures. The “model-free” techniques ignore the seasonal
and other structure of the series. They are based on the application of a succession of moving

averages, perhaps the most widely used being the US Bureau of the Census X-11 procedure



(Shiskin et al. (1967)) and the X-11 ARIMA (Dagum (1980)) which apply two-sided filters.
The “model-based” seasonal adjustment procedures adapt to the characteristics of each series
by estimation of parametric models. Some of these models are described below.

Seasonal adjustment procedures have been criticized for causing undesirable effects such as
spectral dips at seasonal frequencies or distortion of the spectral density at other frequencies
(see Nerlove (1964) or Bell and Hillmer (1984)). Furthermore, the UC models in (??) and
(??) suppose that each component in x; can be specified separately and independently of the
remainder, whereas the same model can include two or more components (for example the
stochastic seasonal processes classified as b), ¢) and d) below include an irregular component).
Such factors have encouraged the use of seasonally unadjusted data.

Most of the processes described in this section are seasonal, modelling a specific cyclical
behaviour. However, other cyclic patterns can be modelled similarly by suitably choosing the
dummy variables, cosinusoids or lag operators in the models described below.

One of the earliest models for seasonality is the deterministic, strictly periodic form
S
xy = apDy (2.3)
k=1

where Dy = 1 if t — k is a multiple of s (the number of observations per year) and 0 otherwise

and )
Z ap = 0 5
k=1

which may be achieved by subtracting a constant from the original series. We can rewrite (77?)

as a function of sine and cosine waves,

(5]
Ty = Z \Ijh,yt 5 (24)
h=1
where
2mh
Uy = apcos(wpt) + By sin(wpt) , wp = %, (2.5)
2 S
ap = - Z a, cos(kwy,),
5 k=1
2 < .
Bn, = = Z a sin(kwp,),
5 k=1

for 1 <h <s/2, and if 5 is even [ sin(kws ) is zero and

1 S
as =< Z ak cos(kws),
k=1
(see Hannan (1963)). = in (??) can equivalently be written x; = ngfl] rp, cos(wpt — 0y) where
rp = y/ai + 32 is the h-th amplitude and 6), = arctan(8,/ayp) is the h-th phase. It is rarely

plausible that time series have such a rigid deterministic behaviour as (??) or (??) impose, so
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a stochastic error term is often added. If this irregular component is well behaved and the
frequencies wy, are known, then oy, and (3 in (??) or ag in (??) can be estimated through simple
regression methods. In fact least squares estimates have desirable orthogonality properties under
uncorrelated errors, and are Gauss-Markov efficient under quite general (albeit short memory)
autocorrelated errors.

The processes (??) and (??) are completely deterministic, and if oy, (), are fixed parameters
they are non-stationary so that it does not make sense to speak of a spectral distribution function
or spectral density. However the spectral behaviour of stochastic seasonal time series will give us
relevant information on the characteristics of the process. According to spectral characteristics

we distinguish four classes of stochastic seasonal/cyclical processes:
a) Stationary with spectral distribution function with jumps and thus not absolutely continuous.

b) Stationary with absolutely continuous spectral distribution function everywhere and smooth,

positive, spectral density.

c) Stationary with absolutely continuous spectral distribution function but spectral density with

one or more singularities or zeros.
d) Non-stationary so that no spectral distribution function exists.

a) Stationary process with jumping spectral distribution. This kind of process is defined
by (?7) and (?7) but ¥, is made stochastic by allowing aj, and £, to be random variables

satisfying
Elap| = E[B)) =0 , Eled] = E[B}] =0p forallh

E[ahai] = E[ﬁhﬁz] =0 h 752 5 E[Ozhﬁz} =0 for all h,i. (26)

Under (??), z; is covariance stationary with lag-j autocovariance

[

(3]
v = Bz j) = ZJ;QL cos(wpj) = /7; cos(JA)AF(N) j=0,%1....
h=1 -

Although oy, and ), are random variables, they are fixed in a particular realization. Thus,
although ¥y, ; is stationary, the model is still deterministic, only two observations are necessary
to determine «y, and (p, and once this has been done the remainder of the series can be forecast
with zero mean squared error. The spectral distribution function, F'()), is a step function
consisting of jumps of magnitude o7 /2 at frequencies —wj, and wy, for h = 1,...,[s/2]. Since
F(A) is not continuous the spectral density does not exist. However, in a similar manner as
Stieltjes integration is carried out, we can define the so-called line or discrete spectrum, that is
a discrete function with values 02/2 at frequencies —wy, and wy, for h = 1,...,[s/2]. The line
spectrum at wy, gives the relative importance of a cycle of period s/h in the variance of x;.

b) Stationary process with absolutely continuous spectral distribution and smooth spectral
density. The models in (??) and (?7?) assume that the cyclic behaviour in x; is constant across

time and does not change its form. However, in many time series the seasonal/cyclical behaviour



is likely to change across time. Of course the variation must be slow (otherwise we cannot speak
of seasonality or cycle) in such a way that the periodical structure seems to persist and the series
has a quasi-periodic behaviour. Hannan (1964) allows for this behaviour in the model

(5]

= Z Unt 5 Wnt = antcos(wpt) + Bpesin(wpt), (2.7)
h=1

where wy, = 2mh/s are seasonal frequencies and ap,t and By, ¢ are not constant but evolving with

time. Hannan (1964) assumed

Elans] = E[Bp,] =0 for all 7 and all ¢

[
[Oéh, tQh, t— ]] [ﬁh,tﬁh,t—]] = Ch,Oh (2.8)
Elaptois) = ElBp i) =0 for h#iandall t,s '

[

Eloy165,s) =0 for all h,i and all ¢, s.

