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Abstract

Distributional dominance criteria are commonly applied to draw welfare in-
ferences about comparisons, but conclusions drawn from empirical imple-
mentations of dominance criteria may be inßuenced by data contamination.
We examine a non-parametric approach to reÞning Lorenz-type comparisons
and apply the technique to two important examples from the LIS data-base.
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1 Introduction

This paper addresses the issue of how practical comparisons of income distri-
butions can be founded on a sound statistical and economic base when there
is good reason to believe that the data in at least one of the distributions are
�dirty�. Dirt includes the possibility of obvious gross errors in the data (such
as arise from coding or transcribing mistakes) and also other more innocuous
observations that in some sense do not really belong to the income-data set.
The problem is often handled pragmatically: some empirical studies have
concentrated upon a subset of the distribution delimited either by popula-
tion subgroup (taking prime-age males only, for example) or by arbitrarily
excluding some of the data in the tails (Gottschalk and Smeeding 2000).
Although this research technique seems sensible the question of whether it
is appropriate remains open � �appropriateness� here being understood in
terms of the statistical properties of the underlying economic criteria. This
question matters because the economic criteria are used explicitly or implic-
itly to make normative judgments and perhaps policy recommendations.
In this paper we combine consideration of practical ad hoc techniques (sec-

tion 2.1) with an investigation of the relationship between economic ranking
principles and statistical tools (sections 2.2 and 2.3). In section 3 we in-
troduce considerations of data contamination and their likely impact on the
estimates of statistics associated with distributional dominance; we also pro-
pose a method dealing with the contamination problem that uses a family
of dominance comparisons based on the statistical concept of the trimmed
mean. Finally section 4 illustrates the application of these methods in terms
of Lorenz comparisons over time and between countries using the data-base
of the Luxembourg Income Study.

2 Distributional Dominance

2.1 Informal methods

Empirical studies of income distribution use informal ranking criteria as a
matter of routine. There is a variety of good reasons for doing so: they usually
involve easy computations, and they have a direct intuitive appeal; more
importantly, they are usually connected to deeper points that are particularly
relevant to applied welfare economists. Some prominent examples of the
informal approach are:

� Pragmatic indices involving quantiles. These include the semi-decile
ratio (Wiles 1974, Wiles and Markowski 1971) and the comparative
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function of Esberger and Malmquist (1972). An extreme example of
the same type is the range � literally the maximum minus the minimum
income, but sometimes implemented in practice as a difference between
extreme quantiles.

� The �Parade of incomes� introduced by Pen (1971). This provides a
persuasive picture of snapshot inequality and of the implications of an
income distribution that is changing through time � see for example
Jenkins and Cowell (1994).

� The use of distributive shares (sometimes known as quantile shares).

The quantile method can be explicitly linked to formal welfare criteria.
For example in Rawls� work on a theory of justice there is a discussion of how
to implement his famous �difference principle� which focuses upon the least
advantaged: to do this Rawls himself suggests that it might be interpreted
relative to the median of the distribution.1 So too can the distributive shares
approach: changes in the relative income shares of, say, the richest and the
poorest 10% slices of the distribution can be directly interpreted in terms of
the principle of transfers (Dalton 1920).

2.2 A formal framework

Assume that the concept of income and of income receiver have been well
deÞned. An individual�s income is a number x ∈ X, where X ⊆ R and R
is the real line. Let F be the set of probability distributions (distribution
functions) with support X. An income distribution is one particular member
F ∈ F.
In this approach a statistic of any distribution F ∈ F is a functional T (F ),

for example the mean µ : F 7→ R given by

µ(F ) :=

Z
xdF (x). (1)

The properties of any functional T may play a role in both economic and
statistical interpretations. Of particular interest here is the case where the
range of T is a proÞle of values rather than a single number as in the example
of (1); T is then a family of statistics. Individual family members may be of
interest in their own right; the behaviour of the whole family when applied
to a pair of distributions F and G will provide important information about

1See Rawls (1972) page 98.
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distributional comparisons that is richer than that provided by a single real-
valued functional.
The basic distributional concept employed here is a ranking which amounts

to a partial ordering on the space of distributions F. Use the symbol ºT to
denote the ranking induced on F by a statistic T , from which a number of
other concepts are derived:

Definition 1 For all F,G ∈ F:
(a) (strict dominance) G ÂT F ⇒ G ºT F and F 6 ºTG
(b) (equivalence) G ∼T F ⇒ G ºT F and F ºT G
(c) (non-comparability) G ⊥T F ⇒ G6 ºTF and F 6 ºTG.

