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Abstract

Robinson and Marinucci (1998) investigated the asymptotic behaviour of a
narrow-band semiparametric procedure termed Frequency Domain Least
Squares (FDLS) in the broad context of fractional cointegration analysis. Here
we restrict to the standard case when the data are I(1) and the cointegrating
errors are 1(0), proving that modifications of the Fully-Modified Ordinary Least
Squares (FM-OLS) procedure of Phillips and Hansen (1990) which use the
FDLS idea have the same asymptotically desirable properties as FM-OLS,
and, on the basis of a Monte Carlo study, find evidence that they have
superior finite-sample properties; the new procedures are also shown to
compare satisfactorily with parametric estimates.
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1. INTRODUCTION

The contention that jointly dependent macroeconomic series often have unit roots,
and may be cointegrated, has considerably influenced econometric research in recent
years. Consider the model (“cointegrated system”) for the jointly dependent p; x 1

and py X 1 vector of observables y; and x;, respectively,
yt:Ha:t+u1t,t21,xt:xt_1+u%,t21,x0:0, (11)

where II is an unknown p; X ps matrix, and u; = (u},, u),) is a p x 1 I(0) vector se-
quence, that is, it is covariance stationary with zero mean and has a spectral density
matrix that is bounded and nonsingular at the origin, with p = p1+ps; 2; = (v}, z}) are
then said to be I(1), and cointegrated of orders (1,0) (CI(1,0)); we do not assume uy;
to be uncorrelated with ug; (or, hence, with x;). Cointegrated systems like (1.1) have
been considered in the analysis of various economic hypotheses, in the context of, for
example, purchasing power parity and other models of exchange rate determination,
present value models, life-cycle models of consumers’ behaviour, and the quantity the-
ory of money. In simultaneously modelling short- and long-run behaviour, deviations
from cointegrating relationships can capture short-term adjustments, in the spirit of
the Error-Correction Mechanism (ECM) representation of Sargan (1964) and David-
son et al. (1978). Inference on /(1) cointegrated processes in the framework of a fully
parametric ECM representation has been developed by, for example, Phillips (1991a)
and Johansen (1988,1995), where asymptotically optimal rules are presented, based
on maximum likelihood estimation (MLE), and requiring a complete specification of
the system, with standard chi-squared testing procedures justified asymptotically.
Complete specification is unnecessary, however, for the achievement of such desir-
able first-order asymptotic properties. Indeed semiparametric inference rules based

on instrumental variables (see Sargan (1959)) were considered for the analysis of 1(1)
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processes by Phillips and Hansen (1990), who introduced a Fully Modified Ordinary
Least Squares (FM-OLS) technique which is optimal in the context of nonparametric
autocorrelation in u;. Also, the efficient frequency domain approach originally intro-
duced by Hannan (1963a,b), which adapts to disturbance autocorrelation of nonpara-
metric form and permits inclusion of only a proper subset of frequencies, has been
developed by Phillips (1991b) in the presence of unit roots.

A common thread of many such semiparametric procedures is their reliance on ini-
tial estimates of II, typically by Ordinary Least Squares (OLS). In the far broader
framework of fractional cointegration analysis, Robinson and Marinucci (1998) showed
that the performance of OLS can be improved on in several circumstances, includ-
ing the CI(1,0) case, by a semiparametric narrow-band procedure termed Frequency
Domain Least Squares (FDLS), originally suggested in the context of a stationary
(bivariate) sequence z; with long memory by Robinson (1994); here, correlation be-
tween z; and uy; in (1.1) renders OLS inconsistent due to simultaneous equation bias,
but if uy; has less memory than z; (for example, if it is 7(0)), FDLS is consistent.
This proposal was further developed in the stationary case by Robinson and Marin-
ucci (1998), but especially when z;, and possibly u;¢, are nonstationary. Here, OLS
is typically consistent if the memory in x; exceeds that of uy;, but, depending on
the orders of integration of x; and uy;, FDLS can have the same limiting distribu-
tional behaviour as OLS, perhaps with less “second order bias”, or even converges
faster, indicating that the medium and high-frequency “information” discarded by
FDLS is at best unimportant and at worst harmful. Our present case of I(1) x; and
I(0) uy; is one in which Robinson and Marinucci (1998) found FDLS to have less
second-order bias than OLS, and corresponding finite-sample improvements in Monte
Carlo simulations. However, both OLS and FDLS share the disadvantage of having a
nonstandard limit distribution which is inconvenient for inference. The present paper