Thus the lag-j autocovariance of Uy, ; is
EU, Uy 5] = Ch/)i cos(wpj)- (2.9)

Stationarity of Wy, entails |p,| < 1. However, pj has to be close to 1 to avoid a fast changing
behaviour of Wp,. When |py| < 1, ¥}, is stationary and non deterministic with absolutely

continuous spectral distribution and smooth spectral density,

Cho~ : :
) = oo > pi,cos(wnj) cos(Aj)
j=—00
1—p} 1—p2
- & - Ph +—s Ph (2.10)
dm | 1+ p; —2ppcos(A—wp) 1+ p; — 2pp cos(A + wp)

which, for pj, near to unity, will concentrate around A = w;. Hannan et al. (1970) considered a

parameterization of oy, ¢ and (3, obeying (77),

Qht = PhQhi—1 +Ent 5 Bht = PrbBhi—1 + 61,& ,lenl < 1, (2.11)

where €3 ; and 52,5 have zero mean and common variance 0,2“ and all correlations between ¢, et
and between two time points and for differing values of h vanish. Substituting (?7) in ¥j, in
(?7?7), we find that ¥}, ; is an ARMA(2,1) process

(1 —2pp cos(wp)L + ,O%LLQ)\IIM = Nt — Ph COS(Wh)Nht—1 — Ph sin(wh)nzyt_l , (2.12)
where
Nhi = €Enhtcos(wpt)+ 5};,,5 sin(wpt)
?7;27,5 = epsin(wpt) — 5}:7,5 cos(wpt)

are thus zero mean random variables with variance O'}QL and inherit the uncorrelatedness properties
of ep+ and szt. The lag-j autocovariance and spectral density of Wy ; are (?7) and (?7) with

cn =02 /(1 — p2). Consequently the spectrum of x; is a smooth function

(2.13)

M o
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which shows peaks (the sharper the closer pj, is to 1) around seasonal frequencies wp, h =
1,2,...,[s/2].

In addition to the specific ARMA in (?7?) we can use many other ARMA processes to model a
changing cyclical behaviour. In particular, if the spectrum of an AR(2), (1—¢1L— ¢oL?)z; = &4,
contains a peak at frequency A\* within the range 0 < A\* < 7, its exact position is

PO [—¢1(1 - ¢2)} ‘
4o

For example the spectrum of the AR part in (??) has a peak at

y:msﬁu+@me]

2pn
so that \* is closer to wy the closer pp is to 1. We can also use the seasonal lag operator, L?,
(L*xy = x4_s) to define the seasonal ARMA(1,1) model

(1= ¢sL%)ay = (1 + 0,L%)ey (2.14)

2

where ; is white noise with variance <. When ¢; and 6 are inside the unit circle, x; is

stationary and invertible with smooth spectral density

) = 0_2 1+ 62 + 205 cos(\s)
271+ @2 — 2¢5 cos(As)

If s > 0 and 65 > 0, f(\) exhibits peaks at the seasonal harmonic frequencies, wy = 2wh/s,

h=1,2,...,[s/2], as well as at zero. More general seasonal ARMA processes can be defined as
O (L%)xy = O4(L%)ey (2.15)

where ®,(L®) and ©4(L*) are polynomials in the seasonal lag operator with zeros outside the
unit circle (see Box and Jenkins (1976)).
c¢) Stationary process with absolutely continuous spectral distribution and singularities or
zeros in its spectral density. The structure of oy, and fp, in (?7) may generate a relatively rapid
change in the seasonal pattern, whereas the definition of seasonality implies a regular or quasi-
regular behaviour. The closer py, is to 1 the more regular the movement of ¥y, ;. In fact we can
choose pp, = 1, but in this case Wj; ceases to be stationary. Instead we can assume that oy
and (3 evolve as
A—L)Y"ops=ene , A—L)"Bri=¢, , (2.16)

where ep,; and 527,5 are defined as in (??). Thus oy, and B, are fractional ARIMA(0,dp,0)
processes and they are stationary if d, < 1/2 and invertible if dj, > —1/2 (see Hosking (1981)).
The slowly changing behaviour necessary for seasonality requires dj, > 0 and stationarity entails
dp < 1/2. Under these circumstances the spectral density of oy, ¢ and By, fo()), satisfies (?7)
for w = 0. Their lag-j autocovariance is

D(1 —2dp)I'(j + dp)

(1= dp)0(+1—dp)

7;7] f— E[ah,tah,tfj] = E[ﬁh,tﬁh,tfj] = 0-}2741"((1

7



Thus the lag-j autocovariance of ¥y, ; is

B Wpe ] = V;E,j cos(jwp)
and its spectral density is

1 1

o o
(A = o Z fy;rw. cos(jwp)e M == Z ’y};je*i)‘j(eijwh—l—eﬁjwh)

j=—o0 j=—00
1 1
= §f0(>\ — wh) + §f0()\ —i—wh).

The multiplication of ay; by cos(w,t) and By by sin(wpt) produces a phase shift such that
the spectral pole moves from zero in aj; and By to wy in V. Thus, the process defined
by equations (??) and (?7) has an absolutely continuous spectral distribution but its spectral
density is not smooth, but goes to oo (if dj, > 0) or is zero (if d;, < 0), at frequencies twy,
as described in (??). This is the SCLM property that characterizes the processes we focus
attention on in this paper. A more detailed description of models with this property is given in
next section.

d) Non-stationary and non-deterministic stochastic seasonal process. If apt and [y are
determined by the fractional ARIMAs in (??) but with dj, > 1/2, then they, and thus ¥}, ; in (?7),
are non-stationary. In this case there does not exist a spectral distribution. Nevertheless, the
frequency domain is still an adequate framework to detect seasonality using the pseudospectrum.
If u; = 7(L)xy is stationary with spectrum £, ()), the pseudospectrum of z; is f(\) = |7(e?)| 72 f,(N).
For example, if d;, = 1 in (??) or equivalently pp, = 1 in (??), then ¥}, is a non-stationary
ARMA(2,1) process

(L) Up e = Mt — cos(wh )1 — sin(wp)n)

where 7,(L) = 1 — 2cos(wy)L + L?. The non-stationarity comes from the fact that the AR
polynomial, 7, (L), has zeros at coswy, £ VcosZwy, — 1, with modulus one. However Th(L)Wh 4
is a stationary MA(1). Since |75,(e*)|72 = (2(coswy, — cos \))~2 diverges at A\ = fwy, then the
pseudospectrum of ¥y, ¢ goes to infinity at frequencies +wy,, reflecting a strong cyclical pattern
with period 27/wp, = s/h. Hannan et al. (1970) estimated this model using optimal signal
extraction methods (see also Hannan (1967)).