For example, if T were the Lorenz criterion then (a) would read in
plain language �Distribution G strictly Lorenz-dominates distribution F if
G weakly dominates F and F does not weakly dominate G�. We use the
T -ranking concept to motivate a discussion of welfare economic issues in
distributional analysis and their statistical implementation.

2.3 Statistics and ranking criteria

As noted in section 2.1 quantiles and incomplete moments provide convenient
tools for judgments about income distributions. To give economic meaning
to a class of distributional rankings we introduce standard welfare criteria
expressed in terms of a social-welfare function (SWF). The SWF embodies
the ethical judgments of a normative analyst or policy maker; in statistical
terms the SWF is just a statistic of the distribution. To get speciÞc results
it is useful to focus upon a particular additively separable class of SWF:

Definition 2

W :=

½
W : F 7→ R

¯̄̄̄
W (F ) = Ψ

µZ
u(x)dF (x)

¶¾
. (2)

where u : X 7→ R is an evaluation function of individual incomes, and Ψ :
R 7→ R is monotonic.

Let W1 be the subclass of W for which the evaluation function is every-
where increasing, and W2 be the subclass of W1 for which the evaluation
function is also concave. The SWF subclasses W1 and W2 play a crucial role
in interpreting two fundamental ranking principles � Þrst- and second-order
distributional dominance � and have a close relationship with the informal
quantiles and shares criteria introduced in Section 2.1.
First-order dominance criteria are based on the quantiles of the distribu-

tion:
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Figure 1: G Þrst-order dominates F

Definition 3 For all F ∈ F and for all 0 ≤ q ≤ 12

Q(F ; q) = inf{x|F (x) ≥ q} = xq (3)

For example {Q(F ; 0.1), Q(F ; 0.2), ..., Q(F ; 0.9)} are the deciles of the dis-
tribution F . For any distribution of income F , the graph of Q formalises the
concept of Pen�s Parade (see section 2.1) and has a simple welfare interpre-
tation: if every quantile in distribution G is greater than the corresponding
quantile in distribution F � if some persons �grow� (and nobody shrinks) as
in the F → G transformation depicted in Figure 1 � then distribution G will
be assigned a higher welfare level by every SWF in class W1.

3 This mono-
tonicity criterion is consistent with the assumption of the Pareto principle
and the absence of externalities in the SWF (Amiel and Cowell 1994).
The Þrst-order dominance criterion ºQ is sometimes considered to be less

than ideal4 and so is of interest to consider the second-order criterion. This
requires the following.

2See Gastwirth (1971). Alternative deÞnitions are available. For example we may
deÞne a quantile correspondence �Q : F × [0, 1] 7→ Ξ such that �Q(F ; q) = {x : F (x) = q}
where Ξ := {{x : a ≤ x ≤ b} : a, b ∈ X} - Cf Kendall and Stuart (1977), pp. 39-41. This
redeÞnition does not affect the results that follow.

3Formally

(G ºQ F )⇔ (∀W ∈ W1 :W (G) ≥W (F ))
(Saposnik 1981, 1983).

4One objection is on practical grounds: in empirical applications it often happens that
neither distribution Þrst-order dominates the other although Bishop et al. (1991) argue
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Definition 4 For all F ∈ F and for all 0 ≤ q ≤ 1, the cumulative income
functional is defined by:

C(F ; q) :=

Z Q(F ;q)

x

xdF (x). (4)

where x := inf X.

By deÞnition C(F ; 0) = 0, C(F ; 1) = µ(F ). For a given F ∈ F the
graph of C(F, q) against q describes the generalised Lorenz curve (GLC),
which characterises another principal welfare property: if every cumulant in
distribution G is greater than the corresponding cumulant in distribution F
then distribution G will be assigned a higher welfare level by every SWF
in class W2.

5 From the fundamental concept C one can derive two other
important analytical distributional tools for drawing welfare-conclusions from
income data, namely the relative Lorenz curve (Lorenz 1905):

L(F ; q) :=
C(F ; q)

µ(F )
(5)

and the absolute Lorenz curve (Moyes 1987):

A(F ; q) := C(F ; q)− qµ(F ) (6)

The (relative) Lorenz curve � the graph of L(F ; q) against q, closely related
to the Þrst moment function 6 � encapsulates the intuitive principle of the
distributional-shares ranking referred to in Section 2.1 illustrated in Figure
2. We will examine the implementation of (5) and (6) in Section 4 below.
Further interpretations of the basic properties of the C-criterion can be

obtained by restricting the admissible SWFs to a subset of W2. Take the
subclass that have the additional property that proportional increases in all
incomes yield welfare improvements:©

W
¯̄
W ∈ W2; ∀F ∈ F, k > 1 : W

¡
F (×k)

¢
> W (F )

ª
. (7)

that in international comparisons the second-order criterion ºC deÞned below does not
resolve many of the �incomparable cases� where G ⊥Q F . There is also a theoretical
objection in that ºQ does not employ all the standard principles of social welfare analysis:
in particular it does not incorporate the principle of transfers (as does ºC).

