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Abstract 
 

 
Smoothed nonparametric estimates of the spectral density matrix at zero frequency 

have been widely used in econometric inference, because they can consistently 

estimate the covariance matrix of a partial sum of a possibly dependent vector 

process. When elements of the vector process exhibit long memory or 

antipersistence such estimates are inconsistent. We propose estimates which are 

still consistent in such circumstances, adapting automatically to memory parameters 

that can vary across the vector and be unknown. 
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1 INTRODUCTION

We discuss a form of ”automated” inference that extends a familiar feature of
modern econometric practice to incorporate a flexible form of modelling which
has attracted considerable recent interest. ”Heteroscedasticity-and-autocorrelation-
consistent” (HAC) covariance matrix estimation is commonly employed in infer-
ence based on statistics that involve a partial sum of vector-valued random vari-
ables that are not assumed serially uncorrelated or homoscedastic; ”long run”
covariance matrix estimation is another name for the same kind of procedure.
Such statistics do not themselves attempt to correct for supposed autocorrela-
tion or heteroscedasticity, but rather the aim is to robustify inference. Popular
econometric references include Newey and West (1987), Andrews (1991), and
the methods go back to earlier statistical references, such as Jowett (1955),
Hannan (1957), Brillinger (1979). The autocorrelation typically presumed is
”I(0)”, in the sense that, for homoscedastic, covariance stationary processes,
there is a finite and positive definite spectral density at zero frequency. These
properties fail in case of long memory or antipersistent processes, and the usual
HAC estimates are then inconsistent, leading to asymptotically invalid tests and
inconsistent interval estimates.
We robustify the estimates to ensure consistency in the event of long memory

or antipersistence. It is not required that we know whether either of these
features pertains, and consistency in the I(0) case is preserved. We deal with a
vector process whose components can have memory parameters that are possibly
different and unknown.
The following section briefly discusses HAC estimation that presumes I(0)

behaviour. Section 3 develops our robustified version. The paper stresses meth-
ods, avoiding detailed regularity conditions or proofs.

2 COVARIANCEMATRIX ESTIMATION FOR
I(0) SERIES

Consider a p× 1 vector-valued sequence xt, t = 0,±1, .... For the purpose of a
concise discussion we take the elements of xt to be jointly covariance station-
ary, later mentioning possible departures. We assume xt has zero mean and
absolutely continuous spectral distribution matrix. Defining the autocovariance
matrices

γ(j) = Ex0x
0
j , j = 0,±1, ...,

the spectral density matrix f(λ), λ ∈ (−π,π], is given by

γ(j) =

Z π

−π
f(λ)eijλdλ,
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and is Hermitian non-negative definite.
For n ≥ 1 define the arithmetic mean

x̄ = n−1
nP
t=1
xt.

The covariance matrix of x̄ is

Ex̄x̄0 = n−1
"
γ(0) +

n−1P
j=1

µ
1− j

n

¶
{γ(j) + γ(−j)}

#
. (2.1)

If f(λ) is continuous at λ = 0, Fejér’s theorem indicates that

nE(x̄x̄0)→ 2πf(0), as n→∞. (2.2)

Under a variety of additional conditions, n
1
2 x̄ satisfies a central limit theorem,

so that, if f(0) is also positive definite,

n
1
2 x̄→ N (0, 2πf(0)), as n→∞. (2.3)

Note that

2πf(0) =
∞P

j=−0
γ(j).

Large sample inference based on x̄ thus requires consistent estimates of f(0).
These could result from an assumed parametric model for γ(j), j = 0,±1, ...,
or, equally for f(λ), λ ∈ (−π,π], an obvious example being a stationary and
invertible autoregressive moving average process of prescribed orders. However,
if either of the orders is under-specified, or both are over-specified, f(0) will be
inconsistently estimated.
As the Weierstrass approximation theorem hints, this theoretical drawback

can be overcome if the autoregressive or moving average orders are regarded
as increasing, slowly, with sample size n. In particular Berk (1974) justified
the consistency of autoregression-based spectral density estimates. The autore-
gressive order can here be thought of as a smoothing number. Such estimates
have been employed and modified in the HAC econometric literature, but this
has been more influenced by spectral density estimates developed still earlier in
the statistical literature, entailing an alternative form of smoothing, and based
on quadratic functions of the data, in particular weighted autocovariance spec-
tral estimates (see e.g. Grenander and Rosenblatt, 1957, Parzen, 1957). We
shall discuss instead a closely related class of quadratic estimate, stressed by
Brillinger (1975), which is not much used by econometricians in the HAC con-
text, but yields more conveniently to the necessary modifications required in
the following section, than weighted autocovariance forms which have already
been extensively discussed in the econometric literature.
Define the periodogram matrix