In the Box-Jenkins framework we can define the seasonal ARIMA(P,D,Q) time series
O (L%)(1 — L) Py = O4(L%)e, (2.17)

where the e; are white noise (0,02), ®4(L*) and ©4(L?*) are polynomials in the lag operator
with zeros outside the unit circle, and D is a positive integer in Box and Jenkins (1976)
but could instead be fractional (Hosking (1984)). Then (??) defines the fractional seasonal
ARIMA(P,D,Q), that is stationary if D < 1/2 and non-stationary if D > 1/2. The spectrum
(D < 1/2) or pseudospectrum (if D > 1/2) of x; is

02 |@s(ez’)\s)|2( ) )\S>2D

fA) = 2 [y (D)2 sin — (2.18)

2
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and diverges if D > 0 or is zero if D < 0 at frequencies w, = 2mh/s, h = 0,...,[s/2], that
is at the origin and seasonal frequencies. The seasonal difference operator, (1 — L*), can be
written as the product of the difference operator, (1 — L), and the seasonal summation operator,
S(L) = (14 L+...+ L*71), such that the pole in (??) at the origin corresponds to the operator
(1 —L), and the spectral poles at seasonal frequencies are due to S(L). Thus (1 — L*) includes a
stochastic trend in addition to the seasonal factor. This is why sometimes (e.g. Harvey (1989)),

S(L) is used instead of (1 — L*) to model the seasonal component of the UC models in (?7) and

(27).

Another type of non-stationarity may be described by a different data generating process
for each season. This phenomenon is often modelled via the Periodic ARIMA process (e.g.
Troutman (1979), Tiao and Grupe (1980), Osborn (1991), Franses and Ooms (1995)),

D (L)1 — L2l = 04(L)ek g=1,....s, T=12,.., (2.19)

where e7. is white noise with variance O'g, the index ¢ indicates the season or situation of the
observation in the cycle (for example different months) and T represents the year such that
xd = x(7_1ys44- Thus, (??) allows for s different models, one per season. When the zeros of
®,(L) and O4(L) lie outside the unit circle, and dy < 1/2, then (??) is stationary for every
q = 1,2,...,s. Although z{ may be stationary, x; is non-stationary if some parameters vary
with ¢. In this case the autocovariances of x; depend on ¢ and therefore are not time invariant
and we cannot use frequency domain techniques. This kind of process is usually analysed in
a multivariate set-up using a vector ARMA representation. Define the s x 1 vector zp =
(zh, . 28) = (T(r—1)s+41,--- 1s)'. The periodic process in (??) can be written in vector ARMA
form as

ALYC(L)zr = B(L*)ur T=1,2,.., (2.20)

where up = (k. ...,eL), C(L*) = diag{(1 — L*)%}, A(L*) and B(L*) are matrix polynomials
in L*, and the operator L* is the lag operator for the index T, L*zp = zp_1. This implies
seasonal difference in the elements of zp, L*z? = LPx(r_1)s1q = T(1—-2)s4q = x4, The vector
zr is stationary if d; < 1/2 for ¢ = 1,..., s, and |A(z)| has zeros outside the unit circle, and is
invertible if d;, > —1/2 for ¢ = 1, ..., s, whereas the zeros of |B(z)]| lie outside the unit circle.
Under stationarity zp has a spectral density matrix f,(\). Although z; is non-stationary the
expectation of the sample autocovariances of x; converges to the autocovariances of a stationary

process with spectral density function
1 i/ —iA
F) = S R(e") f2(sA)R(e™) (2.21)

where R(r) is a s x 1 vector with k-th element 7* (Tiao and Grupe (1980)). Thus asymptotically

we can use (?77) to classify periodic processes in the same way as non-periodic seasonal models.



3 SCLM PROCESSES

This section describes commonly used parametric models of the class ¢) of stochastic seasonal
processes introduced in the previous section, that is processes whose spectral density satisfies
(??). We say that such processes have SCLM, and using the notation in Engle et al. (1989) we
denote them by 1,(d) (integrated of order d at w).

Though (7?) is a semiparametric condition, only imposing knowledge of f(\) around w, it is
interesting to describe parametric processes satisfying (?7), specifying short memory as well as
long memory components of x;, for example for the purpose of Monte Carlo simulation. Some
examples have been introduced in the previous section (e.g. (?7?) and (?7?) or (?7?)). In case of
Gaussianity it suffices to specify the mean, y, and f(X) for all A € (—n, 7|, or equivalently ~;,
for all j. Autocovariances of SCLM processes have a slow decay typical of long memory along
with oscillations depending on the frequency w such that, for d > 0, " |y;| = oo, although this
is consistent with ) ;, and thus f(0), being finite. These observations apply to non-Gaussian
(finite variance) series as well as Gaussian ones, though there remains the possibility that a;
may not exhibit long memory in second moments but in some other way (for example x? could
have long memory), as briefly discussed in Section 7.

Two SCLM models have been stressed in the literature, being natural extensions of models

for long memory at zero frequency, namely the fractional noise and the fractional ARIMA.

3.1 Seasonal Fractional Noise

This kind of stationary process is characterized by a spectral density

00 o —2(14d)
f(A) =c|1 — cos(sN)| Z ‘)\ + ~

j=—o0

(3.1)

and lag-j autocovariance

V(x1)

(2 4 1L gLt gy (3.2)

V=

where s is the number of observations per year, ¢ is a positive constant and d < 1/2 (see Jonas
(1983), Carlin and Dempster (1989) or Ooms (1995)). The spectrum in (??) satisfies (??) for
w=27mh/s, h =0,1,...,[s/2], the 7; in (??) have slow and oscillating decay as j — oo, and if
d > 0 they are not absolutely summable. This kind of process generalizes the fractional noise
described by Mandelbrot and Van Ness (1968), characterized by (??) or (??7) with s = 1, and

having typical long memory behaviour at frequency zero.