5Formally (∀F,G ∈ F : G ºC F ) ⇔ (∀W ∈ W2 :W (G) ≥W (F )) � see Kolm (1969),
Marshall and Olkin (1979), Shorrocks (1983).

6This is a function Φ : X 7→ [0, 1] deÞned for any F ∈ F as Φ(x) = L(F ;F (x)) =
1

µ(x)

R x
ydF (y) � (Kendall and Stuart 1977).
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where F (×k) is a rescaling of F deÞned by F (×k)(x) = F
¡
x
k

¢
. Then distribu-

tion G dominates F for SWFs in this restricted class if and only if G ºL F
and µ(G) ≥ µ(F ).7 Alternatively take the subclass for which uniform abso-
lute increases in all incomes yield welfare improvements:©

W
¯̄
W ∈ W2; ∀F ∈ F, k > 0 : W

¡
F (+k)

¢
> W (F )

ª
. (8)

whereF (+k) is a translation of F given by F (+k)(x) = F (x−k). Then G ºA F
(see Figure 3) and µ(G) ≥ µ(F ) if, and only if, W (G) ≥ W (F ) for all W in
W2 that also satisfy (8).

7The basic insights of the income-cumulation function were originally obtained for F(µ)
the set of distributions with a given mean µ :

(∀F,G ∈ F(µ) : G ºL F )⇔ (∀W ∈ W2 :W (G) ≥W (F ))

- see Atkinson (1970).
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3 Dirty Data: An Approach

3.1 Contamination and Robustness

To assume that data will automatically give a reasonable picture of the �true�
picture of a distributional comparison would obviously be reckless in the ex-
treme. A prudent applied researcher will anticipate that, because of miscod-
ing and misreporting and other types of mistake, some of the observations
will be incorrect, and this may have a serious impact upon distributional
comparisons (Van Praag et al. 1983). Obviously if one had reason to suspect
that this sort of error were extensive in the data sets under consideration the
problem of distributional comparison might have to be abandoned because
of unreliability. But it is possible that there might be a serious problem of
comparison even if the amount of contamination were small, so that the data
might be considered �reasonably clean�.
Let us brießy review a standard model of this type of problem.8 Suppose

that the �true� distributions that we wish to compare are denoted by F and
G; but because of the problem of data-contamination we cannot assume that
the data we have to hand have really been generated by F and G. What we

8This approach is based upon the work of Hampel (1968, 1974), Hampel et al. (1986),
Huber (1981).
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Figure 4: Contamination modelled as a mixture of distributions

actually observe instead of F is a distribution in some neighbourhood of F .
An elementary case is illustrated in Figure 4 where a mixture distribution
has been constructed by combining the �true� distribution F with a point
mass at income z

F (z)
² = [1− ²]F + ²H(z) (9)

where

H(z)(x) =

½
1 if x ≥ z
0 otherwise

(10)

The degenerate distribution H(z) represents a simple form of data contamina-
tion at point z; ² indicates the importance of the contamination; the convex
combination F

(z)
² is the observed distribution, and F remains unobservable.

As we have noted if ² were large we cannot expect to get sensible esti-
mates of income-distribution statistics; but what if the contamination were
very small? To address this question for any given statistic T one uses the
influence function given by

IF (z;T, F ) := lim
²→0

"
T (F

(z)
² )− T (F )
²

#
(11)

Then under the given model of data-contamination (9) the statistic T is
robust if IF in (11) is bounded for all z ∈ X.
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Figure 5: A small amount of contamination changes second-order dominance
conclusions

In Cowell and Victoria-Feser (2002, 1996) we have shown that most in-
equality measures are non-robust, but that most poverty indices with ex-
ogenous poverty lines are robust � see also Monti (1991). However the non-
robustness problem is more than pervasive than that which emerges in con-
nection with inequality measures: the same type of approach can be used to
show that while Þrst-order dominance criteria are usually robust,9 second-
and higher-order dominance criteria (and associated ranking tools) are not.
(Cowell and Victoria-Feser 2002). The result is illustrated in Figure 5 which
depicts contamination of distribution F at a very high level of income. It is
clear that G ºC F and that this conclusion would emerge from the bulk of
the data; on the other hand the whole data set suggests that G⊥CF (z)

² � no
clear-cut distributional dominance.

