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Abstract

We establish valid Edgeworth expansions for the distribution of smoothed

nonparametric spectral estimates, and of studentized versions of linear

statistics such as the same mean, where the studentization employs such a

nonparametric spectral estimate. Particular attention is paid to the spectral

estimate at zero frequency and, correspondingly, the studentized sample

mean, to reflect econometric interest in autocorrelation-consistent or long-run

variance estimation. Our main focus is on stationary Gaussian series, though

we discuss relaxation of the Gaussianity assumption. Only smoothness

conditions on the spectral density that are local to the frequency of interest

are imposed. We deduce empirical expansions from our Edgeworth

expansions designed to improve on the normal approximation in practice, and

also a feasible rule of bandwidth choice.
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1 Introduction

In this paper we analyze higher-order asymptotic properties of smoothed nonparametric estimates of

the spectral density for a Gaussian stationary time series and of linear statistics studentized by such

a nonparametric estimate. There is a large literature on the consistency and asymptotic normality

of nonparametric spectral estimates and studentized linear statistics, but much less is known about

higher-order properties, including the Edgeworth expansions we consider.

We focus principally on zero frequency and obtain Edgeworth expansions for the joint distribution

of the spectral estimate and sample mean. These can be used to approximate the distribution and

moments of smooth functions of these statistics, and we go on to analyze the higher-order asymptotic

properties of the sample mean studentized by the spectral estimate. The studentization we employ is

prompted by the fact that the variance of the sample mean is approximately proportional to the spectral

density at zero frequency. Such studentization, with autocorrelated observations, goes back at least to

Jowett (1954), whose work was developed by Hannan (1957), Brillinger (1979) and extended to more

general circumstances, as recently reviewed by Robinson and Velasco (1997). In particular such ideas

have been widely employed in econometric models, sometimes under the headings of ”(heteroskedasticity

and) autocorrelation-consistent variance estimation” and ”long run variance estimation”.

Spectral density estimation, and studentization of the sample mean, can be based on a parame-

terization of the spectral density, as when an autoregressive moving average model of given order is

assumed. However, if the parameterization is incorrect (for example if one or both of the autoregres-

sive or moving average orders is under-specified) or unidentified (as when both orders are overspecified)

inconsistent spectral estimates result, and inferences based on the sample mean are invalidated. Non-

parametric spectral estimation seeks to avoid these drawbacks. However, its implementation requires

the user to specify a functional form (a kernel in our case), as well as a bandwidth, which determines the

degree of smoothing. First-order asymptotic theory holds across a wide range of bandwidths, but the

detail of Edgeworth expansions is more sensitive to bandwidth choice, reflecting finite sample practical

experience. We use our Edgeworth expansions to approximate the moments of stochastic approxima-

tions whose distributions are very close to that of the original t-ratio and propose ”optimal” choices of

bandwidth, which can be proxied by data-dependent quantities. Also, we approximate our theoretical

Edgeworth expansions, which involve population quantities, by empirical expansions for practical use.

It is anticipated that our proposed corrections could outperform the normal approximation in highly

autocorrelated processes, where nonparametric spectral estimates can be particularly biased, and thus

severely influence the distribution of the studentized mean.

Spectral estimation and studentization at other frequencies is not essentially different from that

at zero frequency and we discuss this extension explicitly. One important feature of our work is that

smoothness, and indeed boundedness, of the spectral density is assumed only at the frequency of interest.

This is natural because the variance of the sample mean is proportional to the Césaro sum of the Fourier

series of the spectral density at zero frequency, which, by Fejér’s theorem, converges if and only if this

is a continuity point. These mild conditions are also practically desirable because they permit lack of

smoothness, and even unboundedness, at remote frequencies, as can arise from long memory, cyclic or

seasonal behaviour. Reliance on only local assumptions has recently been stressed in work by Robinson

(1994, for example) on semiparametric analysis of long memory, and we employ similar truncation
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techniques to achieve this. By contrast, the bulk of the literature on smoothed nonparametric spectral

estimation imposes assumptions that imply at least boundedness of the spectral density at all frequencies.

In particular, this is the case in the work of Bentkus (1976), Bentkus and Rudzkis (1982) and Rudzkis

(1985) on higher-order asymptotic theory for nonparametric spectral estimates, whose approach we in

other respects follow. It is also the case in the econometric work referred to above on consistency of

autocorrelation-consistent or long run variance estimates and on the first-order limiting distribution of

studentized statistics, which resorts to summability conditions on mixing numbers. On the other hand,

the econometric literature typically avoids the Gaussianity assumption which we impose in the bulk

of the paper, and the mixing conditions employed can cover a degree of heterogeneity across time, as

well as dealing with far more general statistics, such as implicitly defined extremun estimates of vector-

valued parameters. We suspect that in our higher-order treatment the stationarity assumption could

to some extent be relaxed at cost of significantly more complicated conditions, while vector and other

extensions should be possible, albeit notationally complex. Relaxation of our Gaussianity assumption

which, as in much other work on higher-order expansions (see for example such time series references

as Phillips (1977), Taniguchi (1991)), plays a considerable simplifying role, may lead to rather more

complex expansions, which we investigate in Section 7. Though much recent higher-order asymptotic

theory for non-Gaussian time series analysis has been based on the work of Götze and Hipp (1983) it

is not known if their conditions allow a proof of the validity of the Edgeworth expansions for smoothed

spectral estimates (see Remark 2.3 in Janas (1994)) though some ideas on nonparametric studentization

are in Götze and Künsch (1996).

Mean-correction in spectral estimation does not affect first-order asymptotic distribution theory, but

its effects may show up in terms of a smaller order of magnitude for the distribution of both spectral

estimates and t-ratios. We study this correction in detail and our analysis could also be extended to

residual-based nonparametric studentization of least squares estimates in a nonstochastically trending

linear regression, possibly involving cosinusoidal regressors, whose variance may depend on the spectral

density of the errors at various frequencies.

The paper is organized as follows. The following section provides the main assumptions used through-

out. In Section 3 we establish a valid Edgeworth expansion for the distribution of the nonparametric

estimate of the spectral density and analyze the joint distribution of the variance estimate and the

sample mean. In Section 4 we establish a valid Edgeworth expansion for the studentized sample mean

and consider the effects of mean-correction. Section 5 provides consistent estimates of higher-order cor-

rection terms and an empirical Edgeworth expansion. We extend our results to obtain a third-order

approximation in Section 6. Finally in Sections 7 and 8 respectively, we analyze the effects on our

approximations of higher-order cumulants for non-Gaussian series, and Edgeworth approximations for

estimation at non-zero frequencies. Proofs, including some technical lemmas, appear in two appendices.

2 Nonparametric studentization of the sample mean

Let {Xt} be a stationary Gaussian sequence with mean that is known (for the time being) to be zero,

autocovariance function γ(r) and spectral density f(λ) defined by γ(r) =
∫

Π
f(λ)eirλdλ, where Π =

2



(−π, π], and satisfying 0<f(0)<∞. Let X = N−1
∑N
j=1Xj and denote

VN
def
= Var[

√
N X] =

N−1∑
j=1−N

(
1− |j|

N

)
γ(j).

Then for all N such that VN > 0,

u1
def
=
√
N X√
VN

∼ N (0, 1).

Since VN is the Césaro sum of the Fourier coefficients of f(λ) at λ = 0, if f(λ) is continuous at λ = 0

then limN→∞ VN = 2πf(0) by Fejér’s Theorem. If f̂(0) is a consistent estimate, f̂(0)→p f(0), then

YN
def
=
√
N X√
V̂
→d N (0, 1),

where V̂ = 2πf̂(0). Defining

γ̂(`) =
1
N

∑
1≤t,t+`≤N

XtXt+`, ` = 0,±1, . . . ,±(N − 1),

consider the weighted-autocovariance nonparametric estimate of f(0)

f̂(0) =
1

2π

N−1∑
`=1−N

ω

(
`

M

)
γ̂(`) = X′

WM

2πN
X,

where X = (X1, . . . , XN )′ and WM is the N ×N matrix with (r, s)-th element

[WM ]r,s = ω

(
r − s
M

)
=
∫

Π

KM (λ)ei(r−s)λdλ, (1)

such that KM (λ) is a kernel function with smoothing or lag number M , which is a sequence of positive

integers growing with N but more slowly. Then for an even, integrable function K which integrates to

one, we set

KM (λ) = M
∞∑

j=−∞
K(M [λ+ 2πj]),

so KM (λ) is periodic of period 2π, even, integrable and
∫

Π
KM (λ)dλ = 1. It follows that ω(r) =∫∞

−∞ eirxK(x)dx and ω(0) = 1 so we can write f̂(0) =
∫

Π
KM (λ)I(λ)dλ, where I(λ) = (2πN)−1

×
∣∣∣∑N

t=1Xt exp{iλt}
∣∣∣2 is the periodogram of Xt, t = 1, . . . , N. We restrict to this kernel class due

to its simplicity for our analysis, though a variety of quadratic-form estimates could be considered (see

e.g. Song and Schmeiser (1992)).

To analyze the joint distribution of the linear statistic X and the nonparametric estimate of its

variance, it is convenient to work with standardized statistics with zero mean and unit variance. Suppose

now that the estimate f̂(0) is
√
N/M -consistent (cf. Hannan (1970, Chapter 5)). Write for u = (u1, u2)′,

YN = YN (u) = u1

(
1 + bN + σNu2

√
M

N

)−1/2

, u2 =

√
N

M

{
V̂ − E[V̂ ]
VNσN

}
,

where σ2
N = Var[

√
N/MV̂ /VN ] and bN = E[V̂ ]/VN − 1 are the ”relative” variance and bias of V̂ , and

some of our notation suppresses the dependence on N . Then u2 = X′QNX− E[X′QNX] is a centered

quadratic form in a Gaussian vector, where QN = WM (
√
NMσNVN )−1 is a N ×N matrix.
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The joint characteristic function of u is

ψN (t1, t2) = |I − 2it2ΣQN |−1/2 exp
{
−1

2
t21ξ
′
N (I − 2it2ΣQN )−1 ΣξN − it2EN

}
,

where EN = E[X′QNX] = Trace[ΣQN ], Σ = E[XX′], and ξN = 1/
√
NVN , 1 being the N × 1 vector

(1, 1, . . . , 1)′. Due to the normalizations u has identity covariance matrix and cumulant generating

function

ϕN (t1, t2) = logψN (t1, t2) =
∞∑
r=0

∞∑
s=0

κN [r, s]
(it1)r

r!
(it2)s

s!
,

where the only non-zero bivariate cumulants are

κN [0, s] = 2s−1(s−1)! Trace[(ΣQN )s], s > 1,

κN [2, s] = 2ss! ξ′N (ΣQN )sΣξN , s > 0.

Phillips (1980) discusses these derivations and related literature for the analysis of the distribution of

linear and quadratic forms under the normality assumption.

Here the Gaussianity assumption provides simple explicit expressions for the characteristic functions

and cumulants of linear and quadratic forms, which otherwise would be very difficult to estimate for

general dependent sequences. Furthermore these depend only on second-order properties of the time

series, through Σ or f , which simplifies our set-up. We introduce the following assumptions about the

Gaussian series Xt and f̂(0).

Assumption 1 0 < f(0) < ∞ and f(λ) has d continuous derivatives (d ≥ 2) in a neighbourhood of

λ = 0, the dth derivative satisfying a Lipschitz condition of order %, 0 < % ≤ 1.

Assumption 2 The spectral density f(λ) ∈ Lp, for some p > 1, i.e. ‖f‖pp =
∫

Π
fp(λ)dλ <∞.

Assumption 3 K(x) is bounded, even and integrable on Π, and zero elsewhere, and integrates to one.

Assumption 4 K(x) satisfies a uniform Lipschitz condition (of order 1) in [−π, π].

Assumption 5 For j = 0, 1, . . . , d, d ≥ 2 and r = 1, 2, . . .

µj(Kr)
def
=
∫

Π

xj [K(x)]r dx =

{
= 0, j < d;

6= 0, j = d.

Assumption 6 M−1 +MN−1 → 0, as N →∞.

Assumption 7 M = C ·Nq, with 0 < q < 1 and 0 < C <∞.

Assumption 1, which concerns bias, is implied by
∑∞
j=−∞ |j|d+%|γ(j)| < ∞, but this extends the

smoothness assumption to all frequencies, whereas only local assumptions are natural for this problem.

In particular, as in Robinson (1995a), for example, we allow, using truncation arguments, for lack of

smoothness or even unboundedness (as arises from possibly cyclic long memory) at remote frequencies.

The finite support requirement on K in Assumption 3 is helpful here, though undoubtedly it could be

relaxed to a mild tail restriction. However, Assumption 2 imposes some restrictions on f beyond the

origin, though in fact any p > 1 arbitrarily close to 1 will suffice for all our results.
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From Assumption 3, the function ω(r) defined by (1) is even and bounded. Assumption 4 is needed to

evaluate the cumulants of f̂(0) and is satisfied for most kernels used in practice satisfying Assumption 3,

but rules out kernels like the uniform. A modification of the proofs could permit kernels that have

finitely many discontinuities. The second condition in Assumption 5 is designed for nonparametric bias

reduction when d > 2 by means of higher-order kernels. Examples of kernels satisfying Assumptions 3,

4 and 5 are for d = 2, the Bartlett-Priestley or Epanechnikov window K(λ) = 3
4π (1 − λ2

π2 ) and the

triangular window K(λ) = 1
π

(
1− |λ|π

)
; for d > 2, the following optimal kernels are taken from Gasser

et al. (1985):

for d = 4, K4(λ) =
15

32π

(
7
λ4

π4
− 10

λ2

π2
+ 3
)

;

for d = 6, K6(λ) =
35

256π

(
−99

λ6

π6
+ 189

λ4

π4
− 105

λ2

π2
+ 15

)
.

Assumption 6 on the bandwidth or lag number M is necessary for the consistency of f̂(0), while we

will sometimes wish to strengthen it by Assumption 7, possibly with restrictions on q.

3 Distribution of the nonparametric spectral estimate

In this section we analyze the asymptotic distribution of the nonparametric spectral estimate f̂(0). Our

results extend Bentkus and Rudzkis (1982) in that we do not assume boundedness of the spectral density

at frequencies away from the origin. We give two lemmas about the bias of the estimate f̂(0) for VN .

The first is standard in Fourier analysis (see Zygmund (1977), p. 91), and the logarithmic factor could

be eliminated by assuming
∑
|γ(j)| <∞.

Lemma 1 Under Assumption 1, with d = 1, % = 0, VN − 2πf(0) = O
(
N−1 logN

)
, as N →∞.

Lemma 2 Under Assumptions 1, 3, 5 and 6, as N →∞,

E[f̂(0)]− f(0)− f (d)(0)
d!

µd(K)M−d = O
(
N−1 logN +M−d−%

)
.

where f (d)(0) is the d-th derivative of f(λ) evaluated at λ = 0.

From Lemmas 1 and 2 we estimate the relative bias bN as M →∞

bN = b1M
−d +O(M−d−% +N−1 logN), b1 =

f (d)(0)µd(K)
d! f(0)

.

We now study the cumulants of the normalized spectral estimate u2.