combines the FM-OLS and FDLS ideas to provide estimates with the same desirable



asymptotic properties as FM-OLS, but, according to our Monte Carlo investigation,
superior finite-sample properties. Intuitively, the latter finding is due to the presence,
to some higher-order, of simultaneous equation bias in FM-OLS, which is reduced by
stressing a narrow band of frequencies around the origin.

The following section, after some discussion of theoretical background, reviews a
modification of FM-OLS previously considered by Robinson and Marinucci (1998),
introduces a “Fully Modified Frequency Domain Least Squares” procedure, and estab-
lishes its asymptotic behaviour. Section 3 investigates via a Monte Carlo experiment
their finite-sample performance, comparing them with the more traditional FM-OLS
and MLE procedures in terms of bias, standard deviation and distributional proper-
ties. We find the results for the new procedures to be encouraging.

In the sequel, we use = to denote weak convergence, ||.|| to denote Euclidean norm,
and C' for a generic, positive constant; “ > " will be taken to signify positive definite

when referring to matrices.

2. FULLY-MODIFIED FREQUENCY DOMAIN LEAST SQUARES

For the purpose of deriving asymptotical statistical properties we first introduce

Assumption A (1.1) holds, with u; = W(L)e; , W(L) = > 72, V; L7, where L is the
lag operator, det {W(1)} # 0, >°72[|¥;| < oo, and {e;} is a sequence of indepen-
dent and identically distributed (i.i.d.) p x 1 vectors such that Fe, = 0, Feel =
Y, det{Z}#0, Elleg* < o0

Assumption A covers a wide class of short memory linear processes, including

stationary and invertible vector autoregressive moving averages driven by Gaussian



innovations.
Let B'(r) = (Bi(r),Bj(r)) be p—dimensional Brownian motion with covariance

matrix 2 = U(1)XW¥(1)’; under Assumption A, as n — o0,

n

n? Z(:vt —T)(z: —7T) = / By(r)By(r) dr , (2.1)
n! i u(xy — ) = / dBy(r )+ A, (2.2)

see Phillips (1988), where By (r) = Bsy(r fo By (r)dr, Ay = Z oT12(4), Te(y) =
Fuyjuyy and T = n~' 370 |z Unless Q is block diagonal, Bs(.) and Bj(.) are not
independent and the distributions of the right-hand sides of (2.1)/(2.2) are non-
standard. Now define Q5 = Z;‘;_OO I'12(7), Toa(y) = Eugjulyy, Qoo = Z;‘;_oo Taa(j)
and Biy(r) = Bi(r) — Q12055 By(r), the Gaussian process orthogonal to By(r). The
asymptotic distribution of the OLS estimates

Zyt Ty — ) {Z(iﬂt—f)(ft—f)/} ;

t=1

as n — oo is readily seen to be given by

n(f—T1) = { /0 4B (M Ba(r) + Am} { /0 1 Eg(r)ﬁg(r)'dr}

= A+ Ay + Az, (2.3)

A = {/01 dBl,g(r)Eg(r)’} {/01 Eg(r)ﬁg(r)’dr}_l (2.4a)

. N(0,011,® G)dP(G) , G = {/01 Bg(r)Bg(r)’dr}_l

Ay = Q1905 {/01 ng(r)Eg(r)’} {/Olﬁg(r)ﬁg(r)’dr}_l (2.4b)
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where



for Q110 = Q1 — Q12055 Qo1; hence A; is a median-unbiased mixture of normal
distributions, A, is proportional to the “unit root distribution” (note dBy; = dﬁg)
and As is a second-order bias component. The g, a,b = 1,2 and Ay can be

consistently estimated from
Uy = Yy — Iy, Up = Uy = 24 — 41, (2.5)

and using techniques from the rich statistical literature on nonparametric spectral
density estimation (for a review see Robinson and Velasco (1997)). One type stressed

in recent econometric literature is

. L .
Q= 32 HCTwli) + A= 3 KQTa). (26)

aa,t—i—jag),t ] > 07 = Fba(_j)/v ] < 07 (27)

and we impose:

Assumption B The kernel function k(.) satisfies

k(.): R— [—1,1], k(0) =1, k(z) = k(—x), /_00 k*(z)dr < oo,

and k(.) is continuous at 0 and at all but at most finitely many other points, and the

bandwidth sequence ¢ satisfies £ — oo , £ = O(n*/?) as n — oo .

Phillips and Hansen (1990) proposed a two-step estimate (FM-OLS) that eliminates
A, and Az from (2.3),

ﬁFM = {Z@*(:vt - E)/ - ng} {Z(iﬂt - E)(iﬂt - E)/} ) (2.8)



where
?/J\:r =Yt — Q12Q2_2132t , 6= Km - §12§2_21K22 (2.9)
and established the convergence

n(py — 1) = Aj as n — 00 . (2.10)

Hence I, belongs to the LAMN (Locally Asymptotically Mixed Normal) family
of distributions introduced by Jeganathan (1980,1988), and as such it shares its nice
asymptotic statistical properties: distributions are centred around zero, nuisance pa-
rameters involve only scale effects and can be easily eliminated for the purpose of
inference, an optimal theory of inference applies (LeCam (1986)), and hypothesis
testing can be conducted within the usual asymptotic chi-squared paradigm.

We now describe the FDLS procedure. For \; = 27j/n, j = 1,...,n—1, we introduce

the discrete Fourier transforms

1 ) 1 < )
wa(Aj) = Tomr ;iﬂt exp {1\;t}, w,(};) = Worm ;yt exp {iA;t},

and the periodogram and cross-periodogram matrices
Loa(Aj) = wa(A)wa(A;)7, Tya(Ag) = wy(Aj)wa (X)),

the asterisk denoting transposition combined with complex conjugation. Also, we

define the averaged periodogram matrices

~

Foo(1,m) = %”ZRe{Jm(Aj)} L F(1m) = %”ZRe{Jym(Aj)} @)

where Re {.} denotes real part. The FDLS statistic is then defined for 1 <m <n—1
as

fi, = F(1,m) {ﬁm(l,m)}_l, (2.12)



(assuming the inverse exists), which for m = n —1 yields OLS (with intercept correc-

tion) ﬁ, in view of Parseval’s equality. We are interested, however, in the behaviour

of FDLS under the bandwidth condition

1
—+m—>0,asn—>oo, (2.13)
m n

which rules out OLS and moreover includes only a band of frequencies around zero
that degenerates slowly as n increases, as is required in spectral density estimation
for stationary series. Phillips (1991b) proposed a system-type estimates of II based in
effect on periodogram averages across a band of m frequencies about zero satisfying
(2.13), though his proofs actually pertain to weighted autocovariance estimates. We
take m < n/2, due to periodicity of period 7, and evenness of the periodogram.
FDLS dominate OLS in several circumstances under (2.13), for example it is still
consistent in cases where OLS is not, i.e., when z; and wuy; in (1.1) are stationary
long memory processes, labelled the “stationary cointegration” case, and it exhibits
a faster rate of convergence when x;, uy; have “less than unit-root-nonstationarity”,
i.e. when the collective memory in z; and uy; in (1.1) is more limited than in the
CI(1,0) case, see Robinson and Marinucci (1998). In the more standard, unit root
framework considered in this paper, Robinson and Marinucci (1998) established under

Assumption A and (2.13) the convergence (see 2.3,2.4a,2.4b)

~

because the second-order bias component

(o) {ﬁma,m)}_l ~0,

under (2.13), where

HO) = 5 (27 + D) {T0() ~ Ta(—j — 1} (2.14)



is finite because Assumption A implies that

ZjHFm(j)H <00 (2.15)

