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Abstract

We establish the validity of higher order asymptotic expansions to the
distribution of a version of the nonlinear semiparametric instrumental variable
considered in Newey (1990) as well as to the distribution of a Wald statistic
derived from it. We employ local polynomial smoothing with variable
bandwidth, which includes local linear, kernel, and [a version of] nearest
neighbour estimates as special cases. Our expansions are valid to order n
for some 0 < e < %, where € depends on the smoothness and dimensionality of
the data distribution and on the order of the polynomial chosen by the
practitioner. We use the expansions to define optimal bandwidth selection
methods for both estimation and testing problems and apply our methods to
simulated data.
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1 Introduction

Instrumental variables and the related Generalized Method of Moments estimation procedures are
widely used and taught in econometrics courses. In recent years these methods have been viewed as
being semiparametric, in the sense that the joint distribution of the data is unspecified apart from
a finite number of moment conditions. Frequently, this information is in the form of conditional
moments, which implies, generally, an infinite number of unconditional moment conditions, although
a certain finite dimensional combination of them gives full efficiency — see Chamberlain (1987) and
Newey (1986, 1988, 1990). The efficient instrument function involves an unknown conditional expec-
tation. Therefore, to fully exploit the given moment conditions, it is necessary to use nonparametric
regression techniques to estimate the optimal instruments. Newey (1990) established the asymptotic
properties of a semiparametric instrumental variable estimator 0 based on a nonparametric estimate
g (specifically, nearest neighbors and series estimates) of the optimal instrument function g. Under
regularity conditions, he showed that n'/ 2(5 — 0p) is asymptotically normal with zero mean and
asymptotic variance w, where n is sample size and w is a positive definite matrix; in fact, 0 is asymp-
totically equivalent to the procedure based on the true unknown optimal instrument function. There
are many applications of this estimation procedure in sample selection and binary choice models as
well as other microeconometric contexts.

We have argued elsewhere, Linton (1995, 1996a,b), that the first-order asymptotics of semipara-
metric procedures can be misleading and unhelpful.! The limiting variance matrix w does not depend
on the specific details of how g is constructed, and thus sheds no light on how to implement this
important part of the procedure. Specifically, bandwidth choice cannot be addressed by using the
first-order theory alone. Also, the relative merits of alternative first-order equivalent implementa-
tions, e.g., one-step procedures, cannot be determined by the first-order theory alone. Finally, to show
when bootstrap methods can provide asymptotic refinements for asymptotically pivotal statistics re-
quires some knowledge of higher-order properties — see Horowitz (1995). This motivates the study of
higher-order expansions. Carroll and Hérdle (1989) was to our knowledge the first published paper
that developed second-order mean squared error expansions for a semiparametric, i.e., smoothing-
based but root-n consistent, procedure, in the context of a heteroskedastic linear regression. Hirdle,
Hart, Marron, and Tsybakov (1992) developed expansions for scalar average derivatives which was
extended to the multivariate case, actually only the simpler situation of density-weighted average
derivatives, by Hérdle and Tsybakov (1993); these papers used the expansions to develop automatic
bandwidth selection routines. This work was extended to the slightly more general case of density-

weighted averages by Powell and Stoker (1996). Linton (1995, 1996a) developed similar expansions

ISee also the monte carlo evidence presented in for example Hsieh and Manski (1987).



for the partially linear model and the heteroskedastic linear regression model and provided some
results on the optimality of the bandwidth selection procedures proposed therein. Xiao and Phillips
(1996) worked out the same approximations for a time series regression model with serial correlation
of unknown form; Xiao and Linton (1997) give the analysis for Bickel’s (1982) adaptive estimator in
the linear regression model; Linton and Xiao (1997) works out the approximations for the nonlinear
least squares and profile likelihood estimators in a semiparametric binary choice model. Robinson
(1995) revisited the average derivative estimation problem, in particular the density-weighted version
of this procedure, which is easier to handle, and proved the validity of the Berry-Esséen theorem for
this estimator. This work was recently extended by Nishiyama and Robinson (1997) to include a
proof of the validity of an Edgeworth expansion for the same estimator. These last two works have
contributed greatly to the rigour of the analysis, albeit in a simple setting. They also point out that
under certain circumstances the dominant correction effect on the distribution of the estimator is of

1/2

order n~"/#, as in parametric situations, and unrelated to the smoothing operation itself. This point

has also been made by Liang and Cheng (1993) in their study of the partially linear regression model;

1/2 term is optimal in a

in fact, they take the analysis one step further and argue that the order n™
certain sense. See also Liang (1995) for similar results from the point of view of Bahadur efficiency.
Some other important developments include work by Horowitz (1998), who investigates bootstrap in
non- and semiparametric models with a view to determining bandwidth and providing asymptotic
refinements.

In this paper, we develop second-order approximations for an implicitly defined semiparametric
instrumental variable estimator similar to that considered by Newey (1990) except that we also
weight for heteroskedasticity of unknown form. Previous work by the author (Linton, 1995, 1996a)
developed asymptotic expansions for the cumulants of standardized semiparametric estimators in
the heteroskedastic linear regression and the partially linear model. Specifically, the asymptotic
mean squared error is of the form w + n~2%w,, where w. is a positive definite matrix and 0 <
€ < 1/2. The correction term is of larger magnitude than in parametric procedures and reflects
the method used to estimate g and the smoothness of this function. These estimators are both
explicitly defined. Furthermore, a fixed design assumption was maintained. In this paper we derive
the second-order properties of the implicitly defined instrumental variable estimator in the more
primitive random design. We calculate approximations to the first four camulants [valid to order n 2]
and prove that the formal Edgeworth approximation based on them provides a valid approximation
to the distribution of the standardized estimator correct to the same order of magnitude. As in
Nishiyama and Robinson (1997), the order n~1/2 term, due to bias and skewnesses, can dominate in
the distributional approximation, while the smoothing-based terms affect only the variance, which

is, under some restrictions, of a smaller magnitude. We use the distributional approximation to



define an optimal bandwidth for a general class of criteria, and develop practical bandwidth selection
methods. We also examine a Wald test statistic of general nonlinear restrictions, providing the
Edgeworth approximation to its distribution under the null hypothesis. The second-order properties
of the test depend on which standard error and which bandwidths are used. By using less smoothing
when estimating the standard error matrix estimator, we obtain better asymptotic performance in
terms of null rejection frequency. In this case, the size distortion [the difference between the nominal

¢ as the

and actual null rejection frequency] of the test is of the same magnitude, i.e., order n~
variance of the estimator. We define an optimal bandwidth in this context as one that minimizes the
second-order size distortion and then use our expansions to suggest a feasible bandwidth selection
method based on this notion. The optimal bandwidth is of a similar form to that derived in the
estimation problem and does not to depend on the level of the test.

This paper is organized as follows. In section 2 we define the model of interest and introduce
the estimators. In section 3 we derive the higher-order asymptotic properties of the estimator. In
section 4 we examine standard errors and a Wald statistic. In section 5 we discuss optimality and
bandwidth choice for estimation. In section 6 we present some simulation results. All derivations are
given in the appendix.

For any vectors x = (x1,...,24) and a = (ay,...,aq)’, define |x| = Z;.lzl zj, X! =z X - Xz,
and x* = (z7*,...,23)’, also let

|al
A I—r

700 Gy

Let @, v [¢, ] and F}, o [fp.e0] be the distribution functions [densities] of a N(u, V) and a x2 random

variable respectively, and let || A|| = tr'/2(A’A) be the Euclidean norm of any p x m matrix A.

2 Estimator and Assumptions

Suppose that there is a population random variable Z = (Y, X) and that there is an independent and
identically distributed sample {Z;};_; drawn from this population. We assume that there is a unique
0y € © C RP satisfying the conditional moment conditions: E{p(Z, ) |X } = 0 with probability one,

where p(z,0) is an m by 1 vector of functions. This implies the unconditional moment conditions
E{A(X)p(Z,00)} =0, (1)

for any p x m matrix A(X) [for which the expectation exists]. The sample version of (1) is the
basis of estimation as described in many previous papers, see for example Amemiya (1974). Suppose
that with probability one E[p(Z,00)p(Z,0,)" | X] = Q(X) for some unknown function 2, then the



optimal weighting matrix is proportional to D(X;)Q(X )™}, where D(X;) = D(X;;6,) with D(X;;0) =
E{0p(Z;,0) /06" | X;}, in which case the asymptotic variance of the standardized estimator is J~*
with J = E{D(X)Q(X)"'D(X)'}.

We shall suppose that the optimal instrument function D(-) and the variance function §2(-) are
smooth but otherwise of unknown form. Our estimation strategy is similar to Newey (1990) except
that we estimate both the instrument function and the heteroskedasticity nonparametrically. We
first obtain preliminary root-n consistent estimates 0 of f, which are obtained as any solution to
S AX) p(Zi,a) = 0 for any known function A(-). We then consider estimators 6 that satisfy

S0) = > DX DX o2 0) = 0, @)
where:
b)) = w200 )
J#i
QXi0) = > wip(Z;,00p(Z;,0) (4)
J#i

are nonparametric estimates of the instrument function and conditional covariance matrix. Here, w;;
are nonparametric smoother weights. Our results will be proven for a general class of variable band-
width local polynomial weights, which we now introduce using the definitions of Masry (1996ab). For

a scalar dependent variable {T;}? ,, let the parameter vector a(X;) minimize the criterion function

SH(FE) e X aw (- X0 o)

i a:0<|a<g-1
with respect to a, where a [and hence a(X;)] consists of all scalars a, [@a(X;)] indexed by the
vector a which runs through all possibilities with 0 < |a|] < ¢ — 1. Here, K(-) is a multivariate
kernel function and h,; is a bandwidth sequence that is allowed to vary with the evaluation points
and satisfies regularity conditions specified below. The minimizing value a(X;) is linear in 7}; in
particular ao(X;), which is the estimate of E(T;|X;), satisfies aip(X;) = >_,; w;;T; for some weights
w;; that depend on only the independent variables. These are the weights that we use in (3). Our
class of smoothers includes local constant kernel [by taking h,; = h, and ¢ = 1] and (approximate)
nearest neighbor [by taking h,; inversely proportional to the covariate density and g = 1, see Hirdle
and Linton (1994)], as well as local linear and higher order polynomials. The odd order polynomial

estimators with constant bandwidth have been extensively praised for their ability to adapt to the



design density and to the effective boundary region, see the recent book of Fan and Gijbels (1996)
for discussion.