I(λ) =
1

2πn

µ
nP
t=1
xte

itλ

¶µ
nP
t=1
xte
−itλ

¶0
. (2.4)
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For an integer m ∈ [1, n/2], introduce a sequence of non-negative weights wjm,
j = 0, ...,m, such that w−j,m = wjm and

Pm
j=−mwjm = 1. Define

f̂(0) =
mP

j=−m
wjmI(λj), (2.5)

for λj = 2πj/n. The simplest version of (2.5) takes equal weights, wjm =
1/(2m + 1). Under suitable conditions on {xt}, on the wjm, and on m (such
that m increases with n but more slowly), we have

f̂(0)→p f(0), as n→∞.
Various rules have been suggested for choosing the bandwidth m, possibly

to satisfy some optimality criterion, such as cross-validation, as well as rules of
thumb. Optimality theory for choice of the wjm is also available. The estimates
considered by Brillinger (1975) are more general than (2.5), allowing weighted
summation over all Fourier frequencies λj . However, the weights must again
concentrate around zero to an extent that increases slowly with sample size,
and the form (2.5) fits in conveniently with that of narrow-band estimates of
memory parameters, which have predominated in the semiparametric memory
estimation literature relevant to the following section. For each choice of weights
{wjm} one can effectively find a choice of lag weights, approximately related to
the wjm by Fourier transformation, that can be employed in a corresponding
weighted autocovariance spectral estimate of f(0), which typically has very sim-
ilar asymptotic properties to those of its weighted periodogram twin (2.5). Note

that the stated conditions on the wjm guarantee that f̂(0) is non-negative defi-
nite. It is possible to refine (2.5) by employing different bandwidths and weights
across the elements, though the non-negative definite property is less easy to
enforce. Refinements such as pre-whitening and tapering are also available, to
reduce bias in f̂(0) due to ”leakage” from remote frequencies.
The description ”HAC” appears to stress ”heteroscedasticity” at least as

much as ”autocorrelation” but whereas there is explicit allowance for the latter
in f̂(0) and rival estimates, there is none for the former, and the robustness to
heteroscedasticity essentially just appeals to long-standing limit theorems for
non-identically distributed variates. For example in the special case of serially
uncorrelated xt, such that Extx0t = Ωt, suppose Ω̄ = n−1

Pn
t=1Ωt → Ω as

n → ∞. Then from (2.5), Ef̂(0) = (2π)−1
Pm
j=−mwjmΩ̄ → (2π)−1Ω. Even

the usual covariance matrix estimate motivated by uncorrelated, homoscedastic
variates, Ω̂ = n−1

Pn
t=1 xtx

0
t, satisfies EΩ̂ = Ω̄→ Ω as n→∞, and so can also

be called ”heteroscedasticity-consistent”. The econometric HAC literature has
stressed mixing conditions, and extensions thereof, which are designed mainly
to describe dependence but also allow a degree of heterogeneity. It would be
possible to allow for such heterogeneity in the discussion of the following sec-
tion, but because again no explicit correction for heteroscedasticity is involved
we prefer the simplicity of presentation gained by maintaining the covariance
stationarity assumption.
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3 COVARIANCEMATRIX ESTIMATION FOR
NON-I(0) SERIES