Thus FDLS has a the second-order bias of smaller order than that of OLS.
As in Robinson and Marinucci (1998), we consider a modification of FM-OLS (2.8),
based on first step FDLS, rather than OLS, residuals, and denoted

0, = {Zg:(xt—f)'—n?s“} {Z(xt—z)(xt—f)'} : (2.16)

=1
v o= - Q12Q2_21U2t , 0=Np — Q12Q2_21A22 )

U = Y — pxy, Uy = Uot = 24 — T4, (2-17)

for Qg and Kab, a,b = 1,2, defined as in (2.6), (2.7) with fab(j) replaced by fab(j)
which employs the FDLS residuals (2.17) in place of u,; and .

A further alternative is to use the FDLS idea more directly, namely a narrow-
band version of FM-OLS which reproduces its capacity to achieve asymptotic mixed

normality, Fully Modified Frequency Domain Least Squares (FM-FDLS):
~ ~ . -1
Mpp = Fyep(1,m) {Fm(l,m)} , (2.18)

where ﬁgan is defined analogously to ﬁyx in (2.11), with y; replaced by ;"

The estimates ﬁ*FM and ﬁFD share the same asymptotic distribution as ﬁFM,
and are thus asymptotically optimal in the same sense. The proof of the following
Theorem, which is given in the Appendix, relies on some general results on the as-
ymptotic behaviour of the averaged (cross-) periodogram for nonstationary processes,

see Robinson and Marinucci (1998, Proposition 4.2 and Lemma 5.4).

Theorem 1 Under Assumption A, B and (2.13), as n — oo
n(ITy, — 1), n(Ilpp — 1) = Ay,
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where A; is given in (2.4a).

In view of Theorem 1 and (2.10), Ip M, ﬁ} s> and Ilpp are asymptotically equiva-
lent. However, because the latter two are all, in various related ways, less affected by
second order bias, it seems natural to conjecture that these estimates may improve
on Ilpy in finite samples. We now provide some Monte Carlo evidence to support

this claim.

3. MONTE CARLO EVIDENCE

We start from the model of Gonzalo (1994) in Monte Carlo comparison of estimates

of Johansen (1988,1995) with simple (time-domain) estimates such as OLS:
yp=ry+uy , =y +w, , wy=w1+ey , zo=0,

which is easily seen to be equivalent to (1.1) with p; = p, = 1 and

1

m@(ult —Ups1) + €at)

Ut =
We adopt two alternative specifications for uy;, namely

Model A @ wy = puis1+en

Model B :  uy = piuig—1 + poip—o+e1p

where (eqy, €9;) = i.i.d. N(0,). Note that the consequent univariate specification of
ug is ARMA(1,1) under Model A and ARMA(2,2) under Model B, when v # 0, and

white noise when v = 0. We set



and allow p, p; and vy to vary, taking p = .8, .4,.0, —.4, —.8, p; = .947,34, —.34, —.947,
and v = 1,0. The spectral density of u;; has a peak at zero frequency for p > 0 and
at m for p < 0 in Model A, and at frequency arccos(—p;(1 + py)/4p,) in Model B,
that is at 7/3,47/9,57/9 and 27 /3, respectively, for the four p;. One expects the
finite-sample performance of frequency domain procedures to be largely influenced by
the locations and magnitudes of such peaks and by the exogeneity parameter v; x; is
weakly exogenous if and only if v = 0.