Let p; = p(Zi,00), n; = 0p(Z;,60) /00" — D(X;), and ¢; = p(Z;,00)0(Zs,00) — Q(X;), and define
also )l = 1, — D(X;)Q(X;) "¢, We make the following assumptions about the sampling scheme and

smoothing weights:

AssuMPTION Al. The distribution of the d-dimensional vector X has compact support S = N{F":
F closed, Pr(X € RNF) = 0}, and is absolutely continuous with respect to Lebesgue measure
restricted to S. It has density f, which satisfies inf, f(x) > f > 0. We also suppose that for all
€>0, 0<c<u(SN(88)9)/e? <T < oo, where u is Lebesque measure and (0S) = {x : ||z —y|| <€
for some y € 0S}.

ASSUMPTION A2. (a) 6y is an interior element of the compact set © C RP; (b) p(Z,0) is 4-
times continuously differentiable in 0 for each 6 € © with probability one; (c) for any {Ej}];:l with
b+ ...+, =L with £ = 0,1,2,3,4, we have E[|0°p(Z;,0,) /007 --- 007 |"] < o0 for v =1,2,..;
(d) supgee |0°p(z,0) /89?---89?" < My(2) for My(z) such that E[M(Z)"] < oo for v =1,2,...
and { = 4.

ASSUMPTION A3. The marginal density f(-), the regression function D(-;0), the covariance ma-
triz Q(-; ), and their partial derivatives in 0 at 0 = 0y through fourth order are all r-times uniformly
boundedly continuously differentiable on the interior Sy of S, where r > (q+ 2). Furthermore, all
elements of the p x p matriz functions Q(z) = E(p;p}|X; = x), Si(z) = EMmIQ1(X)n" |X; = z)
and Ss(x1,x2) = E(n}ﬂ’l(Xi)pjp;-Q’l(Xi)nI/ | X; = 21, X = x2) are continuous throughout S and
S xS, and inf, A\pin(Q(x)) > A > 0.

AssuMPTION A4. The kernel K(-) has bounded support, is symmetric about zero, and is Lipschitz

continuous, i.e., there exists a constant C such that |K(u) — K(v)| < C'|u — v| for all u,v. Define
K|y = [ £ (u)*du.

ASSUMPTION A5. The bandwidth sequence hy; = h,(X;) satisfies hy(z) = 7(x)n~/ 21+ where
7(+) is continuously differentiable and bounded away from zero and infinity on S except perhaps on

set of Lebesgque measure zero. Let h(n) = infyes h,(z) and h(n) = sup,cg hn(7).



Assumption A1 (the density of X has bounded support) is quite strong. If we were interested only
in the first-order theory, then one could weaken this assumption considerably at the expense, for the
kernel method, of using a trimming function [this is a disadvantage of the kernel method relative to
the nearest neighbors used by Robinson (1987) and Newey (1990)]. This assumption is not needed in
density weighted average derivative estimation [Powell and Stoker (1996), Nishiyama and Robinson
(1997)], for example, but this is because the density weighting has removed the random denominator.
However, for the Edgeworth expansion developed here one would have to use a trimming device for
any smoothing method if an unbounded support is to be allowed, see below. Perhaps the main
restriction embodied in Al is that the density function be strictly positive on this bounded support,
although of course the lower bound f can be arbitrarily close to zero. It is possible to relax Al for
our method along the lines of Hirdle, Hart, Marron, and Tsybakov (1992), replacing this assumption
by conditions of the form E [g(X) /f*(X)] < oo for positive integers £ > 2 and various functions
g(+) related to D(-). However, we expect that this will require strong restrictions on the functions
g and hence D itself, which make this ‘weakening’ not worth pursuing. For example, in Hirdle,
Hart, Marron, and Tsybakov (1992) conditions (B2) and (A4) imply that ¢g(-) must approach zero
at the boundary, which seems a bit difficult to justify, especially when ¢ is the conditional second
moment as in their assumption B2 — apart from anything else this excludes homoskedastic constant
regression.” Finally, the assumption on u(S N (98)¢) is really that the Hausdorff dimension of the
set SN (0S)° is d; this is satisfied by regular sets with nonempty interior, such as rectangular and
spherical sets, see Besicovitch (1993, p 157). It is needed to ensure that the boundary region can not
be isolated from the interior.

In assumption A2 we required an infinite number of moments for p. This is for convenience
only; the precise number of moments required is large but finite [for comparison, Hall and Horowitz
(1996) assumed thirty two moments|, and varies from result to result and depends on the smoothness
and dimensionality conditions in a rather complicated way. In any event these conditions are only
sufficient and not necessary and the method can be expected to work well in the absence of such strong
conditions. Assumption A3 and Assumption A4 are fairly standard for kernel-based estimation.

Assumption A5 allows the bandwidth to vary with the estimation point through the function
7(+). We have chosen the magnitude of the bandwidth to be ‘optimal’ in the sense that taking larger
or smaller bandwidth would lead to a larger asymptotic mean squared error for . With this choice
of bandwidth the pointwise mean squared error of the nonparametric estimate D is of order n=% for

€ = q/(2q+d), which is, according to Stone (1980), the optimal rate for any estimator of D. Our use

2For example, suppose that S = [0,1], and that as = — 0, f(z) = O(2?) for some ¢ > 3 [their assumption A4
requires three times contiuous differentiability]. Then, we must have g(x) = O(x*~¢~1¢) as x — 0 otherwise there is

a non-removable singularity in g(X)/f~*(X) which would prevent the above expectation from existing.



of the word optimality is somewhat weaker and only compares estimators of the form (2)-(5) with
bandwidth h,(z) = 7(z)n™™ as 7 varies.

Masry (1996a) established uniform consistency with rates and asymptotic normality (1996b) for
the local polynomial estimators with constant bandwidth h,; = h,,. These results readily extend to

the variable bandwidth estimator under our conditions. Define

Bni = Bo(Xi) = > wi; D(X;) — D(X;)
J#i
the conditional [on X1, ..., X,] bias of D(X;;6,). Under our conditions, there exists a non-random
continuous function B(-) and an increasing sequence of interior open sets S,, C S with lim,, .. S, = S,
for which

sup [nBy(z) — B(z)[ — 0 (6)

ZGSn

with probability one. For the local linear estimator of a univariate regression function m, the bias
function, i.e., B(-), is proportional to m”(z), to be compared with m”(x) +2m/(z) f'(z) / f(x) for the

Nadaraya-Watson estimator. The bias function of the nearest-neighbor estimator is proportional to

m!(z) + 2 (2) () / ()
872(w) ’ @)

see Hirdle and Linton (1994, Theorem 3); (7) tends to be large in regions where the marginal density

is small, which might explain the simulation results reported in Newey (1990). In fact, when the
marginal density is normal, E [B?(X)] [for the nearest neighbor estimate] can be finite only if there
are tail conditions on m”.

Finally, we shall make an assumption about the preliminary estimator 6 and about the character-
istic function of the leading term. We say that a random vector R, is op(n~%,n=") if for any finite

constant c,

C

Pr |||R,| > =| = o(n™?) forsome r > 0,

n® (logn)
and use op(n~%) as shorthand for op(n~=% n~%). Then, if 7,, = T + R,, with R,, = op(n~%), and T}
having a bounded density uniformly in n, we have

sup |Pr[T,, € A] — Pr[T; € A]| = o(n™%),
AeBy

where B, consists of all Borel sets in RP for which p((0A)€) = O(e) as € — 0, and we say that T),
is distributionally equivalent to 7 to order n~%, see Sargan and Mikhail (1971). We also define the
asymptotic cumulants of 7}, as equal to the cumulants of the random variable 7" when the latter has

finite moments of the required order.



ASSUMPTION AG6. Suppose that there ezists a continuous nonincreasing function x(t) with 0 <
X(t) <1 and constant k such that |((t)] <1 — x(t) for all ||t]] > k, where

¢(t) = Elexp {it'J ' D(X;)QX:) "' p(Zi, 00) }] with i = /~1.

ASSUMPTION A7. There exists a p-vector of functions (-), such that

Zw ) + op(n~%), (8)

where E [Y(Z;)] =0 and E[||¢Y(Z:)]|"] < 00, v =1,2,..., while e = q/(2q + d).

We make all our calculations in the conditional distribution given A" = {Xi,...,X,}, so that
assumptions A6 and A7 are assumed to hold in this distribution with probability one. Assumption
A6 is fairly standard in the Edgeworth literature and just rules out certain sorts of discreteness. For
a typical parametric estimator, the error in (8) would be O,(n™1), and, when a standard O(n~1/2)

Edgeworth expansion exists for \/ﬁ(g — 0p), assumption A7 is satisfied for any € < 1/2.