3.2 SCLM in the Box-Jenkins set-up

Andel (1986), and later and in more depth Gray et al. (1989,1994), analysed the so-called
Gegenbauer process
(1 —2Lcosw + L?)%x; = uy (3.3)

10



where u; has positive and continuous spectrum, f,(A), and d can be any real number. For
example when u; is a stationary and invertible ARMA((p,q) (??) is called GARMA (Gegenbauer
ARMA). The spectral density of z; in (?7) is

F(A) = (2(cosw — cos \)) 724 £, (N) (3.4)

and satisfies (?7), so x; has SCLM at frequency w for |d| < 1/2 when w # 0,7. When w = 0 and
ug is an ARM A(p, q), then (??) is the fractional ARIM A(p,2d,q), (1 — L)**z; = s, so that x;
is stationary if d < 1/4 and invertible when d > —1/4. If w = 7, x; is stationary if d < 1/4 and

invertible when d > —1/4. When wu; is #id(0,0?), and d < 1/2, the autocovariances of x; are

2 g1
v = J—F(l —2d)(2 sinw)%%d[P.Qd (cosw) + (—1)]]3.2(11 2

NG i=3 i3

where P?(z) are associated Legendre functions (Chung(1996a)). The asymptotic behaviour of

N[=

(—cosw)] (3.5)

v; in (7?) is

v; ~ K cos(jw)j**  as j— o0 (3.6)

where K is a finite constant that depends on d but not on j (see Gray et al. (1989) or Chung
(1996a)), so 7; has the slow and oscillating decay typical of SCLM.

Hosking (1984), Porter-Hudak (1990) and Ray (1993) among others, proposed use of the
fractional seasonal difference operator, (1—L*)¢, where d can be any real number. Porter-Hudak
(1990) used the operator (1 — L'?)? in monthly monetary USA aggregates and Ray (1993) used
(1 —L?)%(1 — L'2)%2 for monthly IBM revenue data. Note that for even s, (1 — L*)? can be

decomposed into the product of operators of type (1 — 2L cosw + L?)?. For instance if s = 4,
(1—-LY? = (1—2Lcoswy + L2)%(1 — 2L coswy + L?)%(1 — 2L coswy + Lz)% (3.7)

for wo =0, w1 = 7/2 and wy = 7. Thus 2y in (1 — L4)%x; = u; is Ip(d), I% (d) and I(d).
In order to allow for different persistence parameters across different frequencies, Chan and
Terrin (1995), Chan and Wei (1988), Giraitis and Leipus (1995) and Robinson (1994a) used the

model
h—1

(1= L)*{J](1 —2Lcosw; + L*)% }(1 + L)y = wy (3.8)
j=1

where the w; can be any frequencies between 0 and 7 and wu; has continuous and positive
spectrum. Thus z; in (??) is L,,(d;) for j = 0,1,2,...,h, where wp = 0 and wy, = 7. When u;
is a stationary and invertible ARMA, Giraitis and Leipus (1995) used the terminology ARUMA
for such @;. When |d;| < 1/2 for j =0,1,...,h, (??) can be expressed as

o]
Z TjLt—j5 = Ut
7=0

or

o0
T =) i
i=0

11



where mg = Y9 = 1 and

;= S P ) () Ol () O () (3.9)
0<ko,.,kp<3j
ko+..+kp=13

for j =1, ..., wheren; = cosw;, i = 0,1, ..., h, and C,gd) (x) are orthogonal Gegenbauer polynomials.
Similarly v, is (?7?) with dy, ..., d}, instead of —dy, ..., —d}, (see Giraitis and Leipus (1995)). The

weights 7; in (??) have the asymptotic behaviour

h—1
my~ K[ 7% 4 (=1)7 57170 43 7% (cos(wig) + vr))] (3.10)

k=1
where K is a finite constant and vg is a constant depending on dy, ..., dp and wg. Similarly the

1; behave asymptotically as (??) with dp, ..., d, instead of —dp, ..., —dp,.

The complicated form of (??) impedes calculation of explicit formulae for autocovariances,
which have only been obtained for the Gegenbauer process in (??) (see (?7)). If there is more
than one spectral pole/zero, only asymptotic behaviour has been established. Giraitis and Leipus

(1995) showed that the autocovariances of (??) satisfy

Vi~ Kijw’fl cos(jwg) as j — oo.
k=0
Thus 7;, v; and «y; have slow decay with oscillations depending on the different wy. Eventually
it is the largest persistence parameter which governs the behaviour of 7;, ¥; and ;.

The model (??) allows for spectral poles/zeros at any frequency w; € [0, 7]. One particular
case occurs when w; are seasonal frequencies, w; = 27j/s, j = 1,2,...,[s/2]. Then (??) has
been called “flexible ARFISMA” (Hassler (1994)) or “flexible (seasonal) ARMA(p,d,q)s” (Ooms
(1995)).

4 ESTIMATION IN SCLM PROCESSES

Hurst (1951) introduced the rescaled range statistic (R/S) to measure long memory in the flows
of the river Nile, and R/S has been analysed, applied and extended by a number of subsequent
authors. However R/S does not extend readily to the SCLM context, so we explore alternative
approaches.

Statistical inference in long memory processes can be parametric or semiparametric. Parametric
methods are generally more efficient if they are based on a correct and complete specification
of f(\), but even estimates of the persistence parameter, d in (??), can be inconsistent if f(\)
is misspecified at frequencies far from w. Semiparametric techniques, that only assume partial
knowledge of f(\) around a known frequency (like in (?7)) are less efficient but guarantee

consistency under much more general circumstances.
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4.1 Parametric Estimation

Consider the covariance stationary process, x;, satisfying

P(L) (¢ — o) = & (4.1)

where - -
o(z)=1-— Z¢jzj , Z ¢§ <00 , (4.2)

s j=1

po = FEz; and the e; have zero mean and are uncorrelated with variance J%, for all t. All
the stationary and invertible processes described in previous sections can be written as (77?)

satisfying (?7). Suppose that the ¢; and 03, as well as p, are unknown, but we know a function
0 .
o(z;0) =1— Zgbj(@)z]
j=1

where 0 is a k x 1 vector such that there exists an unknown 6y for which ¢;(6y) = ¢; for all j,

and therefore ¢(z;60p) = ¢(z). The spectral density of z; is given by
ol <
FO =N, —r<A<T, (4.3)
and the lag-j autocovariance by
1= [ FO)eos(iN).
For any admissible § we introduce

w0 = o= [ hO)cos(ia,
h(=20) = 1o 0)|

In this section we consider so-called Gaussian estimates, although Gaussianity is not required
to achieve good asymptotic properties. Denote by A(#) the n x n Toeplitz matrix with (¢, j)-
th element ~;_;(#), by 1 the n x 1 vector of ones and by = the n x 1 vector of observations
(21,22, ..., Tp)". For
La(0, 11, 02) = %log o2 + % log |A(6)] + 2—(1}_2(m — p )Y AB) Mo — pl) (4.4)
define

(éa,/la,(}g) = arg min L,(0, p, (72)
0,1,02

where the minimization is carried out over an appropriate set. In case the & in (??) (and
therefore z;) are Gaussian, éa 1s a maximum likelihood estimate of 6.