Lemma 3 Under Assumptions 1, 3, 4, eN (s)
def
= M−d−% +N−1M log2s−1N→0 as N →∞, for s > 2,

κ̄N [0, s]
def
= κN [0, s]

(
N

M

)(s−2)/2

=
d∑
j=0

∇j [0, s]M−j +O(eN (s)) ,

where ∇j [0, s] are bounded and depend on the moments of K and the derivatives of f at λ = 0, and do

not depend on N or M.
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For example ∇0[0, s] = (4π)
s−2

2 (s−1)!‖K‖−s2 ‖K‖ss, ∇1[0, s] = 0 and the ∇ coefficients are scale-free

as expected, but depend on the shape of f. If f is flat at λ = 0 then ∇j [0, s] = 0, j ≥ 1. The proof of

Lemma 3 employs a multivariate version of the Fejér kernel (see Appendix B) and uses the fact that,

given the compact support of K, asymptotically we only smooth around zero frequency. Depending on

the asymptotic relationship between M and N , some of the expansion can be included in the error term,

since we have only assumed that eN (s) is o(1) as N →∞, which in turn implies Assumption 6 for s ≥ 1.

Due to the normalization κN [0, 2] = 1 and if eN (2)→ 0 as N → ∞, we obtain for the asymptotic

variance of
√
N/Mf̂(0), using the same techniques of the proof of Lemma 3 (see Appendix A), that

N

M
Var
[
f̂(0)

]
= 4πf2(0)‖K‖22 +O

(
eN (2) +M−2

)
,

and for some constants Θj ,

σN =
√

4π
d∑
j=0

ΘjM
−j +O(eN (2)) =

√
4π‖K‖2 +O

(
M−2 + eN (2)

)
,

as M →∞, with Θ0 = ‖K‖2, Θ1 = 0 and Θ2 = 1
4‖K‖

−1
2 µ2(K2)f−2(0)f̈2(0), f̈ j(0) =

(
d
dλ

)2
f j(λ)

∣∣∣
λ=0

.

Then we can justify an optimal choice of M by minimizing the mean squared error (MSE) of f̂(0),

E(f̂(0)− f(0))2 under Assumptions 1, 3, 4, 5 and eN (2)→0 as N →∞ (cf. Lemmas 2 and 3), since if

we are only interested in estimating f at the origin, it is natural to use local rules for bandwidth choice.

Then the M which minimizes asymptotically the MSE is Mopt = copt ·N1/(2d+1), 0 < copt <∞, where

copt = copt(f,K) =

[
2d
4π

(
f (d)(0)µd(K)
d!f(0) ‖K‖2

)2 ]1/(2d+1)

, (2)

which can be estimated by inserting consistent estimates of f(0) and f (d)(0).

We now prove the validity of a second-order Edgeworth expansion to approximate the distribution

of the vector u, with error o((N/M)−1/2), and including terms up to order (N/M)−1/2 to correct the

asymptotic normal distribution, which is the leading term of the expansion. Of course this will imply

the validity of that expansion for the distribution of f̂(0). We first study the cross cumulants of u:

Lemma 4 Under Assumptions 1, 3, 4, eN (s+ 2)→0 as N →∞, for s> 0,

κ̄N [2, s]
def
= κN [2, s]

(
N

M

)s/2
=

d∑
j=0

∇j [2, s]M−j +O(eN (s+2))

where ∇j [2, s] are bounded and depend on the moments of K and the derivatives of f at λ = 0, and do

not depend on N or M.

For example we can obtain that ∇0[2, s] = (4π)s/2s!Ks(0) ‖K‖−s2 and ∇1[2, s] = 0.

For B ∈ B2, where B2 is any class of Borel sets in R2, set Q(2)
N {B} =

∫
B
φ2(u)q(2)

N (u)du, where

φ2(u) = (2π)−1 exp
{
− 1

2‖u‖
2
}

is the density of the bivariate standard normal distribution,

q
(2)
N (u) = 1 +

1
3!

(
M

N

)−1/2

{∇0[0, 3]H3(u2) +∇0[2, 1]H2(u1)H1(u2)} ,

and Hj(·) are the univariate Hermite polynomials of order j. Now we show that Q(2)
N is indeed a valid

second-order Edgeworth expansion for the probability measure PN of u. For this we need Assumption 7,
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but we do not assume yet the choice q = 1/(1 + 2d) and/or C = copt (see (2)) that would minimize the

MSE of f̂(0). This implies a rate of growth for M in terms of N , with Assumption 6 holding for this

particular M . Define by (∂B)α a neighbourhood of radius α of the boundary of a set B.

Theorem 1 Under Assumptions 1, 2 (p > 1), 3, 4, 7 (0 < q < 1), for αN = (N/M)−ρ, 1/2 < ρ < 1,

and every class B2 of Borel sets in R2, as N →∞,

sup
B∈B2

|PN (B)−Q(2)
N (B)| = o

((
N

M

)−1/2
)

+
4
3

sup
B∈B2

Q
(2)
N

{
(∂B)2αN

}
.

The method of proof is based on first approximating the true characteristic function and then applying

a smoothing lemma. Note that the second term on the right hand side is negligible if B is convex because

αN decreases as a power of N, and that the higher-order correction terms in q(2)
N depend only on K, but

not on f. Naturally these terms only correct the marginal distribution of the spectral estimate but not

that of the Gaussian sample mean. There is also a cross-term to deal with in the joint distribution, but

none of these correct for the possible bias of the spectral estimate or for variance estimation since we

have only dealt with exactly standardized statistics.

Using the results of Bhattacharya and Ghosh (1978) we can justify Edgeworth expansions for the

distribution and moments of smooth functions of the spectral estimate and sample mean. We concentrate

in the following section on the studentized mean YN .

4 Asymptotic expansion for the distribution of the studentized

mean

The distribution of YN depends on such quantities as σN , bN , κN [r, s] etc., for which we have obtained

expressions up to a certain degree of error in powers of N and M , the coefficients of the expansions

depending on the unknown f and its derivatives at the origin and on the user-chosen kernel K(λ).

The accuracy of these approximations depends mainly on M and determines the error of the feasible

Edgeworth expansion for the distribution of YN . In this section we impose Assumption 7 with q =

1/(1 + 2d), but do not necessarily require that C = copt. Then 0 < M−d/(N/M)−1/2 < ∞ as N → ∞
and the bias of f̂(0) is of the same magnitude as the correction term obtained in Q(2)

N , or as the standard

deviation of f̂(0). However this might not be the optimal choice for approximating the distribution or

the MSE of the studentized statistic.

We first work out a linear stochastic approximation to YN (u) and prove that its distribution is the

same as YN up to order o((N/M)−1/2). Then the asymptotic approximation for the distribution of the

linear approximation is valid also for YN with that error. Expanding the bias bN and the standard

deviation σN we define

Y LN
def
= u1

[
1− 1

2
b1M

−d − 1
2

√
4π‖K‖2 u2(N/M)−1/2

]
.

Lemma 5 Under Assumptions 1, 2 (for p > 1), 3, 4, 5 and 7, q = 1/(1 + 2d), YN has the same

Edgeworth expansion as Y LN uniformly for convex Borel sets up to the order (N/M)−1/2.

Note that under the conditions of the Lemma f̂(0) is
√
N/M -consistent and the approximation we

obtained in Section 2 for the distribution of YN is valid. The next step is to justify a valid Edgeworth

expansion for the distribution of Y LN from that of u.
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Theorem 2 Under Assumptions 1, 2 (p > 1), 3, 4, 5 and 7, q = 1/(1 + 2d), for convex Borel sets C,

as N →∞,

sup
C

∣∣∣∣Prob {YN ∈ C} −
∫
C

φ(x)
[
1 + r2(x)M−d

]
dx

∣∣∣∣ = o((N/M)−1/2) (3)

where r2(x) = − 1
2b1(x2 − 1).

This expansion coincides with the formal Edgeworth expansion obtained estimating the first three

cumulants of the linear approximation Y LN up to error o((N/M)−1/2) as was shown by Bhattacharya and

Ghosh (1978) for functions of sample moments of independent and identically distributed (i.i.d.) obser-

vations. The restriction to convex measurable sets in R, i.e. intervals, could be avoided by proceeding

as in that reference.

For the distribution function we set C = (−∞, y], and integrating and Taylor expanding the distribu-

tion function of the standard normal, Φ(y), we get, uniformly in y, under the conditions of Theorem 2:

Prob{YN ≤ y} = Φ(y) +
1
2
b1yφ(y) M−d + o((N/M)−1/2)

= Φ
(
y

[
1 +

1
2
b1M

−d
])

+ o((N/M)−1/2) (4)

= Φ(y) +O((N/M)−1/2),

which shows that the normal approximation is correct up to order O((N/M)−1/2) if q = 1/(1 + 2d). On

’optimally’ choosing C = copt in Assumption 7 from (2), (4) becomes

Prob{YN ≤ y}= Φ
(
y
[
1 + b′1 N

− d
1+2d

])
+ o
(
N−

d
1+2d

)
,

where

b′1 =
b1
2

[
2d
4π

(
f (d)(0)µd(K)
d!f(0)‖K‖2

)2
] −d

2d+1

,

or equivalently, operating with the values of b1 and copt,

Prob{YN ≤ y} = Φ(y) + a1φ(y)(N/Mopt)
−1/2 + o

(
(N/Mopt)

−1/2
)

(5)

= Φ
(
y
[
1 + a1 (N/Mopt)

−1/2
])

+ o
(

(N/Mopt)
−1/2

)
, (6)

with a1 =
√
π/(2d) ‖K‖2 sign

[
f (d)(0)µd(K)

]
. When d = 2

b1 =
1
2
f (2)(0)µ2(K), a1 =

√
π

2
‖K‖2 sign

[
f (2)(0)µ2(K)

]
,

and the approximations (4) and (6) have an immediate interpretation. Suppose that µ2(K) =
∫
x2K(x)dx

> 0 (e.g. if K(x) ≥ 0, for all x). If f(λ) has a peak at λ = 0 such that f (2)(0) < 0 then, as is well known,

the weighted autocovariance estimates f̂(0) underestimate f(0), and thus the variance of X, consequently

the confidence interval for
√
N/VN X is too narrow for YN , and a corresponding test rejects too often

since the ratio YN tends to increase. Our approximations tend to correct this problem, as in both cases

they employ Φ(ykN ) where kN ≤ 0, so for the same confidence level, the critical value y is larger (in

absolute value) than the normal approximation. The same reasoning applies in the reverse direction,

when there is a trough in f(λ) at λ = 0. For d > 2 the interpretation is equivalent, but we have to take

into account the sign of K(1)
d , which can be negative, as for K4(x) and d = 4. The approximations (5)
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and (6) are more attractive, since if we believe M is optimal, we need only estimate the sign of f (d)(0),

not its value, to achieve second-order correctness.

Taniguchi and Puri (1996) obtained an Edgeworth expansion for the same t-statistic for possibly

non-Gaussian AR(1) series when estimating f(0) with the least squares estimate of the autoregressive

coefficient θ. Their expansion is correct up to order o(N−1/2) and depends on the kurtosis of the

innovations but not on θ or f , by contrast to our nonparametric studentization.

We have assumed that EXt is known in the spectral estimation. When EXt is unknown, we can still

take EXt = 0, but replace γ̂(`) by

γ̃(`) =
1
N

∑
1≤t,t+`≤N

(Xt −X)(Xt+` −X), ` = 0,±1, . . . ,±(N − 1),

and f̂(0) by

f̃(0) =
1

2π

N−1∑
`=1−N

ω

(
`

M

)
γ̃(`) = (X−X1)′

WM

2πN
(X−X1).

The effect of mean correction is analyzed in the following lemma.

Lemma 6 Under the assumptions of Theorem 2, NM−1(f̃(0) − f̂(0)) = ∆N , where ∆N has bounded

moments of all orders and E[∆N ] = −2πK(0)f(0) +O
(
MN−1 log2N

)
.

The distribution of
√
N/Mf̃(0) is affected to a second order, (M/N)1/2, by the mean correction so

the studentized mean might be affected to order M/N . The bias is the same as found by Hannan (1958)

in spectral estimation after trend removal. Of course, the asymptotic relationship of this bias with the

smoothing bias studied in Lemma 2 depends on the degree of smoothing given by M . We substitute

f̃(0) in all definitions involving f̂(0) and denote the studentized mean using f̃(0) by

Y ?N = Y ?N (u?) = u1

(
1 + b?N + σ?Nu

?
2

√
M

N

)−1/2

,

where u?2, b
?
N , σ?N and all quantities with a ? superscript are as previously, but defined in terms of

Ṽ = 2πf̃(0).

Lemma 7 Under the assumptions of Theorem 2, Y ?N has the same Edgeworth expansion as Y LN for

convex Borel sets, up to the order (N/M)−1/2.

It follows that the distribution of the sample mean studentized by the ‘mean-corrected’ spectral

estimate f̃(0) can be approximated by the same Edgeworth approximation up to order (N/M)−1/2 as

when f̂(0), based on a known mean, is used. However, the expansion for the distribution of u? can differ

from that for the distribution of u in terms of order (N/M)−1/2 as we investigate in Section 6.

5 Empirical approximation

The above approximations to the distribution of the studentized mean, and to optimal bandwidth choice,

depend on the unknown f(0) and derivative f (d)(0). These may be estimated in standard plug-in

fashion (using an initial choice of bandwidth) to achieve an empirical Edgeworth approximation and

approximately optimal bandwidth. This section proposes nonparametric estimates of the derivatives of

9



f and proves their consistency. Of course f has to be smoother than is necessary in estimation of f(0),

but again only around frequency zero.

We introduce the class of kernels (ν, r) ν = 0, 1, . . . , r − 1 to estimate the ν-th derivative, following

Gasser et al. (1985). Define the function Vν of order (ν, r) such that

∫
Π

Vν(x)xjdx =


0, j = 0, . . . , ν − 1, ν + 1, . . . , r − 1;

(−1)νν!, j = ν;

ϑ 6= 0, j = r,

with support [−π, π], and satisfying a Lipschitz condition of order 1. If ν = 0 then we estimate the

function itself and V0 has equivalent properties to the kernel K we used to estimate f (compare this

with Assumptions 3, 4 and 5). Examples of the class of kernels (ν, r) on [−π, π] are,

for ν=2, r=4, V2(x) =
105
32π

(
−5

λ4

π4
+ 6

λ2

π2
− 1
)

;

for ν=2, r=6, V2(x) =
315
64π

(
77
λ6

π6
− 135

λ4

π4
+ 63

λ2

π2
− 5
)
.

We define Vmν (x) = mνVν(mνx), x ∈ [−π, π], for a sequence of integers mν = mν(N), satisfying

m−1
ν +mνN

−1 → 0 as N →∞. We estimate f (ν)(0) by

f̂ (ν)(0) = (mν)ν
∫

Π

Vmν (λ)I(λ)dλ.

Lemma 8 Under Assumption 1, d = ν+a, % = 0, and a kernel of order (ν, ν+a), for some integer a ≥ 2,

and (mν)−1 +N−1(mν)ν logN → 0 as N →∞, E[f̂ (ν)(0)]− f (ν)(0) = O
(
(mν)ν [N−1 logN +mν

−ν−a]
)
.

Lemma 9 Under the assumptions of Lemma 8, with (mν)−1 + N−1(mν)2ν+1 + N−1mν log3N → 0 as

N →∞, Nmν
−2ν−1Var[f̂ (ν)(0)] = 4πf2(0)‖Vν‖22 + o(1).