The implementation of efficient estimation procedures on Models A and B requires

the ECM representations

Model A . Az =Vz, 1 +ea (3.1)

Model B : Az =Vpgz 1+TAz 1 +ep (3.2)

where A is the difference operator, €4, £p; are i.i.d. vectors and

! ! !
1 1 1 1 1 1
Vs =(p—1) , Up = (p1+py—1) A= p,
v —II v —II v —II

These representation is the basis for implementing the estimate of Johansen (1988).
His original procedure estimated a basis for the cointegrating space, rather than II, but
normalized estimates of II, and their limiting distribution, can be readily obtained,

see e.g. Johansen (1995, pp.179-184). For all series we estimated, by his procedure,
both the equations

A,Zt = 7T [ 1 -II :| Zi—1 T+ EAt, (34)
Az = T [ 1 -II } 21+ EAz 1 + epy, (3.5)
where T is an unconstrained 2 x 1 vector and = is an unconstrained 2 X 2 matrix. By

comparison with (3.1)-(3.3), it is apparent that (3.4) is just-identified with respect to
Model A when v # 0 but over-parameterized when v = 0, but is mis-specified with
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respect to Model B, whereas (3.5) is over-parameterized with respect to both Models
A and B, the more so in case of Model A. We shall refer to Johansen’s estimate as
MLE but of course this description would only be accurate under just-identification.

The results, based on 5000 replications of series of lengths n = 64 and 128, are
summarized in Tables I through VIII; here Iy M, ﬁ} v, and Il p are defined in (2.8),
(2.16), and (2.18), respectively, and Iz and Iy, are the MLEs based on (3.4), (3.5),
respectively. We set the bandwidth parameter ¢ equal to the closest integer to v/n,
hence obtaining ¢ = 8 for n = 64 and ¢ = 11 for n = 128. We fixed m = 5 for n = 64
and m = 6 for 128. (In Robinson and Marinucci (1998) the effect of varying m was
considered, in a different type of simulation experiment involving FDLS). Hence we
have a total of (2 x 5 x 2) + (2 x 4 x 2) = 36 groups of simulations for each estimate.

Tables I and II (Model A) and V and VI (Model B) illustrate our findings for
Monte Carlo bias (B) and standard deviation (SD). A general feature of the results
(which largely holds also in other tables) is a substantial overall improvement in
performance of all estimates as n increases, and considerably better results for v =0
than for v = 1, with little difference between the various FM estimates when v = 0,
but noticeable superiority in our narrow-band proposals over FM-OLS when v = 1.
Another factor is the location of the spectral peak of uy; (and thence of uo; also).
The “traditional” estimates ﬁp M, II Mo and II m1 are based upon the whole frequency
band [0, 7], whereas rp and, to a lesser extent, ﬁ} v, focus on a degenerating band
around the origin. One therefore expects our new proposals to perform better the
further the spectral peak of uy; is shifted away from the origin.

This is found indeed to be the case for both Model A and B. Using mean squared
error MSE = B%*+ SD? (not explicitly reported) as the basis for comparison, we find
for Model A that ﬁMO is best in 13 cases out of 20, pp is best 4 times, and ﬁ} M
thrice; remarkably, the “traditional” II;ys estimate is dominated by at least one of

the new procedures in all cases, often significantly, and this same finding also emerges
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when we examine B and SD separately. It is also noteworthy that rp improves
over I in 11 cases, so that the loss here due to over-parameterization is greater
than that due to our semiparametric aspect. A close inspection of (3.3) and (3.4)
reveals that in the weakly exogenous case v = 0 the long-run behaviour derives from
the equation for y alone; irrespective of the super-consistency result, we could hence
anticipate that limited information procedures such as the various FM estimators
would be relatively efficient for Model A. We refer the reader to Johansen (1995) for
an explanation of weak exogeneity in the VAR context. For Model B, the results
are rather similar, but the MLE does better relatively speaking, bearing in mind the
mis-specification in (3.6) and the over-parameterization in (3.7); II a1 1s best in all
16 cases, and II rp 18 superior to I mo in all but two. Note that although Johansen’s
procedure performs best in the vast majority of cases, it can produce very high B and
SD in Model A for p = 0.8. This phenomenon was previously noted by Gonzalo (1994,
p. 217-219), and is due to the normalization which we adopt in order to estimate II;
in particular, II Mo and I a1 are ratios of random variables and need not have finite
moments. Although in this sense our Monte Carlo study is somewhat unfair to MLE,
for applied research the estimates of II in the triangular representation (1.1)-(1.3) are
likely to be the most useful for testing economic hypotheses, at least in a bivariate
context, see for instance the examples discussed by Hamilton (1994, p.651). When
more than two variables are included, however, identification might hang on long-run
causal relationships or restrictions on the cointegrating vector, which are not coherent
to the triangular form we use here but to some observationally equivalent form.