As in other optimization problems introduced below, 02 and o can be estimated in closed
form and the nonlinear optimization carried out only with respect to 6. Under regularity

conditions 6, is consistent and

V(0. — 00) 5 Ni(0,071) (4.5)
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d e : :
where — means convergence in distribution, N(-,-) is a k-variate normal and

Q= i 0 log h(X; 00) == 0

5 57 108 h(X: fo)dA. (4.6)

Since the function A(z; ) is known, (2 can be consistently estimated by, for example, substituting
6o in (??) by a consistent estimate of it (e.g. 0,). These asymptotic properties do not rely on
x¢ being Gaussian, though under Gaussianity 0, is also asymptotically efficient.

We can approximate L, (6, it,02) by

n

Ly (0, p,0%) = —loga + Z (4.7
t=1

where e,(0, 1) = ¢(L;0)(zy — pv) and x; = 0 for t < 0. We call

(B, f1, 67) = arg 1 min Ly (6, p, o o?)
7}’1/7

a (nonlinear) least squares estimate. Under regularity conditions, 0} has the same asymptotic
properties as éa.

Next define the centered periodogram

L p) = S| S (a— e, (4.9

t=1
Whittle (1953) proposed to approximate Ly (6, i1, 0%) by
In(As 1)
Le(0,,0%) = o / {loga hN0) + Tty } A, (4.9)
and the estimates

(Oc, fic,62) = arg min Le(6, p, o o?).
0,p,02

Under regularity conditions, 0. has the same asymptotic properties as 6, and 6.

Finally define the (uncentered) periodogram

13 QA2
27m|2xte |“. (4.10)
t=1

Define the Fourier or harmonic frequencies A\; = 2mj/n, and the discrete approximation to

Lc(0, p,0?) (see Hannan (1973b))

1< L,()\))

Lg(0,0%) = — log 02h(N\j; 0) + — L 4.11
A n;{%”<”)+ﬂmmm} -

where Y7 runs over all j = 1,...,n — 1, such that 0 < h()\;;0) < oo for all admissible . By

omitting j = 0 and n we avoid the need to estimate pg. Let

(04,62) = argmin Lg(0, 0?)
0,02
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where the minimization is over a compact subset of RFt1. Then 64 typically has the same
asymptotic properties as éa, 6, and 6, described above.

The relative computational needs of éa, éb, 6. and éd, which we call Gaussian estimates,
depend on the parameterization we impose. In general, éb is more easily calculated than 0, since
it avoids the matrix inversion in (??) and 64 more easily calculated than Gyand 6, because h(X; )
is typically of simpler form than &;(f, 1) and ~;(6). Moreover 64 makes especially convenient use
of the fast Fourier transform.

The above discussion has made no reference to long memory or SCLM models, and in fact
éa, éb, 6. and 6, and their asymptotic properties were originally obtained for short memory
time series models such as stationary and invertible ARMA’s (see for example Whittle (1953)
or Hannan (1973b)). However the discussion also seems relevant to SCLM models. In fact,
for long memory models with a spectral pole/zero only at the origin, Fox and Taqqu (1986),
Dahlhaus (1989), Giraitis and Surgailis (1990), Heyde and Gay (1993) and Hosoya (1997) provide
asymptotic properties for 0. which are identical to those earlier obtained for short memory
processes (see e.g. (7?)). Li and McLeod (1986) and Sowell (1986, 1992) discuss computational
aspects of 0, for fractional ARIMA processes

O(L)(1 — L)Y (wy — po) = O(L)ey (4.12)

where the zeros of ®(z) and ©(z) lie outside the unit circle. 6, for invertible, possibly non-
stationary fractional ARIMA processes has been analysed by Beran (1995). Beran (1994b)
proposed a modified version of 6, for long memory processes that is robust against outliers.
Asymptotic theory for 04 has not been considered explicitly for long memory models with a
spectral pole at zero frequency but it can be done by avoiding the spectral singularity with the
omission of frequencies close to the origin in Lg(6,0?). In case of long memory at frequency zero
04 has an extra advantage over éa, 6, and éc, because these are affected by fiq, f1p and fi. which
converge more slowly than \/n (see Vitale (1973), Adenstedt (1974) and Samarov and Taqqu
(1988)), as discussed by Cheung and Diebold (1994) via Monte Carlo analysis.

The discussion of Gaussian estimates also seems relevant to SCLM models with spectral

poles/zeros at known frequencies different from zero. Consider
h
(L) [](1 = 2L cosw; + L*)% (x¢ — o) = O(L)ey (4.13)
§=0

where d; > 0 for all j, and d; <1/2 if w; # 0,7, and d; < 1/4 if w; = 0,7, ©(2) and ®(2) have

their roots outside the unit circle and the ¢; are as before. In this case

2 p

H (2(cos A — cosw;)) 2%
j=0

@(ei/\)
P(eit)

h(X;0) = '

where 0 = (®1,...,Pp, 01, ...,0y,do, ...,dp)". Giraitis and Leipus (1995) obtain consistency of 0,

but they do not establish the asymptotic distribution, although a non-Gaussian limit distribution
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is conjectured. For vector z; in (??) Hosoya (1996,1997) considered a multivariate extension of
Lc(0, 11,0%) and obtained an analogous result to (??), (?7).

Following Kashyap and Eom (1988) we can also proceed by regressing log I,(\;) on log h(A;; 6)
over j = 1,...,n — 1, though this approach leads to less efficient than Gaussian estimates. In
fact Ray (1993) used this technique to estimate ds and dj2 in the SCLM process

G0(L)p3(L*) 12 (L12) (1 — L)% (1 — L*2)h2, = 0y(L)03(L?)012(L12)e; (4.14)

where the e; are white noise. Ray (1993) used these estimates as a first step in the estimation

of the complete model (??) for monthly IBM revenues.