Then with the conditions of these two Lemmas it is possible to obtain valid empirical Edgeworth

expansions because the correction terms are of order (M/N)1/2 and consistent estimates for f and f (d)

introduce only an op((M/N)1/2) error. Using the same techniques as for the cumulants of f̂(0) (cf.

Lemma 3) we can show that the fourth-order cumulant of f̂ (ν)(0), κN (4), is of order of magnitude

N−2m
2(ν+1)
ν and its fourth moment is therefore

E
(
f̂ (ν)(0)− f (ν)(0)

)4

= 3Var
[
f̂ (ν)(0)

]2
+ 3E

[
f̂ (ν)(0)− f (ν)(0)

]4
+ κN (4)

= O
(
m4ν+2
ν N−2 +mν

4νN−4 log4N +mν
−4a
)
, (7)

from Lemmas 8 and 9. Then f̂ (ν)(0) → f (ν)(0) almost surely from the Borel-Cantelli lemma and

Markov’s inequality if (7) is O(N−1−ε) for some ε > 0. Given the MSE-optimal mν ∼ CN1/(2ν+2a+1),

this holds if a > ν + 1
2 and valid empirical Edgeworth expansions are thus available with o((M/N)1/2)

error, almost surely.

The same results hold if f̂ (ν)(0) is replaced by f̃ (ν)(0) which employs mean-corrected quantities in

the manner of f̃(0), while the distribution of derivative estimates can be studied in the same way as

that of f̂ . These estimates can also be used for plug-in rules of bandwidth choice, but estimates of M

can affect higher-order properties of f̂ and t-ratios though first order asymptotics are likely to remain

the same (cf. Robinson (1991)).
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6 Third-order approximation

In this section we concentrate on obtaining a third-order approximation (that is, including terms of order

M/N) to the distribution of the studentized sample mean. The previous results are insufficient to prove

the validity when there is mean-correction in the nonparametric spectral estimate. As seen in Section 4,

the mean-correction introduces a term of order (M/N)1/2 in the expansion for
√
N/Mf̃(0), so it will

have an effect of order M/N in a third-order approximation for the studentized mean. As before, we

denote by a star superscript, ?, all quantities when f̃(0) is used instead of f̂(0). First we study the bias,

the following lemma simply extending Lemma 2 using Lemma 6:

Lemma 10 Under Assumptions 1, 3, 4, 5, 6 and M−1 +N−1M logN → 0 as N →∞,

E[f̃(0)]−f(0) =
f (d)(0)
d!

µd(K)M−d−2πf(0)K(0)
M

N
+O

(
logN
N

+M−d−%+
[
M

N

]2

log2N

)
.

The second term on the right hand side is due to the mean correction. To analyze the cumulants of u?2
we can write it compactly as a quadratic form, X, u?2 = X′Q?NX−E[X′Q?NX], where Q?N = ANQNAN ,

AN = IN − 11′/N , is the mean-corrected version of QN . We first analyze the cumulants of the joint

distribution of u?.

Lemma 11 Under Assumptions 1, 3, 4, eN (s)→0 as N →∞, for s > 2,

κ̄?N [0, s]
def
= κ?N [0, s]

(
N

M

)(s−2)/2

=
d∑
j=0

∇j [0, s]M−j +O(eN (s)) ,

κ̄?N [2, s−2]
def
= κ?N [2, s−2]

(
N

M

)(s−2)/2

= O(eN (s)) ,

where ∇j [0, s] are defined as in Lemma 3.

The cumulants κ?N [0, s] of u?2 thus have the same asymptotic approximations as the κN [0, s], and

all conclusions about the variance and optimal bandwidth with known mean assumed still go through.

However the cross-cumulants κ?N [2, s] are asymptotically o(1) after normalization. Therefore on the basis

of cross-cumulants of any order, u1 and u?2 are asymptotically independent and variance estimation is

asymptotically independent of mean estimation as if the sequence Xt were exactly independent.

We now fix the order needed for the expansions of the cumulants to obtain a third-order Edgeworth

expansion for the distribution of u? when Assumption 7 holds. We need to consider terms in the

expansion of κ?N [0, 3] up to order M−d
?

such that if d? < d, then M−d
?−1 = o

(
(M/N)1/2

)
, and if d? = d,

then M−d−% = o
(
(M/N)1/2

)
, the errors being negligible if q > 1/(1 + 2d+ 2%). The following theorem

establishes validity of the third-order Edgeworth approximation Q(3)?
N {B} =

∫
B
φ2(u)q(3)?

N (u)du, for the

distribution P ?N of u?, where

q
(3)?
N (u) = 1 +

1
6

(
M

N

)1/2 d?∑
j=0

M−j∇j [0, 3]H3(u2) +
1
72
M

N

{
∇0[0, 3]2H6(u2) +

1
4!
∇0[0, 4]H4(u2)

}
.

Theorem 3 Under Assumptions 1, 2 (p > 1), 3, 4, 7 (1/(1 + 2d + 2%) < q < 1), for αN = (N/M)−ρ,

1 < ρ < 3/2 and every class of Borel sets B2, as N →∞,

sup
B∈B2

|P ?N (B)−Q(3)?
N (B)| = o

((
N

M

)−1
)

+
4
3

sup
B∈B2

Q
(3)
N

{
(∂B)2αN

}
.
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Next we consider the studentized sample mean Y ?N using the nonparametric estimate f̃(0). To obtain

a linear approximation for Y ?N , the main problem is the bias

b?N = b1M
−d + b2

M

N
+O

(
N−1 logN +M−d−% +

[
M

N

]2

log2N

)
,

with b2 = −2πK(0). To make b?N negligible up to order M/N we cannot employ the MSE[f̃(0)]-optimal

M , but instead require that

lim
N→∞

M

N
Md > 0, (8)

which guarantees that the bias term of order M−d is at most of order M/N , and that the term O(M−d−%)

does not affect the third-order approximation under Assumption 7. This of course implies a significant

undersmoothing, as M needs to increase much faster than N1/(1+2d), at least like N1/(1+d). Then

incorporating the bias of order O(MN−1), the third-order linear approximation to Y ?N is

Y ?LN = u1

[
1− 1

2
b1M

−d− 1
2
b2
M

N
− 1

2
σNu

?
2

(
M

N

)1/2

+
3
8

4π‖K‖22(u?2)2M

N

]
, (9)

and we justify the validity of a third-order Edgeworth expansion for the distribution of Y ?N with

rN (x) =
[
4π‖K‖22 + 2πK(0)− b1NM−1−d] x2 − 1

2
+ 12π‖K‖22

x4 − 6x2 + 3
24

. (10)

Theorem 4 Under Assumptions 1, 2 (p > 1), 3, 4, 5, 7 and (8), for convex Borel sets C, as N →∞,

sup
C

∣∣∣∣Prob {Y ?N ∈ C} −
∫
C

φ(x)
[
1 + rN (x)

M

N

]
dx

∣∣∣∣ = o

(
M

N

)
.

In particular, for the distribution function we obtain, uniformly in y,

Prob{Y ?N ≤ y} = Φ(y)− 1
2
φ(y)

(
y3 − 3y

)
π‖K‖22MN−1

+
1
2
yφ(y)

[
b1NM

−d−1 − 4π‖K‖22 − 2πK(0)
]
MN−1 + o(M/N). (11)

The coefficients of the polynomial rN (x) depend only on K, except for the term b1NM
−1−d, which

involves f(0) and f (d)(0). This is due to the moments of f̃(0) being proportional to f(0), so the

normalized distribution of u? has constant variance and higher-order cumulants (up to first order) with

respect to f(0). The term in b1 disappears with sufficient undersmoothing, that is, if in (8) the left hand

side is infinite. Of course, the larger M , the worse the approximation from the point of view of the M/N

corrections. More informative expansions for the bias can be obtained, using higher-order derivatives of

the spectral density at the origin and appropriate conditions on the kernel. Then (8) could be relaxed

allowing the term in b1 to be of larger order of magnitude than M/N and also permitting MSE-optimal

Mopt.

To obtain the Edgeworth expansion of Theorem 4 we can simply calculate the formal expansion for

the distribution of Y ?LN based on the moments of u or we can proceed in an alternative way. Since we

found in Lemma 11 that f̃(0) is asymptotically independent of X, we can write

Pr(Y ?N ≤ y) = Pr
(
u1 ≤ S1/2y

)
≈ Eu1

[
Φ
(
S1/2y

)]
,

where S = 1 + b?N + u?2σ
?
N (M/N)1/2 and regarding u1 and u?2 as exactly independent. Then we can

expand Φ
(
S1/2y

)
around Φ (y) ,

Φ
(
S1/2y

)
= Φ (y) +φ (y) y

(
S1/2 − 1

)
− 1

2
y3φ (y)

(
S1/2 − 1

)2
+

1
6

((y′)2 − 1)y3 φ(y′)
(
S1/2 − 1

)3
, (12)
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where y′ is in the line segment between y and S1/2y. Now

S1/2 = 1 +
1
2
b?N +

1
2
u?2σN (M/N)1/2 − 1

8
u2

2σ
2
N

M

N
+ ξN ,

where E |ξN | = O((MN−1)3/2 + (b?N )2) and b?N ∼ b1M−d − 2πK(0)MN−1, obtaining

E
(
S1/2 − 1

)
=

1
2
b?N −

1
8
σ2
N

M

N
+ o

(
b?N +

M

N

)
E
(
S1/2 − 1

)2
=

1
4
σ2
N

M

N
+ o

(
(b?N )2 +

M

N

)
.

Therefore, taking expectations in (12) and grouping terms in powers of y, we obtain the same approxi-

mation for Pr {Y ?N ≤ y} as in (11),

Eu1

[
Φ
(
S1/2y

)]
= Φ(y) + yφ (y)

(
1
2
b?N −

1
8
σ2
N

M

N

)
− y3

8
φ (y)σ2

N

M

N
+ o

(
b?N +

M

N

)
,

with a truncating error O
(
E
∣∣(S1/2 − 1

)∣∣3), proceeding as in the Lemma of Robinson (1995b).

Following Hall (1992, Section 2.5) and using Theorem 4, we can also obtain a Cornish-Fisher ap-

proximation for the quantiles of the distribution of the studentized mean Y ?N to construct, e.g., con-

fidence intervals with improved asymptotic coverage by estimating the unknown terms in rN (x) as

proposed in Section 5. Write wα = wα(N,M) for the α-level quantile of Y ?N , determined by wα =

inf {x : Prob{Y ?N ≤ x} ≥ α} , and let zα be the α-level standard normal quantile, given by Φ(zα) = α.

Then immediately we have

Theorem 5 Under Assumptions 1, 2 (p > 1), 3, 4, 5, 7 and (8), wα = zα − rN (zα)M/N + o(M/N) ,

uniformly in ε < α < 1− ε for each ε > 0, where rN is defined as before.

7 Non-Gaussian time series

Though our development depends heavily on the Gaussianity assumption we here analyze informally

the consequences up to third order of the Gaussianity relaxation. This may be achieved by considering

distributions with Gram-Charlier representations incorporating corrections for skewness and kurtosis

(see Phillips (1980) for related references).

The lack of Gaussianity affects in the first instance the joint characteristic function of u, for which

we would require some regularity conditions (cf. Lemmas 14 and 15 in Appendix B). This regularity

involves the distribution of Xt and would also require summability conditions on higher-order cumulants

or mixing type conditions as in Götze and Hipp (1983). Then the lack of Gaussianity shows up in the

asymptotic approximations to the distributions in terms of the higher-order cumulants of the sequence

Xt. It is well known (e.g. Hannan (1970, pp. 280)) that fourth-order cumulants do not affect (at first

order) the asymptotic variance of smoothed estimates f̂(0) and the same can be shown for higher-order

cumulants of the normalized statistics u1 and u2.

Thus if we assume higher-order stationarity of Xt and that the higher-order spectral densities

fk(λ1, . . . , λk−1) = (2π)1−k
∞∑

j1=−∞
· · ·

∞∑
jk−1=−∞

cum(Xo, Xj1, . . . , Xjk−1),

f2(λ) = f(λ), are smooth enough at the origin in all their arguments, then simple results can be

obtained. This condition on the higher-order spectral densities holds if for example Xt is a linear
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process, Xt =
∑∞
j=0 αjεt−j , where the εt are i.i.d. with enough moments and the transfer function

α(λ) =
∑∞
j=0 αj exp(iλj) is sufficiently smooth at λ = 0; sufficiently strong summability conditions on

αj provide uniform smoothness. Then we can show that the normalized cumulants of u, κ̄N [a, b], are

of the same magnitude as under Gaussianity, with identical leading terms, since higher-order cumulant

spectra only appear in higher-order, o(1), terms in their asymptotic expansions. Thus, up to errors of

order O(M−2 + eN (a+b)), we obtain

κ̄N [3, 0] =
√

2πf̄3(0)M−1/2;

κ̄N [4, 0] = 2πf̄4(0)M−1,

see e.g. Götze and Hipp (1983), where f̄k(0) = fk(0)f−k/2(0). For the spectral density estimate we

obtain that σ2
N = 4π ‖K‖22 + 2πf̄4(0)M−1, using the techniques of Bentkus (1976), and with similar

arguments the first cross cumulants of u are

κ̄N [1, 1] =
1√
2
‖K‖−1

2 f̄3(0)M−1/2;

κ̄N [2, 1] =
√

4πK(0) ‖K‖−1
2 +O(M−1),

and κ̄N [1, 2] = O(M−1/2), so higher-order spectra affect κ̄N [a, b] at most to order M−1/2. Then lack of

Gaussianity affects neither the term in (MN−1)1/2 of the Edgeworth approximation for the distribution

of u (cf. q
(3)?
N ) nor the term in MN−1 for the distribution of YN (cf. rN ), as in this last case the

approximation only depends on the leading terms of κ̄N [2, 1] and κ̄N [1, 1], (which remain the same)

apart from the bias of f̂(0), which does not depend on higher-order cumulants of Xt. In case of mean-

corrected estimates some contributions cancel out, as the leading term of κ̄N [2, 1] (cf. Lemma 11).

We can also estimate the MSE of stochastic approximations to YN and analyze the higher-order effects

of the bandwidth choice when Gaussianity is not assumed. From the third-order linear approximation

to YN under condition ( 8),

Y LN = u1

[
1− 1

2
b1M

−d − 1
2
σNu2

(
M

N

)1/2

+
3
8

4π‖K‖22u2
2

M

N

]
,

where σN ∼
√

4π‖K‖2 can be expanded up to error o((MN−1)1/2), and we obtain for non-Gaussian

series that

E[Y LN ] = −1
2
σNκN [1, 1]

(
M

N

)1/2

+
3
2
π‖K‖22κN [1, 2]

M

N
= −

√
π

2
f̄3(0)N−1/2 + o

(
N−1/2

)
,

so Bias[Y LN ]2 = (π/2)f̄2
3 (0)N−1 + o

(
N−1

)
, and

Var[Y LN ] = 1− b1M−d − σNκN [2, 1]
(
M

N

)1/2

+ 4π‖K‖22(1 + κN [2, 2])
M

N
+O(N−1)

= 1− b1M−d + 4π
(
‖K‖22 −K(0)

)M
N

+ o

(
M−d +

M

N

)
.