3.2 Ranking criteria: trimming

Because ranking criteria can be misleading in the presence of data contam-
ination it is desirable to have a procedure that enables one to control sys-
tematically for suspect values that may distort distributional comparisons

9For further discussion of the statistical implementation of Þrst order criteria see
Ben Horim (1990) and Stein, Pfaffenberger, and French (1987).
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using second-order ranking criteria. A natural approach would be to use an
established tool in the statistical literature, the �trimmed mean� and extend
the idea to Lorenz curve analysis. The trimmed mean of distribution F with
trimming parameter α is

X̄α(F ) = 1
1−2α

Z F−1(1−α)

F−1(α)

ydF (y)

= 1
1−2α

Z 1−α

α

F−1(t)dt. (12)

where α ∈ [0, 1
2
) is the balanced trimming proportion. This estimator of

location has intuitive appeal: one removes the αn smallest and the αn largest
observations in a sample of size n, and calculates the mean of the remaining
observations: notice that lim

α→0.5
X̄α(F ) = Q(F, 0.5) � in the limiting case as α

approaches 50% the trimmed estimate of the mean approaches the median.
Likewise consider trimmed Lorenz Curves as estimators of Lorenz curves.

One has to interpret the quantile and income-cumulation functions (3) and
(4). α-trimming the data means that Q(F ; q) ∈ (Q(F ;α), Q(F ; 1− α)) and
thus q ∈ (α, 1 − α). However, it makes sense to consider a more general
trimming method which would in particular include the single-tail trimming
case. Indeed, this case is appropriate when one can form an a priori judgment
about the nature of the contamination, for example when contamination is
assumed to affect only the lower tail of the distribution. Let α and 1−ᾱ be the
lower and upper trimming and α := α+(1−ᾱ) be the total trimmed amount.
Then the α-trimmed generalized Lorenz, Lorenz and absolute Lorenz curves10

for q ∈ (α, 1− ᾱ) are respectively given by

cα,q := Cα(F ; q) =
1

1− α
Z Q(F ;q)

Q(F ;α)

udF (u) (13)

lα,q := Lα(F ; q) =
Cα(F ; q)

Cα(F ; 1− ᾱ) , (14)

Aα(F ; q) = (1− ᾱ− α) · Cα(F ; q)− Cα(F ; 1− ᾱ) · (q − α). (15)

� Cf equations (4), (5) and (6). From equations (13-15) we have Cα(F ;α) =
0, Lα(F ;α) = 0, Aα(F ;α) = 0 and Lα(F ; 1− ᾱ) = 1, Aα(F ; 1− ᾱ) = 0.

10See the similar concept of restricted dominance discussed by Atkinson and Bour-
guignon (1989).
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The IF s of these trimmed Lorenz curves will be bounded for all q be-
cause extreme values in the data are automatically removed, for all α, 1 −
ᾱ > 0. Trimmed Lorenz curves can be thought of as Lorenz curves on
a restricted sample in which 100α percent of the bottom observations and
100(1− ᾱ) percent of the top observations have been trimmed away11. Esti-
mates can be obtained by replacing F by the empirical distribution F (n)(x) =
1
n

Pn
i=1H

(xi)(x).

3.3 Confidence Intervals

When comparing distributions using ranking criteria, it is also important to
be able to provide conÞdence intervals for the later. In Cowell and Victoria-
Feser (1999), formulas are given for several distributional statistics including
ranking criteria for full and trimmed samples. In particular, we have that
the asymptotic covariance of

√
nCα(F

(n); q) and
√
nCα(F

(n); q0) with q ≤ q0
is given by ωqq0/(1− α)2 where

ωqq0 : = [qQ(F ; q)− αQ(F ;α)− [1− α] cα,q]
[[1− q0]Q(F ; q0)− [1− α]Q(F ;α) + [1− α] cα,q0 ]−
[Q(F ; q) [1− α] cα,q − [1− α] sα,q]
+Q(F ;α) [(q − α)Q(F ; q)− [1− α] cα,q] (16)

with sα,q := S(F ; q) =
1

1−α
R Q(F ;q)

Q(F ;α)
u2dF (u). For the Lorenz curve ordinates

the asymptotic variance is

υqq0 =
1

(1− α)2µ4
α

£
µ2
αωqq0 + cα,qcα,q0ωαα − µαcα,qωq0α − µαcα,q0ωqα

¤
with µα = Cα(F ; 1−α). These covariances can be estimated by their empir-
ical counterpart � see Appendix 6.1.