In Tables III and IV (Model A) and VII and VIII (Model B) we report empirical

sizes based on x? tests with nominal size 5%,

2 (IT — I1)? 1 ¢ -, =~ o =
X7 = 5 = y S| T Yt — Ky ; II=1I ; I ; I ;
TR Be(ln—1) T n ;( —— AL SRy SED

R

for 0 and Iy, we took the denominator in the y2-statistics to be the (2,2)-
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th element in the inverse of expression (13.12) on p.184 of Johansen (1995), which
estimates their asymptotic variance. In terms of proximity to the nominal value, we
find that IIpp is best in 13 cases out of 20 in Model A, ﬁ*FM is best 4 times, and
only in 3 cases is Il Mo actually superior to the narrow-band procedures. Likewise, for
Model B, IIrp is best in 7 cases out of 16, Il is best in 5 cases, ﬁMo in 3 and Ilpy,
in the remaining one.

In general, our “narrow-band” procedures, and in particular Iy D, €merge as promis-
ing competitors to traditional semiparametric estimates, at the same time providing
a robust and efficient alternative to parametric methods even when the correct model
is known, up to a few number of lags in the specification of the ECM, though it is
unsurprising that the Johansen procedures tend to perform best overall in our ex-
periment. One is likely to improve the finite-sample performance of each of the four
semiparametric procedures by iteration (for example, obtaining new cointegrating
residuals by FM-FDLS and then starting each procedure anew from the estimation

of  and 9).
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APPENDIX

Proof of Theorem 1 In view of (2.10) it suffices to prove that

I~ rall = 0p(n7"), (A1)
n(pp —II) = A . (A.2)

We note that, as n — oo
Qm —p o, le —p Qs 5 —p 6, (A-3)

by n- consistency of ﬁm and standard manipulations. Thus the left-hand side of (A.1)

is bounded in norm by

n

1(©1955 — Q1205,) Y " s, = 7) — (8 = 3)| {Zm —7)(w, — f)’} I

=1
which is 0,(n)0,(n"?) = o,(n™ '), as desired, in view of (2.1), (2.2) and (A.4). For
(A.2), consider

+ _ -1 _ -1
Yy =Yt — Q12Q22 Ugy = 1y + uge — 912922 Uzt
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and introduce

= {Z?/f(iﬂt —5)/} {Z(il?t —T)(z —T)/} ;

from Phillips and Hansen (1990)

-1

n(T+ — 1) = { /0 iBua(r Ba(r) + Ay — Q12Q2‘21A22} { /0 IEQ(T)Eg(r)'dr}

~ N N ~1
In the same way we can define 11}, = Fy+.(1,m) {Fm(l,m)} . Writing w19+ =
Uit — Q12Q2_21U2t: Q19 = %Z?Zl U1.2,t($t - T)/ , Qg = Fum,z(l,m); and applying the

argument of Robinson and Marinucci (1998, Theorem 5.3), we find that

n(ﬁ;D —1I) = [al.2 — FEa1s + {(a12 — a12) — E(a12 — 61.2)} + Eam] ﬁm(l, m)

= A;,asn— o0,

because {(a2 —a12) — E(a12 —a12)} and Eays are o,(1) by Proposition 4.2 and
Lemma 5.4, respectively, of that paper.