Similar conclusions can be obtained for mean-corrected spectral estimation, incorporating in the

third-order stochastic approximation Y ?LN (see (9)) the mean-correction bias of order MN−1, b2 =

−2πK(0), which remains the same up to that order. Thus bias Bias[Y ?LN ]2 has the same expression

as without mean-correction, because κ?N [1, 1] =κN [1, 1](1 +O(MN
−1)), but the term in K(0) in the

variance is now different, since κ̄?N [2, 1] = o(1) from Lemma 11, and hence

Var[Y ?LN ] = 1− b1M−d + 4π
(
‖K‖22 +

1
2
K(0)

)
M

N
+ o

(
M−d +

M

N

)
.
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Note that while the leading terms in the expansions for the variances depend on the properties of f(λ)

at λ = 0 and on K, the bias only depends on f̄3(0), the relative skewness at zero frequency. From an

MSE (of YN or Y ?N ) point of view, the main focus is then on the variance contribution, and to make the

two leading terms of its asymptotic expansion of same order of magnitude we can set M ∼ CN1/(1+d) for

some positive constant C (so M satisfies condition (8)). This implies a clear undersmoothing, to reduce

the bias of f̂(0), and that the normal approximation for the distributions of YN or Y ?N is asymptotically

correct up to error O(MN−1), apart from the skewness correction by κ̄N [3, 0] which is of order O(N−1/2)

as for non-Gaussian standardized X and does not depend on spectral estimation (that is, on M or K).

8 Spectral estimation and studentization at non-zero frequencies

We consider in this section nonparametric spectral estimates at a frequency of interest λo ∈ (0, π), since

the case λo = π is similar to estimation at the origin and we need not consider negative frequencies by

symmetry. We suppose in this section that Assumption 1 holds in a neighbourhood of λo. Now all the

arguments we have used for the analysis of f̂(0) can be carried over to f̂(λo),

f̂(λo) =
1

2π

N−1∑
`=1−N

ω

(
`

M

)
γ̂(`) cos `λo = X′

WM (λo)
2πN

X,

[WM (λo)]r,s = [WM ]r,s cos(r−s)λo, if we keep the symmetry of the estimate f̂(0) by writing f̂(λo) =∫
Π
KM (α−λo)I(α)dα =

∫
Π
HM (α)I(α)dα, whereHM (α) = HM (α;λo) = 1

2 (KM (α− λo) +KM (α+ λo)).

Now HM (α) is even and periodic like KM (α), and higher-order cumulants of f̂(λo) are determined by

the fact that for N large enough the kernels KM (α − λo) and KM (α + λo) do not overlap for λo > 0.

However we cannot expect f(λ) to be symmetric around non-zero λo as it automatically is around the

origin, so existing odd derivatives of f(λ) at λo are not zero in general and the expansion for moments of

f̂(λo) might contain additional terms. Furthermore, there is less reason in general to expect a spectral

peak at an arbitrarily chosen non-zero frequency λo than at the origin, so interpretation of correction

terms may be less immediate.

Define the discrete Fourier transform at λ as w(λ) = N−1
∑N
t=1Xt exp(iλt), so X = w(0), and denote

w(λ) = wR(λ) + iwI(λ) for the real and complex components of w(λ). Then for λo > 0

V RN (λo)
def
= Var[

√
N wR(λo)] =

1
2
VN (λo) +O(N−1 logN),

where VN (λo)
def
=
∑N−1
j=1−N

(
1− |j|N

)
γ(j) cos jλo = 2πf(λo) + O(N−1 logN), using Assumption 1 as in

Lemma 1. Then for any λo and N such that V RN (λo) > 0, we set

uR1 (λo)
def
=
√
N wR(λo)√
V RN (λo)

∼ N (0, 1),

and we can define V IN (λo)
def
= Var[

√
N wI(λo)] = 1

2VN (λo) + O(N−1 logN) and uI1(λo) similarly for

wI(λo). The studentized statistic at frequency λo is

Y RN (λo)
def
=
√
N wR(λo)√
V̂ (λo)

= uR1 (λo)

(
1 + bRN (λo)+

πf(λo)
V RN (λo)

σN (λo)u2(λo)

√
M

N

)−1/2

.

15



Here V̂ (λo) = πf̂(λo) and

u2(λo)
def
=

√
N

M

V̂ (λo)− E[V̂ (λo)]
πf(λo)σN (λo)

are common for studentization of both wR(λo) and wI(λo), where σ2
N (λo) and bRN (λo) are now the

”relative” variance (with respect to πf(λo)) and bias of V̂ (λo), respectively. The bias estimation follows

as for λo = 0 with bRN (λo), bIN (λo) = b1(λo)M−d +O(M−d−% +N−1 logN), and

b1(λo) =
f (d)(λo)µd(K)

f(λo)d!
.

We can analyze the joint distribution of u(λo) = (uR1 (λo), uI1(λo), u2(λo))′ under Gaussianity using the

same definitions as for λo = 0, but in terms of the matrixQN (λo) = (MN)−1/2(σN (λo)πf(λo))−1WM (λo)

and the vectors ξRN (λo) = (cosλo, . . . , cosNλo)
′
/
√
NV RN (λo) and

ξIN (λo) = (sinλo, . . . , sinNλo)
′
/
√
NV IN (λo). The characteristic function of u(λo) is

ψλoN (tR1 , t
I
1, t2) = |I − 2it2ΣQN (λo)|−1/2 exp

{
−1

2
ξλoN (t)′ (I − 2it2ΣQN (λo))

−1 ΣξλoN (t)− it2EN (λo)
}
,

ξλoN (t) = tR1 ξ
R
N (λo) + tI1ξ

I
N (λo), and the only cumulants differing from zero are κλoN [a, b, s] for a + b =

0, 2, s ≥ 0. Thus, for example, κλoN [1, 1, s] = 2ss! (ξRN (λo))′(ΣQN (λo))sΣξIN (λo), s ≥ 0, and setting

κ̄λoN [a, b, s]
def
= κλoN [a, b, s]

(
NM−1

)(s+a+b−2)/2 we obtain:

Lemma 12 Under Assumptions 1, 3, 4, eN (s)→0 as N →∞, for s>2,

κ̄λoN [0, 0, s] =
d∑
j=0

∇λoj [0, s]M−j +O(eN (s)) ,

κ̄λoN [2, 0, s−2], κ̄λoN [0, 2, s−2] =
d∑
j=0

∇λoj [2, s−2]M−j +O(eN (s)) ,

and κ̄λoN [1, 1, s−2] = O(eN (s)) , s ≥ 2, where ∇λoj [0, s] and ∇λoj [2, s−2] are bounded and depend on K

and the derivatives of f at λo, but not on N or M.

Now∇λo0 [0, s] = (2π)
s−2

2 (s−1)!‖K‖−s2 ‖K‖ss, σN (λo) ∼
√

2π‖K‖2, and∇λo0 [2, s] = (2π)s/2s!Ks(0) ‖K‖−s2

since HM (λo) = 1
2KM (0) for N large enough and λo > 0.

When EXt is unknown we can use the sample mean-corrected statistic f̃(λo), and defining ∆N (λo) =

NM−1
(
f̃(λo)− f̂(λo)

)
we can follow the arguments of Lemma 6 to find that if f(λ) is also smooth at

λ = 0, E [∆N (λo)] = O
(
MN−1 log2N

)
, so b2(λo) = 0, and Var[∆N (λo)] = O(MN−1 log2N), because

HM (0) = KM (λo) = 0 for N large enough and λo > 0. Therefore, mean correction does not affect

spectral estimation or studentization at λo 6= 0 at third-order MN−1. However, a similar result to

Lemma 6 holds if residuals from a least squares cosinusoidal regression at the same frequency λo are

used. Also the expansions of Lemma 12 are still valid for the mean-corrected cumulants κ̄?λoN [0, 0, s],

while the cross cumulants κ̄?λoN [2, 0, s] and κ̄?λoN [0, 2, s] are o(1) as for λo = 0, leading again to asymptotic

independence of uI1(λo), uR1 (λo) and u?2(λo).

Using Lemma 12 we can construct a valid Edgeworth expansion for the distribution of u?(λo) under

the assumptions of Theorem 3, and justify the validity of an Edgeworth approximation for the distribution

of Y R?N (λo) in terms of that for u?(λo) under the conditions of Theorem 4 with

rλoN (x) =
[
2π‖K‖22 − b1(λo)NM−1−d] x2 − 1

2
+ 6π‖K‖22

x4 − 6x2 + 3
24

,
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(cf. (10)) coinciding again with the formal Edgeworth expansion deduced from a linear approximation to

Y R?N (λo). This approximation differs from estimation at λo = 0 with respect to the asymptotic variance

and negligible bias effect of mean correction for spectral estimation at non-zero frequencies.

9 Appendix A: Proofs

We postpone the proofs of Lemmas 1 and 2 to Appendix B.

Proof of Lemma 3. We obtain for s > 0, κN [0, s] = 2s−1(s−1)!(σNVN )−s(MN)−s/2 Trace [(ΣNWM )s] .

Then, using Proposition 1 in Appendix B we have that

κ̄N [0, s] =
2s−1(s−1)! (2π)2s−1

(σNVN )s

d∑
j=0

Lj(s)M−j +O(eN (s)) . (13)

Applying Proposition 1 to evaluate σ2
N under the same set of assumptions (s = 2),

σ2
N

V 2
N

4π2
=
N

M

2
(2πN)2

Trace[(ΣNWM )2] = 4π
d∑
j=0

Lj(2)M−j +O(eN (2)) ,

where for example L0(2) = f2(0)µ0(K2) = f2(0)‖K‖22, L1(2) = 0 and L2(2) = 1
2µ2(K2)f̈2(0). Now

as 0 < L0(2) < ∞ and all Lj(2) are fixed constants independent of N or M , we can write for some

constants Jj(s) (
σN

VN
2π

)−s
= (4π)−s/2

d∑
j=0

Jj(s)M−j +O(eN (2)) , (14)

where J0(s) = L0(2)−s/2, etc. Denoting C(0, s) = (4π)
s−2

2 (s−1)! we can obtain from (13) and (14) the

following expansion in powers of M−1 for the normalized cumulants, κ̄N [0, s]=C(0, s)
∑d
j=0 Γj(s)M−j+

O(eN (s)) , where Γj(s) =
∑j
t=0 Jt(s)Lj−t(s) are constants not depending on N or M , and depending

only on f and K, with Γ1(s) = 0, Γ2(s) = J0(s)L2(s) +J2(s)L0(s), etc. Then the Lemma follows setting

∇j [0, s] = C(0, s)Γj(s). �

Proof of Lemma 4. We have κN [2, s] = 2ss! (MN)−s/2N−1V −s−1
N σ−sN 1′(ΣNWM )sΣN 1. Then, using

Proposition 2 the normalized cumulants are

κ̄N [2, s] =
[

2π
VNσN

]s 2πf(0)
VN

(4π)ss!f(0)sK(0)s + O(eN (s+ 2)) ,

as KM (0) = MK(0) given the compact support of K. Substituting the expansion for the value of VNσN
and using Lemma 1, we obtain

κ̄N [2, s] =
[
VNσN

2π

]−s[
1 +O(N−1 logN)

]
(4π)ss!f(0)sK(0)s +O(eN (s+ 2))

= (4π)−s/2(4π)ss!f(0)sK(0)s
d∑
j=0

Jj(s)M−j +O(eN (s+ 2)) ,

where the Js(j) are as before. The Lemma follows with ∇j [2, s] = (4π)−s/2(4π)ss!f(0)sK(0)sJj(s). �

Proof of Theorem 1. In order to prove the validity of an Edgeworth expansion for the distribution

of u we check that the characteristic function of the expansion approximates well the true one. We first
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construct the approximation for ψN (t). We discuss the general case, since the same arguments will be

used later for the proof of Theorem 4. As in Taniguchi (1987, pp. 11-14), using the fact that only the

cumulants κN [0, s] and κN [2, s] are nonzero, the cumulant generating function is

logψN (t) =
1
2
‖it‖2 +

τ+1∑
s=3

(N/M)(2−s)/2

s!

∑
|r|=s

s!
r1!r2!

κ̄N [r1, r2](it1)r1(it2)r2 +RN (τ), (15)

where r = (r1, r2)′, with r1 ∈ {0, 2} and |r| = r1 + r2, and

RN (τ) =
(
N

M

)−τ/2 [
R0,τ+2(it2)τ+2 +R2,τ (it1)2(it2)τ

]
, τ even,

RN (τ) =
(
N

M

)−τ/2 1
(τ + 2)!

[
κ̄N [0, τ + 2](it2)τ+2 +

(τ+2)(τ+1)
2

κ̄[2, τ ](it1)2(it2)τ
]

+
(
N

M

)−(τ+1)/2 [
R0,τ+3(it2)τ+3 +R2,τ+1(it1)2(it2)τ+1

]
, τ odd,

where the R0,j and R2,j are bounded. Thus, from Lemmas 3 and 4, logψN (t) is

1
2
‖it‖2 +

τ+1∑
s=3

(N/M)(2−s)/2

s!

[
κ̄N [0, s](it2)s +

s(s−1)
2

κ̄N [0, s−2](it1)2(it2)s−2

]
+RN (τ)

=
1
2
‖it‖2+

τ+1∑
s=3

(
N

M

)(2−s)/2[
BN (s, t)+

{
(it1)s+(it1)2(it2)s−2

}
O(eN (s))

]
+RN (τ),

where we have grouped terms in powers of M−1 in BN (s, t),

BN (s, t) =
1
s!

d∑
j=0

M−j
{
∇j [0, s](it2)s +

s(s−1)
2
∇j [2, s−2](it1)2(it2)s−2

}
.

The approximation of the characteristic function of u using its cumulant generating function, AN (t, τ),

has leading term exp{ 1
2‖it‖

2}, multiplied by a polynomial in t, depending on the cumulants of u, and

N and M ,

AN (t, τ) = exp
{

1
2
‖it‖2

}1 +
τ+1∑
j=3

(
N

M

) 2−j
2 ∑

r

τ+1∏
n=3

[BN (n, t)]rn
1

r3! · · · rτ+1!

 ,
where r = (r3, . . . , rτ+1)′, rn ∈ {0, 1, . . .} and the summation is over all r satisfying

∑τ+1
n=3(n−2)rn = j−2.

We need only keep terms up to a certain power of (N/M)−1/2, so some terms in high powers of M−1 in

BN (n, t) may be included in the general error term, without increasing its magnitude.

To obtain a second-order Edgeworth expansion we set τ = 2, including in AN (t, 2) terms up to order

(N/M)−1/2,

AN (t, 2) = exp
{

1
2
‖it‖2

}[
1 + B̄N (3, t)

(
N

M

)−1/2
]
, (16)

where in B̄N (3, t) only the leading term (in M0) is kept in the expansion for the cumulants of order 3.

To measure the distance between the true distribution and its Edgeworth approximation, we apply

the smoothing Lemma 13 due to Bhattacharya and Rao (1975, pp. 97-98, 113), with kernel Ψ. Lemma 14

studies the Edgeworth approximation for the characteristic function for ‖t‖ ≤ δ1
√
N/M (note that the

characteristic function of the measure Q(2)
N {·} is AN (t, 2)), whereas Lemma 15 analyzes its tail behaviour.