3.4 Choosing the trimming proportions

The sampling properties of the key distributional statistics can provide sim-
ple choice criterion. Indeed, let �Fα be the trimmed distribution

12 and T a

11This is a practice that is sometimes adopted in pragmatic discussion of inequality
trends. See also the discussion of related issues by Howes (1996).

12The trimmed distribution is:

�Fα(x) :=


0 if x < Q(F,α)

F (x)−α
1−α if Q(F,α) ≤ x < Q(F,α)

1 if x ≥ Q(F,α)

.

11



statistic of interest and consider the following concept of efficiency

κ (α) :=
var T (F )

var T ( �Fα)
(17)

Clearly one would expect a higher value of α to reduce κ (α). The implied
trade-off of robustness against efficiency enables the researcher to make an
informed choice about the extent of trimming that may be reasonable in
making distributional comparisons.
Now (17) clearly implies that this choice is conditional upon speciÞcation

of T : which statistic would be appropriate? It seems reasonable to require
that this be one of second-order distributional dominance, but this raises
a further difficulty: there is an uncountable inÞnity of statistics C(·; q) and
selecting one, or a few of these would appear to arbitrary. However, there is a
simple argument to suggest that one particular case is especially important.
Not all values of q in the unit interval will be relevant in computing efficiency
under trimming: the very process of trimming �nibbles away� some of the
interval. If one is interested in trimming of arbitrary size then it seems to
be of particular interest to examine cases where T ( �Fα) is well deÞned for
arbitrary α. In the case of a balanced trim this implies focusing attention on
C(·; 0.5) or its relative-Lorenz counterpart C(·; 0.5)/µ(·).
κ (α) also depends on the underlying income distribution F . For the pur-

poses of illustrating the technique and to obtain an idea of the efficiency
losses involved we used a number of examples of the Dagum type I distribu-
tion given by

f(x;β,λ, δ) = (β + 1)λδx−(δ+1)(1 + λx−δ)−(β+1). (18)

Two examples are illustrated in Figure 6. From these two simulated datasets,
we computed the sampling variances for the trimmed and untrimmed cases,
with lower, upper and balanced trims.
The results are illustrated in Figure 7 where the vertical axis gives es-

timated values of κ(α) as deÞned in (17). One can see that the efficiency
loss depends on the underlying model and the type of trim. For small trim-
ming quantities it is not very large and for larger trimming quantities it can
be either quite large or reasonable. It is however, difficult to draw a gen-
eral conclusion and the results presented here can at most provide a rough
guideline.
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4 Empirical examples

The trimming approach offers a practical tool for the comparison of income
distribution when one wants an explicit control for taking account of the
inßuence of outliers. We use the analysis of sections 3.1 and 3.2 to examine
more carefully two aspects of conventional wisdom concerning comparisons
of income distribution. In each case the data are taken from the LIS (Lux-
embourg Income Study) data-base and refer to real income per equivalent
adult distributed amongst individuals � see Appendix, section 6.2.

4.1 Cross-country comparison: Sweden and Germany

The received wisdom suggests that 1980s Sweden is more equal than Ger-
many. However, is this actually borne out by the data, and what are the
implications for standard welfare comparisons? To investigate this we use
data for Sweden 1981 and (West) Germany 1983. Given standard deÞnitions
it immediately appears that FGermany ºC FSweden so that there is no question
but that the German income-distribution second-order (generalised-Lorenz)
dominates that for Sweden. However we also Þnd FSweden⊥AFGermany and
FSweden ºA0.005 FGermany: given a very slight trim of both tails (a half of one
percent) Sweden absolute-Lorenz dominates Germany.

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7

αααα

q*
,q

**

2-tail
1-tail

Figure 8: Is Sweden more equal than Germany?
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Figure 9: Germany vs Sweden: the effect of a 3% bottom-tail trim on the
Lorenz comparison