3 Asymptotic Expansions for the Estimator

We shall present our expansions relative to expansions for an infeasible parametric estimator. Let
be any value that approximately solves 5(8) = 0, where 5(6) = n=* 7| D(X;;0)Q(X;;0) " p(Z;, 0);
this procedure is infeasible in our case, because it would require a specification for the parametric
family {D(-;0),Q(-;0);0 € ©}. This estimator is asymptotically normal and is first order equivalent
to 0, ie., (A — 6) = \/ﬁ(g — 6p) + 0,(1). Furthermore, 6 possesses an Edgeworth expansion to its
distribution function under our conditions. Let ﬁnl(m) be the signed measure with Lebesgue density
—\[3]
. M] | ©

Fas(#) = d04(2) o

where (H Tﬁn)m (x) is the (third) cumulant weighted sum of a multivariate Hermite polynomial,
defined in Barndorff-Nielsen and Cox (1979, p283), which depends on the third (asymptotic) cumulant
array Rz of v/n(6 — 6y). Then

sup Pr[v/n(0 — o) € Al — Ep1(JY*(A — )| = o(n~%), (10)

A€B,
where the set JY2(A — o) = {2z : 2 = JY?(x — ) some x € A} in which p,, = O(n~'/?) is the
asymptotic mean of the vector \/n(6 — ). See Hall and Horowitz (1996) and Rilestone, Srivastava,

8



and Ullah (1996). The result (10) follows by standard arguments for nonlinear parametric estimators.
First, one approximates the standardized estimator by a polynomial function of a vector of single
sums of independent mean zero random variables, and then one uses Edgeworth results for such
sequences, see Bhattacharya and Ghosh (1978) for a nice exposition. Likewise, our semiparametric
estimator can be approximated by a polynomial function of a vector of [second order] weighted U-
statistics. We next present our main result for the estimator 5, which is based on a proof that such
random variables have a valid Edgeworth expansion.

Let Bq(+) be the limiting conditional bias of the nonparametric estimator Q(Xi; 6o) based on the
true parameter, and let BT(X) = B(X) — D(X)Q(X) !Bq(X). Then define

i = T B [fl000) DX IDRX) ] B = T () + e

where
S1(X) + Se(X, X)

T(X)fAX) ]
where £ = E[B1(X)Q(X) 'B'(X)] and M = E[D(X)QX)1BH(X)].

vi(1) = L—MmJ vo(T) = HK“§E [

THEOREM 1. Suppose that the reqularity conditions A1-A7 hold. Then, there is a sequence of

random variables 0 and a constant k > 0, such that conditional on X™ with probability one

Pr (\/ﬁ||§— Bo|| < k(logn)''2, 8 solves (2)) —1—o(n"%). (11)

Furthermore, there exists sequences of vectors {u,} and bounded nonsingular covariance matrices

{U,.} which are measurable functions of X™ such that conditional on X™ with probability one

sup
AeB,

Pr{vn(d - 00) € A] = Fua(9, (4 = 1,)| = o(n™*), (12)

where 1, = o+t and W, = J14+3, such that n'?p,; = py +0,(n'/?7%) and n*%, = Y+0,(1).

The bandwidth and kernel affect only the variance of 0 to the order n~2¢ the bias, skewness,
and higher cumulants do not depend on bandwidth or kernel to this order. This appears to be a
phenomenon common to many adaptive estimators, see for example Linton (1996a) and Xiao and
Phillips (1996). Even though neither the bandwidth nor the kernel enter the order n~'/2 bias (or
skewness) terms, the quantity p,,; exists by virtue of the necessity of estimating the instruments
nonparametrically. The signs of the mean corrections p,, and p,; are model specific, so that no

general conclusions can be drawn about them, while both terms v; and v, are positive, so that

9



the variance of 0 is unambiguously greater than the limiting value J~! and indeed greater than the
variance of 6.

We conclude this section with an alternative representation of the second-order effect, which
follows by an application of deJong’s (1987) central limit theorem to the degenerate weighted U-

statistics that make up the second order terms.

COROLLARY 1. As n — o0, conditional on X™ with probability one

n'/2t¢ (6 - 9) = N(0,%).

Corollary 1 can serve as the basis for a Hausman test of the null hypothesis that the parametric

specification of {D(-;0),0 € ©} used in defining 0 is correct. Let

H=n'""20-0)7SH(6 - 1),
where 3 is any consistent estimate of ¥ and the superscript + denotes generalized inverse. Then,
under the null hypothesis H = x?(po), where py is the rank of 3, while under the alternative, H — oo,
because then n/2(6 — §) = O,(1).

4 'Testing

We extend the above theory for 6 to the case of semiparametric Wald tests under the null hypothesis.

These statistics are based on estimates of the asymptotic covariance matrix, which we treat first.

4.1 Standard Errors

There are many possible estimates of J depending on how and where one substitutes in estimates of

the unknown quantities. Let

j:

S|+

> DY (X35 0)Q(X;) " D*(Xi;0),
i=1

where D*(X;;0) is like D*(X;;8) but constructed with a second bandwidth sequence h*,. Note that

J is symmetric and positive semi-definite. Unfortunately, it suffers from a ‘degrees of freedom’ bias.?

3This is rather like the maximum likelihood estimator of the variance in a linear regression model.

10



Specifically, the expansion of J has a term of order n~1h*? [we suppose that k%, is bounded from

below and above by sequences h*(n) and &' (n) respectively], which is given by
1 n
By = - Z waj\llij, where
i=1 ji
U = E[an(Xi)*ln} — an(Xi)ilng(Xi)ilD(Xi)/ - D<Xi)Q<Xi)71CjQ(Xi)71n;‘|Xi7 X;l.
We propose to make a multiplicative bias correction to J that eliminates this term; specifically, we

take
7= T exp(— TV, T T,

where exp is the matrix exponential of a real symmetric matrix, and

2 Z%Zwajwija—lm 10X T CAX) T D) — D(X)QAX) QX))

i=1 j#i

where 77, and Z]‘ are the corresponding residuals. The resulting covariance matrix estimator J is
symmetric and positive semi-definite, and has smaller order (degrees of freedom) bias than J. ; this
can be seen from a Taylor series expansion argument.

Note that there is a different trade-off between bias and variance terms in J than in 5, which is

what motivates the different bandwidth A’ ..

4.2 Wald Statistic

Suppose we wish to test the following nonlinear hypothesis concerning the parameters

H[)Z g(@o) =0 ] HAZ g(g[)> 7é O,

where ¢(-) is a p; x 1 vector of continuously differentiable functions with p; < p. The properties of
the parametric Wald statistic
=ng{GJ yel 171y,

where g = g() and G = G() with G(0) = 9g(0) /00" and J =n"1>" | D(X;: 0)Q(X;) "' D(X;; 6),
are well known. Specifically, under regularity conditions

Pr [W > Xgl(a) Ho|] =a+o(1) ; Pr[W> Xgl(a) Ha| =1+0(1), (13)

where x2(a) denotes the o™ critical value of the chi-squared(p) random variable x2. In fact, x; (W) =
ki(xp,) +O(m™"), j =1,..., and, furthermore, the errors in (13) are actually O(n~"). Phillips and

Park (1988) compute explicitly the order n~! correction terms in some special cases.

11



We consider the semiparametric Wald statistic
W =ng{GJ G}, (14)

where g = g(@) and G =G (5) Under our regularity conditions, W and W are first-order equivalent
under the null hypothesis, but not second-order equivalent. Our expansions reveal that if the same
bandwidth magnitude h,,; = O(n~'/(2%9) is used in estimating § and .J, then the bias from estimating
J contributes a large second order effect to W. To avoid this, we suppose that h,,; satisfying A5 is
used to construct 5, while a second bandwidth A}, is used in J. , Le., J (h,;), where hf, is smaller in
order than h,;. In this case, W(hm', h;,) has second order effect which is the same magnitude as in

estimation, and is indeed smaller than can be achieved when a single bandwidth is used throughout.

THEOREM 2. Suppose that the regularity conditions A1-A7 hold, that the function g is four times
continuously differentiable in a neighborhood of 0y, and that the matriz Q = Gy{GoJ Gy} Gy,
where Gy = G(6y), is of full rank. Suppose that n2f 20t 2124/ (a+d)

conditional on X™ with probability one, we have

— 0 and n — 00. Then,

n

Pr [W <z yHO] = )y oo [2(1 — tr(Z,))] + o(n~%), (15)

where =, = 2Q%,/p1 with ¥, as defined below Theorem 1.

REMARKS.

1. The null rejection frequency of the test based on the asymptotic critical values Xf,l(a) is a +
O(n=%), where the O(n~2¢) term depends on the bandwidth constant through the matrix %,,.
Since Y, is positive semi-definite, the test based on the asymptotic critical values will tend to
over-reject. The precise magnitude of the second order effect depends also on the restriction
through the matrix Q).

2. When a single bandwidth is used throughout, i.e., h?, = h,;, then the order of magnitude of the
correction term in (15) is larger; specifically it is of order n~%(4+9) when h,; = O(n~/(@d),

Furthermore, the direction of the effect could take either sign.
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5 Second-Order Efficiency and Bandwidth Selection

5.1 Optimal Estimation

We now suppose that the bandwidth is of the form h,(z) = 75(2)n~1/24+4 for a family of functions
7x(-), A € A C R For example, the family 7)(z) = A\ f~*2(z) contains fixed window estimation
[A2 = 0] and ‘ideal’ nearest neighbor estimation [As = 1] as well as a range of intermediate schemes.
Jennen-Steinmetz and Gasser (1988) discuss this bandwidth scheme and its implications at some
length. Our objective is to define a general optimality criterion for deciding on a best choice of the
parameter A for estimation and testing purposes. Define by C the class of estimators 0 defined by (2)
which are based on the smoothing procedure (5) with bandwidth sequence as above. Each member
of C is indexed by a value of \; we shall seek the ‘best’ value, which we denote by ..

Recall that the (asymptotic ) squared bias of the estimator is of order n~* and so the (asymptotic)
mean squared error is the same as the asymptotic variance to order n~2¢. We shall work with a scalar
valued risk function R that depends only on the asymptotic variance matrix ¥, of the estimator, i.e.,
R(b\, 6o) = o(¥,), where p is some smooth scalar valued function. For example, o could be any of
the widely used criteria for multivariate optimality such as the determinant or trace of the matrix or
a particular quadratic form ¢ W, c. The covariance matrix ¥,, depends on A only through the higher

order terms, i.e.,
Up(A) = J 1+ 20(A) i= T+ S0 (A) 4 Sna(X),

where 3,1(\) = n=2J vy (1)) J 7 and T9(N) = n 2T 1yy(ry)J L. Because the distribution of
\/ﬁ(/ﬁ\— 6p) only depends on the bandwidth through ¥, [to this order| there is no loss of generality in
choosing this criterion if the underlying loss function is symmetric about zero and bowl-shaped. See
Rothenberg (1984, pp902-909) for some discussion about higher order efficiency. A linear approxi-

mation to o(V,) ignoring terms that don’t depend on \ is

4More broadly, though, one might want to compare methods in the broader class where 7(-) is considered an
unknown function. It may be possible to find an optimal 7(-) through calculus of variation techniques, but it will
depend on the data distribution in a complicated fashion. It is easy to see that no particular 7(-) method can dominate
any other according to g uniformly over the class of joint distributions D of the data Z;, 1 =1,...,n.