First,

‖(PN −Q(2)
N ) ?ΨαN ‖ ≤ 2 sup

B⊂B(0,rN )c
|(PN −Q(2)

N ) ?ΨαN |+ 2 sup
B⊂B(0,rN )

|(PN −Q(2)
N ) ?ΨαN |,
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where rN = (N/M)β , (β>0 to be chosen later), and here ‖ · ‖ denotes the variation norm of a measure,

? means convolution and Bc the complementary set of B. For B ⊂ B(0, rN )c we have uniformly

|(PN −Q(2)
N ) ?ΨαN | ≤ |PN ?ΨαN |+ |Q

(2)
N ?ΨαN |

≤ Prob{‖u‖ ≥ rN/2} + 2ΨαN {B(0, rN/2)c}+ 2Q(2){B(0, rN/2)c}.

Now Q
(2)
N {B(0, rN/2)c} = o((N/M)−1/2) as this is the measure of a polynomial in Gaussian variables.

Also Prob{‖u‖ ≥ rN/2} = o((N/M)−1/2), because u has finite moments of all orders. Finally, from (44)

ΨαN {B(0, rN/2)c} = O([αN/rN ]3) = O((N/M)−3(ρ+β)) = o((N/M)−1/2),

since ρ+ β > 1/6. For B ⊂ B(0, rN ) we have by Fourier Inversion

|(PN −Q(2)
N ) ?ΨαN | ≤ (2π)−21πr2

N

∫
|(P̂N − Q̂(2)

N )(t)Ψ̂αN (t)|dt, (17)

where P̂ denotes the characteristic function of a probability measure P , so P̂N = ϕN (t) and Q̂
(2)
N =

AN (t, 2). Using Lemma 14, (17) is bounded by

O

((
N

M

)2β−1/2 [
M−2 + eN (3)

])∫
‖t‖≤δ1

√
N/M

∣∣∣e−d1‖t‖2F (‖t‖)
∣∣∣|Ψ̂αN (t)|dt (18)

+O((N/M)2β)
∫
δ1
√
N/M<‖t‖≤a′(N/M)ρ

|(P̂N − Q̂(2)
N )(t)Ψ̂αN (t)|dt, (19)

because from (45) Ψ̂ is zero for ‖t‖ > a′(N/M)ρ and a′ = 8·24/3π−1/3. Then for (18) to be o((N/M)−1/2)

it is necessary to choose β ≤ 1/4 (due to the definition of eN (3) and β < q/(1− q)).
Finally, from Lemma 15, and for δ1mN < ‖t‖ and also for δ1

√
N/M < ‖t‖, since mN ≤

√
N/M for

N large enough (from the first element in the minimum of the definition of mN ), we have that (19) is

O((N/M)2β)
∫
δ1
√
N/M<‖t‖≤a′(N/M)ρ

e−d2m
2
Ndt + o((N/M)−1/2),

and thus (19) is dominated by O((N/M)2β+2ρ)e−d2m
2
N + o((N/M)−1/2)=o((N/M)−1/2), because with

Assumption 7, 0 < q < 1, we have that, for some ε > 0 depending on q and p, mN ≥ εNε. Applying

Lemma 13 the proof is complete. �

Proof of Lemma 5. Set the neighbourhood of the origin ΩN = {u : |ui| < ciN
µ, 0 < µ < d/(3(1+2d)),

i = 1, 2}, where ci are some fixed constants, and expand YN (u) around 0 in ΩN , with |θ| ≤ 1:

YN = δNu1 −
1
2
δ3
NσNu1u2(N/M)−1/2 + ZN (1)(N/M)−1, (20)

where ZN (1) = 3
8

(
1 + bN + σNθu2(N/M)−1/2

)−5/2
σ2
Nu1u

2
2 and δN = (1+ bN )−1/2. Substituting for σN

and δN and their powers, we can write YN = Y LN + ZN (N/M)−1, where ZN =
∑3
j=1 ZN (j), ZN (2) =

u1O(M logN +NM−1−d−%) and ZN (3) = u1u2O
(
(N/M)1/2[M−2 + eN (2)]

)
. Now we use Theorem 2 of

Chibisov (1972) to prove that the error in the previous linear approximation can be neglected with error

o((M/N))1/2 if

Prob
{
|ZN | > ρN

√
N/M

}
≤

3∑
j=1

Prob
{
|ZN (j)| > 1

3
ρN
√
N/M

}
= o((N/M)−1/2) (21)
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for some positive sequence ρN → 0 and ρN
√
N/M →∞. Choosing ρN = 1/ logN , writing

(N/M)−1/2ZN (2) = u1O((N/M)1/2[N−1 logN +M−d−%]) (22)

(N/M)−1/2ZN (3) = u1u2O(M−2 + eN (2)) (23)

and applying Chebyshev’s inequality, as u1 and u2 have finite moments of all orders we see that for (21)

to hold it is sufficient that the error terms in the right hand sides of (22) and (23) be O((N/M)−µ), for

some µ > 0, which is true due to Assumption 7, q = 1/(1 + 2d).

To check Chibisov condition (21) for ZN (1) we bound Prob{ZN (1) > ρN (M/N)−1/2} by

Prob
{
|RN (1)|(M/N)1/4 > ρ

1/2
N

}
+ Prob

{
|RN (2)|(M/N)1/4 > ρ

1/2
N

}
= P1 + P2,

say, where RN (2) = 3
8σ

2
Nu1u

2
2 has bounded moments of all orders. Now P2 = o((M/N)1/2) applying

Chebyshev’s inequality. Since bN = O(M−d + N−1logN) and (M/N)1/10ρ
−1/5
N → 0 as N → ∞,

P1 = Prob
{∣∣1 + bN + σNθu2(N/M)−1/2

∣∣ < ρ
−1/5
N (M/N)1/10

}
, and applying again Chebyshev’s in-

equality this is less than CProb
{∣∣u2(M/N)1/2

∣∣ > c
}

= o((M/N)1/2), for some positive constants C

and c. �

Proof of Theorem 2. We follow Taniguchi (1987). Consider the transformation s = (s1, s2)′ =(
Y LN (u1, u2), u2

)′ = ΥN (u), say, and its inverse u = Υ−1
N (s) =

(
u†1(s1, s2), s2

)′
. Then we write, using

(1+x)−1 = 1−x+x2−x3 + · · · for |x| < 1, uniformly in the set ΩN , defined as in the proof of Lemma 5,

u†1(s) = s1

[
1 +

1
2
b1M

−d +
1
2

√
4π‖K‖2s2(N/M)−1/2

]
+ o((N/M)−1/2),

where the truncation of the term in s1s
2
2O((N/M)−1) with error o((N/M)−1/2) is allowed due to the

definition of the set ΩN . Writing for convex sets C, Prob {YN ∈ C} = Prob
{
u ∈ Υ−1

N (C × R)
}
, it

follows from Lemma 1 that (as ΥN is a C∞ mapping on ΩN ),

sup
C

∣∣∣Prob
{
u ∈ Υ−1

N (C × R)
}
−Q(2)

N

{
Υ−1
N (C × R)

}∣∣∣
= o((N/M)−1/2) + const. sup

C
Q

(2)
N

{
(∂Υ−1

N (C × R))2αN
}
, (24)

where αN = (N/M)−ρ, 1/2 < ρ < 1. Also, from the continuity of ΥN , we can obtain, for some c > 0,

Q
(2)
N

{
(∂Υ−1

N (C × R))2αN
}
≤ Q(2)

N

{
(Υ−1

N ((∂C)cαN × R))
}

(25)

and

Q
(2)
N

{
(Υ−1

N (C × R))
}

=
∫

ΩN∩Υ−1
N (C×R)

φ2(x)q(2)
N (x)dx + o((N/M)−1/2)

=
∫

Ω?N∩{C×R}
φ2(Υ−1(s))q(2)

N (Υ−1
N (s))|J |ds + o((N/M)−1/2),

where φ2(·) is the bivariate standard normal density, Ω?N = ΥN (ΩN ) and |J | is the Jacobian of the

transformation. We can obtain, neglecting terms that contribute o((N/M)−1/2) to the integrals, that

φ2(Υ−1
N (s)) = φ(s1)φ(s2)

(
1− 1

2
s2

1

[
b1M

−d +
√

4π ‖K‖2 s2

(
M

N

)1/2
])

q
(2)
N (Υ−1

N (s)) = 1 +
(
M

N

)1/2 1
3!
{∇0[0, 3]H3(s2) +∇0[2, 1]H2(s1)H1(s2)} ,
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and |J | = 1 + 1
2b1M

−d + 1
2

√
4π ‖K‖2 s2 (M/N)

1
2 . Thus if pj(s) denote polynomials not depending on N

or M ,

Q
(2)
N

{
Υ−1
N (C × R)

}
=

∫
Ω?N∩{C×R}

φ2(s)
[
1+ p1(s)(N/M)−1/2+p2(s)M−d

]
ds+o((N/M)−1/2)

=
∫
C

φ(s1)
{∫
R

[
1+p1(s)(N/M)−1/2+p2(s)M−d

]
φ(s2)ds2

}
ds1+o((N/M)−1/2)

=
∫
C

φ(s1)
[
1 + r1(s1)(N/M)−1/2 + r2(s1)M−d

]
ds1 + o((N/M)−1/2),

where rj(s1) are polynomials in s1, with bounded coefficients in N . Integrating with respect to s2 in R

we obtain that r1(x) = 0 and r2(x) = − 1
2b1(x2 − 1). The proof is completed by recalling (24), (25) and

Lemma 5. As in Bhattacharya and Ghosh (1978) this expansion coincides with the formal Edgeworth

expansion obtained calculating the first three cumulants of the linear approximation Y LN = s1 to YN up

to error o((N/M)−1/2) because E[s1], E[s3] = o((N/M)−1/2) and E[s2
1] = 1− b1M−d + o((N/M)−1/2).

�

Proof of Lemma 6. We obtain f̃(0) − f̂(0) = −2ZN + RN , where RN = (2πN)−1X
2
1′WM1 and

ZN = (2πN)−1X ′WM1X = (2πN2)−1X ′WM1 1′X = X ′ΛNX, with ΛN = (2πN2)−1WM1 1′ a N ×N
matrix. The Lemma follows directly from Lemmas 17 and 18, because

Cums[ZN ] = csTrace[(ΣNΛN )s] = cs

(
M

N

)s
[2πf(0)K(0)]s +O

((
M

N

)s+1

log2N

)
,

where cs = 2s−1(s−1)! (so (N/M)ZN has bounded moments of all orders). Then, as XN ∼ N (0, VN/N)

and from Lemma 1, under Assumption 1, VN = 2πf(0) + O(N−1 logN), it follows that (N/M)RN has

bounded moments of all orders too. �

Proof of Lemma 7. We can write u?2 = u2 + (N/M)−1/2∆′N , where the random variable ∆′N has

moments of all orders as ∆N . Now Y ?N = Y LN + [ZN + ∆′′N ] (N/M)−1, where ∆′′N depends on ∆N , u1

and u2, and has moments of all orders, so it can be neglected when we approximate Y ?N with Y LN . �

The proofs of Lemmas 8 and 9 are postponed to Appendix B.

Proof of Lemma 11. Follows as for Lemmas 3 and 4 using Propositions 3 and 4. �

Proof of Theorem 3. Follows as for Theorem 1. First, we approximate the joint characteristic function

of u? = (u1, u
?
2). Define

A?N (t, 3) = exp
{

1
2
‖it‖2

}[
1 +B?N (3, t)

(
M

N

)1/2

+
{
B
?

N (4, t) +
1
2
B
?

N (3, t)2

}
M

N

]
,

where we include in B?N the expansions for the corresponding cumulants up to the order M−d
?

, but in B
?

N

only the leading terms are kept, so B?N (3, t) = 1
3!

∑d?

j=0M
−j∇j [0, 3](it2)s, B

?

N (3, t) = 1
3!∇0[0, 3](it2)3

and B
?

N (4, t) = 1
4!∇0[0, 4](it2)4. Now the Theorem follows as Theorem 1 using Lemmas 19, 20 and 21

instead of Lemmas 14, 15 and 16. �

Proof of Theorem 4. We get, δ?N = (1− b?N )−1/2,

δ?N = 1− 1
2
b1M

−d − 1
2
b2
M

N
+O

(
N−1 logN +M−d−% +

[
M

N

]2

log2N

)
,
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and σ?N = σN +eN =
√

4π‖K‖2 +eN , where eN = O(M−2 +eN (2)). Therefore we can write Y ?N = Y ?LN +

ZN (N/M)−3/2, where Y ?LN is defined in (9) and ZN (N/M)−3/2 can be neglected in an approximation

to the distribution of Y ?N up to order M/N . Now we can use the same arguments as before to justify

the Edgeworth approximation for Y ?N in terms of that for u?, since, under condition (8), E[s1], E[s3
1] =

o(M/N), and neglecting terms o(M/N),

E[s2
1] = 1− b1M−d +

M

N

[
−b2 + 4π‖K‖22

]
, E[s4

1] = 3− 6b1M−d +
M

N

[
−6b2 + 36π‖K‖22

]
,

so the Theorem follows with the definition of rN (x). �

10 Appendix B: Technical Lemmas

We first introduce the Multiple Fejér Kernel as in Bentkus (1972) or Dahlhaus (1983) for tapered series,

Φ(n)
N (x1, . . . , xn) =

1
(2π)n−1N

sinNx1/2
sinx1/2

· · · sinNxn/2
sinxn/2

=
1

(2π)n−1N

N∑
t1,...,tn=1

exp
{
i
∑n
j=1tjxj

}
,

with xn ≡ −
∑n−1
j=1 xj . For n = 2 this is Fejér’s kernel. We have followed the same convention as in

Keenan (1986, p. 137): although the functions Φ(n)
N depend here on only n − 1 arguments, we refer

to n variables, with the restriction
∑n

1 xj ≡ 0(mod2π). Then Φ(n)
N (x1, . . . , xn) is integrable in Πn−1,

integrates to one for all N and has the following properties:

• For δ > 0, N ≥ 1 ∫
Dc

∣∣∣Φ(n)
N (x1, . . . , xn)

∣∣∣ dx1 · · · dxn−1 = O

(
logn−1N

N sinδ/2

)
, (26)

where Dc is the complement in Πn−1 of the set D = {x ∈ Πn−1 : |xj |≤δ, j=1, . . . , n−1}.