Of crucial importance in the preceding discussion was the I(0) assumption, that
f(λ) be continuous and positive definite at λ = 0. To relax this requirement,
suppose that

f(λ) ∼ h(λ)Gh(λ), as λ→ 0+, (3.1)

where G is a finite, positive definite matrix with (a, b)-th element gab

h(λ) = diag
n
e
id1π
2 λ−d1 , ..., e

idpπ

2 λ−dp
o
, (3.2)

for dj ∈ (−12 , 12), j = 1, ..., p, the overbar means complex conjugation, and ∼
means that the ratio of real parts, and of imaginary parts, of corresponding
elements of the matrices on the left and right hand sides of (3.1) tends to 1. If
d1 = ... = dp = 0, (3.1) holds with G = f(0) under the I(0) assumption. Slightly
more generally, if da+db = 0, for some a, b, the (a, b)-th element of f(λ), fab(λ),
satisfies fab(0) = gab cos

π
2 (da − db), which can again be consistent with fab(λ)

being continuous at λ = 0. For da + db > 0, on the other hand, fab(λ) diverges
as λ→ 0+, whilst for da + db < 0, fab(0) = 0. Of course when a 6= b fab(0) = 0
also occurs, for any da, db, if gab = 0. The dj are called ”memory parameters”.
To motivate (3.1), (3.2), Theorem III-1 of Yong (1974) gives

(1− eiλ)d ∼ e− idπ
2 λd, as λ→ 0 + . (3.3)

The left hand side is the frequency response function of the fractional differ-
ence operator. An important special case of f(λ) satisfying (3.1) is the spectral
density matrix of a stationary, non-cointegrated and invertible fractionally in-
tegrated autoregressive moving average system, with possibly distinct memory
parameters d1, ..., dp.
Whilst, in a nonparametric setting, we do not want to impose such a para-

metric model, nevertheless we need to supplement (3.1), when at least one dj is
non-zero, by an assumption that is easily satisfied in that parametric model. We
have to approximate the right side of (2.1) for large n, and this can be achieved
by approximating γ(j)+ γ(−j) for large j. For some a, b such that da+ db 6= 0,
denote by γab(j) the (a, b)-th element of γ(j). For λ close to zero, fab(λ) has
real part

Re {fab(λ)} = 1

2π
γab(0) +

1

2π

∞P
j=1

{γab(j) + γab(−j)} cos jλ.

On the other hand, from (3.1) it follows that

Re {fab(λ)} ∼ gabλ−da−db cos π
2
(da − db) , as λ→ 0 + . (3.4)
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An important topic in the trigonometric series literature concerns the asymp-
totic behaviour of Fourier coefficients that provide the power law behaviour
found in (3.4), a detailed reference being Yong (1974). Consider a function

r(λ) =
∞P
j=1

s(j) cos jλ,

for λ close to zero. Yong (1974, Theorems III-1, III-10, III-12 and III-17) gave
conditions on the s(j) such that, for some β 6= 0,

s(j) ∼ βj−α, as j →∞, (3.5)

is equivalent to

r(λ) ∼ βπ

2Γ(α) cos απ2
λα−1, as λ→ 0+, (3.6)

when α ∈ (0, 1). Yong (1974, Theorem III-27) showed that if

r(0) = 0, (3.7)

(3.5) implies (3.6) for α ∈ (1, 3).
We apply these properties with s(j) = γab(j)+γab(−j), r(λ) = 2πRe {fab(λ)}

and α = 1 − da − db. We deduce from (3.4), (3.6), reflection formula for the
Gamma function, and trigonometric identities, that

β =
2πgab (sinπda + sinπdb)

Γ(da + db) sinπ(da + db)

=
2πgab cos

π
2 (u− v)

Γ(da + db) cos
π
2 (u+ v)

= 2πgabΓ (1− da − db)
½

1

Γ(da)Γ(1− da) +
1

Γ(db)Γ(1− db)
¾
,

to give three alternative expressions. Note that if da + db < 0, (3.4) implies
fab(0) = 0, so (3.7) is indeed relevant. On the other hand, for da + db > 0, the
conditions of Yong (1974) can be checked in case of plausible autocovariance
sequences.
We can now deduce that

γab(0) +
n−1P
j=1

µ
1− j

n

¶
{γab(j) + γab(−j)} ∼ 2πgabq(da, db)nda+db , (3.8)

as n→∞, where

q(u, v) =
sinπu+ sinπv

Γ(u+ v + 2) sinπ(u+ v)
, (3.9)

in which we arbitrarily employ the first and the three equivalent expressions
for β above. This follows by approximating sums by integrals, though in case
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da + db < 0 (implying
P∞
j=−∞ γab(j) = 0) one first writes the left side of (3.8)

as

−
∞P
j=n

{γab(j) + γab(−j)}−
1

n

n−1P
j=1

j {γab(j) + γab(−j)} .