One way of obtaining an unambiguous ranking might be through the minimax criterion, as in Fan (1993). However,
it is to be expected that no method can be found to achieve this bound. In any case, this way of comparing estimators
is of questionable value, since it makes nature seem unduly hostile. Herman Chernoff [Bather (1997, p. 339)] gives the
following example: “If you have a choice between committing suicide or not taking action, in which case you might
lead a normal life or you might die a horrible death, the minimax principle tells you to avoid any possibility [however

remote] of a horrible death by committing suicide.”

13



on(N) = dwi(Ty) + dwa(Ty), (16)
where o = {00 /vech(¥') }y_ -1, wi(Ty) = vech(J w1 (7)) 1), and wa(7y) = vech(J twa(1y)J 7).
Minimizing o{V, ()} is equivalent to minimizing o, (\). We shall suppose that 0 <7= inf, , 7x(z) <
sup, , 7A(z) = T < oo and that there is a unique ), denoted A, that minimizes () over the set
A. Finally, let

hopt () = T, (x)n /et (17)
The resulting estimator is the best within the class C.> In the special case that 7)(z) = Aro(x) for
some fixed function 7¢(z), Aoy has an explicit solution. i.e., Ay = {(dg'ws)/(2q0'w1)}/ @4+, More

generally, one must solve a nonlinear optimization problem to find A.

5.2 Feasible Bandwidth Selection

Let 7,(A\) be some estimate of o, (A), let /):opt minimize 7, (\) with respect to A € A, and let

—1/(2¢+d)

/f;opt(m) =715 (z)n :

)\opt
This data-based bandwidth selection method mimics (17). Provided 7, () is a good approximation

to on(\) we can expect that ﬁopt will be a good approximation to h.y. Specifically, if
sup [Fa(A) = n~*0(\)] = 0p(n~%),
then
h;p1t<h0pt — hopt) () = 0p(1)
uniformly in z. Under additional conditions we can establish the second order efficiency of the

estimator § based on data-based bandwidth selection. Below we give such a result under high

level conditions.
THEOREM 3. Suppose that for some o, and o, with 0 < @, @y, where @, + @y > 26+ 1/2, then
Xopt = Aot = 0p(n~#1,n7%) (18)

o0 oo
sup ||5<A)I| = op(n~%2,n7%). (19)

[IA=Aopt||<én~%1

By contrast, the cross-validation bandwidth selection method proposed in Newey (1990) achieves the right band-
width rate, although the constants would generally be wrong and would lead to suboptimal risk according to our

criterion.
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Then, the distribution of \/ﬁ@(io,,t) — 6o) is the same as the distribution of \/ﬁ(g()\opt) — 6o) to

order n=%, i.e., 0(\opt) is second order efficient.

The condition (18) requires that /):opt be a little more than n¥i-consistent. It can be shown
[for ¢; < 1/2] by using the same arguments under additional smoothness conditions on the data
distribution. The condition (19) requires that the effect of A on #()) is small in a certain sense.
It is like a stochastic equicontinuity condition. It follows from the same sort of arguments used in
establishing Theorem 1. See Linton (1995) for similar arguments.

We now discuss estimation of o,(A). It may appear that since o,(\) depends on the unknown
derivatives of D etc, any method for estimating o,,(A) must involve additional nonparametric esti-
mation of these unknown quantities, which presupposes the selection of a preliminary bandwidth.
We argue that this is not really the case; one can make any of these methods depend only on a single
unknown quantity A by the well respected method of profiling or concentration, see Jones, Marron,
and Sheather (1992) for a review of such methods in kernel density estimation. That is, we use non-
parametric estimators of ¢, (A) that depend on a smoothing parameter which is also controlled by
the same \. Provided the magnitude of these bandwidths is chosen correctly, the resulting estimator

will have the required properties. Specifically, let

Sa() = THE-mTam) T (20)
Saa(N) = 1{ S W) T+ D 0N wiuwa UX) T U X) T T (21)

J#i Jj#t
where £ = n 'S Bl Q(X;) ‘B!, and Mm = nt " D(X:;0)Q(X;) B! where B!, is some

nonparametric estimator of B! while 77 nj are residuals corresponding to nj. Finally, let \ minimize

ni’

— —

where 0 = {0p /vech(¥) };_5-1, while Uy (X) = vech(E,1())) and Wpa(A) = vech(X,2(A)), and let
() = 75 (z)n "V Crtd),

The main issue arises with how to construct B!, since all the other quantities in (20) and (21)

can be computed from what we know already. We just outline the procedure for Em, but the same
applies to Boy; and hence Ejm Recall that By; = . wi;{D(X;) — D(X;)}; this suggests a general

method for estimating the bias. Specifically, we take
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Eni = Zwij{D<Xj) — D(Xi)}, (23)
J#
where the weights {w;;} are precisely those used in (3), while D(X ;) is some estimate of D(Xj). For

example, let B
D(X;) = Zwij—]/u
— 00
J#i
where the weights {w;} come from a local polynomial regression of order g + s for some s > 0, and

have bandwidth sequence

hf (.’13) =Ty (x)nfl/(2q+23+d).

It is important to notice here that although the rate of hZ(x) is different from the rate of h,(x), these
bandwidths are both determined by the same unknown parameter \. Provided D and f are smooth
enough, i.e., satisfy A3 with ¢+s replacing ¢, the estimation error in B,,; will be smaller than B,,; itself.
An alternative method called the ‘rule of thumb’ approach is based on a parametric specification of
D. This method was proposed in Silverman (1986) and further exploited in Andrews (1991) in other
contexts. In our case, one takes an auxiliary parametric specification {D(-;4),9 € T} for D(-), and
computes estimates 9 of ¥ by some parametric estimation technique like maximum likelihood. We
then take D(-;9) in place of D(-) in (23) and hence (20).° We investigate both the nonparametric
plug-in and the rule-of-thumb methods in the Monte Carlo experiments below. The ‘variance’ terms

in (21) like > > wf]ﬁ;@(Xl)*lﬁ;' /n well approximate their estimands as can be shown by standard
arguments foir;%—statistics, see Fan and Li (1996).

Finally, we show how optimal testing can be put in the same framework. We shall suppose now
that h,(z) = 7(z)n @9 is used in §, while hZ(z) = 7x(z)n" /) n=5 for some § > 0, is used
in J as required by the theorem. Both the rates n~1/(27+d) and n~1/a+d)p=3 are given and the only
unknown quantity is A, whose value will be determined in the sequel. Suppose that we define an
optimal bandwidth for W as one that produces the smallest discrepancy between the actual null
rejection frequency and the nominal level of the test, that is, we choose the bandwidth constant to
solve the following problem

min
A

Pr [W > 2, (a) |H0] - a‘ . (24)

This criterion is not the only one that one might be interested in, but it is quite important in itself.

Furthermore, it does at least prove to be tractable. This concentration on the null hypothesis is

6Under suitable conditions, this method provides second-order optimality for the resulting 0 when D(:) is as

specified, and the right magnitude for 1 more generally.
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very similar to that adopted in the bootstrap literature, see Hall (1992, p222). By Theorem 2 and a

Taylor expansion, we have

Pr|W > X2 (a)|Ho| —a = 1—Fp o 2 (@1 =2 (@)tr(En)] — a+ o(n~%)

= foroo X ()] X5, (@)t2(En) + 0(n ™).

Therefore, since x2 () > 0 and f,, (x5, (@) < 0 always, the optimal bandwidth according to
(24) equivalently minimizes tr(Z,(\)). It is the same magnitude as the optimal bandwidth in the
estimation problem; it depends on the restrictions through G, but does not depend on «. Note
that we can write tr(Z,(\)) as o(¥,(A)) for some function p, which puts the estimation and testing
problems within a common framework. In the testing case, a feasible bandwidth selection method
can be based on replacing =, (A) by an estimate Z,(\) = 2GS, (\)G'{GJ'G'} ! /p, and proceeding

as above.

6 Monte Carlo Experiment

We evaluated our second-order approximations and the bandwidth selection procedure on the sample
selection model given below. We report here only results about testing, see Linton (1997) for results

on estimation.

4
}/; =c-+ BOOSi -+ ZﬁjoXﬂ +&; 3 S; = 1 (0410 + a20X0i + m; > 0) ’

j=1
€; 0 1 07
~ N Y )
n; 0 0.7 1
where (Xo;, X14,...,X4;) are mutually independent with marginal distributions standard normal

truncated [at +/-3]. We take ayg = agp = 1 throughout. We computed the Wald statistics for
testing the two hypotheses: (a) Ho: Byy = 0 [in which case we set By =0 and 3;, =1, =1,...,4.];
(b) Hp: B;0 =0, 7 = 1,...,4 [in which case we set By = 1 and 3;, = 0, j = 1,...,4.]. We shall
consider the constant design [in which ¢ = 1], and the no-constant design [in which ¢ = 0 and is not
estimated]. In total this makes four designs.