What of inequality? As Figures 8 and 9 show there is an ambiguity for
the raw data � FSweden⊥LFGermany. � which is due to a single intersection
of the Lorenz curves. Figure 8 depicts the truncation profiles � the position
of the switch-point (where the Lorenz curves intersect) for two types of trim
expressed as functions of α � q∗∗(·) for the balanced two-tail trim (solid
curve), and q∗(·) for the one-sided lower-tail trim (dotted curve). Let the
points where the truncation proÞles intersect the horizontal axis be α∗∗ and
α∗ respectively. Then:

q∗∗(0) = q∗(0) = 0.11

q∗(α) = 0, α ≥ α∗ = 0.030
q∗∗(α) = 0, α ≥ α∗∗ = 0.065

We have FSweden ºLα FGermany only if a trim of 3% of the observations is
carried out on the lower tail, or a balanced trim of 6.5%. May we say that
Sweden is less unequal than Germany? Consider two points here.
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First let us apply the analysis of section 3.3 in order to compute conÞdence
intervals for the RLC of Germany 1983 and Sweden 1981 on 3% bottom-tail
trimmed samples. The results are presented in Figure 10. The relative-
Lorenz dominance is indeed signiÞcant, except for the Þrst q. This result is
not surprising because usually the sample sizes are large and therefore the
standard errors are small. If dominance is not signiÞcant, then this should
appear at the smallest or the largest q-values.
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0.
0

0.
01

0.
02

0.
03

0.
04

0.
05

Germany 1983 (truncated)
Sweden 1981 (truncated)

Figure 10: RLC of Germany versus Sweden with conÞdence intervals

Second, note the behaviour of the truncation proÞles. Both q∗∗ and q∗

initially fall rapidly for α very close to zero and thereafter decrease more
gently. So the Lorenz comparison is certainly very sensitive to presence
or absence the Þrst few observations (in either the 1- or 2-tail case) but the
issue is clearly not just one of hypersensitivity to very small incomes. It seems
unreasonable to suppose that the true picture is of strict Lorenz dominance in
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that at least 1000 observations would have to be discarded from the German
data (n ' 42, 000) in order for this conclusion to obtain.

4.2 Inequality over time: the US in the 1980s

The same technique may of course be applied to comparisons within one
country, but between two points in time. In the United States the conven-
tional wisdom is perhaps even more sharp in its sketch of recent events �
inequality rose over the 1980s. Again the fact is � perhaps surprisingly �
that the raw data do not reveal an unambiguous increase in inequality, in
the standard sense of relative-Lorenz dominance. It might appear that this is
principally due to the presence of negative incomes in the Þrst centile group:
as we will see this is not quite the whole story. Note Þrst that FUS86⊥CFUS79

� we do not have Þrst- or second-order distributional dominance (see Figure
11 � the generalised Lorenz curves intersect at about q = 0.02, 0.10, 0.32),
but FUS79 ºA FUS86.

0 10 20 30 40 50 60 70 80 90 100
$0

$4,000

$8,000

$12,000

$16,000

US 1979

US 1986

Figure 11: US 1986 does not second-order dominate US 1979

The trimming procedure is more complex. The problem of negative in-
comes is disposed of by a very modest (less than 0.5%) trim; but there
remains a problem of multiple intersections of the Lorenz curves at the bot-
tom tail (there are intersections between q = 0.01 and q = 0.02 and q = 0.03
and q = 0.04). Figure 12 plots q∗∗(α) and q∗(α) in this case: in view of the
multiple intersections, these values are interpreted as the maximum switch
point between the two Lorenz curves for each value of α. The outcome of the
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Figure 12: Did Inequality Rise in the US?

α-trimming procedure is interesting in that � by contrast to the Germany-
versus Sweden example � neither q∗∗(.) nor q∗(.) is monotonic. By dropping
some 200 to 300 observations (2 percent) in the single-tailed trim, or 600 to
700 observations (41

2
percent) in the two tail trim one may then conclude

that FUS79 ºLα FUS86. � see Figure 13.
However there are interesting points in common with the Germany-versus-

Sweden example. First, for values of α in the range [0, 0.01] one Þnds a
relationship between the switch-point and α which is clearly different from
the relationship that holds in the neighbourhood of the points α∗∗ and α∗.
Second, the shape of the two-tail trim truncation proÞle follows closely that
of the one-tail trim.13 Thirdly, all the action appears to come from the lower
tail: in the distributional comparisons reported in subsections 4.1 and 4.2
we also carried out an upper-tail experiment; here the hypothesis is that the
data contamination is concentrated in the high incomes, and can be inter-
preted as potentially misreported data. However in this case the ranking
results turned out to be insensitive to the trim.

13On multiplying by 1
2 the horizontal scale of the graph of q

∗∗(·) one Þnds that it lies
extremely close to that of q∗(·): dropping 2α% of the sample in a two-tail trim has almost
exactly the same impact on the Lorenz intersection as dropping α% of the sample in a
lower-tail trim.
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Figure 13: US inequality: the effect of a 2% bottom-tail trim on Lorenz
comparisons
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5 Conclusions

Given that second-order distributional-dominance criteria are known to be
non-robust it is important to have practical methods of coping with the
impact of potentially �dirty� data in either tail of an income distribution.
One-tail or two-tail (balanced) trimming provides an obvious way to extend
the simple distributional-dominance criteria. In effect the researcher has
the option of trading off efficiency of the distributional-dominance statistic
with robustness. In this way one can place intuition about comparisons of
empirical Lorenz curves on an appropriate analytical foundation.