• For j = 1, . . . , n− 1,∫
Π

· · ·
∫

Π

|xj |
∣∣∣Φ(n)
N (x1, . . . , xn)

∣∣∣ dx1 · · · dxn−1 = O
(
N−1 logn−1N

)
. (27)

• These properties follow due to∣∣∣Φ(n)
N (x1, . . . , xn)

∣∣∣ ≤ 1
(2π)n−1N

|ϕN (x1)| |ϕN (x2)| · · · |ϕN (xn)| , (28)

where ϕN (x) =
∑N
t=1 exp{itx} is the Dirichlet Kernel, which satisfies:

|ϕN (x)| ≤ min
{
N, 2|x|−1

}
;

∫
Π

|ϕN (x)| dx = O(logN). (29)

Proof of Lemma 1. Applying the mean value theorem (MVT) for f(λ) in an interval [−ε, ε], ε > 0,

for some |θ|≤1 depending on λ, since VN = 2π
∫

Π
f(λ)Φ(2)

N (λ)dλ and
∫

Π
Φ(2)
N (λ)dλ = 1,

|VN− 2πf(0)| ≤ 2π

[∫
|λ|≤ε

+
∫
|λ|>ε

]∫
Π

|f(λ)− f(0)|
∣∣∣Φ(2)
N (λ)

∣∣∣ dλ
= O

(∫
|λ|≤ε

|λ||f ′(λθ)||Φ(2)
N (λ)|dλ+ [‖f‖1 + f(0)]N−1

)
,
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which is O
(
N−1 logN

)
using the integrability of f (implied by stationarity), its differentiability around

the origin and |Φ(2)
N (λ)| = O(N−1), if |λ| ≥ ε > 0, from (28) and (29). �

Proof of Lemma 2. Writing the spectral estimate as f̂(0) =
∫

Π
KM (λ)I(λ)dλ where I(λ) has ex-

pectation E [I(λ)] =
∫

Π
Φ(2)
N (λ − α)f(α)dα we obtain E[f̂(0)] =

∫
Π
KM (λ)

∫
Π

Φ(2)
N (α)f(λ + α)dαdλ.

Then

E[f̂(0)]− f(0)− f (d)(0)
d!

µd(K)
Md

=
∫

Π

KM (λ)
∫

Π

Φ(2)
N (α) [f(λ+ α)− f(λ)] dαdλ

+
∫

Π

KM (λ)
[
f(λ)− f(0)− f (d)(0)

d!
µd(K)M−d

]
dλ

= b1 + b2 ,

say, where we have used the fact that K integrates to one. Introduce the sets D = {|α|, |λ| ≤ ε/2},
and Dc, its complement in Π2. Let b11 and b12 be the contributions to b1 corresponding to D and Dc

respectively. Then, for |θ| ≤ 1, depending on α, b11 =
∫
D
KM (λ)Φ(2)

N (α) [f ′(λ+ θα)α] dαdλ and

|b11| ≤ sup
|λ|≤ε

|f ′(λ)|
∫
|λ|≤ε/2

|KM (λ)|dλ
∫
|α|≤ε/2

|α||Φ(2)
N (α)|dα = O

(
N−1 logN

)
.

To study b12 note first that Dc ⊂ A1 ∪A2 where A1 = {|α| > ε/2} and A2 = {|λ| > ε/2, |α| ≤ ε/2}.
Then the contribution to b12 from A1 is∣∣∣∣∣
∫
|α|>ε/2

∫
Π

KM (λ) [f(λ+α)− f(λ)] dλΦ(2)
N (α)dα

∣∣∣∣∣ = O

(
N−1

∫
Π2
|KM (λ) [f(λ+ α)− f(λ)]| dλdα

)

= O

(
N−1

[
1 +
∫
|λ|≤ε
|KM (λ)f(λ)| dλ

])
, (30)

which is O
(
N−1

∫
Π
|KM (λ)| dλ

)
= O

(
N−1

)
, as the integral over |λ| > ε vanishes in (30) as M →∞. On

the other hand, reasoning in a similar way, for M sufficiently large the contribution to b12 from A2 is∣∣∣∣∣
∫
|λ|>ε/2

∫
|α|≤ε/2

KM (λ)Φ(2)
N (α) [f(λ+ α)− f(λ)] dαdλ

∣∣∣∣∣ = 0, (31)

because of the compact support of K. Thus b12 = O
(
N−1

)
.

Now for b2, splitting the integral in two parts for |λ| ≤ ε and |λ| > ε, denoted as b21 and b22

respectively, we have, constructing a Taylor expansion, (with |θ| ≤ 1, depending on λ),

b21 =
∫
|λ|≤ε

KM (λ)

d−1∑
j=1

f (j)(0)
λj

j!
+ f (d)(θλ)

λd

d!
− f (d)(0)

d!
µd(K)M−d

 dλ
=

d−1∑
j=1

f (j)(0)
1
j!

∫
Π

λjKM (λ)dλ+
∫
|λ|≤π/M

KM (λ)
[
f (d)(θλ)− f (d)(0)

]
λd dλ

= O

(∫
Π

|KM (λ)||λ|d+%dλ

)
= O(M−d−%),

as all the integration is within [−ε, ε] since M → ∞ and using the Lipschitz property of f (d). As b22 is

zero due to compact support of K, the Lemma is proved. �

Proposition 1 Under Assumptions 1, 3, 4, eN (2s)→0, for s≥2,

Trace [(ΣNWM )s]=N(2π)2s−1
d∑
j=0

Lj(s)Ms−1−j +O
(
NMs−1eN (2s)

)
,

23



where eN (s) = N−1M log2s−1N and Lj(s) = 1
j!µj(K

s)f̈ j(0) with |Lj(s)| < ∞ and, as µj(Ks), the

constants Lj(s) only differ from zero for j even (j=0, . . . , d).

Proof of Proposition 1. The proof is in two steps.

First step. We bound A =
∣∣Trace [(ΣNWM )s] − N(2π)2s−1

∫
Π
fs(λ)Ks

M (λ)dλ
∣∣ . First write, r2s+1 ≡ r1,

Trace [(ΣNWM )s] =
∑

1≤r1,...,r2s≤N

s∏
j=1

γ(r2j−1−r2j)ω(
r2j−r2j+1

M
)

=
∑
r

∫
Π2s

s∏
j=1

{f(λ2j−1)KM (λ2j)} exp
{
i
∑2s
j=1λj(rj−rj+1)

}
dλ

= N(2π)2s−1

∫
Π2s

GM (λ, µ)KM (λ)Φ(2s)
N (µ)dλdµ

where Φ(2s)
N (µ) = Φ(2s)

N (µ1, · · · , µ2s), GM (λ, µ) = f(λ−µ2−· · ·−µ2s)KM (λ−µ3−· · ·−µ2s)· · ·f(λ−µ2s),

dµ = dµ2· · ·dµ2s, dλ = dλ1· · ·λ2s and we have made the change of variables
µ1 = λ1 − λ2s

µ2 = λ2 − λ1

. . .

µ2s = λ2s − λ2s−1,


λ2s−1 = λ− µ2s

λ2s−2 = λ− µ2s − µ2s−1

. . .

λ1 = λ− µ2s −· · ·− µ2 = λ− µ1,

(
∑2s
j=1 µj = 0), setting λ = λ2s, and expressing all the λj in terms of λ and µj , j = 2, . . . , 2s. Then

A ≤ N(2π)2s−1

∫
Π2s

∣∣GM (λ, µ)− fs(λ)Ks−1
M (λ)

∣∣ ∣∣∣KM (λ)Φ(2s)
N (µ)

∣∣∣ dλdµ. (32)

We split the above integral into two sets, for small and for large µj . Define the set D =
{
µ ∈ Π2s−1 :

supj |µj | ≤ 1/(2sM)
}
. Taking into account that |λ| ≤ π/M due to the compact support of K, in the

set D all functions f are boundedly differentiable. Then we can use the inequality

|A1 · · ·Ar −B1 · · ·Br| ≤
r−1∑
q=0

|B1 · · ·Bq||Bq+1 −Aq+1||Aq+2 · · ·Ar| (33)

and supλ |KM (λ)| = O(M) to bound the integral of (32) over D by

O(NMs−1)
s−1∑
q=0

∫
Π

∫
D

|f(λ− µ2+2q...− µ2s)− f(λ)|
∣∣∣KM (λ)Φ(2s)

N (µ)
∣∣∣ dλdµ (34)

+O(NMs−1)
s−2∑
q=0

∫
Π

∫
D

|KM (λ−µ3+2q...− µ2s)−KM (λ)|
∣∣∣Φ(2s)
N (µ)

∣∣∣ dλdµ. (35)

Then, applying the MVT and using (27) we obtain that (34) is

O(NMs−1)
∫

Π

|KM (λ)|dλ
2s−1∑
q=2

∫
Π2s−1

|µq|
∣∣∣Φ(2s)
N (µ)

∣∣∣ dµ = O(Ms−1 log2s−1N).

On the other hand, (35) is of order O
(
Ms log2s−1N

)
, using the Lipschitz property of K. Denote by Dc

the complement of D in Π2s−1. The contribution to A corresponding to the set Dc is bounded by

N(2π)2s−1

∫
Π

∫
Dc
|GM (λ, µ)KM (λ)| |Φ(2s)

N (µ)|dλdµ (36)

+N(2π)2s−1

∫
Π

|fs(λ)Ks
M (λ)|dλ

∫
Dc
|Φ(2s)
N (µ)|dµ. (37)
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The expression in (37) is O(Ms log2s−1N), by (26) and
∫
|fs(λ)Ks

M (λ)|dλ = O(Ms−1), which follows

from compact support of K. Now (36) is not larger than∫
D?

s∏
j=1

|f(λ2j−1)KM (λ2j)ϕN (λ2j − λ2j−1)ϕN (λ2j+1 − λ2j)| dλ2jdλ2j−1, (38)

where D? is the corresponding set to Dc with the former variables λj , j = 1, . . . , 2s, defined by D? =

{|λ2−λ1| > δN}∪{|λ3−λ2| > δN}∪. . .∪{|λ2s−λ2s−1| > δN}, with δN = 1/(2sM), and a subindex 2s+1

is to be interpreted as 1. Note that the last integral only differs from zero if |λ2|, |λ4|, . . . , |λ2s| ≤ π/M.

We consider only the case where just one of the events in D? is satisfied, |λ2j −λ2j−1| > δN (1 ≤ j ≤ s),
say, the situation with an odd index or with more than one event being dealt with in a similar or simpler

way.

First, if |λ2j − λ2j−1| > δN , then |ϕN (λ2j − λ2j−1)| = O(M). Second, we can bound the integrals in

λ2j and λ2j−1, with
∫

Π
|ϕN (λ2j+1 − λ2j)KM (λ2j)| dλ2j = O(M logN), using (29), and∫

Π

|ϕN (λ2j−1 − λ2j−2)f(λ2j−1)| dλ2j−1 =
∫
|λ2j−1|≤ε

+
∫
|λ2j−1|>ε

. (39)

If |λ2j−1| ≤ ε then f(λ2j−1) is bounded and the corresponding integral is of order O(logN). If |λ2j−1| > ε,

as |λ2j−2|<π/M , we obtain that |λ2j−1−λ2j−2|>ε/2, say, as M →∞, and then |ϕN (λ2j−1−λ2j−2)| =
O(1). Thus the second integral is finite due to the integrability of f . Hence ( 39) is O(logN). There are

s− 1 integrals of each type, which can be handled in the same way. Third, the remaining integral is of

the general form ∫
Π

∫
Π

|KM (λ2s)f(λ1)ϕN (λ1 − λ2s)| dλ1dλ2s = O(logN),

since, as in (39), the integral in λ1 is O(logN) for all λ2, and
∫
|KM (λ2s)|dλ2s is O(1). Summarizing,

the integral over D? is O(Ms log2s−1N), and compiling results we obtain that A = O
(
Ms−1 log2s−1N

+ Ms log2s−1N
)

= O
(
NMs−1eN (s)

)
.

Second step. Defining CM (s) =
∑d
j=0 Lj(s)M

s−1−j , we obtain, as M →∞,

∣∣∣∣∫
Π

Ks
M (λ)fs(λ)dλ− CM (s)

∣∣∣∣ ≤ ∫
Π

|KM (λ)|s−1

∣∣∣∣∣∣fs(λ)−
d∑
j=0

1
j!

(
d

dλ

)j
fs(0)λj

∣∣∣∣∣∣|KM (λ)|dλ

= O

(
sup
λ
|KM (λ)|s−1

∫
Π

|λ|d+%|KM (λ)|dλ
)

= O(Ms−1−d−%),

using the Lipschitz property of f (d)(λ) in the same way as in the proof of Lemma 2. �

Proposition 2 Under Assumptions 1, 3, 4, eN (2s + 2)→0, for s ≥ 1, 1′(ΣNWM )sΣN1 = N(2π)2s+1

×[f(0)]s+1[KM (0)]s +O
(
Ms+1 log2s+1N

)
.

Proof of Proposition 2. We can write 1′(ΣNWM )sΣN 1 as

∑
0≤r1,...,r2s+2≤N

γ(r2s+1−r2s+2)
s∏
j=1

{
γ(r2j−1−r2j)ω(

r2j−r2j+1

M
)
}

=
∑
r

∫
Π2s+1

f(λ2s+1)
s∏
j=1

{f(λ2j−1)KM (λ2j)} exp
{
i
∑2s+1
j=1 λj(rj−rj+1)

}
dλ

= (2π)2s+1N

∫
Π2s+1

SM (µ)Φ(2s+2)
N (µ)dµ, (40)
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by change of variable, where Φ(2s+2)
N (µ) = Φ(2s+2)

N (µ1,· · ·, µ2s+1,−
∑2s+1
j=1 µj), SM (µ) = f(µ1)KM (µ1 +

µ2)· · ·KM (µ1 + · · · +µ2s)f(µ1 + · · · +µ2s+1) and dµ = dµ1· · ·dµ2s+1, dλ =dλ1· · ·dλ2s+1. To study the

difference between the integral in (40) and fs+1(0)Ks
M (0) we divide the range of integration, Π2s+1, into

two sets, D and its complement Dc, where D is now defined by the condition D = {|µj | ≤ π/[M(2s+

2)], j = 1, . . . , 2s + 1}. In this case we only need the smoothness properties of K at the origin (inside

D). For the difference in the set D, we can use inequality (33), the Lipschitz property of K and the

differentiability of f : ∣∣∣∣∫
D

SM (µ)Φ(2s+2)
N (µ)dµ−

∫
D

fs+1(0)Ks
M (0)Φ(2s+2)

N (µ)dµ
∣∣∣∣

= O(Ms+1)
∫

Π2s+1

2s∑
j=2

|µj |
∣∣∣Φ(2s+2)
N (µ)

∣∣∣ dµ = O
(
Ms+1N−1 log2s+1N

)
, (41)

using (27). Focusing on the integral over the set Dc of (40) and using (26), this is bounded by∫
Dc
|SM (µ)|

∣∣∣Φ(2s+2)
N (µ)

∣∣∣ dµ+O
(
Ms+1N−1 log2s+1N

)
. (42)

As in the proof of the previous Proposition, the integral in (42) is less or equal than

N−1

(2π)2s+1

∣∣∣∣∣∣
∫
D?

s∏
j=1

f(λ2j−1)KM (λ2j)ϕN (λ2j−λ2j−1)ϕN (λ2j+1−λ2j)f(λ2s+1)ϕN (λ1)ϕN (−λ2s+1)dλ

∣∣∣∣∣∣ (43)

where D? = {|λ1| > π/[M(2s+ 2)]}∪{|λ2−λ1| > π/[M(2s+2)]}∪ . . .∪{|λ2s−1 +λ2s| > π/[M(2s+2)]}.
Also, the integral in (43) is nonzero only if |λ2|, |λ4|, . . . , |λ2s| ≤ π/M .

If |λj+1 − λj | > π/[M(2s+2)] for at least one index j ∈ {1, . . . , 2s} we can repeat the procedure of

Proposition 1 to obtain a bound of order O(N−1Ms+1 log2s+1N) for this contribution in (43).