We suppose that it is known that selection is determined only by Xy, in which case the optimal

instrument for s is w(z) = Pr[s = 1|Xy = zo]. We estimate this function by the Nadaraya-Watson
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estimator and the local linear method using the following bi-quadratic kernel function: K(u) =
0.9375(1 — u?)21(Ju| < 1) and a constant bandwidth h, = An~/®> when used in computing § and
h: = X*n~? when used in computing jl in W. We computed the test statistic at a grid of fixed
bandwidths with A in the range [Amin, Amax], taking \* = 0.9 % Ay, throughout. We also computed
the test statistics using our data-based bandwidth selection method to determine \. Specifically, we
estimated the bias by (23) using two different methods to compute D(-), which in our case is 7(-):
nonparametric plug-in and rule-of-thumb plug-in. In the former case, we took 7(-) as our estimate
of m(x) in (23). In the latter case, we take a parametric specification {m,(-;?), ¥ € T} for 7(-), and
compute estimates ¥ of ¥ by maximum likelihood. We then take (5 ) in place of D(-) in (23) and
hence (20).” We take 7, to be either a quadratic function or a logit with linear index.

Throughout, we examine the conditional distribution of W | X1, ..., X, . The results of 20,000
replications are given in Figures 1-3 below. First, there is quite substantial over-rejection which
decreases with sample size for each bandwidth value. There is some variation in the bandwidth effect
across designs. While in Figure 1 there is a substantial effect, in Figure 2, where there is no constant,
the rejection frequency is much less sensitive to bandwidth. Figure 3 is somewhat intermediate, but
still exhibits less dependence on bandwidth. The main reason for this lack of sensitivity is that in
these cases the matrix J ! is approximately diagonal. Since the bandwidth effects only come in from
the estimation of m(Xy;), i.e., the matrix £, is zero except for the corresponding diagonal element,
our theory does predict that the second order matrix > should be zero or approximately zero in this
case.

We now turn to Figure 1. The local linear fixed bandwidth results show a poorer performance at
small bandwidths than the kernel method, while at larger bandwidth the local linear does better. The
automatic bandwidth selection methods generally do pretty well, being in some cases slightly better
than the best fixed bandwidth and in some cases slightly worse. There is not much to choose amongst
the different bandwidth selection methods, although the nonparametric method appears to do the
best and the quadratic rule-of-thumb method does the worst. We also compared the distribution of

the Wald statistic with the corresponding chi-squared distribution (not shown) - the distributions
are quite close. @

"Under suitable conditions, this method provides second-order optimality for the resulting 0 when D(:) is as
specified, and the right magnitude for h more generally. This method was proposed in Silverman (1986) and further
exploited in Andrews (1991) in other contexts.
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7 Conclusion

In concluding, we mention some extensions of this paper. Our theory is restricted to the case where
the marginal density of the covariates is bounded away from zero on its compact support. When
this assumption is violated, a totally new theory is necessary which would combine extreme value
theory with the methods we use here. This remains to be addressed in future work. Also, the naive
bootstrap, which draws samples {Y;*, X/} ,, although first order correct, will fail to capture the
second order effects. Specifically, this bootstrap will fail to capture the bias-related terms, as it does
in nonparametric density and regression problems, see Hiardle and Marron (1991). In order to provide
good approximation at the optimal bandwidth it is necessary to use a more complicated bootstrap

algorithm.

A Appendix

The appendices are organized as follows. In section A1l we give some background results on kernel
regression estimation. In section A2 we establish an approximation for the first three derivatives of
the score function. In appendix B we present the proofs of our theorems. In appendix C we give the
proofs of six lemmas given in Appendix A.

Throughout let k& denote a positive finite constant which can be different from expression to

expression.

A.1 Nonparametric Preliminaries

o

is the total number of distinct partial derivatives of order /. We will assume that these partial

Let t(q,d) = Z;é t¢ denote the total number of parameters in the vector a(X;), where t, = (

derivatives have been arranged in some order, which will be the same throughout the sequel. Define

the real symmetric ¢ X ¢ matrices

Mrioo Mpion - Myiog Moo Moi --- Moy,
Mpiio Mpiga Mo M,
My; = . ) M; = f(Xl) . )
| Muigo Muigr - Mg | My Mgy ... My,

in which each sub-matrix M, s [and M, ] has dimensions t; X t;. The typical element of the sub-

matrix My, ¢k 18 My atb(Xi), where |a] = £ and |b| = k, in which for each d-tuple a = (ay, ..., aq)
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Xi—X;\ (X — X;\*
ol (52 (525

fi J#i
while the typical element in My, is maip = [ u®P K (u)du. Define the local polynomial weights as

a 1 X, — X, X, — X \*
Z wio; wij hd elM eg(a)K( - J)( hm. g>’

{a:lal<q}

where for each vector a with |a|] < ¢, f(a) is its position in the t x 1 vector a(X;), and e; =
(0,...,1,...0) is the j™ elementary vector. Define also the t x t matrix M,; = E(M,;|X;). Let

Boni = 322 Wi UX;) — QUXi), Vi = 32, win;, and Voni = 3, wi¢;.
We make use of the following lemmas.

LEMMA 1. For all o, =1,...,p, with probability one,

0 (llega)”?
o | O =T | = 0 (55 )
max (Mn —M;),,| = O() (26)
Doa(X::00) — Dua(X)| = Uog "2\ o (e 27
max | Das(Xi360) — Dag(Xs)| = “mh)i2 T ( ) (27)

LEMMA 2. Suppose that the conditions A1-A5 hold except that we only require v moments with
v > (1+¢€)/e. Then, for some finite k,

Pr (max |(Mpi — M;)ap| >

1<i<n

= o(n %) (28)

)
Pr (oI m>aﬂ|>k1‘)g”) = o) 29
) = o(n ). (30)

Pr (s [(Viosl > &

This says that the corresponding random sequence is op(n~=¢= n=%) for any n > 0.
The results (27), (29) and (30) are also true for Q(X;: o), Ban: and Vo
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LEMMA 3. With probability one, as n — o0,

max 445wy 20} = O(0¥) @1
max |wy| = O(n™>) (32)
max > fwgl = 0(1). (33)

There exists a matrix of random variables ¥ (Z;) whose elements have mean zero [with probability

one conditional on X;] and finite second moments such that

Q(Xz) — Q(X;) = Vani + Bani + — Z U(Z;) + op(n29) (34)

by Taylor expansion and Assumptions A2 and A7. Slmllarly,

B(X:) ~ D(X) = Vii+ B+ Y F (X1 >, (2) + 0p(n ) (35)

v=1
where F,(X;) is the p x p matrix with typical elements F,..5(X;) = E[0?p,(Zi, 00)/00500., | X;], for
a? ﬂ’ ’Y = 17 R 7p'

A.2 Standardized Criterion Derivatives

We present here the three crucial lemmas that are used in the proofs of Theorem 1 and 2

LEMMA 4. There exist random vectors S;, j = 0,...,4, with E[||S;||"] < oo for v =1,2,...,
and 7 =0,...,4, such that

V/ns(0o) = Z S; + op(n™),

where

So = %ZD(Xi)Q(Xi)_lp(Zu@o):Op(l)

Si = YD) fzxv (Z)YUX) ™ p(Ze,60) = Opfn™7?)

1 e &

S = =D (2) ZF 'p(Zi,60)} = Op(n™'/?)

=1 y=1
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1
s, — —Z B!Q(X,) " p(Zi, 60) = O, (R")
Si = ZVTQ p(Z:,00) = Op(n™*h"2),

where Bl = B! — D(X;)Q(X;) " Bani and V., = Vs — D(X;)QUX;) ™ Vons.

LEMMA 5. There exist random matrices Hj, j =1,...,5, with E[||H;||"] < oo for v=1,2,...

and 7 =1,...,5, such that

a/\ 5
2 00)—J =Y H +op(n*),

oo’
where
o= Ly e ey - g+ Ly peoec i = 0,e0)
H - % V) D o)
H; = —%_iD( {%iqf(zl} D(X;) = 0y(n1/?)
i, = Z%2¢ { ZF D(X)}z()( e
Hy = %iBfm.Q(Xi)‘lD(Xi)’:Op(ﬁq).

Furthermore, E(H;) =0, j = 1,2, and are asymptotically normal.
LEMMA 6. For a,(3,7,0 =1,...,p, we have for some k < oo:
Pr [n1/2 |5a(00)| > k(log n)l/z} = o(n™ %)

géw {222(90)}‘>k(logn)1/2} = o)

ol
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o P T O . S Y s e (3%)
" 196,00, 90,00, " ° ogn)T = o
Pr sup 83—A(H) > k(logn)?| = o(n™%). (39)
nl/2||0—0o||<klogn 89589 896 ]

B Appendix

We use Greek subscripts to denote either an element of a vector or partial differentiation with
respect to the parameters, thus S,5(0) = 95,(0) /005 , Sup,(0) = 0%54(0) /00500., , etc. Let s(0) =

n~t" L D(X;0)QX;) " p(Z;,0), where s(6) = (s1(0), ..., 5,(0)) and 5(0) = (51(0), ...,5,(0)). Let
also Jg, = E{s3,(00)}, Jasx = E{spsr(00)}, and (J%) = (ng) ! and define the standardized random
variables Z = V/n54(00), Zap = Vn{Sap(00) — Jug}, and Z,5, = \/n{sap,(00) — Jop}, while Z, =
V13000, Zag = n{5up(00) — Jup}, and Zag, = n{Sag,(00) — Jupy}. Stack J* = (J8, ... JeBY
and Z, = (24, . .. ,é\p)’.

In the sequel we shall make use of the facts that

op(n™®) +op(n?) = op (max{n*n"}) and (40)

op(n™?) - OD(n*ﬂ) = op (nf(aﬁg), max {n*a, n’ﬂ}) )

The first result is obvious. The second result is a consequence of the following argument. Let X, be

an op(n~®) sequence and let Y, be an op(n~") sequence. Then,

[ c
Pr || X\ Y| > —————| = P “X,)(nPY,)|| > ———
r H “ a+5) (logn) r _||(TL )(n )|| - (logn>7":|
< Prl|X) > —C I A —
nll 22— ——+ Y|l 2 57—
- I ne (logn) n? (logn)

where the inequality uses the fact that Pr[A U B] < Pr[A] + Pr[B] for any events A, B, and the fact
that If ||zy|| > a for a < 1, then either ||z|| > a or ||y|| > a.