4.2 Semiparametric Estimation

When we are interested only in estimation of the persistence parameter, d in (?7), we only need
to specify f(A) around w in order to obtain consistent estimates that we call semiparametric.
This is a clear advantage with respect to parametric estimates that need a complete and correct
specification of f(\) over the whole band of Nyqvist frequencies for consistency, though in the
event of such specification the parametric estimates have the competing advantage of converging
faster.

Due to their simplicity, perhaps the most popular semiparametric procedures are variants
of the log-periodogram estimate introduced by Geweke and Porter-Hudak (1983). Consider
a least squares regression of log I, (w + A;) on —2log \; and an intercept, where I,,()) is the
periodogram defined in (??) and A; = 27j/n are Fourier frequencies. The regression is carried
out for j = 1,...,m, where the “bandwidth” m is an integer between 1 and n/2 and in practice

is much less than n, and for asymptotic theory satisfies at least

1
—+2 50 as n—o. (4.15)
m n

The original version, due to Geweke and Porter-Hudak (1983), uses instead of —2log A; the
regressor — log{4sin?(\;/2)}, but as indicated by Robinson (1995a), use of the simpler —2log \;,
which corresponds more naturally to (?7?), leads to equivalent asymptotic properties. These
authors assumed w = 0, when, because I,,(\) is an even function, regression of log I,,(\;) on
—2log |Aj| for j = %1, .., +m is equivalent to using frequencies for j = 1,...,m. When w # 0,7,
I,(w+ ) is not necessary symmetric about w and information on both sides of the pole/zero

can make a substantial difference. Thus a log-periodogram estimate for such w is

13557 v log In(w + )

+m 2
2 Zj:i1 v;

d=— (4.16)
where v; = log|j| — L S logl. Work on estimating (??) with w = 0 suggests two possible
modifications to this scheme. Due to anomalous behaviour of the periodogram very close to a
spectral pole/zero (see Robinson (1995a), Kunsch (1986) and Hurvich and Beltrao (1993,1994)),

Kunsch (1986) and Robinson (1995a) trimmed out some frequencies close to w. The second
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type of modification is an efficiency improvement suggested by Robinson (1995a) and based
on pooling adjacent periodogram ordinates. Incorporating these two suggestions we have the
estimate , . .
§0) — L2k vk[log lech + log L, ] (4.17)
4 >k Vi

where I, = ijl In(w + Aeyj—), Lok = ijl In(w — Apyj—r), J is a positive integer (the

pooling number) and Z;C is a sum over k =+ J,l1+2J, ..., m. When the pooling number, J =1,
and the trimming number, | = 0, then (??) reduces to (??). When w = 0 Robinson (1995a)

proved that under Gaussianity

Vm(dY) — d) 4N (0, Jq/};(J)) as m — 0o

where ¢/ (z) = %w(z) and ¥ (z) is the digamma function defined as % logT'(z) where T'(2) is

the Gamma function. The same asymptotics follow for w # 0 in (??) (see Arteche (1998)). For
w = 0 Velasco (1997c) relaxes the assumption of Gaussianity and only imposes boundness of
the fourth moments of the e; in (?7) to obtain consistency and asymptotic normality (using
a suitably tapered periodogram) with variance 3.J/(J)/4. Note that tapering increases the
variance. Still for w = 0, and assuming Gaussianity, Velasco (1997a) proves consistency of d)
for the non-stationary case d € [1/2,1) and also shows that d) is asymptotically normal with
variance Jv'(J)/4 for the non-tapered estimate if d € [1/2,3/4), and 3.J¢/(J)/4 ford € [1/2,3/2)
in the tapered case. The good properties in finite samples of d® for d € [1/2,1) are shown in
Hurvich and Ray (1995). These results seem to extend straightforwardly to the case w # 0.
Related with the parametric Gaussian estimates described in the previous section, Kunsch
(1987) and Robinson (1995b) considered a semiparametric approximation of Lg(#,0?) in (77?).

The estimate, J, is the argument that minimizes

Q(C,d) = L izm {logC|)\-|_2d+ MI (w+)\-)} (4.18)
’ 2m J c " !

where m satisfies at least (??). The estimate d has been called the Gaussian semiparametric
or local Whittle estimate. When w = 0 only frequencies on one side of w are used, due to the
symmetry of I,,(A) at the origin. Without requiring Gaussianity, Robinson (1995b) obtained

consistency and asymptotic normality for the case w = 0 such that
Jm(d—d) % N(0,1/4).

Note that d is asymptotically more efficient than d) because Jv/(J) | 1 as J — co. The same
asymptotics hold for w # 0 (see Arteche (1998)). Velasco (1997b) extended Robinson’s results to
non-stationary processes obtaining consistency for d € [1/2,1) and asymptotic normality when
de[1/2,2/3) (d € [1/2,3/4) under Gaussianity). A multivariate extension of this estimator is
studied by Lobato (1995).
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Robinson (1994b) proposed an alternative technique to estimate d in case
1

f(w+)\)~L<|>\|

> A2 as A —0 (4.19)

where L(z) is a slowly varying function, that is a positive measurable function satisfying

L(tz)

() —1 asz—oo forallt>0.

Note that (?7?) specializes to (?7) when L(z) is a constant. The proposed “averaged periodogram”

estimate 1s

) 1 10g{F(¢Am)/F (M)}
s = & Sl (4.20)
h
where o +[An/27]
F()\) = 7 Z In(“‘) + )‘j)v (4'21)
j—+1

and g € (0,1) is a user chosen number and m again satisfies at least (??). With only second
moment restrictions and without requiring Gaussianity, Robinson (1994b) showed the consistency
of czqmw for w = 0. Assuming Gaussianity, Lobato and Robinson (1996a) obtained the asymptotic
distribution of dym, for w = 0. This is normal for d € (0,1/4) and non-normal (related to
Rossenblatt processes) for d € (1/4,1/2). The same properties are likely to hold for w # 0.

Janacek (1982) introduced an alternative method to estimate d through estimation of the
Fourier coefficients of log f() using the log-periodogram. Although originally this estimate was
proposed for long memory at frequency zero, Janacek claimed that this method can be naturally
extended to SCLM time series.

A number of other semiparametric estimates have been proposed for the w = 0 case that
seem capable of extending to general w, such as the time domain ones of Robinson (1994c), and
the one of Parzen (1986) and Hidalgo and Yajima (1996) that achieves an efficiency improvement

over the estimates described above.