We deduce (cf. (2.2))

DnE(x̄x̄
0)Dn → 2πG ◦Q(d1, ..., dp), as n→∞, (3.10)

where

Dn = diag
n
n
1
2−d1 , ..., n

1
2−dp

o
,

Q(d1, ..., dp) is the p × p matrix with (a, b)-th element q(da, db), and ◦ denotes
Hadamard product. Since the right side of (3.10) is the limit of a sequence of
non-negative definite matrices, it also is non-negative definite. If it is positive
definite we can deduce under suitable additional conditions (for example if xt is a
linear process in stationary, conditionally homoscedastic martingale differences)

Dnx̄→d N (0, 2πG ◦Q(d1, ..., dp)) (3.11)

(cf. (2.3)).
The above discussion strictly covers only elements such that da+db 6= 0, but

(3.8) applies when da+db = 0 for some a, b, because from the second equality of
(3.9) it agrees with fab(0) = gab cos

π
2 (da − db) (which follows from (3.4)). This

includes the case da = db = 0, and in the full I(0) case d1 = ... = dp = 0, (3.10)
reduces to (2.2). Thus (3.10) generalizes (2.2), indeed q(u, v) is continuous at
u+ v = 0 (and all u, v ∈ (−12 , 12)).
Given estimates d̂1, ..., d̂p and Ĝ such that

(logn)
³
d̂j − dj

´
→p 0, j = 1, ..., p, Ĝ→p G, (3.12)

we can replace (3.11) by the useful resultn
2πĜ ◦Q

³
d̂1, ..., d̂p

´o− 1
2

D̂nx̄→d N(0, Ip),

where D̂n = diag
n
n
1
2−d̂1 , ..., n

1
2−d̂p

o
and Ip is the p × p identity matrix. The

rate requirement in (3.12) is due to the need to approximate the norming factors

n
1
2−dj by the n

1
2−d̂j .

An acronym has become almost obligatory. The best that emerged to de-
scribe our robustified variance estimate of x̄,

D̂−1n
n
2πĜ ◦Q(d̂1, ..., d̂p)

o
D̂−1n , (3.13)
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was MAC: Memory-Autocorrelation-Consistent. Partly for reasons given at the
end of the previous section, and partly for the sake of an acronym that slips
easily off the tongue, reference to ”H” for ”heteroscedasticity” is suppressed.
Estimates of the d̂j satisfying (3.12) under suitable conditions are readily

available, such as log periodogram, local Whittle and averaged periodogram
estimates, all of which are ”semiparametric” in character, being based princi-
pally on the local—to-zero model (3.1). Like (2.5), they involve functions of the
periodogram I(λj) at low frequencies such that j = 1 −m, ...,m − 1, with m
satisfying rather similar conditions to those that would be required for (2.5)

in Section 2. As a result, the d̂j estimates converge more slowly than the n
1
2

parametric rate, but nevertheless the slow rate in (3.12) is easily justified.
With respect to Ĝ, in view of (2.5), (3.1) and (3.2), it is natural to consider

Ĝ =
m−1P
j=1−m

wjmĥ(λj)
−1I(λj)ĥ(λj)

−1
, (3.14)

where

ĥ(λ) = diag

½
e
id̂1π
2 λ−d̂1 , ..., e

id̂pπ

2 λ−d̂p
¾
.