20



References

Amiel, Y. and F. A. Cowell (1994). Monotonicity, dominance and the
Pareto principle. Economics Letters 45, 447�450.

Atkinson, A. B. (1970). On the measurement of inequality. Journal of
Economic Theory 2, 244�263.

Atkinson, A. B. and F. Bourguignon (1989). The design of direct taxation
and family beneÞts. Journal of Public Economics 41, 3�29.

Ben Horim, M. (1990). Stochastic dominance and truncated sample data.
Journal of Financial Research 13, 105�116.

Bishop, J. A., J. P. Formby, and P. D. Thistle (1991). Rank dominance and
international comparisons of income distributions. European Economic
Review 35, 1399�1409.

Buhmann, B., L. Rainwater, G. Schmaus, and T. Smeeding (1988). Equiv-
alence scales, well-being, inequality and poverty: Sensitivity esti-
mates across ten countries using the Luxembourg Income Study (LIS)
database. Review of Income and Wealth 34, 115�142.

Coulter, F. A. E., F. A. Cowell, and S. P. Jenkins (1992). Equivalence
scale relativities and the extent of inequality and poverty. Economic
Journal 102, 1067�1082.

Cowell, F. A. (1984). The structure of American income inequality. Review
of Income and Wealth 30, 351�375.

Cowell, F. A. and M.-P. Victoria-Feser (1996). Robustness properties of
inequality measures. Econometrica 64, 77�101.

Cowell, F. A. and M.-P. Victoria-Feser (1999). Statistical inference for wel-
fare indices under complete and incomplete information. Distributional
Analysis Discussion Paper 47, STICERD, London School of Economics,
London WC2A 2AE.

Cowell, F. A. and M.-P. Victoria-Feser (2002). Welfare rankings in the
presence of contaminated data. Econometrica (forthcoming).

Dalton, H. (1920). Measurement of the inequality of incomes. Economic
Journal 30 (9), 348�361.

Danziger, S. and M. K. Taussig (1979). The income unit and the anatomy
of income distribution. Review of Income and Wealth 25, 365�375.

Esberger, S. E. and S. Malmquist (1972). En Statisk Studie av Inkom-
stutveklingen. Stockholm: Statisk Centralbyrûa n och Bostadssyrelsen.

21



Gastwirth, J. L. (1971). A general deÞnition of the Lorenz curve. Econo-
metrica 39, 1037�1039.

Gottschalk, P. and T. M. Smeeding (2000). Empirical evidence on income
inequality in industrialized countries. In A. B. Atkinson and F. Bour-
guignon (Eds.), Handbook of Income Distribution, Chapter 3. Amster-
dam: North Holland.

Hampel, F. R. (1968). Contribution to the Theory of Robust Estimation.
Ph. D. thesis, University of California, Berkeley.

Hampel, F. R. (1974). The inßuence curve and its role in robust estimation.
Journal of the American Statistical Association 69, 383�393.

Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, andW. A. Stahel (1986).
Robust Statistics: The Approach Based on Influence Functions. New
York: John Wiley.

Howes, S. R. (1996). The inßuence of aggregation on the ordering of dis-
tributions. Economica 63, 253�272.

Huber, P. J. (1981). Robust Statistics. New York: John Wiley.

Jenkins, S. P. and F. A. Cowell (1994). Dwarfs and giants in the 1980s:
The UK income distribution and how it changed. Fiscal Studies 15 (1),
99�118.

Kendall, M. and A. Stuart (1977). The Advanced Theory of Statistics.
London: Griffin.

Kolm, S.-C. (1969). The optimal production of social justice. In J. Mar-
golis and H. Guitton (Eds.), Public Economics, pp. 145�200. London:
Macmillan.

Lorenz, M. O. (1905). Methods for measuring concentration of wealth.
Journal of the American Statistical Association 9, 209�219.

Marshall, A. W. and I. Olkin (1979). Inequalities: Theory and Majoriza-
tion. New York: Academic Press.

Monti, A. C. (1991). The study of the Gini concentration ratio by means
of the inßuence function. Statistica 51, 561�577.

Moyes, P. (1987). A new concept of Lorenz domination. Economics Let-
ters 23, 203�207.

Pen, J. (1971). Income Distribution. London: Allen Lane, The Penguin
Press.