5 TESTING SEASONAL/CYCLICAL INTEGRATION AND
COINTEGRATION

The characteristics of the process generating the series depend strongly on the value of the
persistence parameter, d. In particular, d determines if the process has long memory (stationary
or non-stationary), short memory or negative memory (invertible or non-invertible). Some

interesting situations that may require a rigorous test are
a) d =0 (short memory) against d > 0 (long memory) or d < 0 (negative memory),
b) d =1/2 (“just” non-stationarity) against d > 1/2 (non-stationarity) or d < 1/2 (stationarity),

c) d = —1/2 (“just” non-invertibility) against d > —1/2 (invertibility) or d < —1/2 (non-
invertibility).
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The hypotheses involved in a) can be tested using simple ¢ tests based on the estimates and
their asymptotic distributions described in Section 4 or by Lagrange Multiplier tests as those
proposed in the parametric case by Robinson (1994a) or in a semiparametric setting by Lobato
and Robinson (1996b). t-tests on b) and c¢) can be carried out using those estimates whose
asymptotic properties hold for non-stationary or non-invertible processes.

Traditionally, interest has focused on testing the possibility of unit roots where d in (?7?) is
an integer. Some early work is due to Dickey, Hasza and Fuller (1984) who test the possibility

of a seasonal unit root of the form
1-LYary=¢ t=1,2,..
where the &; are iid (0,02) random variables, against the alternative
Tt = QTp_s + E¢

with || < 1. They provide percentiles for the proposed test statistic. One of the limitations
of this procedure is that it is a joint test for unit roots at the origin and seasonal frequencies,
wp = 2mwh/s, h = 1,2,...,[s/2] (see (??) for the case s = 4). Furthermore the alternative is a
specified form of s-th order autoregressive process. Hylleberg et al. (1990), using quarterly data,
extended this procedure allowing for an individual test at zero and at every seasonal frequency
that is robust to behaviour at other frequencies. Some extensions of this procedure to monthly
data are Beaulieu and Miron (1993) and Franses (1991). The null hypothesis in each case is pure
integrability (I,(1)) and the alternative is pure stationarity or short memory (1,(0)). Canova
and Hansen (1995) extended the test of Kwiatkowsky et al. (1992) to the seasonal case, testing
the null of stationarity (1,(0)) against the alternative of pure integration (/,(1)). Bearing in
mind the properties of these two types of test, that basically differ in the specification of the
null and alternative, the simultaneous use of both procedures has been advised in order to test
for pure integrability. The same conclusion of both types of test (that is one rejects and the
other does not reject the null) provides strong evidence in favour of the result implied by both
procedures. If one test contradicts the other, then we need a more thorough analysis. In this
case we may have fractional integration.

A general test, based on the parametric model (?7) and allowing for fractional and integer
1,(d) as null and alternative, has been proposed by Robinson (1994a) and applied to quarterly

macroeconomic data by Gil-Alana and Robinson (1997). Suppose

(b(L)('rt _:U“) = U = 1727"'
Ty = 0 t S 0

where u; is a short memory covariance stationary sequence with zero mean, and ¢(z) is a
known function. Consider the function ¢(z;1) where ¥ is a p-dimensional vector of real valued
parameters such that ¢(z;9) = ¢(2) if and only if

Hy: 9 =0. (5.1)
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The hypotheses of principle interest entail ¢ of the form
h—1
G(L;9) = (1 — L)2+ 0 {T] (1 — 2L cosw; + L)% }(1 + L) F70 (5.2)
j=1
where for each j, ¥;; = 9 for some [ and for each [ there is at least one j such that J;; = ;. The
null hypothesis is that the p x 1 vector (p < h+1) ¥ = (V1,72, ...,9p)" is a vector of zeros. Thus
fractional seasonal and cyclical integration is allowed in the null and alternative in contrast with
the focus on testing for a unit root against autoregressive alternatives in much of the literature.
To avoid estimation of the persistence parameters, Robinson (1994a) used a score test although
undoubtedly the same asymptotic behaviour can be expected of Wald and likelihood ratio tests.

When wu; is white noise the proposed test statistic is

where 62 = L S0, up = ¢(L;0)ay, G = —28 5 U(Aj)Lu(Nj), Tu(N) is the periodogram of u;
defined in (?7), U(\) = Re{a% log ¢p(e*;0)} and A = %Z; U(Aj)¥(A;) where the primed sum
isover \j e M ={A: =1 <A<, A& (W — Ai,w; + Ai),l =0,1,...,h} and w; are the distinct
poles of U(A) on (—m,7]. Asymptotically equivalent expressions for @ and A can be found in
Robinson (1994a), as well as a time domain test statistic. Robinson (1994a) also proposed a
modification of R that allows for parametric weak correlation in u; so long as its spectrum is
bounded and bounded away from zero and of known parametric form. Unlike the techniques
earlier described these procedures have the advantage of being standard in the sense that the
test statistic has a XI% limit distribution under the null and a limiting non-central XI% distribution
against Pitman or local alternatives, and are asymptotically locally most powerful.

Hylleberg et al. (1990) considered the possibility of seasonal cointegration, which they defined

as

A pair of series each of which are integrated at frequency w are said to be cointegrated

at that frequency if a linear combination of the series is not integrated at w.

Hylleberg et al. (1990) pointed out that in case of several spectral poles (as for example
n (?7?)) the procedure in Engle and Granger (1987) to test for cointegration at zero frequency
is invalid, so that prior to any test for cointegration we have to filter the data in such a way
that only the pole at the frequency where we suspect the cointegration occurs remains. For
instance, if we want to test for cointegration at the origin, we have first to remove seasonal
roots, for example by applying the seasonal summation operator, S(L) = (1 + L + ... + L*71),
to the original series and then performing a standard cointegration test such as those discussed
in Engle and Granger (1987).

Engle and Granger (1987) and Hylleberg et al. (1990) consider only the possibility that a
linear combination of I,(1) processes is I,(0). But our definition of SCLM or I,,(d) processes
allows for the possibility of fractional integration and cointegration. In this sense Engle et al.

(1989) define cyclical cointegration in the following manner,
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A vector of series x;, each component I,(d) (integrated of order d at frequency w),
may be said to be cointegrated at that frequency if there exists a vector «,, such that

2 = o/,x¢ is integrated of lower order at w.