We now study the case in which |λ1|>π/[M(2s+2)]. First, |ϕN (λ1)| = O(M). Truncating the integral

at |λ1| = ε,
∫

Π
f(λ1)|ϕN (λ2 − λ1)|dλ1 = O(logN), as |λ2 − λ1|>ε/2 if |λ1| > ε and |λ2| ≤ ε/[M(2s+2)],

since M → ∞. Now
∫

Π
|KM (λ2)ϕN (λ3 − λ2)| dλ2 = O(M logN), and the integrals with respect to the

remaining variables can be bounded in the same way, (43) being of order O(N−1Ms+1 log2s+1N) again.

Therefore, from (41), (42) and the previous discussion for (43), the Proposition follows. �

Lemma 13 (Bhattacharya and Rao, 1975, pp. 97-98, 113) Let P and Γ be probability measures

on R2 and B2 the class of all Borel subsets of R2. Let α be a positive number. Then there exists a kernel

probability measure Ψα such that supB∈B2 |P (B) − Γ(B)| ≤ 2
3‖(P − Γ)?Ψα‖ + 4

3 supB∈B2 Γ{(∂B)2α},
where Ψα satisfies

Ψα(B(0, r)c) = O

((α
r

)3
)

(44)

and its Fourier transform Ψ̂α satisfies

Ψ̂α = 0 for ‖t‖ ≥ 8 · 24/3/π1/3α. (45)

(∂B)2α is a neighbourhood of radius 2α of the boundary of B, ‖ ‖ is the variation norm of a measure in

this case, and ? means convolution. �
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Lemma 14 Under Assumptions 1, 3, 4, M−1 + N−1M log5N → 0, there exists δ1 > 0 such that, for

‖t‖ ≤ δ1
√
N/M and a number d1 > 0:

|ψN (t)−AN (t, 2)| ≤ exp{−d1‖t‖2}F (‖t‖)O

((
N

M

)−1/2[
M−2 + eN (3)

]
+
M

N

)
,

where F is a polynomial in t with bounded coefficients and AN (t, 2) is defined as in (16).

Proof of Lemma 14. Similarly to Feller (1971, p. 535) we have for complex α and β that |eα − 1− β| ≤
eγ
{
|α− β|+ |β|2

2

}
, where γ = max{|α|, |β|}. We take (with τ = 2 in (15)):

α = logϕ(t)− 1
2
‖it‖2 =

(
M

N

)1/2 ∑
|r|=3

1
r1!r2!

κ̄N [r1, r2](it1)r1(it2)r2 +RN (2)

and β =
(
MN−1

)1/2
B̄N (3, t). Then we have, using Lemmas 3 and 4 for s = 3,

|α− β| ≤

∣∣∣∣∣
(
N

M

)−1/2

O
(
M−2+eN (3)

)[
(it2)3+(it1)2(it2)

]
+
M

N

[
R04(it2)4+R22(it1)2(it2)2

]∣∣∣∣∣
≤ F1(‖t‖)O

((
N

M

)−1/2[
M−2+ eN (3)

]
+
M

N

)
,

where F1 is a polynomial of degree 4. Now 1
2 |β|

2 ≤ F2(‖t‖)O
(
M
N

)
, where F2 is a polynomial of degree

6. Then

|α− β|+ |β|
2

2
≤ F (‖t‖)O

((
N

M

)−1/2[
M−2 + eN (3)

]
+
M

N

)
(46)

for some polynomial F . Now to study γ, we first bound |β| for ‖t‖ ≤ δβ
√
N/M , δβ > 0:

|β| ≤ ‖t‖2
{

1
3!

(
N

M

)−1/2

[|∇0[0, 3]|+ 3|∇0[2, 1]|] ‖t‖

}

≤ ‖t‖2
{
δβ
3!

[|∇0[0, 3]|+ 3|∇0[2, 1]|]
}
≤ ‖t‖2Tβ , (47)

with 0 < Tβ < 1/4 on choosing δβ sufficiently small. Now for α we can choose a δα > 0 so small that,

for ‖t‖ ≤ δα
√
N/M ,

|α| ≤ ‖t‖2
{

1
3!

(
N

M

)−1/2[
|∇0[0, 3]|+3|∇1[2, 1]|+O(M−2+ eN (3)

]
‖t‖+

M

N
[|R04|+ |R22|] ‖t‖2

}

≤ ‖t‖2
{
δα
3!
[
|∇0[0, 3]|+ 3|∇0[2, 1]|+O

(
M−2+ eN (3)

)]
+δ2

α[|R04|+|R22|]
}

≤ ‖t‖2
{

1
4

+O
(
M−2+ eN (3)

)}
. (48)

From (47) and (48) we have that eγ ≤ exp
{
‖t‖2

[
1
4 +O

(
M−2 + eN (3)

)]}
for ‖t‖ ≤ δ1

√
N/M where

δ1 = min{δα, δβ}. Then,

exp
{
−1

2
‖t‖2 + γ

}
≤ exp

{
‖t‖2

[
−1

4
+O

(
M−2 + eN (3)

)]}
≤ exp

{
−d1‖t‖2

}
(49)

for one d1 > 0, ‖t‖ ≤ δ1
√
N/M . Since our approximation to ϕ(t) = exp{ 1

2‖it‖
2 + α} is AN (t, 2) =

exp
{

1
2‖it‖

2
}

[1 + β], using (46) and (49) the Lemma is proved. �
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Lemma 15 Under Assumptions 1, 2 (some p > 1), 3, 4, M−1 +N−1M log3N → 0 as N →∞ there ex-

ists d2 > 0 such that for ‖t‖ > δ1mN , |ψ(t1, t2)| ≤ exp
{
−d2m

2
N

}
, where mN

def
= min

{(
MN−1

)1/2 logN,

N (p−1)/p
}
→∞ as N →∞.

Proof of Lemma 15. First, following Bentkus and Rudzkis (1982) we study the characteristic function

of the spectral density estimate, which itself appears in the joint characteristic function. Define τ(t2) =

E [exp {it2u2}] = τ ′(t2) exp {−it2E} , where

τ ′(t2) =
∣∣∣∣I − 2it2√

NMσNVN
ΣNWM

∣∣∣∣−1/2

=
N∏
j=1

(
1− 2it2

µj√
NMσNVN

)−1/2

and µj are now the eigenvalues of the matrix ΣNWM . Obviously |τ(t2)| = |τ ′(t2)|. Now as

1 = Var[u2] =
1

MN

1
σ2
NV

2
N

2 Trace[(ΣNWM )2] =
1

MN

2
σ2
NV

2
N

N∑
j=1

µ2
j ,

we obtain
∑N
j=1 µ

2
j = 1

2σ
2
NV

2
NMN = O(MN). Also we have that maxj |µj | = sup‖z‖=1 |(ΣNWMz, z)| =

‖ΣNWM‖. From Lemma 16, for a finite positive constant c1 depending on f and K

max
j
|µj | ≤ c1ϑN , ϑN = max

{
M logN,N

2−p
2p M1/2

}
→∞, as N →∞.

Introduce now the notation gj = µj [c1ϑN ]−1 where |gj | ≤ 1. We have
∑N
j=1 g

2
j = σ2

NV
2
NMN(2c21ϑ

2
N )−1,

and (noting that NM/ϑ2
N →∞, for all p > 1)

|τ(t2)| =
N∏
j=1

(
1 + 4t22

c21g
2
jϑ

2
N

MNσ2
NV

2
N

)−1/4

≤
N∏
j=1

(
1 + t22

4c21
MN

ϑ2
N

σ2
NV

2
N

)− 1
4 g

2
j

=
(

1 + t22
ϑ2
N

NM

4c21
σ2
NV

2
N

)− 1
8 c
−2
1 σ2

NV
2
NNMϑ−2

N

=
(

1 + t22
ϑ2
N

NM

[
c2 +O(M−2 + eN (2))

])− 1
2 [c−1

2 +O(M−2+eN (2))]NMϑ−2
N

,

where c2 = c21/(π
24πf2(0)‖K‖22) is a constant from the expansion of σ2

NV
2
N in powers of M−1, and we

have applied (1 + at) ≥ (1 + t)a, valid for t ≥ 0, 0 ≤ a ≤ 1. So for all η > 0, as N,M →∞ we have that

|τ(t2)| ≤ (1 + η2
1)
−η2

NM

ϑ2
N (50)

for |t2| > η
√
NM/ϑN and for η1 > 0 and η2 > 0 depending on η.

Then returning to the bivariate characteristic function, its modulus is equal to

|ϕN (t1, t2)| = |τ(t2)| exp
{
−1

2
t21ξ
′
N<(I − 2it2ΣNQN )−1ΣNξN

}
, (51)

where < stands for real part. From Anderson (1958, p. 161) <(Σ−1
N −2it2QN )−1 = <(I−2it2ΣNQN )−1ΣN

is positive definite as t2QN is real (for every N). Then ξ′N<(I − 2it2ΣNQN )−1ΣNξN > 0 for all t2 ∈ R.

Thus for |t2| ≤ δ
√
NM/ϑN , for all δ > 0, ξ′N<(I − 2it2ΣNQN )−1ΣNξN > ε for some ε > 0 fixed

depending on δ, since we have that ‖ΣNQN‖ = O
(
(MN)−1/2‖ΣNWM‖

)
= O

(
(MN)−1/2ϑN

)
, and

‖ξN‖ = 1/VN , with VN → 2πf(0), 0 < f(0) <∞, as N →∞. Then,

exp
{
−1

2
t21ξ
′
N<(I − 2it2ΣNQN )−1ΣNξN

}
≤ exp

{
−1

2
t21ε1

}
≤ exp

{
−1

4
ε1δ

2
1

NM

ϑ2
N

}
(52)
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for |t1|
√

2 > δ1
√
NM/ϑN and |t2|

√
2 ≤ δ1

√
NM/ϑN , and some ε1 > 0 depending on δ1.

Thus from (50) and (52), there exists a d2 > 0 such that |ϕ(t1, t2)| ≤ exp
{
−d2

NM
ϑ2
N

}
inside{

t : ‖t‖ > δ1
√
NM/ϑN

}
⊂ B1 ∪B2 where B1 =

{
t ∈R2 : |t2| > δ1√

2

√
NM/ϑN

}
and

B2 =
{

t ∈ R2 : |t2| ≤ δ1√
2

√
NM/ϑN and |t1| > δ1√

2

√
NM/ϑN

}
and the Lemma follows because

NM

ϑ2
N

= MN min
{

1
M2 log2N

,N
p−2
p M−1

}
= m2

N →∞,

as N →∞. Note that p > 2 in 2 provides no further improvement in any bound, since the best rate in

Lemma 16 below is already attained when f is in L2. �

Lemma 16 Under the assumptions of Theorem 1, ‖ΣNWM‖ ≤ c1ϑN , where 0 < c1 <∞ is a constant

depending on f and K and ϑN
def
= max

{
M logN,N (2−p)/2pM1/2

}
→∞ as N →∞.

Proof of Lemma 16. Write

‖ΣNWM‖ = sup
‖z‖=1

∣∣∣∣∣∣
∑
j,h

zjzh

∫
Π2
f(λ)KM (ω)ϕN (λ− ω)ei(hω−jλ)dλdω

∣∣∣∣∣∣ = sup
‖z‖=1

∣∣∣∣∫
Π2
FN (λ, ω)dλdω

∣∣∣∣ , (53)

say, where FN (λ, ω) = f(λ)KM (ω)ϕN (λ − ω)ZN (−λ)ZN (ω) and ZN (λ) =
∑N
j=1 zje

ijλ for any vector

z with ‖z‖ = 1. In the integral in (53) we need consider only the interval w ∈ [−π/M, π/M ], with

π/M ≤ ε by M →∞. Denote the supremun of f(λ) when λ ∈ [−ε, ε] as ‖fε‖∞. Then the contribution

from |λ| ≤ ε to (53) is bounded by

sup
‖z‖=1

M‖K‖∞‖fε‖∞
∫

Π

∫
Π

|ϕN (λ− ω)ZN (−λ)ZN (ω)| dλdω

≤ sup
‖z‖=1

M‖K‖∞‖fε‖∞
∫

Π

|ϕN (α)|
[∫

Π

|ZN (−α− ω)|2 dω
∫

Π

|ZN (ω)|2 dω
]1/2

dα

≤ 2πM‖K‖∞‖fε‖∞
∫

Π

|ϕN (α)| dα ≤ c(f,K)M logN, (54)

where c(f,K) is a constant depending on f and K, and we have made the change of variable α = λ− ω
and used the fact that

∫
Π
|ZN (ω)|2dω = 2π. For other λ, we see that |λ| > ε and |ω| ≤ π/M imply

|λ− ω| > ε/2, say, as M →∞, so |ϕN (λ− ω)| ≤ const. Then, for 1 < p ≤ 2 and using supz,λ |ZN (λ)| ≤
√
N and Hölder inequality for 1 < p ≤ 2, the contribution from |λ| > ε to (53) is bounded by

const sup
‖z‖=1

∫
Π

∫
Π

f(λ) |KM (ω)ZN (ω)ZN (−λ)| dλdω

≤ const sup
‖z‖=1

[∫
Π

|KM (ω)|2 dω
∫

Π

|ZN (ω)|2 dω
]1/2 [∫

Π

fp(λ)dλ
]1/p [∫

Π

|ZN (λ)|
p
p−1 dλ

] p−1
p

≤ const‖K‖1/2∞ ‖K‖1‖f‖pN
2−p
2p M1/2 = c′(f,K)N

2−p
2p M1/2, (55)

using supz,λ |ZN (λ)| ≤
√
N and

∫
Π
|ZN (λ)|2dλ = 2π. Then the Lemma follows from (54) and (55). �

Lemma 17 Under Assumptions 1, 3, 4, M−1 +N−1M log2N → 0, s = 1, 2, . . .

Trace[(ΣNWM1 1′)s] = (MN)s
[
(2π)2f(0)K(0)

]s
+O((NM)s−1M2 log2N).
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Proof of Lemma 17. First we observe that Trace[(ΣNWM1 1′)s] = (1′ΣNWM1)s and

1′ΣNWM1 = (2π)2N

∫
Π2
f(µ1)KM (µ1 + µ2)Φ(3)

N (µ1, µ2)dµ1dµ2. (56)

Introduce the set D = {|µj | ≤ π/[2M ], j = 1, 2}. Then, using Assumptions 1 and 4, for d = 1,∣∣∣∣(2π)2N

∫
D

f(µ1)KM (µ1 + µ2)Φ(3)
N (µ1, µ2)dµ1dµ2 −N(2π)2f(0)KM (0)

∫
D

Φ(3)
N (µ1, µ2)dµ1dµ2

∣∣∣∣
= O(N)

∫
D

|f(µ1)KM (µ1 + µ2)− f(0)KM (0)| |Φ(3)
N (µ1, µ2)|dµ1dµ2

= O(NM)
∑
j=1,2

∫
Π

∣∣∣µjΦ(3)
N (µ1, µ2)

∣∣∣ dµ1dµ2 +O
(
NM2

) ∑
j=1,2

∫
Π

∣∣∣µjΦ(3)
N (µ1, µ2)

∣∣∣ dµ1dµ2,

which is O(M2 log2N). The contribution to (56) of the integral for the complement to the set D can

be seen to be of order of magnitude O(M2 log2N), proceeding in the same way as in the proof of

Proposition 1. �

Lemma 18 Under Assumptions 3, 4, M−1+N−1M logN → 0, (2πN)−11′WM1 = M K(0)+O
(
M2N−1 logN

)
.