Now write ;" = 3" + (Q125, — ngﬁgj)u%, to obtain
_ _ U N N 1
ITpp = T | < 19050 = QoS Il { Fuce (1, m) } { Fu1,m) ),

which is 0,(1)O,(n™"), in view of (A.4) and Theorem 5.3 of Robinson and Marinucci

(1998); (A.2) follows immediately.
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TABLE I

Model A: Mean (standard deviation) of II—1I, n=064, (=S8, v=1
p=.8 p=.4 p=.0 p=—4 p=-23

Opy -22(25) -14(15) -13(.13) -.15(.14) -.26 (.20)
My -.03(6.3) .02(.15) .01(.08) .00 (.05) .00 (.04)
Iy, -14 (11.3) .01 (50) .01 (42) .00 (.05) .00 (.04)
5, -21(24) -.06(.12) -.03(.08) -.01 (.06) -.03 (.07)
Opp -26(22) -.08(.11) -.04(.07) -.02 (.05) -.01 (.04)

Model A: Mean (standard deviation) of II— I, n=64, £ =8, v=0

p=. p=.4 p=.0 p=—4 p=-.38
Iy 200 (:30) .00 (.12) .00 (.08) .00 (.06) .00 (.06)
Iyo .24 (13.0) .00 (.13) .00 (.07) .00 (.05) .00 (.04)
Iy: 69 (40.5) .00 (.17) .00 (.08) .00 (.05) .00 (.04)
II;,, .01(.30) .00(.12) .00 (.08) .00 (.05) .00 (.04)
Mpp .01(28) .00(.12) .00 (.07) .00 (.05) .00 (.04)
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TABLE II

Model A: Mean (standard deviation) of M-I, n=128, (=11, v=1
p=.8 p=.4 p=.0 p=—4 p=-23
Ipy -12 ((16) -.07 (.09) -.06 (.08) -.07 (.08) -.15 (.15)
Mo .05 (1.96) .00 (.06) .00 (.03) .00 (.02) .00 (.02)
My, .16 (7.3) .00 (.06) .00 (.03) .00 (.02) .00 (.02)
%, -11(.15) -.02 (.06) -.01 (.04) -.00 (.03) .01 (.03)
Mpp -.14 (14) -.03 (.06) -.01 (.03) -.01 (.03) .00 (.02)

Model A: Mean (standard deviation) of II— I, n=128, £ =11, v=0

p=.8 p=. p=.0 p=—4 p=-.38
Mgy 00 (.17) .00 (.06) .00 (.04) .00 (.03) .00 (.02)
Iyo .02 (1.12) .00 (.06) .00 (.03) .00 (.02) .00 (.02)
Iy: .00 (.62) .00 (.06) .00 (.03) .00 (.02) .00 (.02)
II;,, .00(.16) .00 (.06) .00 (.04) .00 (.03) .00 (.02)
Iyp .00 (.16) .00 (.06) .00 (.03) .00 (.02) .00 (.02)
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Model A:

T rar
ﬁMO
v
I35
Mrp

Model A:

T rar
ﬁMO
v
i1

Mrp

TABLE III

Type I error at 5% of X%_H, n=64 £=8 y=1

p=.8

32.60%
37.86%
41.32%
31.48%
36.90%

p=.4

24.34%
17.60%
19.72%
15.42%
18.78%

p=.0

25.46%
13.36%
15.00%
12.86%
13.02%

p=—.4
27.46%
11.44%
12.46%
11.48%
9.84%

p=—.28
36.82%
15.60%
11.84%
30.06%
10.58%

Type I error at 5% of XI%I—H’ n==64,{=8,v=0

p=.8

16.56%
32.82%
37.10%
14.64%
12.90%

p=.4
11.56%
13.16%
16.54%
8.58%
7.78%

p=.0
9.72%
8.82%
11.78%
6.96%
6.40%
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p=—.4
8.94%
7.66%
10.72%
5.74%
4.98%

p=—.8
7.78%
7.18%
10.00%
2.76%
2.22%



TABLE IV

Model A: Type I error at 5% of x2 |, n=128, {=11,v=1
p=8 p=4 p=0 p=—-4 p=-28
ﬁFM 25.72% 19.96% 17.68% 20.34%  31.88%
ﬁMO 23.24% 10.74% 8.12%  8.16% 10.40%
M, 24.92% 11.82% 9.28%  8.36%  8.18%
I, 24.30% 10.26% 8.06% 7.60%  22.20%
ﬁFD 30.50% 11.78% 7.98%  6.52% 7.34%