PROOF OF THEOREM 1. By a Taylor expansion (for a = 1,...,p),
0 = 3.(0) (41)
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p p
fon -~ -~ ]. ~ AN -~
= Sal00) + D Fas(00) (05 — o) + 3 > Sapy(00)(05 — 005) (6 — 65, (42)
B=1 By=1
1 P -~ -~ A~
tay Sapys(07) (05 — Oo3) (05 — 0oy) (05 — bos), (43)
’ :87776:1

where 6" are intermediate values between 6 and 6,. We first establish (11). We can rewrite (41-43)

as the following system of equations:

p

p
~A = ZJ°Bzﬂ+ ZJﬂZaﬂAB—J— \/_ > TP Jap ApA, (44)
p=1 B=1

. 1 a [ Jolend *
+W Z I Zog A, + — o > T Baps(07) Mg, A,
By=1 B,y,6=1
where A = n'/2(0 — 6y) = (A1,...,A,). Take ko to be the maximum of the k given in (36)-(39)
[over all a, 3,7, 6] multiplied by p* x ||J7||. Then when ||A|| < ko(logn)'/2, the norm of the right
hand side of (44) is less than ko(logn)'/? with probability 1 — o(n~%), by Lemma 6. For example,

the leading term satisfies

{177 2. > ko(logn)™*} € {|[T7H] x [|Z.]] > ko(logn)"/* = {||Z.]| > =7 (logn)/*},

17~ 1H

which is o(n72¢). The higher order terms are of smaller order and automatically satisfy the require-
ments. By Brouwer’s fixed point theorem there exists a solution to (41) in the disk |[n/2(8 — 6)|| <
ko(logn)'/?, which concludes the proof of (11). In the sequel we shall suppose that 6 is any such
solution and indeed can confine ourselves to the event that ||[n'/2(6 — 6y)|| < ko(logn)'/2.

We now establish (12). Let § = (5:, . 5*)’ solve the truncated equations determined by letting

»Vp
the right hand side of (42) equal zero. Collect the array {54(6b),3as(60), Sag(00)}7, 5., in a single
vector Z of dimensions pf = Zi’:l (p+: 1), and let 1 denote its probability limit. Consider the p
equations
Za + Zzagég + = Z Zapy030~, = 0, 1<a<p (45)
ﬂ r=1

in the p' + p variables z = {za, Zaps Zapr o -1 20d 6 = {05}5_;. These have a solution at 6 = 0 and
2=, ie., zo =0, a =1,...,p. By the implicit function theorem, there is a neighborhood N of
and an infinitely differentiable vector of functions H = (Hj,..., H,) such that 6 = H(z), satisfies
(45) for z in N, where H(u) = 0. We are actually confined already to a shrinking neighborhood
of zero by virtue of (11). Now take z = Z and z = Z*, where Z* is the same as Z except that
its first components are s,(6y) + % g,7,6:1 §ag75(9*)(/9\5 — 90[3)(57 — 907)(/9\5 — 0ps) instead of 5,(6y),
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a=1,...,p. By Lemma 6, the norm of the difference between Z and Z* is less than ko (log n)"/2n /2
with probability 1 — o(n~2) when |[n!/2(8 — 6,)|| < ko(logn)'/2. Therefore, by the uniqueness part
of the implicit function theorem we have § — 6, = H (Z*) and 0—0y=H (ZA) with probability
1 — o(n=2). Let T}, = v/n(0 — 6) and T* = \/n(6 — ;). The discrepancy between 6 and § can be

shown to be small by a Taylor expansion. Indeed,

Pr [n* ||T;, — T7t|| > k(log n)l/z} =o(n~%). (46)
Now let
p R 1 p Y R 1 p ~ o~
Ty o= =) J¥Z5+ — > IR Ze 25— NG D AV AL YA
B=1 B,y,6=1 B,v,6,A,m=1
1 Y iS5 5
~3 > o I 2,20 25

6’7’6771—71}:1

By Taylor expansion and application of Lemma 6, the random variable 77* satisfies
Pr [n* | T2 — Ty|| > klogn] = o(n™>).

The properties of the truncated expansion 7)* can now be found from the properties of the stan-
dardized random variables ZAg, Z\gw, and probability limits Jg, and Jgs,. Substituting the expansions

we found in Lemmas 4-6 in Appendix A, we obtain

5
Ty = 3 T+ op(n™™) = T + op(n”2), (47)
=0
where the leading term Tro = — > 5| J *#S0s = Op(1), while
P P p
T = Y JPJPHyp 25— ) TS5 ; Ta=— Y J"Su
B,v,6=1 /=1 a,5=1
p p 1 p
T, = — J'ﬂ(Slﬂ + 525) + Z J‘»BJ’Y‘S (H157 + Hgg,y) Zs — % Z J.BJWSJ/\WJ&SWZ')/Z)\
B=1 B,7,6=1 B,7,6,\,m=1
P 1 P
T = 3 TSk Y TRy 2
Byy,0=1 B,7,6,mv=1
P
Lo = S JUPHy S,
Byy,0=1
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Here, T),; = OP(E ), Tnz = Op(1/7/nh%), Tnz = Op(n=Y2), Ty = Op(ﬁq), and T)5 = OP(EQ/\/nﬁd).
Write T),, = Tho + Th1 + Tha, Ty = T3, and Tnc = Tho + T,5. The quantities pu,,, ¥,, in Theorem 1
are the mean and variance of 7,**.

Define the random variables

- %imz@-) (48)

U, = \/_ ZZ wijon(Ziy Z;), (49)

j=1 i=1
i#£]

with (,(-) a deterministic vector function satisfying E [(,,(Z;)] = 0 and sup, E[||(,,(Z)|"] < o

for » = 1,2,..., while ¢,(-,-) is a deterministic vector function satisfying E [¢,(Z;, Z;)|Zi] =

E e, (Z;i, Z;)|Z;] = 0 with probability one, and sup,, E [||¢,(Z:, Z;)||"] < oo, r = 1,2,.... Note

that T,,, is of the form (48), the random sequence T, is a homogenous quadratic polynomial

in such sums with magnitude O,(n~'/?), while T, is like (49) with ¢,,(Z;, Z;) = Y5 s1{J° +

J*0J7 Hag, } (027 p)s.

We now establish the validity of the Edgeworth approximation to the distribution of 7,7** from
which follows the validity of the distributional approximation for 7,,. Our method of proof extends
the univariate results of Nishiyama and Robinson (1997) to higher dimensions and smaller order of
error [they considered only O(n~'/2) approximations]. The random sequence T}, + Ty, has a valid
Edgeworth expansion to o(n=%), as follows from standard results for parametric estimators such as
can be found in Bhattacharya and Ghosh (1979), the main problem arises with 7T},. and its interaction
with T),,. For expositional reasons we shall therefore just establish the result for T,, + 7)., since
incorporating T}, is conceptually trivial but notationally complicated. By the so-called smoothing
lemma [Bhattacharya and Rao (1976, Lemma 12.1 and Lemma 12.2) and Gotze (1987, 3.4)], the left
hand side of (12) is bounded by

n2¢logn
max
la]<p+1 0

for some constant k, where v, (s) is the characteristic function of T**, while 1, (s) is the Fourier

O {1 (5) = Wy (9)}| ds + o(n™™) (50)

transform of the signed measure F*,(z) [which is F;(z) renormalized to have mean vector , and
variance matrix ¥,]. Here, f: -ds denotes integration over the p-dimensional region where a < ||s|| <

b. By the triangle inequality,

[ o) - as< [

for any § > 0. We take § = (1 — 2¢)/(p + 5). The last integral is o(n~2¢) because of the form of the

Edgeworth characteristic function @Zn

P nte) ~ Doyt [ Pl [

ogn

aa{p'n(s)‘ ds
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We must develop some machinery for dealing with 02¢,,(s) and aain(s). For any set L,, =
{ir, ... i} withm =m(n), let A (m) =33 o) wijp,(Zi, Z;) and Ay(m) = Tpe— Al (m). Then,
Ty — Ap(m) = 3 icr, Cu(Zs)/v/n+ Ar(m), where Ar(m) does not depend on Zj, j € L,,. When
m = n, A,(m) = T,. and Ar(m) = 0. Note that under our moment conditions, E [||A,(m)|'] =

O(m’/? /n"(0+29/2) for any integer r. By Taylor expansion we have for any integer r,
¢n(s> :an,mr( +Rm7‘ Z¢nm€ +Rm7‘( ) (51)

where ¥, . ,(s) = E [exp(is/(Tg‘** — A, (m)) (z’s’An(m))é /Z!} and

i/ (T~ A (m)) (18" B (170 ))("H)}
(r+1)! ’

where wu is uniformly distributed on [0, 1] independently of the data, while

Ro(s) = B |

1 * pm—
Vnme(8) = i Z gm=UINLm) () wy gy -+ Wiy, - Tue(s; J,m),

where the summation is over all 2¢-tuples J = (i1, j1, - . ., %, je) With i # j, and Ay is the number

of distinct elements in the set A, while

Coe(s; Jym) = FE

exp (ﬁ > Sz >> exp(is' AL ()¢, (Ziy, Z,) - ' 0 Zins Zy) |

jEJNLm

m—(JﬁLm)#

The analysis of £ (s) and T'y(s; J,n) and their partial derivatives follows from similar

work to Gotze (1987); the behaviour of nonparametric weights follows from Lemma 3.