Rawls, J. (1972). A Theory of Justice. Oxford: Oxford University Press.

22



Saposnik, R. (1981). Rank-dominance in income distribution. Public
Choice 36, 147�151.

Saposnik, R. (1983). On evaluating income distributions: Rank dominance,
the Suppes-Sen grading principle of justice, and Pareto optimality. Pub-
lic Choice 40, 329�336.

Shorrocks, A. F. (1983). Ranking income distributions. Economica 50, 3�
17.

Stein, W. E., R. C. Pfaffenberger, and D. W. French (1987). Sampling error
in Þrst-order stochastic dominance. Journal of Financial Research 10,
259�269.

Van Praag, B. M. S., A. J. M. Hagenaars, and W. Van Eck (1983). The
inßuence of classiÞcation and observation errors on the measurement
of income inequality. Econometrica 51, 1093�1108.

Wiles, P. J. D. (1974). Income Distribution, East and West. Amsterdam:
North Holland.

Wiles, P. J. D. and S. Markowski (1971). Income distribution under com-
munism and capitalism. Soviet Studies 22, 344�369,485�511.

23



6 Appendix

6.1 Computational Method

When using a database such as the LIS database from which the microdata
cannot be recovered directly, to compute LC or RLC with conÞdence intervals
at each chosen q, one can follow this procedure:

1. DeÞne the percentiles p (say p = 0, 0.01, 0.02, . . . , 1) and trimming
proportions α and 1− ᾱ

2. Extract from the database the personal incomes and the weights and
sort incomes and weights by incomes

3. DeÞne a new variable emppercwhich is made of the cumulative weights
and divide all elements by the maximum, i.e. the last element. Keep
only the incomes and the weights for which empperc is between α and
ᾱ. This deÞnes the trimmed incomes trinc and weights trwgt.

4. DeÞne tottrwgt as the sum of all trwgt and nbtrinc as the number
of elements in trinc

5. DeÞne a new variable trempperc which is made of the cumulative
trwgt and divide all elements by the maximum, i.e. the last element.
(and keep the value of the maximum of the cumulative trwgt in say
totweight)

6. For each percentile p > 0 then do:

(a) Select the elements of trinc and trwgt for which trempperc is
between p and the previous p (for example for p = 0.56, tremp-
perc is between 0.56 and 0.55). Call them respectively trincp
and trwgtp

(b) DeÞne m1p as the sum of trincp·trwgtp divided by tottrwgt,
m2p as the sum of trincp·trincp·trwgtp divided by tottrwgt
and xp as the maximum of trincp

7. DeÞne q = α + (1 − α)p. Then for q > α, cα,q is estimated by the
cumulative sum of the m1p, p ≤ q−α

(1−α)
and cα,α = 0, sα,q is estimated

by the cumulative sum of the m2p, p ≤ q−α
(1−α)

and sα,α = 0. Note that
µα = cᾱ.

24



95% conÞdence intervals for the GLC and the RLC are respectively given
(cq − 1.96ωqq; cq + 1.96ωqq) and (cq/µα − 1.96υqq, cq/µα + 1.96υqq) in which
ωqq (and therefore υqq) are estimated using the estimates of cα,q and sα,q.
Note that m1p and/or m2p can take very large values depending on the
measurement scale of the incomes. It might be useful for numerical reasons
to divide all incomes by a properly chosen quantity.

6.2 Data Specification

LIS permits comparison of different countries� income distributions based on
consistent international deÞnitions of income and the income receiver. Ac-
cordingly the same basic speciÞcations were used both the (Germany, Swe-
den) and the (US 1979, US 1986) comparisons in section 4. The sample sizes
were:

Germany 1983 42,752
Sweden 1981 9,625
US 1979 15.928
US 1986 12,600

The income distributions are formed using the following concept of equiv-
alised incomes (Buhmann, Rainwater, Schmaus, and Smeeding 1988) (Coul-
ter, Cowell, and Jenkins 1992):

y =
hhy

hhsizeα
.

where hhy is net family (unit) income after tax, hhsize is the number of
persons in the family unit, α = 0.5. Each observation is given a weight,
indwgt = hhsize ∗hweight, to obtain distributions of income across individ-
uals (Cowell 1984) (Danziger and Taussig 1979). The variable hweight, is
the family unit sample weight.
For calculating distributions for different years and in dollars the following

data from the IMF Year Book 1994 were used.
1981 1983

Price level consumption
Germany 106.3 115.6
Sweden 112.1 132.6

Dollar exchange rate
Germany 2.26 2.553
Sweden 5.063 7.667
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