Under conditions familiar from the semiparametric memory parameter estima-
tion literature, (3.14) will satisfy (3.12). To make the procedure more fully

automatic, rules for choice of m in (3.14), and of bandwidths in the d̂a esti-
mates, are required. These issues have been discussed in the literature (see
e.g. Hurvich and Beltrao (1994), Robinson (1994a), Hurvich, Deo and Brodsky
(1998), Henry and Robinson (1996), Hurvich and Deo (1999).
The ”MAC” estimate (3.13), with Ĝ given by (3.14), is guaranteed non-

negative definite. To see this, note first that (3.14) is non-negative definite.
Thus it follows from Schur (1911, p.14) that it suffices to show that Q(d1, ..., dp)
is non-negative definite, for all dj ∈ (−12 , 12), j = 1, ..., p. But from the previous
development it is clear that

Q(d1, ..., dp) = lim
n→∞

1

2πn
Dn

"
γ∗(0) +

n−1P
j=1

µ
1− j

n

¶
{γ∗(j) + γ∗(−j)}

#
Dn,

(3.15)

where γ∗(j) =
R π
−π f

∗(λ)eijλdλ, surely that f∗(λ) identifies (3.1) with gab = 1,
all a, b (so G is now taken to be non-negative definite, with rank 1) and γ∗(j)
has the same asymptotic behaviour as γ(j) with gab = 1, all a, b. But the term

in square brackets in (3.15) is n−1
R π
−π f

∗(λ)
¯̄Pn

t=1 e
itλ
¯̄2
dλ, which is deeply

non-negative definite, for all n, since f∗(λ) can be chosen non-negative definite,
for all λ.
Even in the expectation that all dj are zero, MAC estimates might be useful

rivals to long autoregressive and weighted autocovariance (or periodogram) HAC
estimates, these latter having the reputation of being appropriate in the presence
of both (finite) peaks and (non-zero) troughs in f(λ) at λ = 0.
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The present topic was also discussed in case of scalar xt by Beran (1989),
Robinson (1994b). The first author, however, employed parametric memory
parameter estimates, whereas the second author employed semiparametric av-
eraged periodogram memory parameter estimates and noted the need for the
rate condition in the first part of (3.12). The estimate (3.14) extends one of
Robinson (1995) in the scalar case, in which wjm ≡ 1/(2m + 1), and was em-
ployed in a different context by Robinson and Yajima (2002). Robinson (1994b)
considered covariance matrix estimates in the case xt = (1, t, ..., t

p−1)et, where
et is a scalar long memory process, this being relevant to inference on least
squares estimates in polynomial-in-time linear regression with long memory or
antipersistent disturbances. For the same kind of disturbances, Robinson (1997)
considered covariance matrix estimates for a vector of scalar fixed-design non-
parametric regression estimates at finitely many fixed points. The rates of
convergence in these situations, and the forms of the limiting covariance matri-
ces of the normalized statistics, differ from those found in the present paper,
which is motivated by other situations in econometrics. In a fractional cointe-
gration context, in which two distinct memory parameters are involved, Kim
and Phillips (1999) proposed estimates of the long run covariance matrix, in
which stationary fractional sequences are filtered in the time domain and the
resulting I(0) long run covariance matrix estimate rescaled.
Many econometric statistics are functionals of partial sums of vector vari-

ates, which themselves can be products of other nonlinear functions of under-
lying variates, for example generalized-method-of-moments estimates, including
least squares estimates for linear regression models with stochastic regressors.
Consider an estimate θ̂ of a vector-valued parameter θ of dimension no greater
than p. Typically we can consider a linearization θ̂ − θ = Tnx̄, where, when
θ̂ is only implicitly-defined, this requires an initial consistency proof (which
should itself allow for possible long memory or antipersistence), and Tn is a
matrix-valued statistic. If, for some matrix En, EnTnDn converges in prob-
ability to a finite limit U of full row rank, we would deduce from (3.11) that

En(θ̂−θ)→d N (0, 2πU (G ◦Q(d1, ..., dp))U 0) whence the previous discussion is
relevant. However, in case the dj are not all identical, lack of commutativity can
obstruct this argument; the analysis could be preceded by a test of equality of
the dj , employing known limit distribution theory for semiparametric memory
estimates. In this kind of setting, moreover, when a typical element of xt is a
nonlinear function of underlying variates such as a product of an explanatory
variable and a disturbance, it is important to bear the following in mind. If
some or all the underlying variates have long memory, it is still possible at one
extreme that xt can be I(0), and on the other that x̄ has a non-normal limit
distribution (see Robinson, 1994c). Note also that disturbances will have to be
replaced by residuals in order to produce proxies for xt that can be used in the
estimation of the dj .
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