Model A: Type I error at 5% of X% ,n =128, £=11,7=0
p=-8 p=4 p=0 p=—-—4 p=-238
Ipy 13.56% 9.98%  8.92% 7.84%  6.20%
Mo 1850% 9.02%  6.92% 5.96%  5.90%
M, 20.02% 10.72% 8.18% 7.38%  7.26%
5, 10.94% 7.62% 5.98% 5.26%  2.78%
Ipp 10.28% 6.92%  5.24% 4.90%  2.42%
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TABLE V

Model B: Mean (standard deviation) of I —II, n =64, { =8, y =1
Ipy -33(.24) -.46 (.30) -.30 (.22) -.50 (.37)

Iy .02 (47) .00 (.07) .00 (.04) .00 (.03)
Iy, .01 (.08) .00 (.05) .00(.03) .00 (.02)
%, -.07 (.09) .03(.08) -.08(.08) .10 (.09)
Ipp -.05(.08) -.02(.05) -.01(.04) .00 (.03)

Model B: Mean (standard deviation) of II— I, n=64, £ =8, v=0

Ipy .00 (11) .00 (.11) .00 (.06) .00 (.08)
Iy .02 (1.3) .00 (.06) .00(.04) .00 (.03)
Iy, .00 (.07) .00 (.04) .00 (.03) .00 (.02)
1%, .00 (.09) .00 (.05) .00(.04) .00 (.03)
Mpp .00 (.08) .00 (.05) .00(.03) .00 (.03)
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TABLE VI

Model B: Mean (standard deviation) of I — IMIn=128, (=11, v=1
pp =947 p =34 p,=-34 p =947
Mpy -.36 (23) -.17 (17) -.21 (.18) -.35 (.29)
Mo .00 (.05) .00 (.03) .00(.02) .00 (.01)
Iy, .00 (.04) .00 (.02) .00(.01) .00 (.01)
%, .02(05) .03(04) -.08(.07) .07 (.06)
Iyp -.01(.04) -.00(.02) .00(.02) .00 (.01)

Model B: Mean (standard deviation) of II— I, n=128, £ =11, v=0

Ipy .00 (06) .00 (.03) .00 (.03) .00 (.03)
Mo .00 (.05) .00 (.03) .00(.02) .00 (.01)
I, .00 (.04) .00 (.02) .00(.01) .00 (.01)
1%, .00 (.04) .00 (.02) .00(.02) .00 (.01)
Ilpp .00 (.04) .00 (.02) .00(.02) .00 (.01)
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TABLE VII

Model B: Type I error at 5% of x%  , n =164, {=8,7=1
pp =947 p, =34 p,=-34 p, =947
py  39.4% 61.92% 35.30%  63.64%
Mo 2.82% 0.62%  .12% .30%
M, 21.04%  16.96% 14.96%  23.42%
My, 2248%  7.71%  52.74%  74.98%
pp 13.92%  5.02%  5.18% 10.52%

Model B: Type I error at 5% of XI%I—H’ n==64,{=8,v=0

Ipy  3.08% 13.10%  2.22% 13.78%
Mo .46% .00% 02% .00%
My 7.48% 7.48%  7.56% 7.10%
I, 1.02% 5.24%  .34% 1.18%
Ipp  6.80% 4.95%  .08% 44%
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TABLE VIII

Model B: Type I error at 5% of x% , n=128, (=11, y=1
pp =947 p, =34 p,=-34 p, =947
Hpy 61.34%  27.56%  31.50%  59.70%
Mo .08% .02% .00% .00%
Iy, 14.88%  10.12%  9.88% 8.72%
My, 2278%  33.32% 76.82%  83.24%
Ipp 10.66%  3.22%  3.22% 5.84%

Model B: Type I error at 5% of x4, n =128, (=11, y=0
ry  9.08% 2.82%  2.48% 7.96%

Mo .00% .00% .00% .00%
My 7.00% 6.30%  6.18% 1.18%
I, 2.60% .66% 36% 76%
Urp  1.90% .36% 20% 26%

24



	M&R422B.pdf
	Abstract