We shall use the following fact: for any p-vectors x = (z1,...,2,) and b = (bl, ...,by) and
integer r, we have 9Pe’'® = ilPleis'™® e 1£L'] and OP(s'z)" = (r )|b|(s )"~ 1Pl [15-, =, where (r)p =

r---(r—|b|). We first take m = n. Then for any vector a with |a| < p+ 1 we have by the chain rule
and the fact that |exp(iz)| < 1 for all real z,

P Rag(s)] < ke 3 B [[obe Tt go(s )|
b+c=a N
i p
< k- Z E ||(s'T,e) P 'H(Tnd+Tnc'U)?j(Tnc);j
b+c:a L le

< ke () B [Tl (4 1Tl [Tl
by the Cauchy-Schwarz inequality. Then, since f0”6 (1 + HSHWr 1) ds = O(né®+r+2)) and
E (| Tocl™™ (1 + |1 TelP™) |1 Toal 7] = O(n0F19),
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we have shown that S

max / 0P R, +(s)| ds = o(n™),
0

|la|<p+1
provided r > {e +6(p+2)}/(e — 0).
We next deal with the term f0n6 1>, aa¢n7n7£(3)| ds. First note that

|aawn7nﬂ"(8)| <k ‘ab S n€/2 Z |w’1J1 ’ 'wiejz| : |acrnr<8; J7 n)| )
b+c=a

by crude bounding. Furthermore, there is some polynomial P(-) with bounded coefficients and

constant £ > 0 such that
oPggUnE ()| < exp(—k [I") P(ls]).

by Gotze (1987, Lemma 3.3). Therefore, it suffices to estimate » *|w;, j, - - - Wi, | - [0°Tnr(s; J,n)]| .
Consider the case a = ¢ = 0 and ¢ = 3, in which situation there are five subcases J» = 2,..., Jx = 6.

By Lemma 3,

Z*ng = Z ’wz]w]kwkz| = 1 26 Z ’wz]w]kwkl| - ( - 26)7 (52)
D lwiwigw,s| = 0(713_26)7 D wijwiiwys| = (n?’),

where the sums are over two, three, four, five, and six distinct indices respectively. Now let (,,.(s) =
exp(is'¢,,(Z;)/+/n). We have on the range 0 < ||s|| < o(y/n) that:

E[Cm(s)ﬁnj(s)sl%(ziaZj)_} = O(|ls[* /n), (53)
E E[Cne(s){sl%(ziaZj)}QS'SOn(ZjaZk) = O(llsll* /v/m),
E 1;[ Cw(S)S’wn(ZbZj>s/90n(Zj,Zk)S’son(Zk,Zi)- = O(lls[l*).
E _HCM(S)S'%(Z’Zj)S'%(Zka)SI%(ZkaZZ)_ = O(|Is| /n),
E 1;[ Cre(8)S" 00 (Zi, Z5)8' (2, Z1)s" o (20, Zr)- = O(|ls||” /nv/n)
E _E[Cne(s)s/%(zuZj)S/%(Zle)S/%(ZmZt)_ = O(|ls|’ /n®). (54)

The magnitude of the expectations (53)-(54) is established as follows. Write ¢,,;(s) = P,(s'C,.(Z:)/v/n)+
R,(5'¢,(Z:)/\/n), where P,(z) =1+ iz + ...+ (ix)?/q! is the ¢'" order expansion of exp(ir) about
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= 0 and R,(z) = exp(iz) — P,(x). Then, multiply out and take expectation term by term
[the polynomial terms yield zeros when there is an odd Z;]. In conclusion, we obtain |1, ,,.(s)| <
exp(—Fk ||s||*) P.(||s||)o(n~2) for some polynomial P, with bounded coefficients. Thus, the inte-

% is o(n™2¢) as required. The same argument applies to general a, be-

gral over 0 < [|s]] < n
cause: (a) differentiating the polynomial terms with respect to s simply changes the polynomial
P, in our bound, while (b) as for the remainder terms, we have for any integer ¢ and any vector
a, |02R,(5'C,,(Zi)/v/n) < k|R,(5'C,,(Z;)/\/n)| for some constant k. Finally, under our conditions,
|8a¢nn£ | < k|02, 041 ( )| for any ¢. Therefore, combining (52) and (53)-(54), we get

/n6
0

= o(n"?)

n,n,l S

as required.
We next establish that

[ s = o) (55)

For this we use the expansion (51) with m(n) < n. We just consider the case a = 0, the general case

follows similarly. We have

m'r/2

[ (5)] < K [€77(s ZH I 1+25) +h sl — e (56)

by an extension of some results of Callaert, Janssen, and Verarbereke (1984) to the multivariate
case with kernel weighting [see also Bickel, Gotze, and van Zwet (1986, 2.17)]. Without loss of
generality we suppose that € > 1/4— when e < 1/4 this means that 2¢ < 1/2 and the argument
below is even simpler. We first consider the range n® < ||s| < ky/n for some constant k, which
we split up into subintervals I; = n® < ||s|| < n€ and I, = n° < ||s|| < ky/n. On each interval
we take m(n,s) = O(n®), where a' > a? > 0. On I, the first term in (56) is o(n "), because
€(s)] < exp(—k ||s|* /n) when ||s|| < ky/m, and €% (s)] < kexp(—kn® 1) = o(n™?) for
any d, provided n® < ||s|| and o' > 1 26. The second term in (56) contributes o(n™2¢) provided
r > ¢(8 + 2p)/(1 — a'), because f s ds = O(n®T+28") for any 6'. On I, we must take
a®>1—2¢and r > (4e + 2+ p)/(2¢ — a?).

On the range kv/n < [|s|| < n*logn we have |, (s)] < 1 — 1 for some ¥ > 0. Take m(n) =
O(logn). Then, the first term in (56) is bounded by a constant times [1—29|%1°e™ ™7 5] (log n)tn—t0+20),
For large k, this is small enough. As for the second term in (56), this is small enough because
n(r+2P)2¢(Jog n)kn"0+29/2 can be made smaller than order =% by taking r > (12 + 4p)e/(1 — 2¢).
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Finally, we show that

51 2

> 0 W () — n(s)}

£=0

ds = o(n~%). (57)

r

Consider again the case a = 0. Using the conditioning argument and the magnitudes of the weights,

we obtain

B T] = €)% | B2, <Zz>sson<zl,zz>}+0(” ° )]

B [T (sT)?| = €i(s) x | B{(s'Te)?} + O <” ol )]

and after integrating over the range 0,n° we obtain o(n~%¢) errors as required. The general a case is
similar.
|

PrROOF OF COROLLARY 1. This follows by a standard application of deJong (1987, Theorem
2.1 and Proposition 3.2) and of the Cramér-Wold device, and is worked out in more detail in Linton
(1997). [ |

PrOOF OF THEOREM 2. We just give a sketch of the argument because it mostly follows from
Theorem 1. By Taylor series expansion, v/ng = Goy/n(6—6;) +0,(n~1/2), while G = Go+0,(n"1?),
and J = J + O,(h"™") + O,(n"*/2). Furthermore, we obtain

W = /n(0 — 60)Qv/n(8 — bo) + T + op(n~2), (58)

where I',, is a homogeneous cubic polynomial in a vector U, of asymptotically normal single sums
of independent random variables and is O,(n~'/2). The expansion is given in full in Linton (1997).
The validity of the Edgeworth approximation for W now follows from the validity of a multivariate
expansion for \/ﬁ@ — 0p) joint with U,. This expansion follows along the same lines as Theorem 1
[the O,(n~'/?) terms are ‘standard’]. See for example Chandra and Ghosh (1979).
We next rewrite the expansion in more convenient form
W:WO+%+%+%+0D(W%), (59)

where Wy, A,, B, and C, are stochastically bounded sequences obtained from the expansion of
V(0 = 6). In fact, Wy = X'QX [which has distribution Xz, to order '], A, = 2X'QA, and

30



Cn = A'QA, where X [= T,,,] is the leading term of \/ﬁ(g —6y) and A [= T,,] is the second order
term. We next apply the algorithm described in Rothenberg (1984), which, with suitable modification

for the different orders of magnitudes we have, says that
Sy 2 / / _ 2
P 7 < o] = e - 22 - 0) ) (0) + eoole) () 2
’ ne vn 2n2e
where ¢(7) = (p1—2—7)/2x = dlog F, _ (x)/dz, whilea(z) = E (Au[Wo =12),b(z) = E(B,[Wo =2),
clx) =F (C’n]Wg = ZE) , and v(x) = var (An|W[) = :E) . The random variable B, is a homogeneous

4 0(n72€),

cubic polynomial in asymptotically normal single sums of independent random variables, while W
is a quadratic function of similar random variables; this implies that b(z) = O(n~'/?) by standard
arguments. Also, a(z) = o(n™°) by the arguments used in Linton (1997, expression (54)). Finally,

by the law of iterated expectation

v(r) = 4E[X'QE(AN|X)QX|X'QX = ]

= 4E[X'QSQX|X'QX = z] + o(1)

_ (@) @2) z+o(1)
D1 ’

because A is asymptotically independent of X, and because the best prediction of X'QXQX by
X'QX is linear with coefficient cov(X'QYXQX, X'QX)/var(X'QX). Similarly,

c(z) = Etr (AA'Q|X) | X' QX = z] = tr (QX).

PrRoOOF OF THEOREM 3. We have

Pr -\/ﬁ HE(Xopt> - /9\(>‘0pt>

ok
n2<logn

_ R R . R
< Pr sup \/EHQ)\—H)\O > — —l—Pr[n‘Pl A— Ao >5}
_IIA—AOMHSM*‘M ( ) ( pt) n2e logn pt
= o(n™*),
because of (18) and
- - 0
swp VAN =80 < s s |20 = op(mt/e-terten ),
IA=Aopel|<8n 1 IA=Aopel[<sn -1 || O

which follows by the Mean Value Theorem, crude bounding, and (19). [ |
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C Proofs of Lemmas

Our arguments below will make use of the following standard exponential inequality.