As in the definition of SCLM, the case of cointegration at every seasonal frequency is known as

seasonal cointegration.

6 ESTIMATION OF THE FREQUENCY w

Most analyses of SCLM models assume that the frequency w where the spectral pole occurs is
known. Of course, seasonal frequencies are known, but in cyclical time series, w may well be
unknown.

The literature on estimating w in cyclical long memory is of recent date and it is of interest
to consider first earlier work on estimating frequency in an alternative model, namely the

deterministic periodic time series
x4 = agsinwt + By coswt 4 uy (6.1)

where w; is stationary with mean zero and spectral density, f,(\), continuous and positive at
w. Whittle (1952) found that the least squares estimate of w in (??), @, is the periodogram
maximizer and has a variance O(n=3). Walker (1971) (for u; white noise) and Hannan (1971,

1973a) extended Whittle’s work and, without assuming Gaussianity, found that for w # 0,7 ,

32 —w) L N <0, M) . (6.2)
ag + G

In case w = 0,7, Hannan (1973a) showed that there exists an integer valued random variable,
ng, with P(ng < 0o) = 1 such that @ = w for n > ng, so that @ will be equal to the value
it estimates for a large enough sample size. Mackisack and Poskitt (1989) proposed a different
technique based on the maximization of the transfer function calculated by fitting high order
autoregressions to x¢. Only y/n-consistency for w € (0,7) is rigorously proved (although it
is claimed that the variance of the estimate is O(n‘g) when the order of the autoregression is
O(n% )), and their method is computationally intensive. A different approach has been suggested
by Quinn and Fernandes (1991). The technique is based on fitting ARMA(2,2) models in an
iterative way and they propose a simple algorithm that converges rapidly. The same asymptotic
distribution, (??), as the maximizer of the periodogram is obtained. A similar procedure with
the same asymptotic distribution is described in Truong-Van (1990).

In (??) only one sinusoidal component is assumed. However a multiple finite number of

components can describe seasonal or cyclical movement,

Xy = zr:{aj cos(wjt) + Bjsin(wjt) } + 4. (6.3)
j=1
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In this context estimation of r, the number of cosinusoids, has been treated by Quinn (1989),
Kavalieris and Hannan (1994), Hannan (1993) and Wang (1993) among others. Estimation of
the w; has been analysed in Chen (1988a,b), Walker (1971) and Kavalieris and Hannan (1994).

The estimation of w in cyclical long memory models may be necessary to determine the
periodicity of the cycle and as a first step prior to estimation of remaining parameters. Yajima
(1995) considered the model

Fw,8) =gNw, 0O\ —w™  wel0,n] and0<d<1/2,dcb , (6.4)

where 6 is a parameter vector including d, and the function g obeys some regularity conditions,
such that the GARMA process is a special case of (??7). The estimate of w considered by Yajima
is the periodogram maximizer. He obtains n®-consistency under Gaussianity for any o € (0,1)
and shows that the Whittle estimates of 6 obtained by minimizing
™

Un (&, 60) = /_ ) {log FOnu,6) + %} dA (6.5)
are /n-consistent and asymptotically normal. Yajima does not provide any distribution theory
for his estimate of w, but a non-normal distribution is conjectured.

Chung (1996a,b) obtained an estimate of 7 = cosw in Gegenbauer processes,
B(L)(1 = 2Ln + L) (x1 — ) = 6(0)e

and claimed asymptotic properties for conditional sum of squares estimates (cf. (?7)) including
a limit non-normal distribution for the estimate of w but a normal limit distribution for the
estimates of the remaining parameters.

A joint estimation of all the frequencies wj, j = 0,1,...,h, and the rest of long and short
memory parameters in the model (??) is proposed by Giraitis and Leipus (1995). They obtain
consistency of the Whittle estimates obtained minimizing U, (w,f) defined in (?7), but no
asymptotic distribution.

Hidalgo (1997) proposes an alternative semiparametric technique to estimate w in a process
satisfying (??) with d € (0,1/2). The estimate @y is the argument that maximizes the estimate
of d proposed by Hidalgo and Yajima (1997),

A 1
=— > d, (6.6)

p=1

where dp, = a1 /as and

1 D
ap = —Zw( logfp Al — (
P

1
ay = —2/ w(u) logudu
0

b
Zw >logfp p+1)7

=1

[ =

where w(l) = (I/ p)% -/ p)ﬁ, ¢>1and f,()\) is a particular moving average of periodogram
ordinates at frequencies close to w. Without assuming Gaussianity Hidalgo (1997) shows that

nk~ (wH w), for k — oo suitably slowly with n, has a normal limit distribution.
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7 CONCLUSION AND EXTENSIONS

This paper has discussed modelling and inference in SCLM processes having spectral density
satisfying (??). The combination of seasonal or cyclic behaviour and long memory can lead to

several extensions:

1. The autoregressive coefficients m; in (?7) of the SCLM model in (?7) can be useful for
forecasting. Although obtaining C,gd) from a given estimate of d, d, can be done recursively,
the accurate generation of the 7;’s gets more difficult as the number of spectral poles and

the sample size increase, and deserves attention.

2. The definition (??) of SCLM imposes an asymptotically symmetric behaviour in f(\)
around w. Nevertheless, if w # 0, f need not actually be symmetric. We can generalize

from SCLM to SCALM (Seasonal Cyclical Asymmetric Long Memory) processes by defining

flw+d) ~ Ox 20

flw=X) ~ Cyx™2  as X— 07 (7.1)

where C1,d; can be different from Ca,ds. Then (?7?) is a restriction of (??) that happens
when C7 = C2 = C and d; = d2 = d. Discussion of (?7) has began in Arteche (1998) and
Arteche and Robinson (1998).

3. Some financial series such as asset returns appear to be approximately serially uncorrelated.
However, there are nonlinear transformations, such as squares, that can exhibit autocorrelation
as modelled in the extensive ARCH and stochastic volatility literature, following Engle
(1982) or Taylor (1986,1994). Moreover there is evidence of long memory autocorrelation
in the squares of some series. The first model that causes this effect is the general GARCH
process proposed by Robinson (1991), who uses it as an alternative in testing for no-ARCH.
His model is sufficiently general to describe SCLM behaviour in the squares, as may be

appropriate in financial data.
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