Proof of Lemma 18. It follows writing (2πN)−11′WM1 =
∫

Π
KM (λ)Φ(2)

N (λ)dλ and using the Lipschitz

property of K and the properties of the Fejér’s kernel. �

Proof of Lemma 8. Following the proof of Lemma 2, we can write the bias E[f̂ (ν)(0)]− f (ν)(0) as

(mν)ν
∫

Π

Vmν (λ)
∫

Π

Φ(2)
N (θ) [f(λ− θ)− f(λ)]dθdλ+ (mν)ν

∫
Π

Vmν (λ)
[
f(λ)− λν

(−1)νν!
f (ν)(0)

]
dλ.

Then employing the same methods of Lemma 2 with the properties of the kernel Vν , this isO
(
(mν)νN−1 logN

+ (mν)−a), and the Lemma follows. �

Proof of Lemma 9. Likewise for the discussion of the cumulants of the spectral estimate contained in

Proposition 1 we can write

N

(mν)2ν+1
Var[f̂ (ν)(0)] =

4π
mν

∫
Π4
f(λ−

∑4
j=2µj)Vmν (λ−µ3−µ4)f(λ−µ4)Vmν (λ)Φ(4)

N (µ)dµdλ. (57)

As in Proposition 1 we have to take care of possible unboundedness of f away from the origin. We thus

consider the set of integration D = {µ ∈ [−π, π]3 : |µj | ≤ 1/(4M), j = 2, . . . , 4}. Then, the integral in

(57) over the set D is

4π
mν

∫
Π

f2(λ)V 2
mν (λ)dλ+O

(
N−1mν log3N

)
=

4π
mν

f2(0)
∫

Π

V 2
mν (λ)dλ+O

(
N−1mν log3N +m−1

ν

)
,

which is 4πf2(0)‖Vν‖22 + o(1), using evenness of f and its differentiability around f(0). The integral in

(57) over the complement to the set D can be seen to be O(N−1mν log3N), using the finite support of

Vν and the properties of Φ(4)
N , as in the proof of Proposition 1. �

Proposition 3 Under the assumptions of Proposition 1, Trace [(ΣNW ?
M )s] = Trace [(ΣNWM )s]+O(Ms),

W ?
M = ANWMAN .

Proof of Proposition 3. Follows the proof of Proposition 1. The Fourier transform corresponding to

the matrix AN is

AN (λ) =
1

2π

(
1− DN (λ)

N

)
, DN (λ) =

N−1∑
j=1−N

eijλ,
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where DN (λ) is a version of Dirichlet kernel. Denote aN (j) = δ(j = 0) − N−1. We first rewrite

Trace [(ΣNW ?
M )s] as, r2s+1 ≡ r1,∑

1≤r1,r′1,...,r2s≤N

s∏
j=1

γ(r2j−1−r′2j−1)aN (r′2j−1−r2j)ω(
r2j−r′2j
M

)aN (r′2j−r2j+1)

= N

∫
Π4s
f(λ−µ′1−µ2· · · −µ′2s)AN (λ−µ2· · ·−µ′2s)KM (λ−µ′2· · · −µ′2s)· · ·f(λ−µ′2s−1· · ·−µ′2s)

×AN (λ−µ2s−µ′2s)KM (λ−µ′2s)AN (λ)(2π)4s−1Φ(4s)
N (µ1, µ

′
1, · · · , µ2s)dλdµ,

using a change of variable as in the proof of Proposition 1, and dµ = dµ′1dµ2dµ
′
2· · ·dµ2s.

Now we deal with the cross products implicit in the functions aN (j) orAN (λ). The product containing

no DN (λ) equals the integral in the case without mean-correction (cf. Proposition 1). Then all the

remaining terms have 1, 2, . . . , 2s functions DN (λ). We consider just one, and bound its contribution to

the trace. From the proof it should be evident that similar bounds hold for the other terms. The typical

term is

−
∑

1≤r1,r′1,...,r2s≤N

γ(r1−r′1)
1
N
ω(
r2−r3

M
)· · ·γ(r2s−1−r2s)ω(

r2s−r1

M
)

= − 1
N

∑
1≤r2,...,r2s,r1,r′1≤N

ω(
r2−r3

M
)· · ·γ(r2s−1−r2s)ω(

r2s−r1

M
)γ(r1−r′1)

which is O(N−1NMs) = O(Ms), from Proposition 2, and there is no additional term of higher magni-

tude. �

Proposition 4 Under the assumptions of Proposition 2, 1′(ΣNW ?
M )sΣN 1 = O

(
Ms+1 log4s+1N

)
.

Proof of Proposition 4. We can write 1′(ΣNW ?
M )sΣN 1 as∑

0≤r1,r′1,...,r2s+2≤N

γ(r1−r′1)aN (r′1−r2) · · ·ω(
r2s−r′2s
M

)aN (r′2s−r2s+1)γ(r2s+1−r2s+2)

= (2π)4s+1N

∫
Π4s+1

f(λ2s+1)
s∏
j=1

{
f(λ2j−1)AN (λ′2j−1)KM (λ2j)AN (λ′2j)

}
×Φ(4s+2)

N (λ1, λ
′
1−λ1, λ2−λ′1,· · ·, λ2s+1−λ′2s,−λ2s+1)dλ1· · ·dλ2s+1

= (2π)4s+1N

∫
Π4s+1

HN (µ)A(2s)
N (µ)Φ(4s+2)

N (µ)dµ, (58)

say, where we have changed variables as in Proposition 2, HN (µ) = f(µ1)KM (µ1+µ′1)· · ·KM (µ1+· · ·+
µ′2s)f(µ1+· · ·+µ2s+1), A(2s)

N (µ) = AN (µ1 + µ′1)· · ·AN (µ1+· · ·+µ2s+µ′2s) grouping all the functions AN ,

and dµ = dµ1dµ
′
1· · ·dµ2s+1.

To study the difference between the integral in (58) and fs+1(0)Ks
M (0)

∫
A

(2s)
N (µ)Φ(4s+2)

N (µ)dµ we

divide the range of integration, Π4s+1, into two sets, Ω and its complement Ωc, where Ω is defined by

the condition Ω = {|µj | ≤ π/[M(2s+2)], j = 1, . . . , 2s+ 1}.
In this case we only need the smoothness properties of K at the origin (inside D). For the difference

in the set Ω, we can use inequality (33), the Lipschitz property of K and the differentiability of f :∣∣∣∣∫
Ω

HN (µ)A(2s)
N (µ)Φ(4s+2)

N (µ)dµ−
∫

Ω

fs+1(0)Ks
M (0)A(2s)

N (µ)Φ(4s+2)
N (µ)dµ

∣∣∣∣
= O(Ms+1 sup

µ

∣∣∣A(2s)
N (µ)

∣∣∣)∫
Π2s+1

2s∑
j=2

|µj |
∣∣∣Φ(4s+2)
N (µ)

∣∣∣dµ = O
(
Ms+1N−1 log4s+1N

)
, (59)
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using the fact that supµ |A
(2s)
N (µ)| = O(1). Now, the integral over the set Ωc can be bounded by∫

Ωc
|HN (µ)|

∣∣∣A(2s)
N (µ)Φ(4s+2)

N (µ)
∣∣∣ dµ + O

(
Ms+1M−1 log4s+1N

)
. (60)

As in the proof of Proposition 1, the integral over Ωc in (60) is again of order O(N−1Ms+1 log4s+1N),

using boundedness of A(2s)
N . Therefore, from (58) to (60) we have that

1′(ΣNW ?
M )sΣN 1 = (2π)2s+1N [f(0)]s+1[KM (0)]s

∫
A

(2s)
N (µ)Φ(4s+2)

N (µ)dµ+O
(
Ms+1 log4s+1N

)
,

which is just O
(
Ms+1 log4s+1N

)
because 1′(AN )2s 1 = 1′AN1 = 0 since

∫
Π4s+1 A

(2s)
N (µ)Φ(4s+2)

N (µ)dµ

=
(
(2π)4s+1N

)−1
1′(AN )2s1 = 0. �

Lemma 19 Under Assumptions 1, 3, 4, M−1 + N−1M log7N → 0 as N → ∞, there exists a positive

number δ1 > 0 such that, for ‖t‖ ≤ δ1
√
N/M and a constant d1 > 0:

|ψ?(t)−A?N (t, 3)| ≤ exp{−d1‖t‖2}F (‖t‖)O

((
N

M

)−3/2

+
(
N

M

)−1 [
M−d

?−1 +M−d−% + eN (4)
])

,

where F is a polynomial in t with bounded coefficients.

Proof of Lemma 19. Follows as Lemma 14. �

Lemma 20 Under Assumptions 1, 2 (p > 1), 3, 4, M−1 + N−1M log3N → 0 as N → ∞, there

exists a positive constant d2 > 0 such that for ‖t‖ > δ1m
?
N , |ψ?(t1, t2)| ≤ exp

{
−d2 (m?

N )2
}

with

m?
N = mN log−2N →∞ as N →∞.

Proof of Lemma 20. Follows as Lemma 15 using the fact that the asymptotic variance of the spectral

estimate is unaffected by mean-correction, and using Lemma 21. �

Lemma 21 Under the assumptions of Theorem 3, ‖ΣNW ?
M‖ ≤ c1ϑ

?
N , where 0 < c1 <∞ is a constant

depending on f and K, and ϑ?N = ϑN log2N .

Proof of Lemma 21. Write as in the proof of Lemma 16, ‖ΣNW ?
M‖ = sup‖z‖=1

∣∣∫
Π4 FN (λ)dλ

∣∣ , where

FN (λ) = ZN (−λ1)f(λ1)AN (λ2)KM (λ3)AN (λ4)ZN (λ4)ϕN (λ2 − λ1)ϕN (λ3 − λ2)ϕN (λ4 − λ3).

Then changing variables and using the periodicity of all functions,

sup
‖z‖=1

∫
|λ1|≤ε

∫
Π3
|FN (λ)| dλ

≤ sup
‖z‖=1

M‖K‖∞‖fε‖∞
∫

Π4
|ZN (−λ1)ZN (λ4)ϕN (λ2 − λ1)ϕN (λ3 − λ2)ϕN (λ4 − λ3)| dλ

≤ sup
‖z‖=1

M‖K‖∞‖fε‖∞
∫

Π3
|ϕN (µ1)ϕN (µ2)ϕN (µ3)|

[∫
Π

|ZN (λ)|2 dλ
∫

Π

∣∣∣∣ZN (λ−
∑3

i=1
µi)
∣∣∣∣2 dλ

]1/2

dµ

≤ 2πM‖K‖∞‖fε‖∞
(∫

Π

|ϕN (α)| dα
)3

≤ c(f,K)M log3N,
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with
∫

Π
|ZN (λ)|2dλ = 2π and (29). For other values of λ1, arguing as in the proof of Lemma 16 and

since |λ3| ≤ π/M, we obtain that

sup
‖z‖=1

∫
|λ1|>ε

{∫
|λ2|>ε/2

+
∫
|λ2|≤ε/2

}∫
Π2
|FN (λ)| dλ

≤ const sup
‖z‖=1

∫
Π

|ZN (−λ1)| f(λ1)
(∫

Π

|ϕN (λ2 − λ1)| dλ2

)
dλ1

∫
Π2
|KM (λ3)ZN (λ4)ϕN (λ4 − λ3)| dλ

+const sup
‖z‖=1

∫
Π

|ZN (−λ1)f(λ1)| dλ1

∫
Π2

(∫
Π

|ϕN (λ3 − λ2)| dλ2

)
|KM (λ3)ZN (λ4)ϕN (λ4 − λ3)| dλ.

Now the Lemma follows using Hölder inequality, periodicity,

sup
‖z‖=1

∫
Π2
|KM (λ3)ZN (λ4)ϕN (λ4 − λ3)| dλ ≤ sup

‖z‖=1

‖KM‖2‖ZN‖2‖ϕN‖1 = O
(
M1/2 logN

)
,

sup‖z‖=1

∫
Π
|ZN (−λ1)f(λ1)| dλ1 = O

(
N

2−p
2p

)
, supz |ZN | ≤

√
N and ‖ZN‖22 = 2π. �
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Götze, F. and H.R. Künsch (1996) Second-order correctness of the blockwise bootstrap for stationary

observations. Annals of Statistics 24, 1914-1933.

Hall, P. (1992) The Bootstrap and Edgeworth Expansion. New York: Springer-Verlag.

Hannan, E.J. (1957) The variance of the mean of a stationary process. Journal of the Royal Statistical

Society, Series B, 19, 282-285.

Hannan, E.J. (1958) The estimation of the spectral density after trend removal. Journal of the Royal

Statistical Society, Series B 20, 323-333.

Hannan, E.J. (1970) Multiple Time Series. New York: Wiley.

Janas, D. (1994) Edgeworth expansions for spectral mean estimates with applications to whittle esti-

mates. Annals of the Institute of Mathematical Statistics, 46, 667-682.

Jowett, G.H. (1954) The comparison of means of sets of observations from sections of independent

stochastic series. Journal of the Royal Statistical Society, Series B 17, 208-2 27.

Keenan, D.M. (1986) Limiting behavior of functionals of higher-order sample cumulant spectra. Annals

of Statistics 14, 134-151.

Phillips, P.C.B. (1977) Approximations to some finite sample distributions associated with a first order

stochastic difference equation. Econometrica 45, 463-485; erratum, 50, 274.

Phillips, P.C.B. (1980) Finite sample theory and the distributions of alternative estimators of the

marginal propensity to consume. Review of Economic Studies 47, 183-224.

Robinson, P.M. (1991) Automatic frequency domain inference on semiparametric and nonparametric

models. Econometrica, 59, 755-786.

Robinson, P.M. (1994) Semiparametric analysis of long-memory time series. Annals of Statistics 22,

515-539.

Robinson, P.M. (1995a) Log-periodogram regression of time series with long range dependence. Annals

of Statistics 23, 1048-1072.

Robinson, P.M. (1995b) The approximate distribution of nonparametric regression estimates. Statistics

and Probability letters 23, 193-201.

Robinson, P.M. and C. Velasco (1997) Autocorrelation-robust inference. In G.S. Maddala and C.R.

Rao (eds.), Handbook of Statistics 15, pp. 267-298. Amsterdam: North-Holland.

Rudzkis, R. (1985) On the distribution of the maximum deviation of the Gaussian stationary time

series spectral density estimate. Lithuanian Mathematical Journal 25, 118-130.

Song, W.T. and B.W. Schmeiser (1992) Variance of the sample mean: properties and graphs of

quadratic-form estimators. Operations Research 41, 501-517.

34



Taniguchi, M. (1987) Validity of Edgeworth expansions of minimum contrast estimators for Gaussian

ARMA processes. Journal of Multivariate Analysis 21, 1-28.

Taniguchi, M. (1991) Higher Order Asymptotic Theory for Time Series Analysis. Lecture Notes in

Statistics 68. Berlin: Springer-Verlag.

Taniguchi, M. and M.L. Puri (1996) Valid Edgeworth expansions of M-estimators in regression models

with weakly dependent residuals. Econometric Theory 12, 331-346.

Zygmund, A. (1977) Trigonometric Series. Cambridge: Cambridge University Press.

35