2

ni’

LEMMA EXP. Let Z,; be independent random variables with E(Z,;) = 0 and var(Z,;) = o
where Y " 02, > 0. Suppose also that |Z,;| < m for some constant m. Then, for any A > 0,

=1

)\2

P .
' 2 (>, 02+ m\)

> )\] < 2exp [—

PrROOF OF LEMMA 1. The proof of a stronger [involving supremum]| version of (25) and (27) for
the case where h,; = h, is given in the recent paper by Masry (1996). The extension to our case is
straightforward under our assumptions A1l and A5. In particular, there is a finite constant k£ such
that

< ]{Iﬁ_(d+1)’$ _ CL'/’

> w @) = Y wy(a)T;

for any bounded sequence T; and any points z, z’. This leads to the same proof of his 3.22, 3.23, and
4.21. [ |

PROOF OF LEMMA 2. Let v = (Mps — Myi) 5 = 1 hyy 35,5 Znij, Where

Xi— X\ (X, — X\ Xi— X\ (X, — X\
Inii = K L J L J —FE{K L J L J X;
’ < P ) < P ) { < P ) < P ) | }

are mutually independent given X;. We apply Lemma Exp with Z,;; as above and A = kn®logn.

Since K is bounded and has bounded support, |Z,;| < 2sup, |K(u)u?| = K, i.e., we can take
m(n) = K, while var (Z#i Znij |Xz> = 5,;n%¢, where s,; < 5 for some finite constant 5. We have

with probability one

2,,2¢ 2
Pr {]vm| > k:lOgen ]XZ} < 2exp |- k*n*(logn)
! 2 { <Var (Z#i Znij ]XZ> + kn¢log n) }
k*n?(logn)?
= 2exp |—
| 2 (spin? + knflogn)




for large k. Therefore, by the Bonferroni inequality,

Pr (1n<1ax |Uns] > klogen |XZ> < Z;Pr [|vm| > klos:z | X; | = o(n2)
with probability one, as required. The argument for (29) is a straightforward consequence of the
smoothness assumptions.

The argument for (30) is similar to that for (28) except that we must use a truncation argument
to compensate for the unboundedness of 7;. Define 1, = njl(‘nj| < n¢) and nj = nj1(|77j| > nc). We
show that

[mx > wig{ — B()} >kb§€” = o(n"*) (60)
[mx > i — B} > K2R | = ol (61)

Note that by Lemma 3, max;<;<,, |w;;| < Kn~2 for some positive finite constant K. Therefore, using

Markov’s inequality

1 L 1
[1@% D wi i - )}‘ >k 056”] < Pr[Zn 2L+ E (i)} >k Of”]
j
< k(logn)~'n*n'tE (|n]])
< k(logn)'n'“E (|nj|) Pr [1(|77j‘ > ne)}
1 1—c £\ —te
< k(logn)"n E(|77j|)E<‘17j‘ )n

= o(n ™),

provided £ > (1 +¢€)/e. Because 7 are bounded (specifically, we have |w;;n}| < Kn~°), we can apply

the exponential inequality. Therefore, we have, using the Bonferroni inequality,

1 & , , 1
Dl =8 >}‘ k‘ji”m] < ZPr[Zwij{nj—Ew}‘>k°§€”|xi]
i=1 J

max
1<i<n
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k*n=%(logn)?
2 {vn=% + kKn—2log n}

< 2nexp |—

= o(n ™),

provided k > 2K.

Proor or LEMMA 3. Let

X, — X

hni 1<i<

It suffices to show that with probability one k, < O(n?*"), as n — oco. Conditional on X;,

km:21{‘K (%)‘ >0} = Znij

J#i J#i

is a Binomial random variable with parameters n — 1 and p,;, and hence has conditional mean
2

fn; = Elkni|Xi] = npn; and variance o7, = var[k,;|X;] = (n — 1)ppigni with ¢, = 1 — pp;. We

establish that the existence of constants ¢, ¢ such that with probability one
—d

which implies that Y " , 02, > 0 with probability one. The result (62) holds because there exists

rectangles A, B of fixed dimensions with A C supp(K) C B such that

X, — X,

{XjEXi—thi'A}g{‘K( >‘>0}§{Xi—Xj€Xi+hm‘B}’

ng

where = + yA is the set {x +ya : a € A}. Now

Xi+hni-A

> w(Xi+hy-ANS) 12£f(x),

where p is Lebesgue measure. For any fixed interior point z it is clear that liminf. .o pu(z +€- AN
S)/e? > 0. Assumption Al guarantees that it is also true for boundary points z. It is also true for any
sequence of points x,, € S. Since inf,cs f(x) > 0 by assumption Al, the bound (62) is established.
The same argument works for the upper bound.

We now apply the exponential inequality to k,; — E {k,; | X; }, noting that each Z,;; is bounded
by one. Therefore, for any 6 > 0,
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62n4e

Pr [lkns — B {hns [ Xi} 2 60%|X0] < 2exp |~ s

< 2exp(—kn*)

for some constant k. Therefore, by the Bonferroni inequality and identity of distribution for large &,

Pr [kn > knze} < nPr [km > l{:n%}

IN

[ k k
nPr|FE {]{Im |Xl} > §n26] +nPr |:’km — E{km ’XZ}’ > 57125

k
< nPr|np, > §n26} + kn exp(—kn*)

using the triangle inequality. Finally, there exists ng, k such that for all n > ng, Pr{np,; > §n26] =0,

which implies that Pr [k, > kn?] = o(n™¢) as required.

We now turn to the proof of (32). We have

| < > |w

{a:la|<g}

/ Xi— X5\ /X —X;\*
< ——. max |e/\M e max K< - ])( . J)
S AT X, M| max Foni o

t _ 1/2 _ 1/2
< —— . max |eMlte eh M ey max sup | K (u)u?
S g sy laMhel elw Mlew| T mas sup K (e

t
< Amax(M1) max sup |K(u)u?|.

nhd, {alal<q} «
Finally, with probability one Apax(M.') = Amax(M; ') + o(1), where the matrix M; is uniformly
positive definite by Al and A4.

The proof of (33) follows similar lines and uses the fact that uniformly in 4, >, [K((X; —

X))/ hni) ((Xi — X;)/hni)?| = O(nﬁi) with probability one for all vectors a. |

PrOOF OF LEMMA 4. This follows from the expansions (34) and (35) and assumptions A3, A7.
The magnitudes of S3 and S, follow from Lemmas 1-3 using the arguments employed in Linton (1995,
Lemmas 6-9); the moments exist by A2.
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ProoOF OoF LEMMA 5. This follows by the same arguments as used in Lemma 4. Note that
H,, H,, and H; are terms that also arise in the expansion for the parametric estimator 8, while Hj is
small enough not to contribute to the stated order of magnitude. Finally, by interchanging the order

of summation we find that

1 n
= Z QX)) 7' D(X;) + op(n™™).
i=1

PrOOF OF LEMMA 6. The proof of (36-39) is based on the expansions of Lemmas 4-5 and
that under our conditions: Pr[|Z,| > k(logn)'/?] = o(n%),Pr [|Zag| > k(logn)'/?] = o(n~%),
Pr [|Zag,| > k(logn)'?] = o(n~*), and Pr [SUD,1/2) 1994 <R 10g n [Sass (0)] > k(logn)'?] = o(n™%),
for a, 3,7v,6 = 1,...,p, see Bhattacharya and Ghosh (1979, 2.32). We just show the arguments for
(39). Write

835,(0) s
860500,00, aeﬁae 395 _ZZ bl

r=1 i=1
where b.;(0) = 9p,(Z;,0) /00300,005 and a; is the ©'" element of the vector D(X;;0)Q(X;) ! —
D(X;)Q2(X;)™! [ar; depends on the nonparametric estimates, but not on ). Further, write a,; = Z;} L
agri, where a1, is the corresponding element of {ﬁ(Xi; 00) — D(X;) }2X;) 7L, agq is the corresponding
element of {D(X;;6) — D(Xy;600)YUX;)~, asn: is the corresponding element of D(X;)(Q(X;)~! —
Q(X;)™1), and au is the corresponding element of {D(X;:6) — D(X;)}(Q(X:)~* — Q(X;)~!). Then,

using the Cauchy-Schwarz inequality we have

sup
nl/2|0—0g|<klogn

83/\ 93 1 1/2 p 4 1 1/2
S ) S )| R ) o Iy~
06,500, 55,7 aeﬂaewaeé( )‘ = {n Z } 2.2 {n Z em} (63)
where t; = max; Sup,1/2j9_g, <k 10gn |0ri (0) |* are independent across i and have 24 § moments. There-

fore, we can apply standard moderate deviation results to % S {ti — E(t;)}, such as in Michel
(1974), to conclude that

1 1
— Z t, = - Z E(t;) + OD(n*(l/zf"), n=2), (64)

i.e., the term {2 3"  #;}'/2 in (63) can be treated as a constant. Furthermore, we have

1 - 2 1/2 _ —(e—=m) ,,—2¢
{52%“} <k |max max |(Vi)ag| + max max |(Bu)as|| = op(n™7,n7*) (65
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by Lemma 2. Combining (64) and (65), we get that (39) is true. The term {1 3" | a?;}'/? can be
shown to be op(n~(/27" 1) using standard techniques, while {2 Y7 a2 }!/? is of even smaller
order.

|
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D Figure Information

In each figure we give the rejection frequency as a function of bandwidth. The lines give the rejection
frequency of the test computed on a grid of bandwidths [and interpolated], while the symbols give the
rejection frequency of the automatic method [the horizontal location of the symbols is just determined
to make the graphs easy to read.

The solid line represents kernel and the dotted line is for the local linear. The higher line is always
the n = 100 case and the lower one therefore the n = 200 one.

The triangle symbol represents the logit rule-of-thumb, square represents the quadratic probability
model rule-of-thumb, while circle represents the nonparametric plug-in. Solid symbols represent
kernel and hollow symbols are local linear. The left-most symbols on each graph are for the n = 100
and the right-most symbols are for n = 200.

Figure 1 is the case where ¢ = 1 and hypothesis (a), Figure 2 is the case ¢ = 0 with the same
null hypothesis, Figure 3 is the hypothesis (b) with ¢ = 1. The letter A corresponds to 10% nominal
level, B is the 5% case, and C is the 1% case. We have shown Figures 1A,1B,1C, 2A, and 3A.
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